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Abstract

In this paper we model the dynamics of realized volatility as a
Multiplicative Error Model with a mixture of distributions for the
innovation term with time-varying mixing weights forced by past be-
havior of volatility. The mixture considers innovations as a source of
time-varying volatility of volatility and is able to capture the right tail
behavior of the distribution of volatility. The empirical results show
that there is no substantial difference in the one-step ahead condi-
tional expectations obtained according to various mixing schemes but
that fixity of mixing weights may be a binding constraint in deriving
accurate quantiles of the predicted distribution.
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1 Introduction

In financial econometrics, increasing effort has been devoted to the measure-
ment of volatility of asset prices for the interest it has in risk management,
derivative pricing, and asset allocation. While GARCH modeling with daily
data has become common among practitioners, in recent times, a lot of work
was poured into the potential for empirical applications presented by the
availability of intra—daily data. The realized volatility literature has de-
veloped techniques for estimating the unobservable quadratic variation of
an underlying continuous time process for the evolution of asset prices, thus
suggesting a valid alternative to modeling the conditional variance of returns.

Although it is vulnerable to some phenomena affecting asset price forma-
tion such as jumps and microstructure noise, the main measure of reference
is the daily realized variance as the sum of intradaily squared returns. In
what follows we will not address the issues of sampling schemes for market
microstructure noise reduction nor the possible presence of jumps, and limit
ourselves to a realized variance based on five-minute returns. Rather, we
want to show how a Multiplicative Error Model (Engle, 2002) coupled with
a mixture of distributions approach provides a model for the dynamics of
the time series of interest and a basis for forecasting, which can be applied
to any other measure of volatility. In so doing, we pursue an alternative to
Lanne (2006) by showing that a single conditional expectation may suffice
and that a time-varying mixing coefficient introduces a rich extension of the
specification.

The debate as to which strategy to follow to investigate the dynamics
of the series is open to question: the realized volatility (or variance)! is
a positive valued process, with a seeming long memory feature suggested
by a slow, hyperbolic decay of the unconditional autocorrelation function.
Some authors prefer to model realized volatility as a linear function of the
past: a simple linear autoregressive model, an ARFIMA model (Andersen et
al., 2003), or models where data are sampled at different frequencies: daily,
weekly and monthly in the heterogeneous Autoregressive (HAR) model by
Corsi (2009); a weighted average of past daily realized volatility to predict
longer period realized variance in the MIDAS model in Forsberg and Ghysels
(2007). Other authors adopt a logarithmic transformation and apply linear

'From now on, we will refer to volatility although the considerations developed apply
to its squares as well, unless otherwise noted.



models on the log of realized variance (Forsberg and Ghysels, 2007).

A different approach favored here is the one adopted by several authors,
following the suggestion by Engle (2002; extending the logic of the Autore-
gressive Conditional Duration (ACD) models of Engle and Russell, 1998)
who suggested the use of a Multiplicative Error Model (MEM) for positive
valued processes, namely of the product of a conditional expectation that
follows a GARCH-type dynamics and a positive valued innovation.

Engle and Gallo (2006) showed that the first order conditions of the like-
lihood function of an MEM with Gamma innovations do not depend on the
shape of the Gamma distribution. This has the interesting consequence that,
for example, all ACD (a special case of MEM) models estimated under an
exponential distribution assumption can be reinterpreted as Gamma driven.
A further point made by the same authors is that mixing information on
different measures of volatility (as in their application on squared returns,
daily range and realized variance) is beneficial for forecasting.

The properties of the innovation process are crucial, since they contribute
to determine the capability of the model to capture the right tail behavior of
the series distribution, especially in a purely univariate framework: to model
durations, De Luca and Gallo (2004) show that a mixture of exponentials
with fixed weights improve over a standard ACD model; De Luca and Gallo
(2009) show further improvements and a greater flexibility in extending the
mixture to have time-varying weights.

Parallelling this line of research, Lanne (2006) suggests an interesting
flexible MEM specification in which the process for realized volatility can
be seen as a mixture of two Gamma MEMs with different coefficients for
the conditional expectation and different shape parameters for the Gamma
(cf. also Ahoniemi and Lanne, 2009). We extend the approach even further,
by adopting a MEM with mixing Gamma innovations with time-varying
persistent weights driven by past realized variance multiplied by a common
conditional expectation.

The basic message of the paper is that different mixing weights (a. con-
stant with two Gammas; b. time varying with two Gammas; and c. constant
with two Gammas and two conditional expectations) provide approximately
the same results in a one-step ahead forecasting framework. The difference
among the various approaches emerges in a stronger fashion when one shifts
the attention to the predicted volatility of volatility and, more in general,
to the shape of the density forecasts. The approach has a further element
of interest in that the modeling strategy provides an alternative to modeling
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long—range dependence via fractionally integrated models.

The paper is organized as follows. In Section 2 we summarize some theo-
retical results on realized volatility in the context of volatility measurement
and we summarize some of the features of the Multiplicative Error Model.
In Section 3 we discuss at length the features of a mixture model, deriving
some implications on the volatility of volatility and the coefficient of varia-
tion of the process from assuming mixtures of Gamma with fixed weights (as
in Lanne’s model) and with time-varying weights (as in the model suggested
by us).

Section 4 illustrates the results obtainable with different models on the
realized volatility of the return rates on the Deutsche Mark/US dollar, the
Japanese Yen/USD and the Japanese Yen/Deutsche Mark. We show that,
in spite of the better fit obtainable with a mixture of distributions for the
innovations, the estimated parameters are fairly similar to one another under
the different specifications. The real difference arises when extra information
is added to the dynamics of the conditional expectations, either by adding
two separate conditional expectations as in Lanne or extending the model to
admit time varying mixing weights which depend on past realized volatility.
Section 5 contains concluding remarks.

2 A Multiplicative Error Model for Realized
Volatility

Various arguments can justify the interest in the high—frequency based mea-
sures of volatility?. Andersen and Bollerslev (1998) pointed out that squared
daily returns are a noisy measure of variation: with simulation arguments
they show that Mincer—Zarnowitz type regressions of squared returns on
any conditional variance forecast would produce a very low R?. Given that
volatility or variance of returns is not observed, it has to be substituted with
a proxy whose measurement error should vanish under certain conditions.
One solution suggested is to refer to the availability of ultra-high frequency
data on prices and to compute a variable called realized variance, constructed

2Cf. various survey papers by Andersen, Bollerslev and Diebold included in the refer-
ences.



as

1/7 1/7 9
T’U?(T) = Zﬁ{lﬂ-f = Z (pt—1+i7 - pt—1+(z‘—1)7) (1>
i=1 i=1

where the generic term 7,1, is the return measured intra—daily as the log-
price difference of an asset over a (very small) period 7 so that its reciprocal is
an integer value, representing the number of intradaily time intervals during
the day. When 7 = 1 we get squared returns back; common choices are
fractions of the trading day corresponding to five minutes or thirty minutes
intervals. The theoretical support for such an approach stems from the fact
that, under suitable conditions, as 7 converges to zero, this measure converges
to the integrated variance, that is the integral over a short period of the
instantaneous (or spot) volatility of an underlying continuous time diffusion
process. Other possible features of the phenomenon could be accommodated,
such as the presence of jumps or of market microstructure noise (Barndorff—
Nielsen and Shephard, 2002, 2004, 2006; Hansen and Lunde, 2006).

In what follows we will consider the square root of realized variance (re-
ferred to as realized volatility) and exploit its properties of being a non-
negative valued series. We will model it as a multiplicative process of the
form

TU = iy & (2)
where & is an iid stochastic process with unit conditional expected value
and variance ¢, and p; is the conditional expectation of realized volatility.
By adopting a GARCH-type structure for ju;, we get a Multiplicative Error

Model to describe the dynamics of the conditional expectation of realized
volatility,

q P
e = w+ Z 0TV + Z Bitte—i + 21, (3)
j=1 i=1
in its general MEM(q,p) form. The vector z;_; contains observable variables
of possible interest in the information set.
Following Engle and Gallo (2006), it is now standard practice to consider
a Gamma specification for & with one parameter (as a result of the unit mean
constraint): in fact, such a specification turns out to entail the independence
of parameter estimates for p; on the value of the shape parameter of the
Gamma.
Since a MEM is a generalization of an ACD model (Engle and Russell,
1998), it is natural to extend the specification of the innovation term to



accommodate more flexibility and allow for a better fit. As we will see, it
is not necessarily an issue of obtaining a model which better predicts the
conditional expectation (many different assumptions provide substantially
equivalent forecasts), as much as one of having a flexible tool which can
adapt to the varying market conditions. We are aiming at a better fit of
the density of the distribution altogether, a task which proves useful when
we need to derive confidence intervals for expected volatility or evaluate the
probability of high values of volatility (say, in a scenario framework).

3 Mixture of distribution hypothesis

The strategy is one of generalizing expression (2) considering more flexible
specifications for the innovation term &;, with or without additional assump-
tions on the behavior of the conditional expectation term p;.

3.1 The Model with Mixing Gamma Innovations — MIX

We can assume for the innovation term & is a mixture of two Gammas &; ;
and & with a fixed mixing weight, 7, as in De Luca and Gallo (2004, in an
ACD framework). We would have

) &y with prob 7
roe= { pe oy with prob (1 —m) 7 (4)

with a corresponding density function for the innovation

v TV v
f<t [t1> :7Tg<t [t1;01> +(1—7T)g<t [t1;02> . (5)
1% Ht F

The function f(-) is constrained as to have conditional expectation equal
to one. The parameters of two components are denoted, respectively, as
0, = [\ | and 82 = [A2 72]. The unit expectation constraint implies
that one of the five parameters is not free. We let

1—7mAm
T (6)
The variance is

Var(gt) = W)‘%% + (1 - W))‘g% +m ()\171 - 1)2 + (1 - 7T) ()\272 - 1)2

1
- E(l — 7T)\1’}/1)2 + W)\%’)/l(l -+ ’yl) — 71')\1)\271 —+ )\2 — 1.



From (2) the distribution rv;|l;_1, conditionally on the information set at
time ¢t — 1, is a mixture of two distributions with conditional mean g, that

1S
E(rvt‘jtfl) = Uy

Note that, given the conditional variance,
Var(rog|I,-1) = pi Var(&,),

the conditional coefficient of variation given by the ratio

St.Dev.(rve|l;—1)  pSt.Dev.(&)

= St.DeV. (ft),
2% 2

is constant, pointing out that the variability of the process does not have an
independent source of variability other than its conditional expectation. In
other words, with constant weights, the variance of realized volatility is just
determined by its conditional expected value, p;, multiplied by a scale factor.

3.2 The Model with Time-Varying Mixing Gamma In-
novations — TVM

We may want to go a step further and follow the mixture MEM approach
adopting for the innovation term a mixture with time-varying weights, that
is with m; replacing 7. We would have

| we& e with prob
= { s &2 with prob (1-m) "’ (7)

with a corresponding density function for the innovation

rv rv rv
f <t [t1> =T g (t It1;01> + (1 - 7Tt)9 (t [t1;92,t) . (8)

e Hi Mt
Again, we denote the parameters of two components as 61 = [A\; \y], re-
spectively, @2 = [A2  72.). Note that 0, is time-varying, since we need

unit expectation of the innovation at each period. We have allowed 7, to be
time-varying so that
1 —mMmn
pu— —_— ., 9
72’75 (1 — 7Tt))\2 ( )



The variance of the mixture innovation &; is now time-varying, that is & ~
iid(1,0?). The conditional distribution of realized volatility is now charac-
terized by time-varying mean, y;, as in (3), time-varying variance, y?o?, and
a time-varying coefficient of variation.

When Var(&;) is time-varying, the variance of realized volatility loses its
dependency upon p; alone. In particular, under the assumption of two Gam-
mas, the same conditional coefficient of variation is

[T Ay (A + Ay — 2) + (1 — m) Aoy Ao + Aoyar — 2) + 1]1/2 :

In this formulation, equation (3) is used to capture the persistence in the
conditional expectation (which corresponds to conditional heteroskedasticity
in a GARCH framework) through i, whereas the equation of m; is used
to capture the time-varying coefficient of variation (or varying volatility of
volatility). In the equation of 7;, we enter those (lagged) elements that affect
the conditional coefficient of variation. As a first suggestion, we can assume
that the time-varying weights depend on some lagged volatility measure such
as the realized volatility itself:

~exp{do + 017rvpy + o1}
1+ exp{dy + 01701 + dom1 }

T

In the presence of a negative coefficient d;, a higher realized volatility
involves a lower value of m;, which implies a higher value of Var(&). (the
converse is true for a positive d;). As the empirical evidence shown later
indicates, given a certain situation in t — 1 summarized in a certain value of
1, a higher value of the realized volatility has an impact on the variance of
the innovation term and hence is associated to a greater value of the volatility
of the realized volatility.

3.3 The Model with Mixing Expectations and Gamma
Innovations — LANNE

Finally, Lanne’s (2006) suggestion is to take a mixture of two Gamma den-
sities (with constant weights) and specify two equations with separate co-
efficients for the conditional expectations. In terms of notation this latter
approach amounts to the following setup

_ ) &y with prob
TV = { pot &y with prob (1 —m) (10)
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with a corresponding density function for the innovation

/ (m)t ]t—1> =ng (m}t
Lt Hit

p1+ and po, are the conditional expectations in each of the two regimes as
in (3) with different parameters for each conditional expectation,

TVt

M2t

Iiq; 01> +(1—m)g (

It_1;02> . (1)

q P
Hir = wi+ Z Q1105 + Z Brittt i—i
j=1 i=1

q P
Hop = wo+ Z Qo TV + Z Baifha,t—i

j=1 =1

Finally, &, and £y, are Gamma random variables with unit expected values.
As a result, the overall conditional expectation p; itself can be seen as a
mixture of two conditional expectations.

We will perform a one—step ahead forecasting comparison among the fol-
lowing three models, denoted as:

1. a mixture of two Gammas with a fixed weight (MIX);
2. a mixture of two Gammas with a time—varying weight (7'VM);

3. Lanne’s model with fixed 7 but different specifications for p; ; and pio4.

4 Empirical Results

The data on intra-daily foreign exchange rates collected by Olsen and Asso-
ciates have become a standard playing field to compare volatility models. An-
dersen et al. (2003, ABDL) and Lanne (2006), among others, have used them
to illustrate the empirical properties of their contributions. In what follows
we will use the daily realized volatility estimates from Dec. 2, 1986 to Nov.
27, 1996 constructed by ABDL, based on the return rates on the Deutsche
Mark/US dollar (DEM/USD), the Japanese Yen/USD (JPY/USD), and the
cross—rate Japanese Yen/Deutsche Mark (JPY/DEM) collected at thirty
minutes intervals. Figure 1 displays the plots of annualized realized volatil-
ity for the three exchange rates. Lanne (2006) has discussed at length the
issues surrounding long memory features and the fact that a MEM manages
to capture the slow decaying feature of the correlogram.
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Figure 1 approximately here

We comment the estimation results together across bilateral exchange
rates (Table 1 for DEM /USD, Table 2 for YEN/USD and Table 3 for YEN/DEM).
By and large we can say that there is no emerging dominance if one looks
at the information criteria AIC and BIC, nor from the standardized residual
(levels and squared) diagnostics (some marginal problems are present for MIX
and TVM for JPY/DEM). The time-varying mixing weights add flexibility
to the specification as we will see in forecasting. The past realized volatility
does not get strong support in driving the weights (it is significant only for
the JPY/USD case). There are some differences in parameter estimates for
the second regime in Lanne’s model where the dynamics of the conditional
expectation in the second regime appears to be substantially stronger (in the
case of JPY/DEM there is even a unit root). The overall dynamics must take
into consideration the different parameters of the mixing Gamma (in Lanne’s
case the parameter )\, is always smaller than the corresponding parameter in
the MIX or TVM).

Table 1 approximately here
Table 2 approximately here
Table 3 approximately here

Let us illustrate the behavior of the mixing weights across specifications
by referring to Figure 2 where the estimated time-varying mixing weight, 7,
is drawn together with the estimated 7 of the other models for the three
exchange rates.

Figure 2 approximately here

In all the cases, the dynamics of 7; appears to be quite erratic around
the fixed levels, showing some instances of substantial departure which af-
fects mainly the tails of the one-step ahead predicted densities. We chose
to illustrate this point by calculating such densities in correspondence to the
lowest, respectively, the highest value of 7; for each exchange rate as detailed
in Figure 3 (panels (a) and (b) for DEM/USD, (c) and (d) for JPY/USD,
(e) and (f) for JPY/DEM). Unsurprisingly, the behavior of MIX and Lanne’s
models is quite similar, with the TVM showing some substantial departure
in correspondence to the highest value of the time-varying weight.

Figure 3 approximately here
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Finally, we calculated the mean square prediction error for horizons 1
to 10 for the three series (Figure 4). Once again, the evidence points to a
substantial equivalence of the three models with a slight outperformance of
Lanne’s model by the MIX and TVM at longer horizons.

Figure 4 approximately here

5 Concluding Remarks

In this paper, we have introduced a specification for the Multiplicative Er-
ror Model which takes into account a mixture of Gamma distributions with
time-varying parameters. The theoretical point we are stressing is that the
specification allows us to have a time-varying volatility of volatility. In this
specification we have chosen the forcing variable to be the lagged volatil-
ity. In spite of their exploratory flavor, the results are quite encouraging,
since the specification improves above the simple Gamma specification and
above a specification which has a mixture of two Gamma distributions each
constrained to have unit mean, when measured by a metric of significance
testing of nested hypotheses and characteristics of the residuals.

The unconstrained specification provides a better value of the likelihood
function and very good diagnostic properties for the standardized residuals.
The multiplicative specification seem to absorb completely the slow decay of
the autocorrelation function. The analysis can be extended in a number of di-
rections: the most immediate one is to explore whether other variables avail-
able in the information set have increased predictive power (lagged absolute
returns, bipower variations or estimates of the jumps, overnight surprises).
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Table 1: Parameter estimates and diagnostics of the MIX, TVM and Lanne
models for DEM/USD realized volatility — Dec. 2, 1986 to Nov. 27, 1996.

Parameters MIX TVM LANNE
Equation for the Expected Volatility

Regime 1 Regime 2

w 0.1982 0.1914 0.1508 7.0756
(0.0460) (0.0452) (0.0421)  (1.1613)
o1 0.3412 0.3401 0.3250 0.2936
(0.0197) (0.0196) (0.0198)  (0.1433)
a9 -0.1848 -0.1872 -0.1790 0.4837
(0.0255) (0.0253) (0.0250)  (0.1325)
I} 0.8242 0.8283 0.8263
(0.0179) (0.0177) (0.0176)
Shape Parameters of the Mixing Gamma
A1 0.0528 0.0519 0.0577
(0.0029) (0.0028) (0.0028)
Y1 17.4650 17.7580 17.831
(0.8762) (0.8725)
A2 0.2325 0.2192 0.1500
(0.0258) (0.0233) (0.0184)
Y2 6.4409  time-varying 6.6667
Parameters of the Mixing weights
T 0.8647  time-varying 0.8698
(0.0255) (0.0231)
do -2.1239
(0.1546)
01 -0.0120
(0.0168)
09 4.7615
(0.1922)
AIC 4.8419 4.8385 4.8373
BIC 4.8608 4.8582 4.8570
Std. Residuals 6.9050 6.5457 4.0734
Squared Std. Residuals 1.2876 1.3587 1.6009

Standard errors in parentheses. The three specifications are as follows: a mixture of two Gammas with a
fixed weight (MIX); a mixture of two Gammas with a time—varying weight (T'V M); Lanne’s model with
fixed 7 but different specifications for p11,;+ and p2 . Numbers in italics are constrained parameters. In the
last two columns we reported the parameter estimates of the MEM(2,1) in the two regimes for Lanne’s
specification. Critical values for the Ljung-Box tests on standardized residuals and squared standardized

residuals are 18.31 (5% significance), respectively 23.21 (1% significance).
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Table 2: Parameter estimates and diagnostics of the MIX, TVM and Lanne
models for JPY /USD realized volatility — Dec. 2, 1986 to Nov. 27, 1996.

Parameters MIX TVM LANNE
Equation for the Expected Volatility

Regime 1 Regime 2

w 0.3041 0.3236 0.2107 0.2197
(0.0688) (0.0716) (0.0648)  (0.2029)
o1 0.4046 0.3979 0.3716 0.4963
(0.0209) (0.0208) (0.0244)  (0.0809)
Qa9 -0.2169 -0.2131 -0.1828 -0.4276
(0.0304) (0.0304) (0.0336)  (0.1036)
I6] 0.7823 0.7828 0.7670 0.9285
(0.0254)  (0.0257) (0.0283)  (0.0478)
Shape Parameters of the Mixing Gamma
A1 0.0502 0.0498 0.0543
(0.0043) (0.0025) (0.0041)
Y1 17.8854 18.1976 18.1462
(1.3779) (0.8652)
A2 0.2081 0.2124 0.1541
(0.0182)  (0.0148) (0.0119)
Y2 0.280  time-varying 6.489
Parameters of the Mixing weights
T 0.7505  time-varying 0.7336
(0.0434) (0.0412)
0o -2.4220
(0.0482)
01 0.0239
(0.0028)
09 4.4334
(0.0512)
AIC 4.9225 49111 4.9201
BIC 4.9415 4.9348 4.9461
Std. Residuals 13.0839 10.9489 10.4672
Squared Std. Residuals 9.0136 7.8873 9.9891

Standard errors in parentheses. The three specifications are as follows: a mixture of two Gammas with a
fixed weight (MIX); a mixture of two Gammas with a time—varying weight (I'V M); Lanne’s model with
fixed 7 but different specifications for p11 ¢ and p2 ¢. Numbers in italics are constrained parameters. In the
last two columns we reported the parameter estimates of the MEM(2,1) in the two regimes for Lanne’s
specification. Critical values for the Ljung-Box tests on standardized residuals and squared standardized

residuals are 18.31 (5% significance), respectively 23.21 (1% significance).
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Table 3: Parameter estimates and diagnostics of the MIX, TVM and Lanne
models for JPY/DEM realized volatility — Dec. 2, 1986 to Nov. 27, 1996.

Parameters MIX TVM LANNE
Equation for the Expected Volatility
Regime 1 Regime 2
w 0.1360 0.1337 0.0915 2.4356
(0.0368) (0.0361) (0.0336)  (0.4025)
o1 0.3575 0.3557 0.3370 0.4552
(0.0207) (0.0206) (0.0235)  (0.0974)
a9 -0.1649 -0.1653 -0.1667 0.5448
(0.0300) (0.0299) (0.0316)  (0.0974)
Ié) 0.7929 0.7952 0.8094
(0.0220) (0.0218) (0.0216)
Shape Parameters of the Mixing Gamma
A1 0.0417 0.0408 0.0453
(0.0030) (0.0027) (0.0024)
Y1 22.5270 23.0074 22.0751
(1.4856) (1.3966)
A2 0.1278 0.1247 0.1011
(0.0147) (0.0128) (0.0114)
Y2 9.9383  time-varying 9.8912
Parameters of the Mixing weights
T 0.8167  time-varying 0.8298
(0.0508) (0.0343)
0o -2.1505
(0.0926)
01 -0.0080
(0.0124)
02 4.5783
(0.2250)
AIC 4.3766 4.3732 4.3741
BIC 4.3956 4.3969 4.3978
Std. Residuals 18.9995 18.8704 10.3912
Squared Std. Residuals 15.4696 15.3248 14.8376

Standard errors in parentheses. The three specifications are as follows: a mixture of two Gammas with a
fixed weight (MIX); a mixture of two Gammas with a time—varying weight (I'V M); Lanne’s model with
fixed 7 but different specifications for p11 ¢ and p2 ¢. Numbers in italics are constrained parameters. In the
last two columns we reported the parameter estimates of the MEM(2,1) in the two regimes for Lanne’s
specification. Critical values for the Ljung-Box tests on standardized residuals and squared standardized

residuals are 18.31 (5% significance), respectively 23.21 (1% significance).
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Figure 1: Annualized realized volatility for three exchange rates, DEM/USD
(top), JPY/USD (middle), JPY/DEM (bottom) — Dec. 2, 1986 to Nov. 27,
1996. 17
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Figure 2: Estimated 7 for MIX (dashed line) and Lanne (dotted line) model
and estimated m; for TVM model (solid line), DEM/USD (top), JPY/USD
(middle), JPY/DEM (bottom) — Dec. 2, 1986 to Nov. 27, 1996.
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Figure 3: Right tail of the predicted one-step ahead probability density function for MIX (dashed line),
TVM (solid line) and Lanne (dotted line) model in correspondence of the lowest and highest values of #;.
Panel (a): DEM/USD, March 9, 1995, #; = 0.7894. Panel (b): DEM/USD, Dec. 21, 1994, #; = 0.8867.
Panel (c¢): JPY/USD, June 22, 1988, #; = 0.2013. Panel (d): JPY/USD, Jan. 18, 1988, #; = 0.9234.
Panel (e): JPY/DEM, Sept. 25, 1992, 7t; = 0.7670. Panel (f): JPY/DEM, May 17, 1988, 7t; = 0.8442.
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Figure 4: Mean Squared Error at forecasting horizons 1 to 10 for MIX (dashed
line), TVM (solid line) and Lanne (dotted line) model, DEM/USD (top),
JPY/USD (middle), JPY/DEM (bottom) — Dec. 2, 1986 to Nov. 27, 1996.
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