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Summary

Many research questions involving causal inference are often concerned with under-
standing the causal pathways by which a treatment affects an outcome. Thus, the con-
cept of ’direct’ versus ’indirect’ effects comes to play. Disentangling direct and indirect
effects may be a difficult task, because the intermediate outcome is generally not under
experimental control. We tackle this problem by investigating new augmented experi-
mental designs, where the treatment is randomized, and the mediating variable is not
forced, but only randomly encouraged. There are two key features of our framework: we
adopt a principal stratification approach, and we mainly focus on principal strata effects,
avoiding to involve a priori counterfactual outcomes. Using non parametric identification
strategies, we provide a set of assumptions, which allow us to partially identify the causal
estimands of interest, the Principal Strata Direct Effects. Large sample bounds for various
Principal Strata average Direct Effects are provided, and a simple hypothetical example
is used to show how our augmented design can be implemented and how the bounds
can be calculated. Finally our augmented design is compared with and contrasted to a
standard randomized design.

Some key words: Augmented Designs; Bounds; Causal Inference; Direct and Indirect Effects; Principal
Stratification.

1. Introduction

Many research questions involving causal inference are often concerned with under-
standing the causal pathways by which an exposure or a treatment affects an outcome.
Researchers want to know not only if the treatment is effective, but also how the treat-
ment effect on the outcome is mediated by intermediate posttreatment variables. Thus,
the concept of ‘direct’ versus ‘indirect’ effects comes to play. The use of this concept is
common not only in statistics, but also in many area of social, economic and political
sciences as well as in biomedical and pharmacological sciences, where they are the closely
related concepts of ‘biomarkers’ and ‘surrogate outcomes’ (e.g., Joffe & Greene (2009);
Gilbert & Hudgens (2008)).

A classical example, which also illustrates the policy-making implications of direct and
indirect effects, involves a drug treatment having side-effects (Pearl, 2001). Patients who
suffer from these side-effects might tend to take additional rescue medication, which in
turn may affect the response to the treatment. Therefore, the total effect of the drug
treatment will be a combination of the direct effect of the treatment on the outcome
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and the indirect effect mediated by the rescue medication. In order to understand the
mechanistic pathways by which the drug acts to cause or prevent a disease, the total
treatment effect has to be decomposed into direct and indirect effects. Untying the direct
and mediated effects may help understanding, e.g., what the effect of the treatment
would be if its side-effects would be taken away, and so answers policy-related questions
of practical significance (e.g., the drug manufacturer might consider ways of eliminating
the adverse side-effects of the drug; doctors might deem helpful to suggest or prevent the
use of rescue medication).

Disentangling direct and indirect effects may be a difficult task, because the inter-
mediate outcome is generally not under experimental control. For instance, in the drug
treatment example, side-effects, and so the use of a rescue medication, cannot be, in
general, controlled. Traditional analyses of scientific problems where treatment compar-
isons need to be adjusted for posttreatment confounded variables are typically based on
a standard method that directly controls for (conditions on) observed values of those
posttreatment variables, resulting in estimates that generally lack causal interpretation
(e.g., Cochran (1957); Rosenbaum (1984); Prentice (1989); Freedman et al. (1992); Lin
et. al (1997); Buyse & Molenberghs (1998); Buyse et al. (2000)). On one other hand,
a common problem in the existing literature attempting to estimate causal mechanisms
of a treatment is that the estimands are not clearly defined, or are defined within the
context of the estimation procedure used (e.g., OLS, matching), and the assumptions
needed for a causal interpretation of the estimates are not always made explicit.

The definition of direct and indirect effects is straightforward in linear equation sys-
tems, but is rather contrived in non-linear systems. The problem of defining, identifying
and estimating direct and indirect effects has been tackled extensively in the causal in-
ference literature, and a variety of identification and estimation strategies have been
developed, by using different approaches for causal inference. Currently, predominant
frameworks to causal inference include the decision theoretic approach, which is grounded
in statistical decision theory (Dawid, 2000, 2002), the causal graph or structural mod-
els framework (Pearl, 1995, 2000), and the potential outcomes framework, originally
introduced by Neyman (1923) for randomized experiments and randomization-based in-
ference, and generalized and extended by Rubin (1974, 1977, 1978) for nonrandomized
studies and alternative forms of inference. In general, these approaches focus on different
causal estimands, and full agreement on what the relevant estimands should be and how
one should estimate them is still lacking.

In this paper we focus on the potential outcomes framework, also referred to as the
Rubin Causal Model (RCM, Holland (1986)), and use the concept of the principal strat-
ification (Frangakis & Rubin, 2002) for addressing the topic of direct and indirect causal
effects. Fundamentally, the potential outcome perspective views causal inference as a
problem of missing data with explicit mathematical modelling of the assignment mecha-
nism as a process for revealing the observed data. One of the advantages of the framework
is that it allows for heterogeneity of treatment effects. In addition, causal estimands can
be defined and assumptions stated without specifying parametric models. Specifically, the
RCM allows one to make explicit the assumptions necessary for valid causal inference,
and to clearly define the structural behavioural assumptions, which are the ones that
make the estimands of interest identifiable. Finally, by separating and defining the criti-
cal assumptions, the RCM allows for a clear assessment of the consequences of violations
of these assumptions through sensitivity analysis.
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In this setting, the use of principal stratification is key to understanding the meaning
of direct and indirect causal effects (Mealli & Rubin, 2003; Rubin, 2004). Principal strat-
ification with respect to a posttreatment intermediate variable is a cross-classification of
subjects into latent classes defined by the joint potential values of that posttreatment
variable under each of the treatments being compared, so principal strata comprise units
having the same values of the intermediate potential outcomes. Frangakis & Rubin (2002)
define a Principal Causal Effect (PCE) as the comparison of potential outcomes under
different treatment levels within a principal stratum (or union of principal strata). The
key property of principal strata is that they are not affected by treatment assignment.
As a result, the central property of a PCE is that it is always a causal effect and does
not suffer from the complications of standard posttreatment-adjusted estimands.

In this view of causal inference, PCEs naturally provide information on the extent
to which a causal effect of the treatment on the primary outcome occurs together with
a causal effect of the treatment on the intermediate outcome. Specifically, a Principal
Strata Direct causal Effect (PSDE) of the treatment, after controlling for the intermediate
outcome, exists if there is a causal effect of the treatment on the primary outcome for
subjects belonging to principal strata where the mediator is not affected by the treatment.
On the other hand, if there is no causal effect of treatment on the outcome for these
subjects, then there is no direct effect of treatment after controlling for the mediator,
because the causal effect of treatment on the outcome exists only in the presence of
causal effect of treatment on the posttreatment intermediate variable.

Principal stratification is one of the several possible ways to conceptualize the medi-
atory role of an intermediate variable in the treatment-outcome relationship Joffe et al.
(2007). An alternative approach, usually applied in the causal graph framework to causal
inference, focuses on what would happen to the treatment-outcome relationship under in-
terventions on the intermediate variable, and defines direct and indirect causal effects by
using the concept of a priori counterfactual values of outcomes that would have been ob-
served under assignment to a given treatment level and if the posttreatment variable were
somehow simultaneously forced to attain a predetermined value (Robins & Greenland,
1992; Pearl, 2001). This framework, with its a priori counterfactual estimands, needs
to assume that the intermediate variables can be controlled and fixed by an external
intervention, or it is at least conceivable to do so. This may be a reasonable assumption
when the mediators represent additional treatments, which could, at least in principle,
be randomized. In the studies we consider, however, we prefer to relax this assumption,
and focus on the principal stratification approach, which classifies the population into
groups according to potential mediator behavior, without assuming any manipulation of
mediators.

PCE analysis is challenging, due to the latent nature of principal strata. Identification
and estimation strategies must generally involve techniques for incomplete data, which
usually require strong structural or modelling assumptions. Some of these assumptions
can be weakened by using alternative study designs (e.g., Follman (2006); Baker et al.
(2007)). In this paper, in order to ease identification and estimation of PCEs, we will
investigate new augmented designs, where the treatment is randomized, and the medi-
ating variable is not forced, but only randomly encouraged. We argue that this source of
exogenous variation may help to identify and estimate direct and indirect effects. These
designs will be feasible in some clinical and social experiments, when partial control of
the intermediate variable can be conceived. In the drug treatment example previously de-
scribed, side effects of the drug, and thus the use of rescue medication, cannot be directly
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controlled; however, the use of rescue medication can be encouraged (or discouraged) for
instance, by offering a rescue medication to randomly selected patients. In biomedical
and pharmacological sciences, Sjölander et al. (2009) focus on assessing the effect of phys-
ical activity on circulation diseases, not channeled through body mass index. Body mass
index represents a biomarker, and it is not obvious how to conceptualize interventions
on such a variable. However, suitable level of body mass index might be encouraged for
instance, by suggesting to follow a specific diet to randomly selected patients1.

The paper is organized as follows. In Section 2 we give a brief overview of competing
frameworks for defining the concept of direct and indirect effects. In Section 4 we present
our design’s structural assumptions and we derive large sample bounds for PSDEs in
Section 5. Calculation of these bounds is then illustrated in Section 6 with a numerical
example. In Section 7 our augmented randomized design is compared with and contrasted
to a standard randomized design with respect to the accuracy of large sample bounds
for an average (overall) direct effect. We conclude in Section 8 providing some discussion
and suggesting directions for future research.

2. Alternative Concepts of Direct and Indirect Effects

In this section we briefly review some of the several alternative ways to define and
formalize the concept of direct and indirect effects.

Consider a random sample of units, indexed by i = 1, . . . , n. Each unit i can be poten-
tially assigned either a standard treatment (z = C) or a new treatment (z = T ). Let Z
denote the treatment variable. The objective is to assess the causal effect of the T versus
the C treatment on an outcome Y . Let S stand for the set of all intermediate variables
which are on the causal pathway between the treatment and the main endpoint, Y .
Henceforth, for simplicity of notation, we assume that S is a single binary variable (e.g.,
assuming values 0 and 1). Let Yi(z) and Si(z) denote the potential outcomes of Y and
S, respectively if treatment Z was set, possibly contrary to fact, to the value z, z = C,T .
Finally, let Yi(z, s) denote the (a priori) counterfactual value for Y if, possibly contrary
to fact, Z was set to z and S was set to s: the potential outcomes Yi(z, Si(z) = s) are
priori counterfactuals for units assigned to treatment z who exhibit a value of the inter-
mediate outcome S not equal to s, because in one specific experiment, they can be never
observed for such type of units (Rubin, 2004). Note that we assume that the potential
values Si(z), Yi(z) and Yi(z, s) for individual i do not depend on the treatments received
by other individuals (Stable Unit Treatment Value Assumption: SUTVA; Rubin (1978,
1980, 1990)).

Robins & Greenland (1992) and Pearl (2001) give definitions for controlled direct effects
and natural direct and indirect effects based on interventions on the intermediate variable,
using a priori counterfactuals. The (average) Controlled Direct Effect (CDE) of the treat-
ment Z on the outcome Y , setting S to s, is defined by CDE(s) = E[Yi(T, s) − Yi(C, s)],
and measures the effect of Z on Y not mediated through S, that is, the effect of Z
on Y after intervening to fix the mediator, S, to some value s. The (average) Natural
Direct Effect (NDE) also measures the effect of the treatment Z on the outcome Y
not mediated through the intermediate variable S, but now the mediator is hold fixed
at whatever level it would have taken under a predetermined level z of the treatment:
1 Some augmented designs have been recently proposed in the vaccine trial literature (e.g., Follman (2006); Qin

et al. (2008)); however, they focus on simplified settings, where the surrogate response in the absence of treatment
is constant, and so they can be viewed as special cases of our design.
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NDE(z) = E[Yi(T,Si(z)) − Yi(C,Si(z))], z = C,T . Corresponding to the NDE is the
concept of Natural Indirect Effect (NIE), which assesses the extent to which an inter-
vention affects the outcome through the mediator. The NIE measures the effect on the
outcome Y of intervening to set the mediator to what it would have been if the treatment
was fixed at value T in contrast to what it would have been if the treatment was fixed at
C: NIE(z) = E[Yi(z, Si(T )) − Yi(z, Si(C))], z = C,T . These effects provide an intuitive
decomposition of the Average total Treatment Effect (ATE = E[Yi(T ) − Yi(C)]) into the
sum of a natural direct effect and a natural indirect effect:

ATE ≡ E[Yi(T ) − Yi(C)] ≡ E[Yi(T,Si(T )) − Yi(C,Si(C))]
=E[Yi(T,Si(T )) − Yi(T,Si(C))] +E[Yi(T,Si(C)) − Yi(C,Si(C))]=NIE(T ) +NDE(C),

or

ATE ≡ E[Yi(T ) − Yi(C)] ≡ E[Yi(T,Si(T )) − Yi(C,Si(C))]
=E[Yi(T,Si(T )) − Yi(C,Si(T ))] +E[Yi(C,Si(T )) − Yi(C,Si(C))]=NDE(T ) +NIE(C).

Flores & Flores-Lagunes (2009a,b) make a similar distinction of direct and indirect
effects by introducing the concepts of Mechanism Average Treatment Effect (MATE), and
Net Average Treatment Effect (NATE). Analogously, Didelez et al. (2006) and Geneletti
(2007) apply similar concepts using a decision theoretic approach, where relationships
between variables are encoded by using conditional independence statements, but without
using counterfactuals.

Various identification strategies for controlled direct effects and natural direct and in-
direct effects have been developed (e.g., Robins & Greenland (1992); Pearl (2001); Robins
(2003); Petersen et al. (2006); Geneletti (2007); Flores & Flores-Lagunes (2009a,b)), and
most of them involves causal graphical models: an exception can be found in Flores &
Flores-Lagunes (2009a,b), who present identification and estimation strategies within the
RCM. A drawback of these methods is that estimation can only be based on extrapola-
tions, because data can never provide direct evidence on a priori counterfactual values,
and extrapolation typically involves strong conditions such as constant-effect, paramet-
ric and/or conditional independence assumptions. Conversely, a principal stratification
approach does not require to use estimation strategies based on extrapolation methods,
because it does not use a priori counterfactuals, but addresses the topic of direct and
indirect effects by focussing on subsets of the target population - the principal strata -
which can naturally provide information on the causal pathways by which the treatment
affects the outcome.

Formally, a principal stratum with respect to the posttreatment variable S is a group
of individuals who have the same vector (Si(C), Si(T )), and a principal causal effect is a
comparison between the potential outcomes Yi(C) and Yi(T ) within a particular stratum
(or union of principal strata): PCE(sC , sT ) = E[Yi(T ) − Yi(C)∣Si(C) = sC , Si(T ) = sT ].
Since S is supposed to be a binary variable, units can be classified into four latent groups:
subjects who would exhibit a zero value of the intermediate outcome under both treat-
ment arms (1 = {i ∶ Si(C) = Si(T ) = 0}); subjects who would exhibit a positive value of
the intermediate outcome under control but would exhibit a zero value of the intermedi-
ate outcome under treatment (2 = {i ∶ Si(C) = 1, Si(T ) = 0}); subjects who would exhibit
a zero value of the intermediate outcome under control but would exhibit a positive
value of the intermediate outcome under treatment (3 = {i ∶ Si(C) = 0, Si(T ) = 1}); and
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subjects who would exhibit a positive value of the intermediate outcome under both
treatment arms (4 = {i ∶ Si(C) = Si(T ) = 1}).

Evidence on the direct effect of the treatment on the primary outcome is provided
by principal strata where the intermediate variable is unaffected by treatment, Si(C) =
Si(T ) (i.e., principal strata 1 and 4). Specifically, the PSDE of Z on Y at level s,
s ∈ {0,1}, can be formally defined as

PSDE(s) = E [Yi(T ) − Yi(C)∣Si(T ) = Si(C) = s] . (1)

If PSDE(s) = 0, for each s = 0,1, all effect is indirect, that is, mediated by the posttreat-
ment variable S, because if the treatment cannot change S, it cannot affect the primary
outcome Y .
PCEs (and PSDEs) are causal effects for specific subpopulations (principal strata),

and so the total effect of the treatment Z on the outcome Y is the weighted average of
PCEs across units belonging to different principal strata:

ATE = ∑
(sC ,sT )

PCE(sC , sT )πsC ,sT = ∑
sC=sT =s

PSDE(s)πs + ∑
sC≠sT

PCE(sC , sT )πsC ,sT ,

where πsC ,sT is the proportion of subjects belonging to principal stratum {i ∶ Si(C) =
sC , Si(T ) = sT }, and πs = πs,s. This result is in contrast to the a priori counterfactual
approaches, where direct and indirect causal effects are defined for each individual and
average over the entire population. For this reason, whereas a priori counterfactual di-
rect and indirect effects provide a natural decomposition of the total effect, principal
stratification does not in general allow one to decompose the total effect into direct and
indirect effects, unless additional assumptions are made: the PCEs for units belonging
to principal strata where the posttreatment variable is affected by treatment combine
direct and indirect effects.

VanderWeele (2008) studies the conceptual relations between PSDEs and controlled
and natural direct effects, assuming knowledge on all potential outcomes. He shows that
if there are no controlled direct effects or no natural direct effects then there can be
no principal strata direct effects. However the absence of principal strata direct effects
does not imply the absence of natural direct effects and does not necessarily even imply
that the average controlled or natural direct effect is zero. These relationships, how-
ever, immediately follow from the definition of PSDEs and controlled direct effects and
natural direct effects: PSDEs are ‘local’ effects (i.e., they are causal effects within prin-
cipal strata), whereas controlled direct effects and natural direct effects are defined for
each unit. Although these are relevant theoretical results, they do not help identification
and estimation of the causal estimands, using the data usually available. The observed
data contain information on the a priori counterfactuals Yi(z, Si(z′)), z ≠ z′ only for
those units who receive the treatment z and for which the treatment does not affect the
intermediate variable (Si(C) = Si(T )). Analogously, information on the a priori coun-
terfactuals Yi(z, s) can be only drawn for those units who receive the treatment z and
for which Si(z) = s. This result implies that, in the presence of heterogeneous effects,
estimation of average controlled direct effects and average natural direct effects for other
subpopulations (including the entire population) can only be based on extrapolations of
the a priori counterfactuals Yi(z, Si(z′)), z ≠ z′ to those units for which the treatment
affects the mediator, and extrapolations of the a priori counterfactuals Yi(z, s) to those
units for which Si(z) ≠ s, since their potential outcomes are never observed. In this pa-
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per, we are not willing to use extrapolation methods, therefore we prefer to focus on the
identification of PCEs, by concentrating on partial identification of PSDEs.

Various (full and partial) identification strategies, estimation methods and applications
for the concepts of principal stratification and principal effects have been considered (e.g.,
Barnard et al. (2003); Cheng et al. (2009); Frangakis et al. (2007); Gallop et al. (2009);
Imai (2008); Lee (2009); Lyncn et al. (2008); Mattei & Mealli (2007); Sjölander et al.
(2009); Zhang & Rubin (2003); Zhang et al. (2009)). In this paper we contribute to this
literature developing a novel approach to the identification and estimation of principal
stratum direct and indirect effects effects based on new augmented designs. Focus will
be on the assumptions characterizing the encouragement variable, which allows one to
partially identify causal estimands for specific subpopulations, and usually derive tighter
bounds than those derived in standard randomized experiments.

3. The Principal Stratification Framework with a Treatment and an
Encouragement Variable

Inference about principal causal effects, which involves prediction of the subjects’ miss-
ing memberships to the principal strata, as well as prediction of the subjects’ missing
potential outcomes, requires that some identifying assumptions are made. In order to
clearly define the critical assumptions, it is crucial to think very carefully about the hy-
pothetical randomized experiment that led to the observed data. With this respect, the
encouragement design - a special quasi-experimental design, where the only experimental
manipulation is exposure to the encouragement conditions - can be used as a template
to address issues of direct and indirect causal relationships. Actually, although it is in
general unreasonable to assume that the experimenter can directly control the adminis-
tration of the mediating variable, it could be plausible to think about the existence of
an additional variable, henceforth referred to as encouragement variable, which affects
the primary outcome, only through its effect on the intermediate outcome. Using the
econometric language (Reiersol, 1941; Haavelmo, 1943), this additional variable would
play the role of an instrument. Throughout, we, therefore, assume that, in addition to
the treatment, whose causal effect on the outcome is still our primary interest, units
are exposed to an additional treatment which is related to the mediating variable, but
unrelated to the outcome2.

Formally, each unit i in the sample can be potentially either encouraged or not en-
couraged to exhibit a specific value of the intermediate outcome, S: let Wi denote the
indicator variable assuming value E if unit i is encouraged, for example, to exhibit a
positive value of the intermediate outcome, and e otherwise. Let Z and W denote the
n-dimensional vectors with ith element Zi and Wi, respectively. Next, let Si (Z,W )
and Yi (Z,W ) be the potential indicator for whether unit i would exhibit a positive
value of S, and the potential response for unit i, given the vectors of treatment and
encouragement assignments, Z and W .

This notation emphasizes that the potential outcomes of any subject can be affected
by the treatment and encouragement assignments of every other subject. In addition,
there might be different forms of each treatment and encouragement level for each unit.

2 This parallelism between a standard encouragement design and a randomized experiment involving an encour-
agement design for the mediating variable should not lead to equalize the two frameworks. Indeed, alternative

identifying strategies and assumptions have to be made in order to draw inference about direct and indirect
casual effects by using this new augmented design.
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Table 1. Principal strata with two binary treatments and a binary intermediate variable

Gi Si(C, e) Si(C,E) Si(T, e) Si(T,E) Gi Si(C, e) Si(C,E) Si(T, e) Si(T,E)

1 0 0 0 0 9 0 1 1 0
2 1 0 0 0 10 0 1 0 1
3 0 1 0 0 11 0 0 1 1
4 0 0 1 0 12 1 1 1 0
5 0 0 0 1 13 1 1 0 1
6 1 1 0 0 14 1 0 1 1
7 1 0 1 0 15 0 1 1 1
8 1 0 0 1 16 1 1 1 1

Consistently with the approach we adopted in the previous section, we generalize the
Stable Unit Treatment Value Assumption (SUTVA; Rubin (1978, 1980, 1990)) by as-
suming that (i) the potential outcomes for any unit do not vary with the treatments
and the encouragements assigned to any other units; and (ii) for each unit there are no
different versions of each treatment and encouragement level. Formally,

Assumption 1 (Stable Unit Treatment Value Assumption, SUTVA). If
Zi = Z ′

i and Wi =W ′
i , then Si (Z,W ) = Si (Z′,W ′) and Yi (Z,W ) = Yi (Z′,W ′)

SUTVA allows one to write Si (Z,W ) and Yi (Z,W ) as Si (Zi,Wi) and Yi (Zi,Wi),
respectively. Therefore, for each unit i, there are four potential values for the medi-
ating variable: Si (C, e) , Si (C,E) , Si (T, e) , Si (T,E), and four potential values for the
response variable: Yi (C, e) , Yi (C,E) , Yi (T, e) , Yi (T,E). SUTVA is an important restric-
tion, and situations where this assumption is not plausible require to carefully investigate
the potentially complex interactions between units and the entire set of treatment and
encouragement levels which a unit might receive.

Principal strata are now defined according to the joint values of the potential variables
(Si(C, e), Si(C,E), Si(T, e), Si(T,E)):

Definition 1. The basic principal stratification P0 with respect to posttreatment vari-
able S is the partition of units i = 1, . . . , n such that, all units within any set of P0, have
the same vector (Si(C, e), Si(C,E), Si(T, e), Si(T,E)).
A principal stratification P with respect to posttreatment variable S is a partition of the
units whose sets are unions of sets in the basic principal stratification P0 (Frangakis &
Rubin, 2002).

Because the posttreatment variable is binary, units can be classified into sixteen ba-
sic principal strata as shown in Table 1. For instance, the principal stratum 1 =
{i ∶ Si(C, e) = 0, Si(C,E) = 0, Si(T, e) = 0, Si(T,E) = 0} comprises units who would ex-
hibit a zero value of the mediating variable under each arm defined by the joint val-
ues of the treatment and encouragement variables, and the principal stratum 10 =
{i ∶ Si(C, e) = 0, Si(C,E) = 1 Si(T, e) = 0, Si(T,E) = 1} comprises units who would ex-
hibit positive values of the mediating variable under encouragement and would exhibit
a zero value of the mediating variable without encouragement, irrespective of the treat-
ment level. Each principal stratum g, g ∈ {1,2, . . . ,16} comprises a proportion, πg of all
units. Let Gi represent the principal stratum indicator for subject i: Gi ∈ {1,2, . . . ,16}.

This partition of the units can be viewed as a generalization of the idea of principal
stratification (Frangakis & Rubin, 2002) to multiple treatments. Generally, a principal
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Table 2. Principal strata with two binary treatments and a binary intermediate variable.
PSDEs by encouragement status under standard and active treatment and value of the

intermediate outcome

Gi Si(C, e)Si(C,E)Si(T, e)Si(T,E) PSDEGs,w,w′ (s;w,w
′
)

1 0 0 0 0 PSDE1(0; e, e) PSDE1(0;E,E) PSDE1(0; e,E) PSDE1(0;E, e)
2 1 0 0 0 PSDE2(0;E,E) PSDE2(0;E, e)
3 0 1 0 0 PSDE3(0; e, e) PSDE3(0; e,E)
4 0 0 1 0 PSDE4(0;E,E) PSDE4(0; e,E)
5 0 0 0 1 PSDE5(0; e, e) PSDE5(0;E, e)
6 1 1 0 0
7 1 0 1 0 PSDE7(1; e, e) PSDE7(0;E,E)
8 1 0 0 1 PSDE8(1; e,E) PSDE8(0;E, e)
9 0 1 1 0 PSDE9(0; e,E) PSDE9(1;E, e)
10 0 1 0 1 PSDE10(0; e, e)PSDE10(1;E,E)
11 0 0 1 1
12 1 1 1 0 PSDE12(1; e, e) PSDE12(1;E, e)
13 1 1 0 1 PSDE13(1;E,E)PSDE13(1; e,E)
14 1 0 1 1 PSDE14(1; e, e) PSDE14(1; e,E)
15 0 1 1 1 PSDE15(1;E,E) PSDE15(1;E, e)
16 1 1 1 1 PSDE16(1; e, e)PSDE16(1;E,E)PSDE16(1; e,E)PSDE16(1;E, e)

stratification with a binary treatment and a binary encouragement generates the follow-
ing PSDEs:

Definition 2. The average Principal Stratum Direct Effect of Z on Y at level s,
s ∈ {0,1}, denoted PSDE(s;w,w′), is defined as

PSDE(s;w,w′) = E [Yi(T,w′) − Yi(C,w)∣Si(T,w′) = Si(C,w) = s] (2)

for w,w′ ∈ {e,E}.

Note that,

PSDE(s;w,w′) = E [Yi(T,w′) − Yi(C,w)∣Si(T,w′) = Si(C,w) = s]
= E[E [Yi(T,w′) − Yi(C,w)∣Si(T,w′) = Si(C,w) = s, Si(T,w), Si(C,w′)] ]

= E [PSDE(s;w,w′)∣Si(T,w), Si(C,w′)] ≡ E [PSDEGs,w,w′ (s;w,w
′)] ,

where the outer expectations are over the joint distribution of the potential outcomes
Si(T,w) and Si(C,w′), and Gs,w,w′ is the principal stratum comprising units with
Si(T,w′) = Si(C,w) = s. Therefore, each PSDE, which involves units belonging to the
union of different sets in the basic principal stratification, can be decomposed into ‘ba-
sic’ PSDEs, namely direct effects within sets of the basic principal stratification. In
our setting with a binary intermediate outcome, eight PSDEs can be defined and evi-
dence about each of them is provided by the union of different sets in the basic principal
stratification as shown in Table 2.

As stated previously, we cannot in general observe the principal stratum to which a
subject belongs, because we cannot directly observe each potential intermediate value
Si(z,w), z = C,T , w = e,E for any subject. If we indicate with Zobs

i the observed treat-
ment assignment, and with W obs

i the observed encouragement indicator, the observed
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Table 3. Group classification based on observed data
(Zobs

i ,W obs
i , Sobs

i ) and associated latent principal strata

Zobs
i W obs

i Sobs
i Latent Strata (Gi)

C e 0 1 3 4 5 9 10 11 15
C e 1 2 6 7 8 12 13 14 16
C E 0 1 2 4 5 7 8 11 14
C E 1 3 6 9 10 12 13 15 16
T e 0 1 2 3 5 6 8 10 13
T e 1 4 7 9 11 12 14 15 16
T E 0 1 2 3 4 6 7 9 12
T E 1 5 8 10 11 13 14 15 16

data are

Zobs
i ,W obs

i , Sobs
i (Zobs

i ,W obs
i ) , Y obs

i (Zobs
i ,W obs

i ) ,

which we will denote by Zobs
i ,W obs

i , Sobs
i , Y obs

i , i = 1, . . . , n. Therefore, what we can ob-
serve are the eight groups reported in Table 3, where the latent principal strata associated
with each observed group are shown. Each subject is observed to fall into one of these
groups. If all sixteen principal strata existed, that is, if πg > 0, for each g ∈ 1,2, . . . ,16,
each observed group would be a mixture of eight principal strata.

Throughout the paper, let OBS(z,w, s) denote the observed group defined by
Zobs
i = z,W obs

i = w and Sobs
i = s, z = C,T , w = e,E, and s = 0,1, and let Ps∣z,w =

Pr (Sobs
i = s∣Zobs

i = z,W obs
i = w) be the conditional distribution of the observed inter-

mediate outcome given the treatment status and the encouragement status.

4. Structural Assumptions

A key component in a causal analysis is the assignment mechanism: the process that
determines which units receives which treatments, hence which potential outcomes are
observed, and which are missing. Throughout this paper, we assume that the treatment
and the encouragement are randomly assigned,

Assumption 2 (Randomization of the Treatment and the Encouragement).
For all i,

(Si(C, e), Si(C,E), Si(T, e), Si(T,E), Yi(C, e), Yi(C,E), Yi(T, e), Yi(T,E)) á (Zi,Wi)

Assumption 2 implies that

(Yi(C, e), Yi(C,E), Yi(T, e), Yi(T,E)) á (Zi,Wi) ∣ (Si(C, e), Si(C,E), Si(T, e), Si(T,E))

so that, potential outcomes are independent of both the treatment and the encouragement
given the principal strata.

In order to characterize W as an encouragement variable, we introduce an exclusion-
restriction type of assumption, which rules out direct effects of the encouragement W
on the primary outcome Y for subpopulations of treated and control units. Specifically,
we assume that within each treatment arm z, z = C,T , the distributions of two potential
outcomes Yi(z, e) and Yi(z,E) are the same for units who would exhibit the same value
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of the intermediate outcome regardless of the encouragement. Although this assumption
is not directly testable, it can be made plausible by design. Formally,

Assumption 3. (Conditional Stochastic Exclusion Restrictions w.r.t. the
Encouragement).

Pr (Yi (z,E) ∣ Si(z,E) = Si(z, e), Si(z′,E), Si(z′, e))
= Pr (Yi (z, e) ∣ Si(z,E) = Si(z, e), Si(z′,E), Si(z′, e)) for z ≠ z′ ∈ {C,T}

Assumption 3 implies that some of the basic PSDEs, PSDEGs,w,w′ (s,w,w
′), take the

same value, which only depends on the value of the intermediate potential outcomes.
Specifically, PSDEGs,e,w′ (s; e,w

′) = PSDEGs,E,w′ (s;E,w
′), for each principal stra-

tum Gs,e,w′ = Gs,E,w′ = {i ∶ Si(C, e) = Si(C,E) = s, Si(T, e) = sTe, Si(T,E) = sTE} where
Si(T,w′) = s, w′ ∈ {e,E}. Analogously, PSDEGs,w,e(s;w, e) = PSDEGs,w,E(s;w,E), for
each principal stratum Gs,w,e = Gs,w,E = {i ∶ Si(C, e) = sCe, Si(C,E) = sCE , Si(T, e) =
Si(T,E) = s}, where Si(C,w) = s, w ∈ {e,E}.

We also require the encouragement variable W to have some effect on the intermediate
outcome, S.

Assumption 4 (Nonzero Average Causal Effect of W on S). The average
causal effect of W on S

E[(Si (z,E) − Si (z, e)] for z = C,T

is not equal to zero.

This Assumption warrants that there is at least one stratum where the behavior with
respect to the intermediate variable S is different with and without encouragement.

In order to identify (even partially, Manski (1990, 2003)) the proportion of each prin-
cipal stratum and the corresponding PSDEs additional assumptions are required. Al-
ternative sets of assumptions, which allow us to either reduce the number of strata or
state the equivalence of the distribution of Y across some strata, can be proposed. Here
we focus on a specific set of assumptions, which leads to partially identify the causal es-
timands of interest. We will show how the presence of an encouragement variable can be
exploited to derive large sample bounds for these causal estimands, which are narrower
than those we would derive in the absence of the encouragement variable.

An assumption - which can be made plausible by designing an appropriate encour-
agement - requires monotonicity of S with respect to the encouragement variable, W .
Formally,

Assumption 5 (Monotonicity of S with respect to W ). For all i

(i) Si(C, e) ≤ Si(C,E) and Si(T, e) ≤ Si(T,E)

or

(ii) Si(C, e) ≥ Si(C,E) and Si(T, e) ≥ Si(T,E)

Assumption 5 relates to the mediating variable, S, with respect to the encouragement
variable W . Without loss of generality, let Si(C, e) ≤ Si(C,E) and Si(T, e) ≤ Si(T,E) for
all i. Therefore, Assumption 5 implies that for a fixed value of the treatment variable,
units who exhibit a positive value of S when W = e, would exhibit a positive value
of S also when W = E. Unfortunately, the data can never provide any direct evidence



12 A. Mattei and F. Mealli

Table 4. Principal strata (Table on the left) and observed groups with associated possible
latent principal strata (Table on the right) under Assumption 5(i)

Gi Si(C, e) Si(C,E) Si(T, e) Si(T,E) Zobs
i W obs

i Sobs
i Latent Strata (Gi)

1 0 0 0 0 C e 0 1 3 5 10 11 15
3 0 1 0 0 C e 1 6 13 16
5 0 0 0 1 C E 0 1 5 11
6 1 1 0 0 C E 1 3 6 10 13 15 16
10 0 1 0 1 T e 0 1 3 5 6 10 13
11 0 0 1 1 T e 1 11 15 16
13 1 1 0 1 T E 0 1 3 6
15 0 1 1 1 T E 1 5 10 11 13 15 16
16 1 1 1 1

against this Assumption, so that it is not testable without auxiliary information. However,
Assumption 5(i) may be made plausible by design, for instance, encouraging units to
exhibit a positive value of the mediating variable. Assumption 5(i) rules out the existence
of seven out of the sixteen principal strata (2,4,7 − 9,12, and 14), as shown in Table 4.

We also make one additional assumption, which implies that for a fixed encouragement
level, units who exhibit a positive value of S when exposed to the active treatment, would
exhibit a positive value of S also when randomly assigned to the standard treatment.
Formally,

Assumption 6 (Monotonicity of S with respect to Z).

Si(C, e) ≤ Si(T, e) and Si(C,E) ≤ Si(T,E).

Together, the monotonicity Assumptions 5 and 6 rule out the existence of many prin-
cipal strata (2 − 4, 6 − 9, 12 − 14), leading to a classification of units across principal
strata, which allows us to more easily investigate the benefits of our augmented random-
ized design with respect to a standard treatment randomized design. Under Assumptions
1 through 6, we can point identify the proportion of units who belong to the first and
the last principal stratum (see Table 5):

π1 = 1 − P1∣TE and π16 = P1∣Ce, (3)

and derive large sample bounds for the other principal stratum proportions and the
PSDE estimands. The partial identification strategy we pursue is similar in spirit to
those in Cai et al. (2008); Flores & Flores-Lagunes (2009b); Imai (2008); Lee (2009), and
Zhang & Rubin (2003). However, our general set up has peculiar features, stemming from
the presence of the encouragement variable for the intermediate outcome. In addition,
the causal estimands of interest are different: Imai (2008); Lee (2009) and Zhang & Rubin
(2003) aim at identifying the average treatment effects in the presence of truncation by
death, which can be viewed as a special type of posttreatment variable. Cai et al. (2008)
and Flores & Flores-Lagunes (2009b) focus on an a priori counterfactual estimands: the
average controlled direct effect and the net average treatment effect, respectively. These
effects are defined as the average on the entire population of unit-level direct treatment
effects. Indeed, our focus is on PSDEs as defined in equation (2), which are local effects,
being defined for particular subpopulations or principal strata.
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Table 5. Principal strata (Table on the left) and observed groups with associated possible
latent principal strata (Table on the right) under Assumptions 5 and 6

Gi Si(C, e) Si(C,E) Si(T, e) Si(T,E) Zobs
i W obs

i Sobs
i Latent Strata (Gi)

1 0 0 0 0 C e 0 1 5 10 11 15
5 0 0 0 1 C e 1 16
10 0 1 0 1 C E 0 1 5 11
11 0 0 1 1 C E 1 10 15 16
15 0 1 1 1 T e 0 1 5 10
16 1 1 1 1 T e 1 11 15 16

T E 0 1
T E 1 5 10 11 15 16

5. Large Sample Bounds for PSDEs

The two equations in (3) imply that

π5 + π10 = P1∣TE − P1∣Te (4)
π5 + π11 = P1∣TE − P1∣CE (5)
π10 + π15 = P1∣CE − P1∣Ce (6)
π11 + π15 = P1∣Te − P1∣Ce (7)

In order for Equations (4) - (7) to hold, the differences on their right must be non negative.
Note that (P1∣TE − P1∣CE) is the average causal effect of the treatment on the intermediate
outcome among units randomly encouraged; (P1∣CE − P1∣Ce) and (P1∣TE − P1∣Te) are the
average causal effects of the encouragement on the intermediate outcome among units
randomly assigned to the standard and active treatment, respectively; and (P1∣Te − P1∣Ce)
is the average causal effect of the treatment on the intermediate outcome among units
who are not encouraged. Therefore, Assumptions 5 and 6 are not falsified by the data if
in large sample these causal effects are non negative.

Using Equations (3), (4) and (5), and taking into account that the principal strata
proportions need to add up to one (1 = π1 + π5 + π10 + π11 + π15 + π16), we have

π10 = P1∣TE − P1∣Te − π5 (8)
π11 = P1∣TE − P1∣CE − π5 (9)

π15 = π5 + (P1∣CE − P1∣Ce) − (P1∣TE − P1∣Te) (10)

Equations (8), (9) and (10) hold for any π5 such that

max{0; (P1∣TE − P1∣Te) − (P1∣CE − P1∣Ce)} ≤ π5 ≤ min{(P1∣TE − P1∣CE) ; (P1∣TE − P1∣Te)}
(11)

We now establish large sample bounds on the PSDEs. In order to formally write these
bounds we introduce some extra notation.

Let πg∣zws denote the conditional probability that a unit belongs to the principal strata
g, g = 1,5,10,11,15,16, given that the unit is observed to belong to the OBS (z,w, s)
group, z = C,T ;w = e,E; s = 0,1:

πg∣zws = Pr (Gi = g∣Zobs
i = z,W obs

i = w,Sobs
i = s) .

The conditional probabilities πg∣zws cannot be point identified (except for π1∣zws and
π16∣zws). However large sample bounds can be easily derived using Equation (11). For
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instance,

π10∣CE1 =
π10

π10 + π15 + π16
=

(P1∣TE − P1∣Te) − π5

P1∣CE
.

Therefore, from Equation (11), we have

min
π5

(P1∣TE − P1∣Te) − π5

P1∣CE
≤ π10∣CE1 ≤ max

π5

(P1∣TE − P1∣Te) − π5

P1∣CE
.

Each OBS (z,w, s) group is the πg∣zws mixture of some principal strata g, g =
1,5,10,11,15, 16. For instance, the OBS (C,E,1) group is the mixture of the prin-
cipal strata 10, 15, and 16 with weights π10∣CE1 = π10/ (π10 + π15 + π16), π15∣CE1 =
π15/ (π10 + π15 + π16), and π16∣CE1 = π16/ (π10 + π15 + π16).

We now establish the bounds on the PSDEs.

Proposition 1. Let Y be the sample space of Y . Define yαzws = inf{y ∶
Pr (Y obs

i ≤ y∣Zobs
i = z, W obs

i = w,Sobs
i = s) ≥ α} if 0 < α < 1, yαzws = inf{y ∶ y ∈ Y} if

α ≤ 0, and yαzws = sup{y ∶ y ∈ Y} if α ≥ 1. Let

Ezws [Y obs
i ] = E [Y obs

i ∣Zobs
i = z,W obs

i = w,Sobs
i = s]

Ezws [Y obs
i ∣Y obs

i ≤ yαzws] = E [Y obs
i ∣Zobs

i = z,W obs
i = w,Sobs

i = s, Y obs
i ≤ yαzws]

Ezws [Y obs
i ∣Y obs

i ≥ y1−α
zws] = E [Y obs

i ∣Zobs
i = z,W obs

i = w,Sobs
i = s, Y obs

i ≥ y1−α
zws] .

Then, under Assumption 1 through 6, the following bounds can be derived:

ETe0 [Y obs
i ] −ECe0 [Y obs

i ∣Y obs
i ≥ y1−π1,5,10∣Ce0

Ce0 ] ≤ PSDE(0, e, e) ≤

ETe0 [Y obs
i ] −ECe0 [Y obs

i ∣Y obs
i ≤ yπ1,5,10∣Ce0

Ce0 ] (12)

max{ETe1 [Y obs
i ∣Y obs

i ≤ yπ16∣Te1
Te1 ] ;ETE1 [Y obs

i ∣Y obs
i ≤ yπ16∣TE1

TE1 ]} −ECe1 [Y obs
i ]

≤ PSDE(1, e, e) = PSDE(1, e,E) ≤ (13)

min{ETe1 [Y obs
i ∣Y obs

i ≥ y1−π16∣Te1
Te1 ] ;ETE1 [Y obs

i ∣Y obs
i ≥ y1−π16∣TE1

TE1 ]} −ECe1 [Y obs
i ]

ETE0 [Y obs
i ] −min{ECe0 [Y obs

i ∣Y obs
i ≥ y1−π1∣Ce0

Ce0 ] ;ECE0 [Y obs
i ∣Y obs

i ≥ y1−π1∣CE0

CE0 ]}
≤ PSDE(0, e,E) = PSDE(0,E,E) ≤ (14)

ETE0 [Y obs
i ] −max{ECe0 [Y obs

i ∣Y obs
i ≤ yπ1∣Ce0

Ce0 ] ;ECE0 [Y obs
i ∣Y obs

i ≤ yπ1∣CE0

CE0 ]}

ETE1 [Y obs
i ∣Y obs

i ≤ yπ10,15,16∣TE1

TE1 ] −ECE1 [Y obs
i ] ≤ PSDE(1,E,E) ≤

ETE1 [Y obs
i ∣Y obs

i ≥ y1−π10,15,16∣TE1

TE1 ] −ECE1 [Y obs
i ] (15)

minπ5 {ETe0 [Y obs
i ∣Y obs

i ≤ yπ1,5∣Te0
Te0 ] −ECE0 [Y obs

i ∣Y obs
i ≥ y1−π1,5∣CE0

CE0 ]}
≤ PSDE(0,E, e) ≤ (16)

maxπ5 {ETe0 [Y obs
i ∣Y obs

i ≥ y1−π1,5∣Te0
Te0 ] −ECE0 [Y obs

i ∣Y obs
i ≤ yπ1,5∣CE0

CE0 ]}
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and

minπ5 {ETe1 [Y obs
i ∣Y obs

i ≤ yπ15,16∣Te1
Te1 ] −ECE1 [Y obs

i ∣Y obs
i ≥ y1−π15,16∣CE1

CE1 ]}
≤ PSDE(1,E, e) ≤ (17)

maxπ5 {ETe1 [Y obs
i ∣Y obs

i ≥ y1−π15,16∣Te1
Te1 ] −ECE1 [Y obs

i ∣Y obs
i ≤ yπ15,16∣CE1

CE1 ]} ,

where π1,5,10∣Ce0 ≡ ∑g∈{1,5,10} πg∣Ce0 =
1−P1∣Te
1−P1∣Ce

, π16∣Te1 =
P1∣Ce
P1∣Te

, π1∣Ce0 =
1−P1∣TE
1−P1∣Ce

,

π16∣TE1 =
P1∣Ce
P1∣TE

, π1∣CE0 =
1−P1∣TE
1−P1∣CE

, π10,15,16∣TE1 ≡ ∑g∈{10,15,16} πg∣TE1 =
P1∣CE
P1∣TE

,

π1,5∣Te0 ≡ π1∣Te0 + π5∣Te0 =
(1−P1∣TE)+π5

1−P1∣Te
, π1,5∣CE0 ≡ π1∣CE0 + π5∣CE0 =

(1−P1∣TE)+π5

1−P1∣CE
,

π15,16∣Te1 ≡ π15∣Te1 + π16∣Te1 =
P1∣CE−(P1∣TE−P1∣Te)+π5

P1∣Te
, and π15,16∣CE1 ≡ π15∣CE1 + π16∣CE1 =

P1∣CE−(P1∣TE−P1∣Te)+π5

P1∣CE
.

A sketch of the proof is given in the Appendix.
The sampling process allows us to identify the conditional distributions, P̂s∣z,w, the

conditional expected values Ezws [Y obs
i ], the quantile yαzws, and the conditional lower and

upper trimmed means Ezws [Y obs
i ∣Y obs

i ≤ yαzws] and Ezws [Y obs
i ∣Y obs

i ≥ y1−α
zws]. Therefore

finding estimators for the bounds defined in Proposition 1 is relatively straightforward.
For instance, the following estimators can be used, where 1(.) is the indicator function:

P̂1∣zw = ∑i
1(Zobs

i = z)1(W obs
i = w)1(Sobs

i = 1)
∑i 1(Zobs

i = z)1(W obs
i = w)

P̂0∣zw = ∑i
1(Zobs

i = z)1(W obs
i = w)1(Sobs

i = 0)
∑i 1(Zobs

i = z)1(W obs
i = w)

= 1 − P̂1∣zw

Êzws [Y obs
i ] = ∑

n
i=1 1(Zobs

i = z)1(W obs
i = w)1(Sobs

i = s)Y obs
i

∑ni=1 1(Zobs
i = z)1(W obs

i = w)1(Sobs
i = s)

≡ Y zws

Êzws [Y obs
i ∣Y obs

i ≤ yαzws] =

∑ni=1 1(Zobs
i = z)1(W obs

i = w)1(Sobs
i = s)1(Y obs

i ≤ ŷαzws)Y obs
i

∑ni=1 1(Zobs
i = z)1(W obs

i = w)1(Sobs
i = s)

≡ Y ≤α
zws

Êzws [Y obs
i ∣Y obs

i ≥ y1−α
zws] =

∑ni=1 1(Zobs
i = z)1(W obs

i = w)1(Sobs
i = s)1(Y obs

i ≥ ŷ1−α
zws)Y obs

i

∑ni=1 1(Zobs
i = z)1(W obs

i = w)1(Sobs
i = s)

≡ Y ≥1−α
zws

and

ŷαzws = min{y ∶ ∑
n
i=1 1(Zobs

i = z)1(W obs
i = w)1(Sobs

i = s)1(Y obs
i ≤ ŷαzws)

∑ni=1 1(Zobs
i = z)1(W obs

i = w)1(Sobs
i = s)

≥ α} if 0 < α < 1

ŷαzws = min
i
Y obs
i if α ≤ 0 and ŷαzws = max

i
Y obs
i if α ≥ 1

ŷ1−α
zws = min{y ∶ ∑

n
i=1 1(Zobs

i = z)1(W obs
i = w)1(Sobs

i = s)1(Y obs
i ≤ ŷ1−α

zws)
∑ni=1 1(Zobs

i = z)1(W obs
i = w)1(Sobs

i = s)
≥ 1 − α} if 0 < α < 1
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Table 6. Full Hypothetical Data under Assumptions 3 through 6 (Upper Panel) and
Corresponding PSDEs (Bottom Panel)

Expected Values
Gi Si(C, e) Si(C,E) Si(T, e) Si(T,E) πg Yi(C, e) Yi(C,E) Yi(T, e) Yi(T,E)

1 0 0 0 0 0.16 0.1 0.1 0.2 0.2
5 0 0 0 1 0.16 0.1 0.1 0.3 0.5
10 0 1 0 1 0.16 0.2 0.3 0.5 0.7
11 0 0 1 1 0.20 0.2 0.2 0.7 0.7
15 0 1 1 1 0.16 0.2 0.3 0.8 0.8
16 1 1 1 1 0.16 0.3 0.3 0.9 0.9

Gi ∶ {Si(C, e), Si(C,E), Si(T, e), Si(T,E)}
PSDEGs,w,w′ (s;w,w

′
) Gi = 1 Gi = 5 Gi = 10 Gi = 15 Gi = 16 PSDE(s;w,w′

)

s w w′
{0,0,0,0} {0,0,0,1} {0,1,0,1} {0,1,1,1} {1,1,1,1} Mean

0 e e 0.1 0.2 0.3 0.20
0 E E 0.1 0.10
0 e E 0.1 0.10
0 E e 0.1 0.2 0.15
1 e e 0.6 0.60
1 e E 0.6 0.60
1 E e 0.5 0.6 0.55
1 E E 0.4 0.5 0.6 0.50

ŷ1−α
zws = min

i
Y obs
i if α ≥ 1 and ŷ1−α

zws = max
i
Y obs
i if α ≤ 0.

6. An Illustrative Example

In this section we apply our results to a hypothetical study example, adapted from
Pearl (2001). Suppose we are interested in assessing the causal effect of a new drug
treatment having headache as side-effect. Patients who suffer from headache tend to
take a rescue medication, which, in turn may have its own effect on the disease or, may
strengthen (or weaken) the impact of the drug on the disease. In order to assess the causal
effect of the new drug treatment on the primary outcome, and also decide whether the
use of a rescue medication should be encouraged or discouraged during the treatment,
a study is planned, where each patient can be potentially assigned either the new drug
treatment (Zi = T ) or the standard treatment (Zi = C). Simultaneously, each patient can
be either encouraged (Wi = E) or not encouraged (Wi = e) to take a rescue medication
against headache.

Table 6 shows the full (hypothetical) data and the corresponding PSDE under As-
sumptions 3 through 6, given in the previous section. The sixth column shows the prin-
cipal strata proportions: each principal stratum comprises a proportion of 16% of all
patients, except principal stratum 11 = {Si(C, e) = 0, Si(C,E) = 0, Si(T, e) = 1, Si(T,E) =
1}, which comprises a proportion of 20% of all patients.

From Table 6, we can see that if everyone were assigned treatment and encouraged, 84%
(= 16% + 16% + 20% + 16% + 16%) would take a rescue medication, whereas if everyone
were assigned control and encouraged, 48% (= 16% + 16% + 16%) would take a rescue
medication. Analogously, if everyone were assigned treatment and not encouraged, 52%
(= 20% + 16% + 16%) would take a rescue medication, whereas if everyone were assigned
control and not encouraged, only 16% would take a rescue medication. Thus, both the
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Table 7. Summary Statistics of Hypothetical Observed Data

Observed Mean

Zobs
i W obs

i Sobs
i Proportions Rescue Medication Usage Disease Status

(Sobs
i ) (Y obs

i )

C e 0.25 0.16 0.184
C E 0.25 0.48 0.216
T e 0.25 0.52 0.572
T E 0.25 0.84 0.636
C e 0 0.21 0 0.162
C e 1 0.04 1 0.300
C E 0 0.13 0 0.138
C E 1 0.12 1 0.300
T e 0 0.12 0 0.333
T e 1 0.13 1 0.792
T E 0 0.04 0 0.200
T E 1 0.21 1 0.719

new drug treatment and the encouragement have a quite strong causal effect on rescue
medication usage.

The total effect of the treatment Z on the primary outcome Y is 0.420 for the encour-
aged units, and 0.388 for the not-encouraged units:

E[Yi(T,E) − Yi(C,E)] = ∑
g=1,5,10,11,15,16

πg ⋅E[Yi(T,E) − Yi(C,E)∣Gi = g] = 0.420

E[Yi(T, e) − Yi(C, e)] = ∑
g=1,5,10,11,15,16

πg ⋅E[Yi(T, e) − Yi(C, e)∣Gi = g] = 0.388.

PSDEs for patients who would use a rescue medication under both treatment arms
range from 0.5 to 0.6, and are higher than PSDEs for patients who would not use a
rescue medication under both treatment arms, which range from 0.1 to 0.2.

Now suppose that an experiment is conducted where the sample is randomly divided
into four groups, with the first getting the drug treatment and being encouraged to take
a rescue medication; the second getting the drug treatment and being not encouraged to
take a rescue medication; the third getting the placebo treatment and being encouraged
to take a rescue medication; and the forth getting the placebo treatment and being not
encouraged to take a rescue medication.

Table 7 presents some summary statistics for the sample, classified by treatment as-
signment, Zobs

i , encouragement assignment, W obs
i , and rescue medication usage, Sobs

i .
This Table provides a simple mediation analysis based on standard methods which di-
rectly control for observed values of the posttreatment variable. Specifically, we can easily
estimate net treatment effects of assignment (Z,W ) adjusting for the observed value of
the post-treatment variable Sobs:

ETe0 [Y obs
i ] −ECe0 [Y obs

i ] = 0.171 ETE0 [Y obs
i ] −ECe0 [Y obs

i ] = 0.038

ETe0 [Y obs
i ] −ECE0 [Y obs

i ] = 0.195 ETE0 [Y obs
i ] −ECE0 [Y obs

i ] = 0.062,

and

ETe1 [Y obs
i ] −ECe1 [Y obs

i ] = 0.492 ETE1 [Y obs
i ] −ECe1 [Y obs

i ] = 0.419

ETe1 [Y obs
i ] −ECE1 [Y obs

i ] = 0.492 ETE1 [Y obs
i ] −ECE1 [Y obs

i ] = 0.419.
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Table 8. Estimated Bounds

Principal Strata
Proportions Lower Bound Upper Bound

π1 0.16
π5 0.00 0.32
π10 0.00 0.32
π11 0.04 0.36
π15 0.00 0.32
π16 0.16

Proportions of units with
Estimand Lower Upper Si(T,w′) = Si(C,w) = s

PSDE(s;w,w′) Bound Bound Lower Bound Upper Bound
PSDE(0; e, e) 0.052 0.333 0.16 0.80

PSDE(0;E,E) = PSDE(0; e,E) -0.239 0.200 0.16
PSDE(0;E, e) -0.439 0.951 0.16 0.48

PSDE(1; e, e) = PSDE(1; e,E) 0.025 0.700 0.16
PSDE(1;E, e) -0.529 1.000 0.16 0.48
PSDE(1;E,E) 0.208 0.700 0.16 0.80

Integrating out the observed encouragement variable W obs, we have

ET0 [Y obs
i ] −EC0 [Y obs

i ] = 0.147, and ET1 [Y obs
i ] −EC1 [Y obs

i ] = 0.447.

The standard interpretation of these results would be that the new drug treatment has a
positive effect on disease status, and this effect appears to be higher among patients who
take a rescue medication against headache (i ∶ Sobs

i = 1). Although these results do not
clash with the real PSDEs, the differences between the average outcome among subjects
who take a rescue medication when assigned new versus standard treatment are lower
than the PSDEs for patients who would use a rescue medication under both treatment
arms. In addition, we have to keep in mind that the net treatment effects lack of a causal
interpretation, because they involve comparisons between sets of potential outcomes on
different sets of units, the observed groups OBS(z,w, s), z = C,T , w = e,E and s = 0,1,
which are mixtures of more principal strata.

From the observed data in Table 7, we immediately have P1∣Ce = 0.16,
P1∣CE = 0.48, P1∣Te = 0.52 and P1∣TE = 0.84, so the bounds for π5 are
max{0; (P1∣TE − P1∣Te) − (P1∣CE − P1∣Ce)} ≤ π5 ≤ min{(P1∣TE − P1∣CE) ; (P1∣TE − P1∣Te)},
that is, 0 ≤ π5 ≤ 0.32. Table 8 shows the bounds for the PSDEs, calculated using the
results in Proposition 1. All our bounds contain the actual PSDEs and provide useful
information about the direct effect of the treatment on the outcome. The estimated
bounds for PSDE(1, e, e) = PSDE(1; e,E), and PSDE(1;E,E) cover only positive
regions and are relatively narrow, suggesting that there exists a positive direct effect
of the drug treatment on the disease for patients who would take a rescue medication
under both treatment arms. Some uncertainty is on the sign of the PSDE(1;E, e),
although the positive region covered by the bounds is larger than the negative one. The
drug treatment seems to have a positive although lower direct effect also for patients
belonging to principal strata where Si(T, e) = Si(C, e) = 0. On the contrary, the data
does not provide decisive evidence on the direct effects PSDE(0,E,E) = PSDE(0, e,E)
and PSDE(0;E, e).
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Table 9. Standard Randomized Design: Full Data (Up-
per Panel), Observed Data (Bottom Panel on the Left)
and Estimated Bounds (Bottom Panel on the Right)

Expected Values

G̃i S̃i(C) S̃i(T ) π̃i Ỹi(C) Ỹi(T ) PSDE(s)

1 0 0 0.48 0.13 0.33 0.2
3 0 1 0.36 0.20 0.74
4 1 1 0.16 0.30 0.90 0.6

Observed Mean
Zobs
i Sobs

i Proportions Rescue Medication Disease Lower Upper
Usage (Sobs

i ) Status(Y obs
i ) Estimand Bound Bound

C 0.50 0.16 0.184 π̃1 0.48
T 0.50 0.52 0.604 π̃3 0.36
C 0 0.42 0 0.162 π̃4 0.16
C 1 0.08 1 0.300 PSDE(0) 0.051 0.333
T 0 0.24 0 0.333 PSDE(1) 0.019 0.700
T 1 0.26 1 0.792

In order to investigate the benefit of the presence versus the absence of an encour-
agement variable for the intermediate outcome, the estimated bounds in Table 8 are
now compared with and contrasted to the bounds which would be derived in a standard
randomized experiment where the intermediate variable is not randomly encouraged. To
make the two designs comparable, we assume monotonicity of the intermediate outcome
with respect to the treatment (Si(T ) ≥ Si(C)), which implies that the principal stratum
{i ∶ Si(C) = 1, Si(T ) = 0} is empty. We also assume that in the standard randomized study
subjects behave as they would behave in the augmented randomized study when assigned
to not be encouraged. This assumption implies that Si(C) = Si(C, e), Si(T ) = Si(T, e),
and Yi(C) = Yi(C, e), and Yi(C) = Yi(T, e).

Table 9 shows the hypothetical full and observed data of the standard randomized ex-
periment, and the corresponding estimated bounds for PSDE(0) and PSDE(1) defined
in Equation (1)3. Consistently with the above assumptions, these bounds are similar to
those for PSDE(0, e, e) and PSDE(1; e, e) = PSDE(1; e,E), respectively.

The major gain of our augmented randomized design with respect to the standard one
can be observed by comparing the estimated bounds for PSDE(1;E,E) with those for
PSDE(1): the first one is narrower and more informative. Specifically, the estimated
bounds for PSDE(1;E,E) ([0.208; 0.700]) suggest that there exists a positive and quite
strong direct effect of the drug treatment on the disease for subjects who would take
a rescue medication irrespective of the treatment under encouragement. The bounds
for PSDE(1) ([0.019; 0.700]) also show some evidence that the treatment has a positive

3 Following Manski (1990), large sample bounds for PSDE(s), s = 0,1, can be easily derived. Specifi-

cally, let Y the sample space of Y . Define yαzs = inf{y ∶ Pr (Y obs
i ≤ y∣Zobs

i = z, Sobs
i = s) ≥ α} if 0 < α < 1,

yαzs = inf{y ∶ y ∈ Y} if α ≤ 0, and yαzs = sup{y ∶ y ∈ Y} if α ≥ 1. Then, under SUTVA, randomization and

the monotonicity assumption Si(T ) ≥ Si(C), we have E[Y obs
i ∣Zobs

i = T,Sobs
i = 0] −E[Y obs

i ∣Zobs
i = C,Sobs

i =
0, Y obs

i ≥ y
1−π̃1∣C0
C0 ] ≤ PSDE(0) ≤ E[Y obs

i ∣Zobs
i = T,Sobs

i = 0] −E[Y obs
i ∣Zobs

i = C,Sobs
i = 0, Y obs

i ≤ y
π̃1∣T0
C0 ], and

E[Y obs
i ∣Zobs

i = T,Sobs
i = 1, Y obs

i ≤ y
π̃4∣T1
T1 ] −E[Y obs

i ∣Zobs
i = C,Sobs

i = 1] ≤ PSDE(1) ≤ E[Y obs
i ∣Zobs

i = T,Sobs
i =

1, Y obs
i ≥ y

1−π̃4∣T1
T1 ] −E[Y obs

i ∣Zobs
i = C,Sobs

i = 1], where π̃1∣C0 = Pr (Si(C) = Si(T ) = 0∣Zobs
i = C,Sobs

i = 0) and

π̃4∣T1 = Pr (Si(C) = Si(T ) = 1∣Zobs
i = T,Sobs

i = 1).
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direct effect for subjects who would take a rescue medication irrespective of the treatment,
but they are not informative on the size of this effect, allowing for a somewhat small effect.

These results might be at least partially justified, thinking carefully about what kind
of information is given by the two designs. A key feature of our augmented randomized
design is that it may provide information about the direct effect of the treatment also
for subjects who would belong to principal strata where we are not generally able to dis-
entangle direct and indirect effects if a standard randomized experiment was conducted.
Specifically, in a standard randomized experiment, information on PSDEs is only pro-
vided by units belonging to either the principal stratum {i ∶ Si(c) = Si(T ) = 0} or the
principal stratum {i ∶ Si(c) = Si(T ) = 1}. Units belonging to the other principal strata,
{i ∶ Si(c) = s, Si(T ) = 1 − s}, s = 0,1 (principal stratum G̃ = 3 in our example), give no
direct information on the existence of PSDEs. However, such type of units could po-
tentially provide some information on the direct causal effects of the treatment if an
encouragement design for the intermediate outcome was applied. In other words, each
principal stratum defined by (Si(C), Si(T )) might be split into more principal strata un-
der an encouragement design for the intermediate outcome, digging out some individual
behavior which might be useful in order to draw inference about PSDEs. For instance,
in our setting, the encouragement would split the principal stratum {i ∶ Si(c) = 0, Si(T ) =
1} into two principal strata: 11 = {i ∶ Si(C, e) = 0, Si(C,E) = 0, Si(T, e) = 1, Si(T,E) = 1}
and 15 = {i ∶ Si(C, e) = 0, Si(C,E) = 1, Si(T, e) = 1, Si(T,E) = 1}, and the last one pro-
vides information on PSDE(1;E,E) and PSDE(1;E, e).

7. Augmented Designs versus Standard Designs

In the previous section we empirically showed the potential benefits of our augmented
randomized design with respect to a standard randomized design through an illustrative
example. We now try to formally compare the two designs. A relatively ease way to face
this issue is to analyze direct effects defined for the overall population, rather than for
some specific subpopulations. This approach has the advantage that the causal estimand
of interest − the overall direct effect − is the same for the two designs, but has the
drawback of involving the concept of a priori potential outcomes, as explained in Section
2.

Therefore, in order to formally define overall direct effects we need to extend the
theoretical framework underlying our augmented randomized design and the standard
randomized design to allow for a priori counterfactual outcomes. First, we focus on a
standard randomized design, where the intermediate variable is not randomly encour-
aged. Under SUTVA, which can be now formalized as

Assumption 7. (Stable Unit Treatment Value Assumption with a priori
Counterfactuals).

1. If Zi = Z ′
i, then Si (Z) = Si (Z′)

2. If Zi = Z ′
i and Si = S′i, then Yi (Z,S) = Yi (Z′,S′),

we have two potential intermediate outcomes Si(C) and Si(T ), and four potential pri-
mary outcomes, Yi(C,Si(C) = 0), Yi(T,Si(T ) = 0), Yi(C,Si(C) = 1), and Yi(T,Si(T ) =
1). The Average Direct Effect, ADE, can be defined as mean difference between
Yi (T,Si(T ) = s) and Yi (C,Si(C) = s) while holding the mediator fixed at some level
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s:

ADE(s) = E [Yi (T,Si(T ) = s)] −E [Yi (C,Si(C) = s)] s = 0,1. (18)

Random assignment of the treatment, Z, implies

Assumption 8. (Randomization of the Treatment with a priori Counter-
factuals). For all i,

(Si(C), Si(T ), Yi(C,Si(C) = 0), Yi(T,Si(T ) = 0), Yi(C,Si(C) = 1), Yi(T,Si(T ) = 1)) á Zi

Assumptions 7 and 8 alone do not lead to point identify ADE; additional strong
assumptions, which allow one to extrapolate the behavior of the (a priori counterfactual)
potential outcomes, would be required. However, large sample bounds for ADE can be
derived.

Proposition 2. Suppose that, Yi (z, Si(z) = s) is bounded within some known interval
[Lzs, Uzs], where −∞ < Lzs ≤ Uzs < +∞, z = T,C and s = 0,1. Then, under Assumptions
7 and 8, the following bounds can be derived:

(E [Y obs
i ∣Zobs

i = T,Sobs
i = s] ⋅ Pr (Sobs

i = s∣Zobs
i = T) +LTs ⋅ Pr (Sobs

i = 1 − s∣Zobs
i = T) )

−(E [Y obs
i ∣Zobs

i = C,Sobs
i = s] ⋅ Pr (Sobs

i = s∣Zobs
i = C) +UCs ⋅ Pr (Sobs

i = 1 − s∣Zobs
i = C) )

≤ ADE(s) ≤ (19)

(E [Y obs
i ∣Zobs

i = T,Sobs
i = s] ⋅ Pr (Sobs

i = s∣Zobs
i = T) +UTs ⋅ Pr (Sobs

i = 1 − s∣Zobs
i = T ) )

−(E [Y obs
i ∣Zobs

i = C,Sobs
i = s] ⋅ Pr (Sobs

i = s∣Zobs
i = C) +LCs ⋅ Pr (Sobs

i = 1 − s∣Zobs
i = C) ).

The width of the bounds in Equation (19) is

width(s) = (UCs −LCs)Pr (Sobs
i = 1 − s∣Zobs

i = C) + (UTs −LTs)Pr (Sobs
i = 1 − s∣Zobs

i = T) ,

which depends on both the selection probabilities Pr (Sobs
i = 1 − s∣Zobs

i ), as well as the
width of the intervals [Lzs, Uzs], z = C,T 4.

Bounds in Proposition 2 can be estimated using the sample analogs of the parameters.
Formally, we have

P̂1∣z =
∑i 1(Zobs

i = z)1(Sobs
i = 1)

∑i 1(Zobs
i = z)

and P̂0∣z =
∑i 1(Zobs

i = z)1(Sobs
i = 0)

∑i 1(Zobs
i = z)

= 1 − P̂1∣z

and

Êzs [Y obs
i ] = ∑

n
i=1 1(Zobs

i = z)1(Sobs
i = s)Y obs

i

∑ni=1 1(Zobs
i = z)1(Sobs

i = s)
≡ Y zws.

When an encouragement design for the intermediate variable is combined with a treat-
ment randomized experiment, Assumption 7 (SUTVA) and the definition of ADE in
Equation (18) change slightly. Assumption 7 turns into Assumption 9:
4 When the primary outcome is a logical yes/no indicator, taking the value one or zero, Lzs = 0 and Uzs = 1 for

each z = C,T and s = 0,1. In such a case, the expected value of a one/zero indicator is the probability that the

indicator equals one, so that the bounds in Equation (19) equal to the bounds on the Controlled Direct Effect,
derived by Cai et al. (2008), using the symbolic Balke & Pearl (1997) linear programming method.
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Assumption 9. (Stable Unit Treatment Value Assumption with a priori
Counterfactuals).

1. If Zi = Z ′
i and Wi =W ′

i , then Si (Z,W ) = Si (Z′,W ′)
2. If Zi = Z ′

i, Wi =W ′
i and Si = S′i, then Yi (Z,W ,S(Z,W )) = Yi (Z′,W ′,S′(Z′,W ′))

Alternative definitions of ADE can be considered. For the reasons discussed below, we
focus on the following estimand:

ADE(s;w) = E [Yi(T,w, s)] −E [Yi(C,w, s)] w = e,E; s = 0,1. (20)

Since the augmented design involves two randomly assigned treatments (the primary
treatment variable, Z, and the encouragement variable, W ), the following ignorability
assumption holds:

Assumption 10. (Randomization of the Treatment and the Encourage-
ment with a priori Counterfactuals). For all i,

(Si(C, e), Si(C,E), Si(T, e), Si(T,E), Yi(C, e,Si(C, e) = 0), Yi(C,E,Si(C,E) = 0),

Yi(T, e, Si(T, e) = 0), Yi(T,E,Si(T,E) = 0), Yi(C, e,Si(C, e) = 1), Yi(C,E,Si(C,E) = 1),

Yi(T, e, Si(T, e) = 1), Yi(T,E,Si(T,E) = 1)) á (Zi,Wi)

Bounds for ADE(s;w) are now derived taking into account the augmented nature
of the design. Note that, in order to establish bounds for ADE(s;w) no assumption is
required in addition to Assumptions 9 and 10; in particular we do not need to invoke
any assumption on the role of the encouragement. However, the Exclusion Restriction
Assumption 3 and the Monotonicity Assumption 5(i) or 5(ii) (along with Assump-
tion 4) characterize our augmented design, therefore we maintain these assumptions, by
extending them to involve a priori counterfactuals, in order to properly interpret our
results and appreciate the benefits of the presence versus the absence of the encourage-
ment. Specifically, Assumption 3 justifies our focus on the causal estimand ADE(s;w),
defined as the mean difference between potential outcomes while holding both the inter-
mediate variable and the encouragement fixed at some predetermined level: S = s and
W = w. Actually if Assumption 3 holds, Yi(z, e, Si(z, e) = s) and Yi(z,E,Si(z,E) = s),
for each z = C,T , and s = 0,1, have the same distribution, therefore average (overall)
direct effects could be defined irrespective of the encouragement as the causal effect on
the outcome Y of the (T,w′) versus the (C,w) treatment (w,w′ ∈ {e,E}), while holding
the intermediate variable S fixed at some predetermined level, s. In other words, de-
fine ADE(s;w,w′) = E [Yi(T,w′, s)] −E [Yi(C,w, s)], w,w′ ∈ {e,E}. Assumption 3 im-
plies that ADE(s;w,w′) = ADE(s;w′,w) = ADE(s;w,w) ≡ ADE(s;w), so that each
mean difference ADE(s;w′,w) is interpretable as direct causal effect of treatment Z
on outcome Y 5. In addition, if the encouragement has no direct effect on the outcome,
ADE(s;w) and ADE(s) can be reasonably viewed as the same estimand, measuring the
effect of the treatment Z on the outcome Y not mediated through the intermediated
variable S, and can thus be compared. Finally, as we show below, the Monotonicity As-
sumption 5(i) or 5(ii) allows us to justify the focus on either ADE(0;w) or ADE(1;w)
according to role of the encouragement.
5 Without the Exclusion Restriction Assumption a comparison between the potential outcomes Yi(T,w′, s) and

Yi(C,w, s), w,w′ ∈ {e,E}, while holding the intermediate variable S fixed at s could not be interpreted as direct
effect of the treatment Z, because it would depend on the encouragement.
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Proposition 3. Suppose that, Y (z,w,S(z,w) = s) is bounded within some known
interval [Lzws, Uzws], where −∞ < Lzws ≤ Uzws < +∞, z = T,C, W = e,E, and s = 0,1.
Then, under Assumptions 9 and 10, the following bounds can be derived:

(E [Y obs
i ∣Zobs

i = T,W obs
i = w,Sobs

i = s] ⋅ Pr (Sobs
i = s∣Zobs

i = T,W obs
i = w)

+LTws ⋅ Pr (Sobs
i = 1 − s∣Zobs

i = T,W obs
i = w) )

−(E [Y obs
i ∣Zobs

i = C,W obs
i = w,Sobs

i = s] ⋅ Pr (Sobs
i = s∣Zobs

i = C,W obs
i = w)

+UCws ⋅ Pr (Sobs
i = 1 − s∣Zobs

i = C,W obs
i = w) )

≤ ADE(s;w) ≤ (21)

(E [Y obs
i ∣Zobs

i = T,W obs
i = w,Sobs

i = s] ⋅ Pr (Sobs
i = s∣Zobs

i = T,W obs
i = w)

+UTws ⋅ Pr (Sobs
i = 1 − s∣Zobs

i = T,W obs
i = w) )

−(E [Y obs
i ∣Zobs

i = C,W obs
i = w,Sobs

i = s] ⋅ Pr (Sobs
i = s∣Zobs

i = C,W obs
i = w)

+LCws ⋅ Pr (Sobs
i = 1 − s∣Zobs

i = C,W obs
i = w) )

for s = 0,1.

The width of the bound in Equation (21) is

width(s;w) = (UTws −LTws)Pr (Sobs
i = 1 − s∣Zobs

i = T,W obs
i = w)

+ (UCws −LCws)Pr (Sobs
i = 1 − s∣Zobs

i = C,W obs
i = w) .

As before, bounds in Proposition 3 can be estimated using the sample analogs of the
parameters (see section 5).

As we could expect, the expressions for the bound widths width(s) and width(s;w)
suggest that the benefits of our augmented design versus a standard random-
ized design depend on the role of the encouragement. Specifically, suppose that
for fixed values of W = w∗ and S = s∗, Uzw∗s∗ = Uzs∗ and Lzw∗s∗ = Lzs∗ for z =
C,T . If Pr (Sobs

i = 1 − s∗∣Zobs
i = z,W obs

i = w∗) ≤ Pr (Sobs
i = 1 − s∗∣Zobs

i = z), z = C,T , then
width(s∗;w∗) ≤ width(s∗). This result depends on the study design in the sense that the
relationship Pr (Sobs

i = 1 − s∗∣Zobs
i = z,W obs

i = w∗) ≤ Pr (Sobs
i = 1 − s∗∣Zobs

i = z), z = C,T ,
holds if the encouragement status w∗ boosts units to exhibit a value of the intermediate
variable S equal to s∗.

To fix the ideas, suppose that a standard randomized experiment and an augmented
randomized study are performed in order to estimate the direct effect of the treatment
on the outcome if, possibly contrary to fact, the intermediate variable S was set to
s∗ = 1. In line with the objective of the study, suppose that units assigned to the ‘active’
encouragement (Wi = E) are boosted to exhibit a positive value of the intermediate
outcome S, so that Assumption 5(i) holds. Focus will be on ADE(1) and ADE(1;E)
6. Throughout, we assume that Uzws∗ = Uzs∗ and Lzw∗s∗ = Lzs∗ for z = C,T , w∗ = E and
s∗ = 1.

6 Recall that our augmented design is based on Assumptions 3, which implies that ADE(1;E) = ADE(1; e).
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In a standard randomized experiment, the bounds for ADE(1) are more informative
the higher the proportion of units who would always exhibit a positive value of the
intermediate variable regardless of treatment assignment (proportion of units belonging
to {i ∶ Si(C) = 1, Si(T ) = 1}). With this respect, we can reasonably expect that in the
augmented design where the encouragement boosts units to exhibit a positive value of
the mediating variable, the proportion of units who would exhibit a positive value of
the mediator S when encouraged under either the C or the T treatment is higher than
the proportion of units who would exhibit a positive value of the mediator S when not
encouraged under either the C or the T treatment. Therefore, if the encouragement
is able to move units from the group of those who would show a zero value of the
mediator under either the standard treatment or the active treatment, to the group of
units who would exhibit a positive mediator value regardless treatment assignment when
encouraged, then its presence improves the partial estimates of ADE, by tightening the
bounds. In other words, in order that the relationship Pr (Sobs

i = 0∣Zobs
i = z,W obs

i = E) ≤
Pr (Sobs

i = 0∣Zobs
i = z), z = C,T , holds, the encouragement must affect the intermediate

variable, which is postulated in Assumption 4.

8. Concluding Remarks

In this paper we study identification and estimation of causal mediation effects. We
introduce new augmented designs, where the treatment is randomized, and the mediat-
ing variable is not forced, but only randomly encouraged, and show how this source of
exogenous variation may help to identify and estimate direct and indirect effects. There
are two key features of our framework: we adopt a principal stratification approach, ex-
tending it to include an encouragement variable on the mediator, and we mainly focus
on principal strata effects, avoiding to involve a priori counterfactual outcomes.

In order to achieve identification of PSDEs, assumptions characterizing the encour-
agement variable are investigated. Specifically, we provide a set of assumptions leading to
partially identify the causal estimands of interest for the case in which the treatment and
the encouragement assignment are random and the intermediate variable is binary. Our
partial identification results for the PSDEs rely on a (stochastic) exclusion restriction
− which rules out direct effects of the encouragement on the primary outcome, and two
monotonicity assumptions for the effect on the mediator of the encouragement and the
treatment, respectively.

We empirically show that our bounds on the PSDEs are narrower and more informa-
tive than those we would derive in a standard randomized experiment. The benefits of the
presence with respect to the absence of an encouragement for the intermediate outcome
are also formally shown, focussing on an average direct effect for the entire population.
As we expect, these results strongly depends on the role of the encouragement and the
design of the study.

As with any partial identification results, estimated bounds from a given sample may
turn out to be uninformative, in which case making additional assumptions will be re-
quired. Future research will focus on addressing this issue. If pre-treatment variables
are available, auxiliary information from them can be used to enhance efficiency of es-
timation and to sharp the bounds. Indeed, although covariates do not enter the treat-
ment/encouragment assignment mechanism in our augmented experimental design, they
can improve both prediction of the missing potential outcomes as well as prediction
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of principal strata membership through prediction of the missing intermediate potential
outcomes. Further sharpening of the bounds will be pursued exploiting (semi-)parametric
models within a Bayesian framework. Our preference is for Bayesian methods because
we believe that a Bayesian model-based approach is the most direct and flexible mode
of inference for causal effects: Bayesian analysis is formally clear about the role played
by the treatment assignment mechanism and the complications arising when drawing
inference about direct and indirect effects.

Another direction for extensions is to use our augmented design as a template for the
analysis of direct and indirect causal effects in observational studies. Carefully designed
augmented observational studies, where unconfoundedness of both the treatment and
the encouragement can be reasonably assumed, might be a powerful tool for mediation
analysis in many setting, where randomized experiments cannot be conducted.

Finally, focus will be on the planning phase of our augmented designs, in order to
develop ‘optimal’ augmented designs, which allow one to achieve a required precision for
estimating PSDEs, and minimize the study’s cost (e.g., Frangakis & Baker (2001)).
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9. Appendix

We briefly sketch the proof of Proposition 1. Consider the principal stratum direct ef-
fect for units who exhibit a zero value of the intermediate outcome under both treatment
arms if not encouraged: PSDE(0, e, e). These units may belong to either stratum 1 = {i ∶
Si(C, e) = 0, Si(C,E) = 0, Si(T, e) = 0, Si(T,E) = 0}, or stratum 5 = {i ∶ Si(C, e) = 0, Si(C,E) =
0, Si(T, e) = 0, Si(T,E) = 1}, or stratum 10 = {i ∶ Si(C, e) = 0, Si(C,E) = 1, Si(T, e) = 0, Si(T,E) =
1}. The OBS(T, e,0) group only includes units belonging to one of these three principal strata,
so in large sample E [Yi(T, e)∣Gi ∈ {1,5,10}] = ETe0 [Y obs

i ]. The OBS(C, e,0) group is the π1∣Ce0,
π5∣Ce0, π10∣Ce0, π11∣Ce0 and π15∣Ce0 mixture of the principal strata 1, 5, 10, 11 and 15. The condi-
tional probability that a unit belongs to either stratum 1, or stratum 5, or stratum 10 given his/her
membership to the OBS(C, e,0) group is ∑g∈{1,5,10} πg∣Ce0 = 1−PT e0

1−PCe1
≡ π1,5,10∣Ce0. Therefore,

ECe0 [Y obs
i ∣Y obs

i ≤ yπ1,5,10∣Ce0

Ce0 ] ≤ E [Yi(C, e)∣Gi ∈ {1,5,10}] ≤ ECe0 [Y obs
i ∣Y obs

i ≥ y1−π1,5,10∣Ce0

Ce0 ]. As a
result, the large sample bounds for PSDE(0, e, e) in (12) follow immediately. A similar proof leads
to derive the large sample bounds for PSDE(1,E,E) in equation (15), and the following large
sample bounds for PSDE(1, e, e), PSDE(0,E, e) PSDE(1,E, e), and PSDE(0,E,E):

ETe1 [Y obs
i ∣Y obs

i ≤ yπ16∣T e1

Te1 ] −ECe1 [Y obs
i ] ≤ PSDE(1, e, e) ≤

ETe1 [Y obs
i ∣Y obs

i ≥ y1−π16∣T e1

Te1 ] −ECe1 [Y obs
i ] (A1)

ETE1 [Y obs
i ∣Y obs

i ≤ yπ16∣T E1

TE1 ] −ECe1 [Y obs
i ] ≤ PSDE(1, e,E) ≤

ETE1 [Y obs
i ∣Y obs

i ≥ y1−π16∣T E1

TE1 ] −ECe1 [Y obs
i ] (A2)

ETE0 [Y obs
i ] −ECe0 [Y obs

i ∣Y obs
i ≥ y1−π1∣Ce0

Ce0 ] ≤ PSDE(0, e,E) ≤

ETE0 [Y obs
i ] −ECe0 [Y obs

i ∣Y obs
i ≤ yπ1∣Ce0

Ce0 ] (A3)

ETE0 [Y obs
i ] −ECE0 [Y obs

i ∣Y obs
i ≥ y1−π1∣CE0

CE0 ] ≤ PSDE(0,E,E) ≤

ETE0 [Y obs
i ] −ECE0 [Y obs

i ∣Y obs
i ≤ yπ1∣CE0

CE0 ] (A4)

Assumptions 5 and 6 imply that PSDE(0, e,E) = PSDE1(0, e,E), PSDE(0,E,E) =
PSDE1(0,E,E), PSDE(1, e, e) = PSDE16(1, e, e), and PSDE(1, e,E) = PSDE16(1, e,E).
At the same time, Assumption 3 implies that PSDE16(1, e, e) = PSDE16(1, e,E) and
PSDE1(0, e,E) = PSDE1(0, e,E), therefore the bounds in equations (13) and (14) can be im-
mediately derived by combining the bounds in equations (A1) and (A2), and in equations (A3)
and (A4), respectively. Finally, the proof of equations (16) and (17) is analogous, but we have
an additional source of variation because the proportions of units for which PSDE(0,E, e) and
PSDE(1,E, e) are defined depend on π5, which is unknown and can be only partially identified
(see equation (11)).



 

 

Copyright © 2010 

Alessandra Matte i ,  

Fabr iz ia  Meal l i  


