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DISENTANGLING SYSTEMATIC AND IDIOSYNCRATIC RISK

FOR LARGE PANELS OF ASSETS

Matteo BARIGOZZI1, Christian T. BROWNLEES2, Giampiero M. GALLO3 and David VEREDAS4

Abstract
When observed over a large panel, measures of risk (such as realized volatilities) usu-
ally exhibit a secular trend around which individual risks cluster. In this article we
propose a vector Multiplicative Error Model achieving a decomposition of each risk
measure into a common systematic and an idiosyncratic component, while allowing
for contemporaneous dependence in the innovation process. As a consequence, we
can assess how much of the current asset risk is due to a system wide component, and
measure the persistence of the deviation of an asset specific risk from that common
level. We develop an estimation technique, based on a combination of seminonpara-
metric methods and copula theory, that is suitable for large dimensional panels. The
model is applied to two panels of daily realized volatilities between 2001 and 2008:
the SPDR Sectoral Indices of the S&P500 and the constituents of the S&P100. Sim-
ilar results are obtained on the two sets in terms of reverting behavior of the common
nonstationary component and the idiosyncratic dynamics to with a variable speed
that appears to be sector dependent.
Keywords: Systematic risk, idiosyncratic risk, Multiplicative Error Model, seminon-
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1 Introduction

We are interested in the analysis of risk measures for large panels of assets and we start by
adopting a pragmatic approach. By superimposing realized volatilities (a specific mea-
sure of risk) for many assets in the same market we find the empirical regularity that
they exhibit a striking clustering around a common nonstationary trend. In this article we
propose a model that disentangles this common trend from asset specific dynamics that
oscillate around it. We refer to the former as systematic and to the latter as idiosyncratic.
Identifying these two components allows us to know how much of the risk of an asset at
any given date is due to a system wide level, and, in a dynamic perspective, how persis-
tent idiosyncratic deviations are. The methodology is quite general and can be applied to
other risk measures (Value-at-Risk, expected shortfall, etc.), or, for that matter, liquidity
measures as well (traded volumes, spreads, trading intensities, etc.). To be clear, we are
not attempting the identification of two separate sources of shocks (common and idiosyn-
cratic) which could be both short–lived (an example of the former would be the sudden
market drop of Thu. May 8, 2010), but rather two different types of dynamics, reckoning
that the average level of volatility in a market is common to all assets considered, time
varying, and slow moving.

We propose a novel specification that builds up on the literature on Multiplicative Er-
ror Models (MEM) (Engle (2002), Engle and Gallo (2006)) and dynamic models with
slowly moving components as in, inter alia, Engle and Rangel (2008). We introduce a
component vector MEM that decomposes the conditional expectation of each risk mea-
sure in a panel as the product of a systematic trend and an idiosyncratic dynamic compo-
nent, while allowing for contemporaneous dependence in risk innovations. The systematic
risk is modeled as a nonparametric curve while the dynamics of the idiosyncratic devia-
tions are parametric. A simple estimation approach makes the model appealing especially
when the number of assets in the panel is large. Indeed, estimation of the systematic and
idiosyncratic risks boils down to a series of univariate maximum likelihood problems, and
the dependence among risk innovations is estimated with a sample correlation.

Our model combines seminonparametric methods and copulas. The systematic risk,
being a nonparametric curve, is estimated with kernels, while the idiosyncratic risks and
the dependencies among risk innovations are fully parametric. We rely on profile likeli-
hood (Staniswalis (1987) and Staniswalis (1989), Severini and Wong (1992) and Veredas
et al. (2007)). This technique is based on the fact that the parametric Fisher information
matrix in a seminonparametric model is smaller or equal than that in a fully parametric
model. Profile likelihood finds the nonparametric curve that leads to the largest paramet-
ric Fisher information matrix. Such a curve is called the least favorable and is obtained
by projections of the parametric and nonparametric scores. To compute the dependen-
cies among risk innovations, we rely on copulas and inference from the marginals of Joe
(1997) and Joe (2005), which is based on a two–step approach. The joint density has two
parts, one due to the marginal conditional densities and another to the copula function.
We first estimate the secular systematic and parametric idiosyncratic risks maximizing
the marginal part of the log-likelihood. In the second step we estimate the dependen-
cies among risk innovations maximizing the (Gaussian) copula part of the log-likelihood.
Such a procedure brings down estimation to a simple problem: the estimated systematic
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component has a closed-form expression, and estimation of the parametric idiosyncratic
components and the dependencies among risk innovations boils down to the above com-
mented univariate maximum likelihood problems and a sample correlation matrix. We
show the asymptotic properties of the estimators. In particular, since the systematic com-
ponent is a least favorable curve, the parametric Fisher information matrix is the largest
given the seminonparametric and two–steps nature of the estimation.

We apply the model to two panels of daily realized volatility measures (Andersen
et al. (2003), Aı̈t-Sahalia et al. (2005), Bandi and Russell (2006), Barndorff-Nielsen et al.
(2008)) spanning from January 2, 2001 to December 31, 2008. The first panel consists
of the nine sectoral indices of the SPDR S&P500 index while the second contains the
ninety constituents of the S&P100 that have continuously been trading in the sample
period. The datasets are related to each other in that the constituents of the S&P100 are
also some of the main underlying assets of the SPDR sectoral indices; reassuringly, the
empirical results of the two applications are consistent to one another in what concerns the
estimated shape of the systematic risk, showing that it is essentially the same in the two
panels, and its level can be associated with the global level of uncertainty in the economy:
it reaches its peaks at the beginning and end of the 2000s in correspondence to the dot
com bubble burst and the financial crisis, and its trough at the end of 2006. While all
realized volatility series exhibit nonstationary, once a systematic risk is accounted for all
idiosyncratic dynamics are reverting to the systematic component. However, the speed
of reversion is rather heterogeneous across assets. Consumer, materials and healthcare
assets have a steady reversion while it is much slower for the technology and energy
related ones. Also, the S&P100 panel exhibits on average more idiosyncratic dynamics
in the sense of slower mean reversion than the SPDR. Idiosyncratic dynamics show some
interesting patterns, like technology being higher during the dot-com bubble burst, energy
sectors being higher during the energy crisis in 2005-2006, and financial sector being
most distressed during the credit-crunch crisis. We also find that there is a non negligible
dependence in the volatility innovations with average correlations of 0.40 and 0.26 in the
SDPR and S&P100 panels respectively. The S&P100 innovations also have some clear
sectoral correlation patterns within the technology, financial, energy and utilities assets.

Different strands of literature relate to our work. Starting from the contribution of
Engle and Rangel (2008), there has been interest in capturing secular trends in financial
volatility. Among others, the list of contributions in a univariate setting includes Amado
and Teräsvirta (2008), Engle et al. (2008) and Brownlees and Gallo (2010). Feng (2006),
Rangel and Engle (2009), Hafner and Linton (2009), Long et al. (2009) and Colacito et al.
(2010) extend these ideas in a multivariate setting. The paper relates also to the literature
on multivariate extensions of the MEM model, like the works of Cipollini et al. (2007)
and Hautsch (2008), and the analysis of large panels with factor models, either linear
and homecesdatic (Chamberlain and Rothschild (1983), Forni et al. (2000), Forni et al.
(2004), Forni et al. (2005), Bai and Ng (2002)) or heteroskedastic (?, ?), and nonlinear
(Gagliardini and Gourieroux (2009)). This work also fits with the larger segment of the
literature that finds evidence of long range dependence in volatility and have proposed
ways to capture it. Significant contributions include long memory models (Andersen et al.
(2003), Deo et al. (2006)) and the pseudo long memory HAR (Corsi (2010), Andersen
et al. (2007)). There are also connections with the growing literature on modeling daily
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volatility using intra-daily information. Research in this area includes Andersen et al.
(2007), Patton and Sheppard (2009), Shephard and Sheppard (2010), Hansen et al. (2010)
and Chen et al. (2010). Chiriac and Voev (2010) explore models for realized covariance
matrices. Our approach lies somehow in the middle between univariate and multivariate
realized volatility models in that we analyze panels of volatilities but we do not model
covariances.

The paper is structured as follows. Section 2 describes the panels of realized volatility
measures that we use in the empirical application and reports some descriptive statistics
that motivate the modeling approach. Section 3 describes the model and Section 4 details
the estimation strategy and the asymptotic properties of the estimator. Section 5 presents
the results for the SPDR sectoral indices and the constituents of the S&P100. We conclude
in Section 6. The Appendix gathers the assumptions and the proofs of the propositions
and theorems.

2 Stylized facts of large panels of volatility

We study two panels of realized volatility measures from January 2, 2001 to December
31, 2008. The first, referred to as SPDR, consists of the nine Select Sector SPDRs Ex-
change Traded Funds (ETF) that divide the S&P500 index into sector index funds. The
sectors (with the abbreviation we use and the more cryptic original ticker) are Materials
(Mat, XLB), Energy (Ener, XLE), Financial (Fin, XLF), Industrial (Ind, XLI), Technology
(Tech, XLK), Consumer Staples (Stap, XLP), Utilities (Util, XLU), Health Care (Heal,
XLV), and Consumer Discretionary (Disc, XLY). The second, named S&P100, consists
of U.S. equity companies that are part of the S&P100 index. This panel contains all the
constituents of the S&P100 index as of December 2008 that have been trading in the full
sample period (90 in total). The complete list of S&P100 tickers, company names and
industry sectors is reported in Table 1 of the Appendix.

Among the available estimator of the daily integrated volatility based on intraday
returns, we adopt the realized kernels (Barndorff-Nielsen et al. (2008)).1 They are a
family of heteroskedastic and autocorrelation consistent (HAC) type estimators, robust to
various forms of market microstructure noise present in high frequency data. We support
our choice with theoretical results and good forecasting properties in empirical studies
(e.g. for predicting Value at Risk, Brownlees and Gallo (2010)). Yet, we trust that our
results do not depend on the specific measure of volatility chosen.

We compute optimal realized kernels following the procedure detailed in Barndorff-
Nielsen et al. (2009). Our primary source of data are tick–by–tick intra-daily quotes
from the TAQ database. Data are extracted and filtered using the methods described in
Brownlees and Gallo (2006) and Barndorff-Nielsen et al. (2009). Let ri t j denote the 1-
minute frequency returns (sampled in tick time) at minute j on day t for ticker i. The

1Other alternative estimators are the range (Parkinson (1980), Alizadeh et al. (2002)), the “vanilla”
5–minute realized volatility (Andersen et al. (2003)), or the two-scales estimator (Aı̈t-Sahalia et al. (2005)).
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realized (Parzen) kernel estimator is defined as

xi t =
H∑

h=−H

Kp

(
h

H + 1

)
γh,

with

γh =
J∑

j=|h|+1

ri t jri t j−|h|,

and where H is both the bandwidth of the kernel and the maximum order of the autoco-
variance (the optimal selection for each day and ticker in the sample is slightly involved
and closely follows the guidelines Barndorff-Nielsen et al. (2009)), J is the number of
1–minute frequency returns within the day, and Kp(·) denotes the Parzen kernel

Kp(y) =


1− 6y2 + 6y3 0 ≤ y ≤ 1/2
2(1− y)3 1/2 ≤ y ≤ 1
0 y > 1.

Under appropriate conditions, Barndorff-Nielsen et al. (2008) show that the realized ker-
nel estimator converges to the integrated variance of returns.

[FIGURE 1 ABOUT HERE]

Figure 1 shows plots of the two panels of annualized volatilities
√

252xi t; top for
SPDR and bottom for S&P100.2 For both plots the volatilities co–move and they are
barely distinguishable from each other. The overall pattern suggests that they all cluster
around a common time-varying level, which qualifies as the systematic volatility. The
secular movements of the systematic volatility can be easily attached to well known eco-
nomic events or system wide innovations. The downturn in volatility in 2001 corresponds
to the aftermath of the burst of the dot com bubble. The rise around 2002 and 2003 due
to the accounting scandals (Enron and Worldcom among others). Volatility then drops
from 2004 to July 2007 when it starts to rise with the beginning of the financial crisis. It
then skyrockets to the highest level of volatility in the last 20 years in the fall of 2008,
following the demise of Lehman Brothers.

Table 2 displays summary descriptive statistics. The table reports average annualized
volatility, standard deviation of volatility (a.k.a. volatility of volatility), daily, weekly (5
days) and monthly (22 days) autocorrelations, average correlation with the other series
and the percentage of variance explained by the first principal component. For SPDR we
report statistics for each sectoral index while for S&P100 we report the values across the
same sectors as SPDR and, for each sector, we report the 25, 50, and 75 quantile. Mean
and variability levels of the series are higher for the S&P100 panel rather then the SPDR,
due to the fact the sectoral aggregation decreases the average and dispersion of volatility.

2For mere scale reasons we exclude from the figure the energy stock Williams Companies, which had
very large volatilities between May and July 2002. The series itself is considered in the estimation since,
regardless of the 2002 turmoil, it was part of the S&P100 over the sample period.
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Autocorrelations decay slowly, consistently with the evidence of long range dependence
widely documented in volatility studies. The proportion of variance explained by the first
principal components is always above 50%, which confirms the existence of strong co-
movements in volatility. But there are substantial differences across sectors and stocks,
which qualify as idiosyncrasies, that can be understood as firm (sector) specific move-
ments that oscillate around the systematic risk. This is particularly clear for S&P100, for
which the dissimilarity among volatilities is the largest.

[TABLE 2 ABOUT HERE]

In all, we understand volatility for large panels of assets as a combination of sys-
tematic (common secular trend) and idiosyncratic (firm or sector specific movements)
components. In the next section we propose a model that disentangles them.

3 Disentangling: Theory

Let xt = (x1 t . . . xN t)
′ be a vector of N non–negative real–valued risk measures at time

t ∈ N. The vector Multiplicative Error Model in the current context is defined as

xt = φ(zt) a� µ(Ft−1, δ)� εt (1)

and describes the behavior of xt as the product of the systematic slow moving risk com-
ponent φ(zt) depending on a time index zt, the asset specific overall average risk levels
a, the idiosyncratic risks µ(Ft−1, δ) capturing short-lived dynamics around φ(zt), and a
mean one innovation term εt.

The idiosyncratic risks µ(Ft−1, δ) ⊂ RN
+ form a N × 1 vector:

µ(Ft−1, δ) =


µ1(Ft−1, δ1)
µ2(Ft−1, δ2)

...
µN(Ft−1, δN)

 ,

where Ft−1 is the information set up to time t− 1 and δ = (δ1, . . . , δN) ∈ D ⊂ Rpδ with
D = D1 × . . .×DN . Let µi t denote µi(Ft−1, δi). Similarly to Engle and Rangel (2008),
the i-th component is

µi t =
(

1− αi − βi −
γi
2

)
+ αi

xi t−1

aiφ(zt−1)
+ βiµi t−1 + γi

xi t−1

aiφ(zt−1)
1ri t−1<0, (2)

so that δi = (αi, βi, γi). This is a dynamic process with unit unconditional expected value
under the assumption of equiprobability of positive or negative returns.3

3In the case of an asymmetric distribution of returns it is enough to replace the first term on the right-
hand side of (2) by (1− αi − βi − γiE[ri t < 0]).
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The N -dimensional vector a = (a1, . . . , aN) ∈ A ⊂ RN
+ is the average level of the

risk measures. The intercept term in (2) ensures identification of δi and ai.4

The systematic risk is captured by the scalar smooth function φ(zt) : [0, 1]→ P ⊂ R+

taking values on the set Γ = {p ∈ C2[0, 1] : p(zt) ∈ int(P) for all zt ∈ [0, 1]}. The
variable zt is the driver of the systematic risk. In our application zt = t/T , where T is the
total number of observations, but zt can be any other standardized variable that is believed
to drive φ(zt). Since E[εi t] = 1, the unconditional expectation is E[xi t|Ft−1] = aiφ(zt)µi t
and E[xi t] = aiφ(zt), which shows that the model is non–stationary, recognizing the fact
that risks may not be stationary.

The innovation εt is a N × 1 vector of i.i.d. errors with positive support, mean one
and distributed according to a probability density function (pdf) fε(εt;θ) where θ ∈
Θ ⊂ Rpθ , and corresponding cumulative density function (cdf) F (εt;θ). Denote by
Fx(xt|Ft−1;η, φ(zt)) the joint cdf of xt entailed by (1) and Fε(εt;θ). Finally, let η =
(a, δ,θ) ∈ Λ ⊂ RN+pδ+pθ , Λ = A × D × Θ being a compact set, be the vector that
gathers all the parameters.

We assume that we do not know Fε(εt;θ) but we have knowledge about the marginal
cdf’sFεi(εi t;θi), i = 1, . . . , N and hence about the marginal conditional cdf’sFxi(xi t|Ft−1; ξi, φ(zt)),
with xi t = φ(zt)aiµi(Ft−1, δi)εi t, and ξi = (ai, δi,θi) a pξi × 1 vector containing the pa-
rameters of the i-th conditional distribution. Lack of information on the joint distribution
for xt is realistic. There are barely multivariate distributions for positive real–valued ran-
dom vectors (see Johnson et al. (2000)). The multivariate exponential and gamma are the
two most prominent but they are cumbersome and their properties may not always dove-
tail with those of the risk measures (see Cipollini et al. (2007)). We gather the parameters
of all the marginals in ξ = (ξ1, . . . , ξN) ∈ Ξ ⊂ Rpξ1+...+pξN , where Ξ = Ξ1 × . . .×ΞN .

The dependencies among risk innovations are explained by a copula function that
depends on a set of parameters ψ ∈ Ψ ⊂ Rpψ specifying its shape. The parameter set η
containing all the parameters can therefore be split as η = (ξ,ψ) ∈ Λ ⊂ Rpξ1+...+pξN+pψ ,
where Λ ≡ Ξ×Ψ.5 By Sklar’s theorem the joint conditional cdf of xt is

Fx(xt|Ft−1;η, φ(zt)) = C(Fx1(x1,t|Ft−1; ξ1, φ(zt)), . . . , FxN (xN,t|Ft−1; ξN , φ(zt));ψ),

and the joint pdf is

fx(xt|Ft−1;η, φ(zt)) =
N∏
i=1

fxi(xi t|Ft−1; ξi, φ(zt))

·c(Fx1(x1,t|Ft−1; ξ1, φ(zt)), . . . , FxN (xN,t|Ft−1; ξN , φ(zt));ψ),

4An equivalent parametrization can be obtained by defining

µ′i t = ω′i + α′i
xi t−1

φ(zt−1)
+ β′iµ

′
i t−1 + γ′i

xi t−1

φ(zt−1)
1ri t−1<0,

such that µ′i t = aiµi t, and δ′i = (ω′i, α
′
i, β
′
i, γ
′
i) with ω′i = ai

(
1− αi − βi − γi

2

)
, α′i = αi, β′i = βi, and

γ′i = γi. This alternative parametrization may be computationally simpler and the original parameters δi
and ai can be uniquely backed up.

5Note that pξ1 + . . . + pξN + pψ = N + pδ + pθ and that, since the variables are not independent,
θ 6= (θ1 . . .θN ) and η 6= (ξ1 . . . ξN ).
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where c is the derivative of C with respect to (Fx1 , . . . FxN ).

We define L(η, φ(zt)) =
∑T

t=1 `(η, φ(zt)) =
∑T

t=1 log fx(xt|Ft−1;η, φ(zt)) to be the
log–likelihood, which can be written as

L(η, φ(zt)) =

[
T∑
t=1

N∑
i=1

log fxi(xi t|Ft−1; ξi, φ(zt))

]

+
T∑
t=1

log c(Fx1(x1,t|Ft−1; ξ1, φ(zt)), . . . , FxN (xN,t|Ft−1; ξN , φ(zt));ψ).

To short the notation we denote

`mi (ξi, φ(zt)) = log fxi(xi t|Ft−1; ξi, φ(zt)) and
` c(ξ,ψ, φ(zt)) = log c(Fx1(x1,t|Ft−1; ξ1, φ(zt)), . . . , FxN (xN,t|Ft−1; ξN , φ(zt));ψ),

so that

L(η, φ(zt)) =

[
T∑
t=1

N∑
i=1

`mi (ξi, φ(zt))

]
+

T∑
t=1

` c(ξ,ψ, φ(zt)). (3)

In order to estimate the model, three decisions have to be taken.

The first one are the marginal distributions. We opt for gamma distributions. This
choice is motivated from the facts that it is a rather flexible distribution, it belongs to the
exponential family, and it nests the exponential and the chi–square distributions. If εi t
follows a gamma distribution with parameters θi = (ki, νi), the conditional distribution
of xi t is gamma with parameters ((aiφ(zt)µi t)

−1ki, νi). The conditional pdf for xi t is
then

fxi (xi t|Ft−1; ξi, φ(zt)) =
ki

Γ(νi)aiφ(zt)µi t

(
xi tki

aiφ(zt)µi t

)νi−1

exp

(
− xi tki
aiφ(zt)µi t

)
.

Let ki = νi, which ensures that εi t has unit mean (and variance ν−1
i ). Note that if νi = 1

all the marginals are exponentially distributed with parameter (aiφ(zt)µi t)
−1. With this

choice, and given (2), the parameter vector of the i-th marginal is ξi = (ai, αi, βi, γi, νi).

The second choice is the copula function. The main empirical advantage of copulas is
their ability to capture correlations and tail dependences. As far as the latter is concerned,
knowledge of the copula function is crucial as it determines the behavior at extreme quan-
tiles. Since our interest lies in correlations between risk measures, we rely on Gaussian
copulas. Define ui t = Fxi(xi t|Ft−1; ξi, φ(zt)) for i = 1, . . . , N . The standard approach is
to bend u1 t, . . . , uN t with a Gaussian copula, yielding a meta copula (see Song, 2000 and
Cipollini, Engle and Gallo, 2009, for its use on dispersion distributions generated from
a Gaussian copula). We proceed differently by applying another monotone increasing
transformation to ui t: yi t = Φ−1(ui t).6 Then we know that yi t ∼ N (0, 1). By Sklar’s
theorem the joint cdf of yt can be written as a copula function C with standard Normal

6Notice that yi t is a function of ξi and φ(zt).
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marginals and depending on some generic parameter R:

Gy(y1 t, . . . , yN t) = C(Φ(y1 t), . . . ,Φ(yN t); R), (4)

with copula density

gy(yi t, . . . , yN t) = c(Φ(y1 t), . . . ,Φ(yN t); R)
N∏
i=1

ϕ(yit),

and where ϕ is the univariate standard Gaussian pdf. We seek a function c such that i) it
is a copula density, ii) if y1 t, . . . , yN t are independent then c(Φ(y1 t), . . . ,Φ(yN t); R) = 1
and gy(y1 t, . . . , yN t) =

∏N
i=1 ϕ(yi t), and iii) it is suitable for large dimensions. We opt

for the Gaussian copula density

cΦ(Φ(y1 t), . . . ,Φ(yN t); R) = |R|−1/2exp
(
−1

2
y′t(R− I)yt

)
(5)

where R is the Pearson correlation matrix and I is the identity matrix. If (y1 t, . . . , yN t)
are independent then R = I and the joint density is the product of the marginals. Under
this choice gy is the pdf of a multivariate standard Gaussian and Gy(y1 t, . . . , yN t) =
Φ(y1 t, . . . , yN t) is a multivariate standard Gaussian cdf.7

The last choice is the estimation strategy. With respect to the fully parametric prob-
lems, model (1) entails two additional difficulties. The first is the presence of the system-
atic risk φ(zt) which, statistically wise, is a nonparametric curve. We rely on profile like-
lihood that allows to obtain efficient estimators for η by considering φ(zt) as an infinite
dimensional nuisance parameter, and do correct inference for φ(zt). We show in the first
part of the next Section the asymptotic properties of the estimators for η and φ(zt). The
second difficulty is the computational complexity. Although theoretically feasible, joint
estimation of η from (3) and of φ(zt) is cumbersome in practice. We rely on the Inference
from the Marginals of Joe (1997) and Joe (2005), which is based on a two–step approach.
We first estimate ξ and φ(zt) making use of the marginal part of the log-likelihood and,
in a second step, we estimate ψ maximizing

∑T
t=1 `

c(ξ̂T ,ψ, φ̂T,ξ(zt)), where ξ̂T and
φ̂T,ξ(zt) are the estimates of the first step. In the second part of the next Section we
show how to do correct inference for the estimators of ξ, φ(zt) and ψ combining profile
likelihood and Inference from the Marginals.

4 Estimation and Asymptotic Properties

Standard ML techniques do not apply directly since the estimation of the parameters
η = (ξ,ψ) does not necessarily provide consistent estimators in the presence of the

7By mapping ui t into a Gaussian frame we ignore the possible tail dependencies that may be present
between risk measures. This is not harmful since our aim is not to capture these dependencies. Yet we
acknowledge that in some instances measuring tail dependences may be of interest, such as in financial
products based on volatilities. The estimation strategy and the asymptotic theory of next section considers
a generic copula.
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infinite dimensional parameter φ(zt). In order to implement valid inference not only
on ξ but on φ(zt) as well, we use profile likelihood. It is based on the fact that the
marginal Fisher information of a seminonparametric model for η is smaller or equal than
the marginal Fisher information of a parametric model. So the aim is to find the curve
such that the marginal Fisher information is the largest possible. This curve is called the
least favorable curve – the systematic risk – and the maximal marginal Fisher information
is obtained by projections of the nonparametric and parametric scores.

We denote by ∇η`(η, φ(zt)) the gradient with respect to η and by ∇φ`(η, φ(zt))
the derivative with respect to φ (the Fréchet derivative of ` with respect to φ).8 Given
an estimate of a least favorable curve, the marginal Fisher information matrix for η is
the expected squared length of the residual of the parametric score ∇η`(η, φ(zt)) after
projection onto the nonparametric score ∇φ`(η, φ(zt)). To compute this projection we
need the least favorable direction v, which is the tangent to the least favorable curve.
Hence, the marginal Fisher information matrix for η is given by

I∗η = E
[
(∇η`(η, φ(zt)) + v∇φ`(η, φ(zt))) (∇η`(η, φ(zt)) + v∇φ`(η, φ(zt)))

′
]
. (6)

4.1 Joint Estimation

An estimator of the least favorable systematic risk is obtained by maximizing a local (and
hence smoothed) likelihood function (see Staniswalis (1987) and Staniswalis (1989)),
and simultaneously estimate the parameter vector η by maximizing the un–smoothed
likelihood function. For a given value z0 ∈ [0, 1], and fixed values of η, we estimate
φ(z0) as the solution of the problem

φ̂T η(z0) = arg sup
φ∈P

T∑
t=1

K

(
z0 − zt
hT

)
`(η, φ(zt)), (7)

where K is a suitable kernel function and hT is the corresponding bandwidth (see assump-
tions in the Appendix for details). Note that the estimator depends on η and it is point
wise, i.e. there are as many optimizations of (7) as observations. Given the estimates for
the nonparametric function, an un–smoothed ML estimation for η is performed:

η̂T = arg max
η ∈Λ

T∑
t=1

`(η, φ(zt)). (8)

Staniswalis (Staniswalis (1987) and Staniswalis (1989)), Severini and Wong (1992) and
Veredas et al. (2007) show the asymptotic properties of the joint estimator (η̂T , φ̂T η(z0))
obtained by satisfying jointly (7) and (8). The next two Theorems show their consistency
and asymptotic distribution.

Theorem 1 - (Consistency and asymptotic normality of φ̂T η) Under the assumptions
in the Appendix, if for each z0 ∈ [0, 1] and η ∈ Λ, φ̂T η(z0) satisfies (7). Then

8Notice that∇η`(η, φ(zt)) is a vector and∇φ`(η, φ(zt)) is a scalar.
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a) φ̂T η(z0) is an estimator of the least favorable curve;

b) φ̂T η(z0) is consistent, so for any ε > 0 there exists a δ > 0 such that

lim
Th→∞

Prob

{
sup

z0∈[0,1]

sup
η∈Λ
|φ̂T,η(z0)− φ(z0)| > δ

}
< ε;

c) for any z0 ∈ [0, 1]√
ThT

(
φ̂T η(z0)− φ(z0)

)
d→ N (0, Vη(z0)) as ThT →∞,

where

Vη(z0) =

[∫ 1

−1

K2(u)du
]

[iη(z0)]−1 , and iη(z0) = E
[
(∇φ`(η, φ(zt)))

2
∣∣ zt = z0

]
.

Theorem 2 - (Consistency and asymptotic normality of η̂T ) Under the assumptions in
the Appendix, let η̂T satisfy (8). Then

a) η̂T is consistent, given φ̂T,η(z0), so for any ε > 0 there exists a δ > 0 such that

lim
T→∞

Prob {||η̂T − η|| > δ} < ε;

b) η̂T is asymptotically normal:

√
T (η̂T − η)

d→ N
(
0, I∗−1

η

)
as T →∞,

where

I∗η = E
[
(∇η`(η, φ̂T η(z0)))(∇η`(η, φ̂T η(z0)))′

]
+

− E
[
(∇η`(η, φ̂T η(z0)))(∇φ`(η, φ̂T η(z0)))

]
E
[
∇φφ`(η, φ̂T η(z0))

]−1

E
[
(∇φ`(η, φ̂T η(z0)))(∇η`(η, φ̂T η(z0)))′

]
.

From Lemma 1 in Severini and Wong (1992) the explicit form of the least favorable
direction is

v = −E
[
(∇η`(η, φ̂T η(z0)))(∇φ`(η, φ̂T η(z0)))

]
E
[
∇φφ`(η, φ̂T η(z0))

]−1

. (9)

By substituting (9) into (6) we get the explicit form of the seminonparametric Fisher
information matrix I∗η. The asymptotic variance-covariance matrix of η̂T is the inverse
of the marginal Fisher information matrix of a seminonparametric model, so that it is the
natural lower bound for seminonparametric models. Therefore, according to the definition
of the least favorable curve and, given the ML estimators obtained from (7) and (8), we
attain asymptotic efficiency.

11



4.2 Two–step Estimation

In practice optimization of the full log-likelihood in (3) is cumbersome. The procedure
to estimate η and φ(zt) is based on iterating between the smoothed and the un–smoothed
optimizations. At each iteration, the smooth optimization has to be done T times and the
un–smoothed optimization is with respect to 5N parameters in

∑N
i=1

∑T
t=1 `

m
i (ξi, φ(zt))

plus the pψ parameters in
∑T

t=1 `
c(ξ,ψ, φ(zt)).

This procedure is computationally intensive and it is significantly alleviated if we
consider Inference from the Marginals (Joe, 1997 and Joe, 2005), a two–step estimation
procedure. The first step consists of estimating φ(z0) and ξ by making use only of the
first term of the log-likelihood (3). For any z0 ∈ [0, 1], φ̂T,ξ(z0) must now fulfill

φ̂T ξ(z0) = arg sup
φ∈P

T∑
t=1

N∑
i=1

K

(
z0 − zt
hT

)
`mi (ξi, φ(zt)). (10)

This optimization has a closed form solution

φ̂T ξ(z0) =

∑T
t=1 K

(
z0−zt
hT

)∑N
i=1

xi t
aiµi t(Fj−1,δi)

νi∑N
i=1 νi∑T

t=1 K
(
z0−zt
hT

) , (11)

which has an intuitive meaning: the systematic risk on z0 is estimated as a nonparametric
regression of a weighted sum (across N ) of risks adjusted by the idiosyncratic component
and ai where the proportional weights are a function of all the νi’s. Since νi is the recipro-
cal of the variance of the i-th innovation, the weights also have an intuitive interpretation:
the less erratic volatilities (denoted by larger ν’s) have more weight in the estimation of
the systematic risk.

Consistency and asymptotic normality of φ̂T ξ(z0) are proved in the following Theo-
rem.

Theorem 3 - (Consistency and asymptotic normality of φ̂T ξ) Under the assumptions
in the Appendix:

a) φ̂T ξ(z0) given by (11) is an estimator of the least favorable curve;

b) φ̂T ξ(z0) is consistent, so for any ε > 0 there exists a δ > 0 such that

lim
Th→∞

Prob

{
sup

z0∈[0,1]

sup
η∈Λ
|φ̂T ξ(z0)− φ(z0)| > δ

}
< ε;

b) for any z0 ∈ [0, 1],√
ThT

(
φ̂T ξ(z0)− φ(z0)

)
d→ N (0, Vξ(z0)) as ThT →∞,

where

Vξ(z0) =

[∫ 1

−1

K2(u)du
]
iξ(z0) h−2

ξ (z0),
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and

iξ(z0) = E

(∇φ

N∑
i=1

`mi (ξi, φ(zt))

)2
∣∣∣∣∣∣ zt = z0

 ,
hξ(z0) = −E

[
∇φφ

N∑
i=1

`mi (ξi, φ(zt))

∣∣∣∣∣ zt = z0

]
.

To do inference (i.e. standard errors, testing and confidence intervals) the expressions
in Vξ(z0) have to be replaced by sample equivalents. The integral of the squared kernel
is a constant specific to the chosen kernel. Since we use the quartic kernel, it equals 5/7.
The Fisher information matrix iξ(z0) and the second derivative hξ(z0) are replaced by

îξ(z0) =
1

T

T∑
t=1

K

(
z0 − zt
hT

)[ N∑
i=1

ν̂i

φ̂T ξ(z0)

(
xi t

âiµi t(Fj−1, δ̂i)φ̂T ξ(z0)
− 1

)]2

and

ĥξ(z0) =
1

T

T∑
t=1

K

(
z0 − zt
hT

) N∑
i=1

ν̂i

φ̂T ξ(z0)2

(
2xi t

âiµi t(Fj−1, δ̂i)φ̂T ξ(z0)
− 1

)
,

which are smoothed expectations of weighted standardized residuals (squared for îξ(z0)).
The efficiency loss due to neglecting the presence of φ(z0) in the copula function

∑T
t=1 `

c(ξ,ψ, φ(zt))
is shown in the following Proposition.

Proposition 1 - (Asymptotic efficiency of φ̂T ξ) Under the assumptions in the Appendix,
for any z0 ∈ [0, 1], the estimator φ̂T ξ(z0) is less efficient than φ̂T η(z0), i.e. Vξ(z0) ≥
Vη(z0).

Given φ̂T ξ(z0), and since Ξ = Ξ1×. . .ΞN , the optimization of
∑T

t=1

∑N
i=1 `

m
i (ξi, φ(zt))

with respect to (ξ1 . . . ξN) boils down to N independent optimizations of the marginals:

ξ̂T i = arg max
ξi∈Ξi

T∑
t=1

`mi (ξi, φ̂T ξ(zt)) i = 1, . . . , N. (12)

We now clearly see the gain of the Inference from the Marginals. The complicated it-
erative process between the smoothed optimization with respect to the systematic risk and
the un–smoothed univariate optimizations with respect to 5N +pψ parameters, reduces to
a simple iterative process between a closed form estimator, φ̂T ξ(zt), and N un–smoothed
optimizations with respect to 5 parameters each (ξi = (ai, αi, βi, γi, νi)). Table 3 provides
detailed explanations of the iterative process.

[TABLE 3 ABOUT HERE]

The initialization of the systematic risk – φ0(z0) – needs some further clarification.
Theorem 3 states that φ̂T ξ(z0) is a consistent estimator for any ξ and z0. Therefore the ini-
tial estimator φ0(z0) needs to be evaluated in an educated initialization of aiµi t(Fj−1, δi)
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and νi, ∀i. As for aiµi t(Fj−1, δi), since it is the conditional mean of the i-th risk adjusted
for the systematic component, we consider the sample means x̄i . As for νi, since it is
the inverse of the variance of a gamma distribution, we consider the inverse of the sam-
ple variance s2

i . This is analogous to the device used in Hafner and Linton (2009) where
an educated initialization of the smooth component of the variance-covariance matrix is
a Naradaya Watson estimator of the standardized time on the outer product of vector of
returns.9

In the second step we estimate ψ by maximum likelihood:

ψ̂T = arg max
ψ∈Ψ

T∑
t=1

` c(ξ̂T ,ψ, φ̂T ξ(zt)). (13)

Since
∑T

t=1 `
m
i (ξi, φ(zt)), and

∑T
t=1 `

c(ξ,ψ, φ(zt)) are proper log–likelihoods, consis-
tency is ensured (Joe, 1997, p. 301). Asymptotic normality is also achieved but, due to
the two–step nature of the optimization, the asymptotic covariance matrix is modified, fol-
lowing Joe (2005), with respect to that of Theorem 2. This modification is in order to take
into account the parameter uncertainty of the first step into the second step estimators.

Theorem 4 - (Consistency and asymptotic normality of ξ̂T and ψ̂T ) Let (ξ̂T , ψ̂T ) be the
vector of parametric estimates obtained by solving first (12) and second (13). Con-
sider the consistent estimator of a least favorable curve φ̂T ξ(z0). Under the as-
sumptions in the Appendix:

a) (ξ̂T , ψ̂T ) is consistent, so for any ε > 0 there exists a δ > 0 such that

lim
T→∞

Prob
{∣∣∣∣∣∣∣∣( ξ̂T

ψ̂T

)
−
(
ξ
ψ

)∣∣∣∣∣∣∣∣ > δ

}
< ε;

b) (ξ̂T , ψ̂T ) is asymptotically normal

√
T

((
ξ̂T
ψ̂T

)
−
(
ξ
ψ

))
d→ N

(
0,H−1 I∗ξ,ψ H−1′

)
as T →∞.

9An alternative avenue to avoid the use of profile likelihood for the estimation of the systematic risk is
to consider the nonparametric regression x̃t ξ = m(zt) + ε̃t where

x̃t ξ =
N∑
i=1

xi t
aiµi t(Fj−1, δi)

νi∑N
i=1 νi

.

The Nadaraya-Watson estimator is also (11). While the issue of the initialization φ0(z0) is still present,
the advantage of proceeding in this way is that the parameters do not need to be maximized with a gamma
distribution but more general distributions can be considered. However, it is not clear that the resulting
estimator is a least favorable curve and the estimated parameters reach the seminonparametric efficiency
bound.
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The matrix H is defined as

H =


Hξ1 ξ1 . . . 0 0

... . . . ...
...

0 . . . HξN ξN 0
Hψ ξ1 . . . Hψ ξN Hψψ

 ,

where, for any i = 1, . . . , N ,

Hξi ξi = −E [∇ξiξi`mi (ξi, φ(zt))] , Hψ ξi = −E [∇ψξi` c(ξ,ψ, φ(zt))] ,

and
Hψψ = −E [∇ψψ` c(ξ,ψ, φ(zt))] .

The information matrix is defined as I∗ξψ = Iξψ −Wφ, where Iξψ is the block–
diagonal information matrix of the fully parametric case and Wφ is a correction
term due to the presence of the curve. Namely,

I∗ξψ =


Iξ1 ξ1 . . . 0 0

... . . . ...
...

0 . . . IξN ξN 0
0 . . . 0 Iψψ


︸ ︷︷ ︸

Iξ,ψ

+

−


Iξ1 φH−1

φφIφ ξ1 . . . Iξ1 φH−1
φφIφ ξN 0

... . . . ...
...

IξN φH−1
φφIφ ξ1 . . . IξN φH−1

φφIφ ξN 0

0 . . . 0 Iψ φH−1
φ,φIφψ


︸ ︷︷ ︸

Wφ

where, for any i = 1, . . . , N , the generic elements of Iξψ are

Iξi ξi = E
[
(∇ξi`mi (ξi, φ(zt))) (∇ξi`mi (ξi, φ(zt)))

′] ,
Iψψ = E

[
(∇ψ` c(ξ,ψ, φ(zt))) (∇ψ` c(ξ,ψ, φ(zt)))

′] ,
and the generic elements of Wφ are

Hφφ = E

[
∇φφ

N∑
i=1

`mi (ξi, φ(zt))

]
,

Iξi φ = E

[
(∇ξi`mi (ξi, φ(zt)))

(
∇φ

N∑
i=1

`mi (ξi, φ(zt))

)]
, Iφ ξi = I ′ξi φ,

Iψ φ = E [(∇ψ` c(ξ, ψ, φ(zt))) (∇φ`
c(ξ, ψ, φ(zt)))] , Iφψ = I ′ψ φ.

Given the estimated parameters ξ̂T i and the systematic risk φ̂T ξ(zt), let ûi t be the cdf
Fxi(xi t|Ft−1; ξ̂T i, φ̂T ξ(zt)) that is used to construct ` c(ξ̂T ,ψ, φ̂T ξ(zt)). As explained

15



in Section 3, since we map ûi t into a Gaussian frame the dependence parameter ψ be-
comes R that is estimated as the sample correlation matrix of ŷt = (ŷ1,t . . . ŷN,t) =
(Φ−1(û1,t) . . .Φ

−1(ûN,t)).

In a fully parametric case, i.e. the case where I∗ξψ does not contain the term Wφ, the
variance–covariance matrix of (ξ̂T , ψ̂T ) boils down to Iξψ. This latter term is not block
diagonal as the systematic risk is contained in all the marginal distributions. Notice also
that the matrix H remains even in the fully parametric case as it is due to the two–step
procedure.

We define the upper left block of I∗ξψ relative to ξ as I∗ξ and the lower right block
relative to ψ as I∗ψψ. We also define the marginal Fisher information matrix relative to
ξ when maximizing the whole likelihood as I∗η|ξ, and analogously we define I∗η|ψ. The
following Proposition states the efficiency loss due to the Inference from the Marginal.10

Proposition 2 - (Asymptotic efficiency of ξ̂T and ψ̂T ) Under the assumptions in the Ap-
pendix, the estimator (ξ̂T , ψ̂T ) is less efficient than η̂T , i.e.

H−1

(
I∗ξ 0
0 I∗ψψ

)
H−1′ �

(
I∗−1
η|ξ 0

0 I∗−1
ψψ

)
.

5 Disentangling: Practice

Consistently with Section 2, we provide detailed results for SPDR and summary results
for S&P100 and, though estimations are done on variances, all the results are reported in
terms of annualized volatilities. For comparison purposes, we also fit univariate asym-
metric MEMs (simply referred to as MEM) on each series to provide baseline results.
These models can be formulated as a constrained version of our specification when the
trend φ(zt) is set to be equal to one for all zt and there is no copula.

[TABLE 4 ABOUT HERE]

Table 4 reports the estimated parameter for the idiosyncratic risks (columns αi, βi and
γi), the estimated persistence πi = αi + βi + 1

2
γi that captures durability of departures

of the idiosyncratic risks around the systematic risk, and the Quasi Log Likelihood Loss
(QLL) that measures the in–sample fit of the model (Patton (2010)). The left part of the
panel shows the results for our model while the right part shows the results for the MEM.

We first focus on the estimation results of our model. In comparison to typical GARCH
estimates, values of α and γ are higher and β’s are lower (see Brownlees and Gallo (2010)
and Shephard and Sheppard (2010) for similar evidence). This is a consequence of the
fact that realized kernels provide more accurate measurement of volatility in comparison
to squared returns, hence past realizations of the process turn out to be more informative

10Given two matrices A and B, of the same dimensions, we use the notation A � B to indicate that
(A−B) is a positive semidefinite matrix.
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and are associated with higher estimates of the α and γ parameters. As expected, the
asymmetry is positive suggesting that negative news increase the level of volatility more
than positive ones. The persistence reveals important differences across assets. For SPDR
the sectors with higher persistence are energy and technology, meaning that these are the
sectors with longer lasting idiosyncratic departures from the systematic risk. For S&P100
the differences between the least and the most persistent idiosyncratic risks are wide and,
in general, they appear to be higher than the ones in SPDR. We interpret this as the result
that individual assets have a higher level of idiosyncrasy in comparison to SPDR. The
systematic loadings are fairly close to the sample average volatilities (see Table 3). Last,
the estimates of the gamma distribution also differ substantially across sectors and assets
meaning differences in the marginals probability distributions. By contrast, in the vast
majority of cases, the persistences entailed by the MEMs are essentially equal to one,
hinting at the presence of integrated dynamics. The unconditional volatilities (denoted by
ai for comparison purposes with our model), which are relevant for long-run forecasting,
are often far –especially for SPDR– from the sample average volatilities, suggesting that
the stationarity condition may be violated. The estimated variances of the innovations
terms in the univariate MEM are also higher than the ones of our model in the great ma-
jority of cases. Lastly, the QLL loss function is always smaller for our model, meaning
that our model always improves the fit over the simple MEM.

[FIGURE 2 ABOUT HERE]

Figure 2 displays, for SPDR, the scatter plot of the log of the systematic loadings (for
our model) and the log of the unconditional expected volatilities (for the MEMs) versus
the persistence. Results from our model suggest that sectors cluster in groups. Technol-
ogy is the sector with the largest persistence and volatility and it is closely followed by
Energy and Utilities. The Financial, Industrial, and Health Care sectors have median lev-
els of volatility and persistence. Material and Consumer Discretionary have low volatility
and the lowest persistence. Lastly, Consumer Staples has the lowest volatility and average
persistence. The same results using MEMs turn out to be harder to interpret. The non-
stationarity in volatility makes the estimated level of persistence collapsing to one, and
differences in parameter estimates across assets ultimately reflect estimation variability.

[FIGURE 3 ABOUT HERE]

Figure 3 shows (from top to bottom) the estimated fit, the systematic volatility, and id-

iosyncratic volatilities for SPDR (left) and S&P100 (right). The fit –
√

252 âT i φ̂T ξ(zt) µ̂i t–
fairly mimics the movements of realized volatilities, even during the 2008 financial crisis.

The systematic volatility –
√
φ̂T ξ(zt)– for both panels are essentially the same with mi-

nor differences in scale and pattern that reflect the difference composition of assets. The
line at one is used to emphasize periods of amplification and contraction. The systematic
volatility captures low frequency movements in the volatility trend which reflects the gen-
eral economic conditions commented in Section 2: In mid 2002 the systematic volatility
increased by almost half, during the volatility moderation period systematic volatility was
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around 3/4 of its unconditional value and, finally, in the recession of the late 2000s the
index increased to more than double in the last quarter of 2008.

The idiosyncratic volatilities –
√

252 âT i µ̂i t– are stationary and vary around the un-
conditional means. To get deeper insights, Figure 4 displays the idiosyncratic volatilities
of the Energy, Financial and Technology sector only, which allows to visually identify
periods of idiosyncratic distress of these sectors. In the beginning of the 2001, Technol-
ogy was the most volatile sector due the aftermath of the burst of the dot com bubble. In
between 2005 and 2007 concerns on oil prices generated an increased level of uncertainty
in the Energy sector. Finally, the Financial sector had a surge in volatility starting from
July 2007 with the beginning of the credit crunch.

[FIGURE 4 ABOUT HERE]

Table 5 shows the estimates for the dependence among volatility innovations for
SPDR while Figure 5 shows them for S&P100 in a heat map. In the plot sectors are
delimited by horizontal and vertical lines and, for comparison purposes, we also show the
heat map of the realized volatilities. The correlatons range from 0.32 to 0.50 for SPDR
and from 0.07 to 0.60 for S&P100, and the average are 0.40 and 0.26 respectively. This
difference reflects the already mentioned effect that the sectoral aggregation may entail
an increase in the correlations. The row ψ̄i in the Table shows the cross-sectional average
dependence, which are all around 0.40. Though important, they are substantially smaller
than the average correlations ρ̄ in Table 2. In fact, last row of Table 5 shows the percentage
difference of ψ̄i with respect to ρ̄. After taking into account the systematic and idiosyn-
cratic components of volatilities, around 50% of the dependencies are still present. More
interestingly these dependencies are not homogeneous. The heat map unveils clustering
among stocks that belong to the same sector that are not visible from the raw volatilities.
This is the case for Technology, Financials, Energy and Utilities. This finding dovetails
with the conclusions extracted from the idiosyncratic volatilities in Figure 4 and puts for-
ward evidence for sectoral systematic components in volatilities.11

[TABLE 5 ABOUT HERE]

[FIGURE 5 ABOUT HERE]

A natural question that rises at this point is what the proportion of volatility would be
that is explained by the idiosyncratic components. To do so we introduce a goodness of
fit measure that is in spirit of the pseudo R2 used in the discrete choice models literature.
For the i-th asset we define

GoFi µ = 1− `
m
i (xi t, ξ̂T i, φ̂T ξ(zt))

`mi (xi t, ν̂T i, φ̃T ξ(zt))
.

11Since the independence among risk innovations is estimated with a Pearson correlation matrix on
y1 t, . . . , yN t, we also estimated the rank-based Spearman’s correlation matrix, as a check of the poten-
tial lost of dependencies beyond linearity (available under request). The two matrices are very similar.

18



The numerator is the log–likelihood of the i-th marginal model evaluated at estimates of
the model, while the denominator is the same log–likelihood but imposing µi t = 1 (so
that ξ̂T i contains only the estimated parameters of the marginal distribution) and ai are
fixed to the sample mean of the risk of the i-th asset. The systematic risk is estimated as

φ̃T ξ(zt) =

∑T
t=1K

(
zj−zt
hT

)∑N
i=1

xi t
ai

νi∑
i νi∑T

t=1K
(
zj−zt
hT

) .

GoFi µ measures the relative contribution of the idiosyncratic risk to the log–likelihood.
Table 6 reports full results for SPDR and quantiles for the S&P100. The contributions of
the idiosyncratic risks are substantial. The range of GoFi µ is between 0.14 and 0.33 for
SPDR and 0.12 and 0.55 for S&P100, with the latter panel exhibiting more idiosyncrasy
(average of 0.46 for S&P100 vs 0.28 for SPDR).

[TABLE 6 ABOUT HERE]

Last, we find the residuals of the model to be adequate. The top panel of Table 7
reports the residual autocorrelations and the p-values of Ljung–Box tests at 1, 5 and 22
lags (daily, weekly, monthly), together with the average lagged correlations with the other
residuals at 1, 5 and 22 lags. The autocorrelations are negligible and there is virtually no
evidence against Ljung–Box null of no correlation. Also, the average cross autocorrela-
tions are exiguous. This is verified in the bottom part of the table that shows the lagged
one residuals autocorrelations.

[TABLE 7 ABOUT HERE]

Likewise, Figure 6 reports, for S&P100, the residual lagged autocorrelation matrices
for orders 1 and 5 in the form of heat maps. The cell i j corresponds to the correlation
between ε̂i t and ε̂j t−l, where l equals one (top plot) or five (bottom plot). We conclude
that, as for SPDR, the lagged cross autocorrelations are small and no dynamic pattern in
the residuals is detected.

[FIGURE 6 ABOUT HERE]

6 Conclusion

Modeling large panels of volatilities may prove a formidable task if one allows for dy-
namic interdependence. We follow parsimony in parametric specification, exploiting the
stylized fact that volatilities appear to be driven by an underlying factor that captures the
secular systematic trend. This is consistent with other studies that have shown that the
secular volatility deserves separate attention from the short run idiosyncratic dynamics.
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The stylized facts that emerge in the analysis of such panels motivate us to propose
a novel vector MEM specification that decomposes risk measures in a systematic and
idiosyncratic components, and it further allows for cross-section dependence in the in-
novations. The systematic component is a slowly varying nonparametric function and
the idiosyncratic components follow a parametric dynamics. We develop a theoretically
sound estimation technique which rests on the theories of profile likelihood and copulas.
Regardless of the dimension of the panel, estimation boils down to univariate maximum
likelihood problems and one sample correlation matrix. The ease in estimation of our
model makes it appealing in large dimensional applications.

We engage in the analysis of two panels of daily realized volatility measures between
2001 and 2008. The first panel consists of the nine SPDR Sectoral Indices of the S&P500
and the second panel contains the ninety constituents of the S&P100 that have been con-
tinuously trading in the sample period. We find that while there is strong evidence of
nonstationary dynamics in all series, once a common component is accounted for all se-
ries exhibit mean reversion around it. The speed of reversion is rather heterogeneous
across assets. For instance energy and technology companies have a slow reversion while
consumer, materials and healthcare assets are faster. The model also unveils dependen-
cies in volatility innovations across assets and sectoral clusters for technology, financial,
energy and utilities companies.

Further refinements or uses of the model can be envisaged. As realized measures are
estimators, we would need to investigate the benefits of taking the measurement error in
the volatility estimation into explicit account in the modeling step (cf. Hansen and Lunde
(2010)). As in other contributions, a relationship between macroeconomic variables and
the common component can help highlight some determinants of the changes in risk lev-
els or, reverting the perspective, the spillover effects of market volatility onto the real
economy.
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Appendix A - Assumptions

The following assumptions are drawn from Severini and Wong (1992) and Veredas et al.
(2007). They are stated for `(η, φ(zt)) but hold also for `mi (ξi, φ(zt)) and `c(ξ,ψ, φ(zt)).
Moreover all the assumptions at the beginning of Section 2 hold and we assume also the
standard regularity conditions for maximum likelihood estimation.

Assumption I.1 For fixed but arbitrary η̃ ∈ Λ and φ̃(zt) ∈ P , let

ρ(η, φ(zt)) =

∫
`(η, φ(zt))dFx(η̃, φ̃(zt)).

If φ(zt) 6= φ̃(zt), then ρ(η, φ(zt)) < ρ(η̃, φ̃(zt)).

Assumption I.2 The seminonparametric marginal Fisher information matrix I∗η as de-
fined in Theorem 2 is positive definite for all η ∈ Λ.

Assumption S Assume that for all r, s = 0, . . . , 4, r + s ≤ 4, the derivative

∂r+s`

∂ηr∂φs
(η, φ(zt))

exist for almost all xt and assume that

E
[

sup
η ∈Λ

sup
φ∈P

∣∣∣∣∣∣∣∣( ∂r+s`

∂ηr∂φs
(η, φ(zt))

)(
∂r+s`

∂ηr∂φs
(η, φ(zt))

)′∣∣∣∣∣∣∣∣] <∞.
Assumption K Assume that the kernel function K(·) in (7) is of order k > 3/2 with

support [−1, 1] and it has bounded k + 2 derivatives. Assume also that∫ 1

−1

K(u)du = 1,

∫ 1

−1

uK(u)du = 0,

∫ 1

−1

u2K(u)du <∞,

and

sup
u

∣∣∣∣∂rK(u)

∂ur

∣∣∣∣ <∞, r = 0, . . . , 4.

The bandwidth hT is such that hT → 0, ThT → ∞, Th2
T → 0 as T → ∞.

Moreover, it satisfies hT = O(T−α) as T →∞ where

1

8
< α <

1

16

(q + 3)(q − 2)

(q + 6)(q + 2)
,

for some even integer q ≥ 10.

Assumption A.1 The observations {xt}t=1,...,T are a sequence of ergodic random vectors.

21



Assumption A.2 xi t is a strong mixing process where the mixing coefficients {αj} must
satisfy

∞∑
j=1

jr−1α
1−2/p
j <∞, for p > 2 and r ∈ N.

Furthermore, for some even integer q ≤ 2r

E[|xi t|q] < ν,

where ν is a constant not depending on zt.

Assumption B.1 Define
L0(η, φ(zt)) ≡ E0 [`(η, φ(zt))]

where E0 indicates expectation with respect to the true value of the parameters.
Then, for each η ∈ Λ and zt ∈ [0, 1], we assume that

sup
η

sup
φ

sup
zt

∣∣∣∣ ∂k∂ηk ∂h∂zht ∂j

∂φj
L0(η, φ(zt))

∣∣∣∣ <∞,
for j = 1, 2, 3, k = 0, 1, 2 and h = 0, 1 such that j + k + h ≤ 4.

Assumption B.2 Let φη(zt) denote a solution of

∂L0

∂φ
(η, φ(zt)) = 0,

with respect to φ for each fixed η and zt. Then we assume that φη(zt) is unique and
that for any ε > 0 there exists a δ > 0 such that

sup
η

sup
zt

∣∣∣∣∂L0

∂φ
(η, φ̄η(zt))

∣∣∣∣ ≤ δ,

implies that
sup
η

sup
zt

∣∣φ̄η(zt)− φη(zt)
∣∣ ≤ ε.

Assumption B.3 Let

T (j k)(η, φ(zt)) =
∂j

∂ηj
∂k

∂φk
`(η, φ(zt)),

and let f (j k)
η (xt|zt) the conditional density of T (j k)(η, φ(zt)) given zt. We assume

that

a) E
[
supη supφ

∣∣T (j k)(η, φ(zt))
∣∣] <∞, for j = 0, . . . , 3 and k = 0, . . . , 5.

b) For some even integer q ≥ 10, supη supφ E
[∣∣T (j k)(η, φ(zt))

∣∣q] < ∞, for
j = 0, . . . , 3 and k = 0, . . . , 4.

c) supη supφ supxt zt

∣∣∣f (j k)
η (xt|zt)

∣∣∣ <∞, for j = 0, . . . , 3 and k = 0, . . . , 4.
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Appendix B - Proofs

Proof of Theorem 1

See Veredas et al. (2007). Details are also in Severini and Wong (1992) for part a) and
Staniswalis (1987) for parts b) and c).

Proof of Theorem 2

See Veredas et al. (2007).

Proof of Theorem 3

This Theorem is a special case of Theorem 1 in Staniswalis (1987) and we show only
the main steps of the proof. Given an estimated curve φ̂T ξ(z0), the Taylor expansion of
∇φ`

m
i (ξi, φ̂T ξ(z0)) around the true curve φ(zt) is

∇φ`
m
i (ξi, φ̂T ξ(z0)) = ∇φ`

m
i (ξi, φ(zt))+∇φφ`

m
i (ξi, φ̄(zt))(φ̂T ξ(z0)−φ(zt)), ∀zt ∈ [0, 1],

where φ̄ lies between φ̂T ξ and φ. Define the sum of the smoothed marginal log–likelihoods
computed in a generic curve φ̂ξ(z0) as

L̃(ξ, φ̂T ξ(z0)) =
T∑
t=1

K

(
z0 − zt
hT

) N∑
i=1

`mi (ξi, φ̂T ξ(z0)). (B-1)
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From the first order conditions of (10) we have∇φL̃(ξ, φ̂T ξ(z0)) = 0. Therefore, for any
z0 ∈ [0, 1],

0 =
T∑
t=1

K

(
z0 − zt
hT

)
∇φ

N∑
i=1

`mi (ξi, φ(zt))︸ ︷︷ ︸
AT

+ (B-2)

+
T∑
t=1

K

(
z0 − zt
hT

)[
∇φφ

N∑
i=1

`mi (ξi, φ̄(zt))

]
(φ(z0)− φ(zt))︸ ︷︷ ︸

DT

+

+
T∑
t=1

K

(
z0 − zt
hT

)[
∇φφ

N∑
i=1

`mi (ξi, φ(zt))

]
︸ ︷︷ ︸

BT

(φ̂T ξ(z0)− φ(z0)) +

+
T∑
t=1

K

(
z0 − zt
hT

)[
∇φφ

N∑
i=1

`mi (ξi, (̄φ)(zt))

]
︸ ︷︷ ︸

C1T

(φ̂T ξ(z0)− φ(z0)) +

−
T∑
t=1

K

(
z0 − zt
hT

)[
∇φφ

N∑
i=1

`mi (ξi, φ(zt))

]
︸ ︷︷ ︸

C2T

(φ̂T ξ(z0)− φ(z0)).

Re-arranging we obtain

√
ThT (φ̂T ξ(z0)− φ(z0)) = −

1√
ThT

(AT +DT )

BT + (C1T − C2T )
. (B-3)

Staniswalis (1987) proves that, as ThT →∞ and hT → 0,

AT
P→ 0, (C1T − C2T )

P→ 0, DT
P→ 0, (B-4)

and

BT
P→

T∑
t=1

K

(
z0 − zt
hT

)
E

[
∇φφ

N∑
i=1

`mi (ξi, φ(zt))

]

= E

[
∇φφ

N∑
i=1

`mi (ξi, φ(zt))

∣∣∣∣∣ zt = z0

]
= −hξ(z0).

From (B-4) we attain consistency.

Moreover, as ThT →∞ and hT → 0, (B-3) is asymptotically equivalent to− 1√
ThT

AT
BT

,
and we have convergence in distribution

AT
d→ N (0, V (AT |zt = z0)) .
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From (B-3)

V (AT |zt = z0) =

[∫ 1

−1

K2(u)du

]
E

(∇φ

N∑
i=1

`mi (ξi, φ(zt))

)2
∣∣∣∣∣∣ zt = z0

 = iξ(z0).

Therefore√
ThT (φ̂T ξ(z0)− φ(z0))

d→ N
(

0,

[∫ 1

−1

K2(u)du

]
[iξ(z0)hξ(z0)−2]

)
which completes the proof of asymptotic normality. �

Proof of Proposition 1

For any z0 ∈ [0, 1], the statement Vξ(z0) ≥ Vη(z0) is equivalent to

h2
ξ(z0) ≤ iη(z0)iξ(z0). (B-5)

We know that

h2
ξ(z0) ≤ i2ξ(z0), (B-6)

h2
η(z0) = i2η(z0). (B-7)

The first relation is due to the fact that, when using only a limited amount of information,
the squared second derivative of the log–likelihood and the Fisher information does not
coincide as the latter is larger than the inverse of the asymptotic variance. The second re-
lation states that in the full-information case the squared second derivative and the Fisher
information are equal.

Second derivatives of the full log–likelihood, of the marginals, and of the copula den-
sity have the additivity property:

hη(z0) = −E [∇φφ`(η, φ(zt))| zt = z0] = (B-8)

= −E

[
∇φφ

N∑
i=1

`mi (ξi, φ(zt)) +∇φφ`
c(ξ,ψ, φ(zt))

∣∣∣∣∣ zt = z0

]
= hξ(z0) + hψ(z0).

We have the following inequalities:

h4
ξ(z0) ≤ h2

η(z0)i2ξ(z0) ≤
[
h2
ξ(z0) + h2

ψ(z0) + 2hξ(z0)hψ(z0)
]
i2ξ(z0) = i2η(z0)i2ξ(z0).

(B-9)
The first inequality is given by (B-6); the second inequality is obtained since the exis-
tence of an internal maximum of the log–likelihoods implies that the second derivative
computed in the maximum is negative, i.e. hξ(z0)hψ(z0) ≥ 0, and clearly h2

ψ(z0) ≥ 0;
the last equality is given by taking the square of (B-8) and by (B-7). By taking square
roots in (B-9), we prove (B-5). �
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We need the following Lemma to prove Theorem 4. For simplicity we indicate only
the parameters ξi and ψ among the arguments of the log-likelihood functions.

Lemma 1

Under the assumptions in the Appendix A, for any i, j = 1, . . . , N

E
[
(∇ξi`mi (ξi)) (∇ψ` c(ξ,ψ))

′
]

= 0, (B-10)

and
E
[
(∇ξi`mi (ξi))

(
∇ξj`mj (ξj)

)′]
= 0. (B-11)

Proof of Lemma 1

(B-10) is in the Appendix in Joe (2005). The proof of (B-11) is similar. Let x−i be the
vector x omitting the i-th component. Then the expectation in (B-11) is equivalent to

E
[
(∇ξi log fxi(ξi))

(
∇ξj log fxj(ξj)

)′]
=

=

∫
x

(∇ξi log fxi(ξi))
(
∇ξj log fxj(ξj)

)′( N∏
k=1

fxk(ξk)

)
c(ξ1, . . . , ξN ,ψ)dx =

=

∫
xi

(∇ξi log fxi(ξi))

[∫
x−i

(
∇ξj log fxj(ξj)

)′( N∏
k=1

fxk(ξk)

)
c(ξ1, . . . , ξN ,ψ)dx−i

]
dxi =

=

∫
xi

(∇ξi log fxi(ξi))

[∫
x−i

(
∇ξjfxj(ξj)

)′( N∏
k 6=j;k=1

fxk(ξk)

)
c(ξ1, . . . , ξN ,ψ)dx−i

]
dxi =

=

∫
xi

(∇ξi log fxi(ξi))

[
∇ξj

∫
x−i

(
N∏
k=1

fxk(ξk)

)
c(ξ1, . . . , ξN ,ψ)dx−i

]′
dxi =

=

∫
xi

(∇ξi log fxi(ξi))
(
∇ξjfxi(ξi)

)′
dxi = 0.

An interchange of integration and differentiation is made in the before the last equality.
�
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Proof of Theorem 4

Given a consistent estimator of the curve φ̂T ξ(z0), the estimated parameters (ξ̂T , ψ̂T )
have to satisfy (12) and (13). Hence, the first order conditions are

∇ξ1
∑T

t=1 `
m
1 (ξ̂T 1, φ̂T ξ(zt))

. . . . . . . . .

∇ξN
∑T

t=1 `
m
t (ξ̂T N , φ̂T ξ(zt))

∇ψ
∑T

t=1 `
c(ξ̂T , ψ̂T , φ̂T ξ(zt))

 = 0. (B-12)

We define the score function g = (g′1 . . . g
′
N g′N+1)′ as

gi(ξi, φ̂T ξ(z0)) = ∇ξi`mi (ξi, φ̂T ξ(zt)) for any i = 1, . . . , N,

gN+1(ξ,ψ, φ̂T ξ(z0)) = ∇ψ` ct (ξT ,ψT , φ̂T ξ(zt)).

So (B-12) can be written as

T∑
t=1

g(ξ̂T , ψ̂T , φ̂T ξ(zt)) = 0. (B-13)

The first N components of g have dimension 5 each since ξi = (ai, αi, βi, γi, νi)
′, while

the N + 1 component of g has dimension pψ. Therefore, g is a (5N + pψ)–dimensional
column vector. Define also

AT (ξ,ψ) =
1√
T

T∑
t=1

g(ξ,ψ, φ̂T ξ(zt)) and

BT = − 1

T
∇ξψ

(
T∑
t=1

g(ξ̄, ψ̄, φ̂T ξ(zt))

)′

where ξ̄ lies between ξ and ξ̂T and ψ̄ lies between ψ and ψ̂T . By ∇ξψ we denote the
(5N+pψ)-dimensional column vector of first-order differential operators (∇ξ1 · · · ∇ξN ∇ψ)′.
The first-order Taylor expansion of (B-13) around the true value of the parameters (ξ,ψ)
is

√
T

((
ξ̂T
ψ̂T

)
−
(
ξ
ψ

))
= B−1

T AT (ξ,ψ). (B-14)

By the Law of Large Numbers, as T → ∞, AT (ξ,ψ)
P→ 0 (a (5N + pψ)-dimensional

column vector of zeros) and

BT
P→ −E

[
∇ξψ

(
g(ξ,ψ, φ̂T ξ(zt))

)′]
. (B-15)

This is enough to prove consistency.

From (B-15) the probability limit of BT is a (5N + pψ)× (5N + pψ) matrix with generic
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elements

Hξi ξj = −E
[
∇ξiξj`mj (ξj, φ̂T ξ(zt))

]
,

Hξiψ = −E
[
∇ξiψ`mi (ξi, φ̂T ξ(zt))

]
,

Hψ ξi = −E
[
∇ψξi` c(ξ,ψ, φ̂T ξ(zt))

]
and

Hψψ = −E
[
∇ψψ` c(ξ,ψ, φ̂T ξ(zt))

]
.

The matrix Hξiξj 6= 0 only if i = j and Hξiψ = 0 for any i = 1, . . . , N . Therefore, the
probability limit of BT is H. Moreover this term is not affected by the presence of curve
φ(zt) (Newey and McFadden (1994)).

As T → ∞, AT (ξ,ψ) converges to a normal distribution with zero mean and a (5N +
pψ)× (5N + pψ) variance covariance matrix V(AT (ξ,ψ)). In the case where there is no
curve φ(zt)

V(AT (ξ,ψ)) = E
[
g(ξ,ψ, φ̂T ξ(zt))g(ξ,ψ, φ̂T ξ(zt))

′
]
.

Given (B-10) and (B-11) in Lemma 1, V(AT (ξ,ψ)) is block diagonal and is equal to
the Fisher information matrix in the fully parametric case V(AT (ξ,ψ)) = Iξψ. In the
presence of the curve φ(zt) a correction term is needed and it is denoted by Wφ:

AT (ξ,ψ)
d→ N

(
0, I∗ξψ

)
where I∗ξψ = Iξψ −Wφ (B-16)

as T → ∞. Combining (B-15) and (B-16), from (B-14) we obtain the asymptotic distri-
bution of the parametric estimates as T →∞:

√
T

((
ξ̂T
ψ̂T

)
−
(
ξ
ψ

))
d→ N

(
0,H−1I∗ξψH−1

)
.

This completes the proof. �

Proof of Proposition 2

We proof is done without loss of generality for N = 2.

The Fisher information when maximizing
∑T

t=1 `(η, φ̂T η(zt)) (see Theorem 2) can be
written as

I∗ fη =

 I
∗ f
ξ1ξ1

I ∗ fξ1ξ2 I
∗ f
ξ1ψ

I ∗ fξ2ξ1 I
∗ f
ξ2ξ2

I ∗ fξ2ψ
I ∗ fψξ1 I ∗ fψξ2 I ∗ fψψ


where I ∗ fξiξj = E

[(
∇ξi`(η, φ̂T η(zt))

)(
∇ξj`(η, φ̂T η(zt))

)′]
and the superscript f stands

for the full information case.
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If we estimate ξ by maximizing the marginal densities and ψ by maximizing the copula
density (as in Theorem 4), the Fisher information matrix is I∗ξψ and can be written as

I∗ξψ =

 I ∗mξ1ξ1 I ∗mξ1ξ2 0
I ∗mξ2ξ1 I

∗m
ξ2ξ2

0
0 0 0

+

 0 0 0
0 0 0
0 0 I ∗ cψψ

 ,

where the generic elements of th matrix are given in Theorem 4. We add the superscripts
m when using only the marginals and c when using only the copula. We define the upper
left block of I∗ξψ as

I∗mξ =

(
I ∗mξ1ξ1 I

∗m
ξ1ξ2

I ∗mξ2ξ1 I
∗m
ξ2ξ2

)
.

We can also estimate all the parameters by maximizing only the copula part. In this case
the Fisher information matrix is

I∗ cξψ =

 I ∗ cξ1ξ1 I ∗ cξ1ξ2 I ∗ cξ1ψI ∗ cξ2ξ1 I
∗ c
ξ2ξ2

I ∗ cξ2ψ
I ∗ cψξ1 I ∗ cψξ2 I ∗ cψψ

 .

From Property 3.9 in Gourieroux and Monfort (1995)

I∗ fη =

(
I∗mξ 0
0 0

)
+ I∗ cξψ.

Therefore

I∗ fη �
(

I∗mξ 0
0 0

)
, (B-17)

the difference with I∗ fη being I∗ cξψ, which is by definition a positive semidefinite matrix.

If we consider the marginal Fisher information I∗ fη relative to ξ and we indicate it as I∗ fη|ξ,
we have (see e.g. Property 7.18 in Gourieroux and Monfort (1995))

I∗ fη|ξ =

(
I ∗ fξ1ξ1 I

∗ f
ξ1ξ2

I ∗ fξ2ξ1 I
∗ f
ξ2ξ2

)
−

(
I ∗ fξ1ψ
I ∗ fξ2ψ

)(
I ∗ fψψ

)−1 (
I ∗ fψξ1 I

∗ f
ψξ2

)
. (B-18)

Given two matrices A and B such that A � B, then, for any vector P, we have PAP′ �
PBP′. By setting

A = I∗ fη , B =

(
I∗mξ 0
0 0

)
, and P =

(
I , −

(
I∗ fξ1ψ
I∗ fξ2ψ

)(
I∗ fψψ

)−1
)
, (B-19)

and from (B-17) and (B-19)
I∗ fη|ξ � I∗mξ . (B-20)

An analogous result can proved when estimating ψ, namely I∗ fη|ψ � I∗ cψψ.
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Finally, in terms of asymptotic variances the efficiency loss is

H−1

(
I∗mξ 0
0 I∗ cψψ

)
H−1′ �

(
I∗m−1
ξ 0

0 I∗ c−1
ψψ

)
�

(
I∗ f −1
η|ξ 0

0 I∗ f −1
η|ψ

)
.

The first inequality is straightforward and is due to the two–step estimation procedure,
and the second inequality is in (B-20). This completes the proof. �
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Tables and Figures

Figure 1: Realized volatilities

(a) SPDR

(b) S&P100

Annualized realized volatilities for the SPDR select sectors (top) and the 90 S&P100 constituents (bottom).
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Table 1: S&P100 constituents
Ticker Name Sector
AA Alcoa Inc Materials
AAPL Apple Inc. Information Technology
ABT Abbott Labs Health Care
AEP American Electric Power Utilities
ALL Allstate Corp. Financials
AMGN Amgen Health Care
AMZN Amazon Corp. Consumer Discretionary
AVP Avon Products Consumer Staples
AXP American Express Financials
BA Boeing Company Industrials
BAC Bank of America Corp. Financials
BAX Baxter International Inc. Health Care
BHI Baker Hughes Energy
BK Bank of New York Mellon Corp. Financials
BMY Bristol-Myers Squibb Health Care
BNI Burlington Northern Santa Fe C Industrials
CAT Caterpillar Inc. Industrials
C Citigroup Inc. Financials
CL Colgate-Palmolive Consumer Staples
CMCSA Comcast Corp. Consumer Discretionary
COF Capital One Financial Financials
COST Costco Co. Consumer Staples
CPB Campbell Soup Consumer Staples
CSCO Cisco Systems Information Technology
CVS CVS Caremark Corp. Consumer Staples
CVX Chevron Corp. Energy
DD Du Pont (E.I.) Materials
DELL Dell Inc. Information Technology
DIS Walt Disney Co. Consumer Discretionary
DOW Dow Chemical Materials
DVN Devon Energy Corp. Energy
EMC EMC Corp. Information Technology
ETR Entergy Corp. Utilities
EXC Exelon Corp. Utilities
FDX FedEx Corporation Industrials
F Ford Motor Consumer Discretionary
GD General Dynamics Industrials
GE General Electric Industrials
GILD Gilead Sciences Health Care
GS Goldman Sachs Group Financials
HAL Halliburton Co. Energy
HD Home Depot Consumer Discretionary
HNZ Heinz (H.J.) Consumer Staples
HON Honeywell Int’l Inc. Industrials
HPQ Hewlett-Packard Information Technology
(cont.)
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(cont.)
IBM International Bus. Machines Information Technology
INTC Intel Corp. Information Technology
JNJ Johnson & Johnson Health Care
JPM JPMorgan Chase & Co. Financials
KO Coca Cola Co. Consumer Staples
LMT Lockheed Martin Corp. Industrials
LOW Lowe’s Cos. Consumer Discretionary
MCD McDonald’s Corp. Consumer Discretionary
MDT Medtronic Inc. Health Care
MMM 3M Company Industrials
MO Altria Group, Inc. Consumer Staples
MRK Merck & Co. Health Care
MSFT Microsoft Corp. Information Technology
MS Morgan Stanley Financials
NKE NIKE Inc. Consumer Discretionary
NSC Norfolk Southern Corp. Industrials
ORCL Oracle Corp. Information Technology
OXY Occidental Petroleum Energy
PEP PepsiCo Inc. Consumer Staples
PFE Pfizer, Inc. Health Care
PG Procter & Gamble Consumer Staples
QCOM QUALCOMM Inc. Information Technology
RF Regions Financial Corp. Financials
SGP Schering-Plough Health Care
SLB Schlumberger Ltd. Energy
SLE Sara Lee Corp. Consumer Staples
SO Southern Co. Utilities
S Sprint Nextel Corp. Telecommunications Services
T AT&T Inc. Telecommunications Services
TGT Target Corp. Consumer Discretionary
TWX Time Warner Inc. Consumer Discretionary
TXN Texas Instruments Information Technology
TYC Tyco International Industrials
UNH UnitedHealth Group Inc. Health Care
UPS United Parcel Service Industrials
USB U.S. Bancorp Financials
UTX United Technologies Industrials
VZ Verizon Communications Telecommunications Services
WAG Walgreen Co. Consumer Staples
WFC Wells Fargo Financials
WMB Williams Cos. Energy
WMT Wal-Mart Stores Consumer Staples
WY Weyerhaeuser Corp. Materials
XOM Exxon Mobil Corp. Energy
XRX Xerox Corp. Information Technology

36



Table 2: Descriptive statistics
vol vov ρ̂day ρ̂week ρ̂month ρ̄ PC1

SPDR
Mat 23.34 11.83 0.72 0.63 0.39 0.82 0.91
Ener 25.68 12.78 0.65 0.61 0.35 0.79 0.87
Fin 25.85 15.71 0.69 0.50 0.35 0.77 0.84
Ind 21.85 11.29 0.66 0.57 0.37 0.81 0.88
Tech 26.82 13.34 0.49 0.41 0.27 0.66 0.58
Stap 16.93 8.21 0.45 0.36 0.19 0.77 0.77
Util 24.12 12.73 0.65 0.55 0.35 0.72 0.70
Heal 17.27 8.61 0.34 0.27 0.17 0.73 0.68
Disc 20.56 10.57 0.64 0.55 0.35 0.82 0.90

S&P100
Mat q0.25 33.80 14.49 0.66 0.55 0.31 0.63 0.62

q0.50 34.73 15.17 0.69 0.56 0.34 0.67 0.72
q0.75 36.42 16.59 0.73 0.60 0.37 0.72 0.83

Ener q0.25 34.00 15.04 0.57 0.50 0.26 0.61 0.61
q0.50 37.98 16.36 0.66 0.57 0.32 0.68 0.72
q0.75 44.28 18.50 0.71 0.66 0.38 0.69 0.74

Fin q0.25 36.45 21.01 0.63 0.27 0.17 0.52 0.49
q0.50 39.77 23.77 0.66 0.47 0.28 0.64 0.70
q0.75 42.93 26.59 0.74 0.56 0.34 0.68 0.76

Ind q0.25 29.25 12.42 0.61 0.49 0.31 0.65 0.64
q0.50 30.61 13.44 0.64 0.54 0.33 0.69 0.73
q0.75 33.19 17.33 0.70 0.56 0.36 0.71 0.80

Tech q0.25 34.96 16.10 0.64 0.52 0.34 0.56 0.49
q0.50 38.53 17.85 0.67 0.58 0.37 0.62 0.58
q0.75 46.20 23.26 0.72 0.61 0.40 0.72 0.78

Util q0.25 28.24 13.58 0.67 0.45 0.25 0.60 0.54
q0.50 29.61 14.09 0.70 0.52 0.30 0.67 0.66
q0.75 31.42 15.20 0.72 0.60 0.34 0.70 0.73

Stap q0.25 25.46 11.43 0.46 0.36 0.22 0.60 0.52
q0.50 28.32 12.45 0.53 0.43 0.24 0.68 0.69
q0.75 29.80 13.30 0.58 0.47 0.30 0.71 0.76

Heal q0.25 29.19 13.02 0.48 0.34 0.22 0.64 0.62
q0.50 30.06 13.55 0.59 0.46 0.29 0.65 0.63
q0.75 32.95 15.00 0.61 0.50 0.34 0.66 0.67

Disc q0.25 32.98 15.49 0.58 0.47 0.30 0.63 0.60
q0.50 35.76 17.41 0.64 0.54 0.36 0.68 0.68
q0.75 41.13 21.01 0.67 0.58 0.41 0.70 0.76

The top part of the table shows descriptive statistics for SPDR. The bottom
part of the table shows the same descriptive statistics for S&P100 with the as-
sets grouped according to the same sectors as SPDR. For each group the table
shows the 25, 50 and 75 quantiles. The columns report the average annualized
volatility (vol), standard deviation of volatility a.k.a. volatility of volatility
(vov), the autocorrelations of order 1, 5 and 22 (ρ̂day, ρ̂week and ρ̂month), the
average cross-correlation with the other series in the dataset (ρ̄), and the per-
centage of the variance explained by the first principal component (PC1).
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Figure 2: SPDR Persistence versus volatility

Scatter plots of persistence (X-axis) versus unconditional volatility (Y-axis). The circles are for our model
and the squares for univariate MEMs
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Table 4: Estimated parameters

Our Model MEM
αi βi γi πi ai νi QLL αi βi γi πi ai νi QLL

SPDR
Mat 0.24 0.59 0.15 0.90 22.3 0.34 1.61 0.25 0.66 0.13 0.97 20.7 0.33 1.72
Ener 0.26 0.64 0.12 0.96 27.0 0.34 1.85 0.25 0.64 0.12 0.95 22.6 0.34 1.97
Fin 0.30 0.56 0.14 0.93 22.5 0.63 1.52 0.21 0.73 0.13 0.99 54.3 0.59 1.61
Ind 0.27 0.60 0.13 0.93 22.3 0.47 1.44 0.28 0.66 0.10 0.99 39.9 0.48 1.54
Tech 0.28 0.62 0.15 0.97 33.4 0.71 1.90 0.25 0.68 0.12 0.99 31.4 0.69 1.99
Stap 0.10 0.81 0.03 0.93 15.5 0.95 1.08 0.19 0.74 0.10 0.99 18.8 0.75 1.15
Util 0.26 0.64 0.11 0.96 26.1 0.57 1.65 0.27 0.69 0.07 0.99 45.5 0.66 1.73
Heal 0.36 0.51 0.13 0.94 20.0 1.21 1.07 0.37 0.57 0.12 0.99 74.9 1.24 1.16
Disc 0.20 0.60 0.15 0.88 19.5 0.47 1.34 0.24 0.68 0.12 0.99 22.4 0.47 1.44

S&P100
Mat q0.25 0.29 0.57 0.09 0.92 34.10 0.26 2.42 0.27 0.61 0.09 0.97 30.93 0.25 2.57

q0.50 0.30 0.58 0.10 0.92 35.95 0.28 2.50 0.29 0.64 0.10 0.97 33.55 0.26 2.65
q0.75 0.31 0.59 0.11 0.93 37.62 0.31 2.59 0.31 0.67 0.10 0.97 35.40 0.30 2.74

Ener q0.25 0.24 0.61 0.09 0.95 32.93 0.22 2.42 0.24 0.65 0.08 0.96 30.30 0.21 2.57
q0.50 0.26 0.64 0.10 0.96 40.75 0.27 2.72 0.25 0.68 0.08 0.97 35.30 0.25 2.87
q0.75 0.28 0.68 0.12 0.98 46.35 0.45 3.00 0.28 0.69 0.09 0.98 41.90 0.41 3.16

Fin q0.25 0.30 0.50 0.13 0.94 32.38 0.28 2.21 0.31 0.56 0.10 0.99 33.50 0.26 2.33
q0.50 0.34 0.54 0.15 0.95 35.05 0.31 2.30 0.34 0.59 0.12 0.99 40.95 0.30 2.44
q0.75 0.37 0.60 0.16 0.96 41.52 0.45 2.50 0.37 0.64 0.13 0.99 48.23 0.44 2.65

Ind q0.25 0.29 0.55 0.08 0.93 30.10 0.25 2.13 0.28 0.59 0.08 0.97 29.30 0.25 2.28
q0.50 0.32 0.58 0.10 0.94 31.00 0.28 2.22 0.33 0.62 0.09 0.98 30.20 0.28 2.37
q0.75 0.34 0.61 0.12 0.95 37.40 0.35 2.48 0.34 0.64 0.11 0.98 32.90 0.32 2.62

Tech q0.25 0.27 0.48 0.08 0.92 33.25 0.27 2.43 0.26 0.56 0.08 0.97 31.75 0.22 2.59
q0.50 0.30 0.60 0.10 0.94 39.60 0.31 2.62 0.29 0.64 0.09 0.98 36.70 0.25 2.77
q0.75 0.36 0.64 0.13 0.95 45.15 0.47 2.98 0.37 0.68 0.11 0.99 43.50 0.41 3.11

Stap q0.25 0.18 0.57 0.05 0.91 25.80 0.33 1.93 0.23 0.61 0.05 0.97 25.50 0.33 2.06
q0.50 0.30 0.59 0.06 0.93 29.80 0.42 2.00 0.29 0.65 0.06 0.98 28.10 0.42 2.15
q0.75 0.32 0.77 0.09 0.97 32.50 0.69 2.31 0.32 0.72 0.08 0.98 29.80 0.56 2.41

Util q0.25 0.27 0.60 0.10 0.95 30.05 0.32 2.00 0.27 0.63 0.08 0.98 29.30 0.32 2.14
q0.50 0.28 0.62 0.10 0.96 31.25 0.35 2.11 0.28 0.66 0.09 0.98 31.00 0.35 2.25
q0.75 0.30 0.65 0.11 0.97 33.20 0.37 2.23 0.29 0.68 0.10 0.99 31.97 0.37 2.36

Heal q0.25 0.25 0.56 0.05 0.93 31.35 0.35 2.16 0.27 0.57 0.04 0.97 30.10 0.36 2.30
q0.50 0.28 0.63 0.07 0.96 33.40 0.47 2.22 0.31 0.64 0.08 0.98 31.90 0.45 2.36
q0.75 0.34 0.67 0.11 0.97 38.30 0.75 2.39 0.35 0.68 0.09 0.99 35.85 0.66 2.52

Disc q0.25 0.29 0.52 0.09 0.90 33.88 0.29 2.32 0.25 0.63 0.07 0.98 31.60 0.28 2.46
q0.50 0.31 0.57 0.10 0.92 35.25 0.37 2.49 0.28 0.66 0.09 0.98 33.35 0.33 2.63
q0.75 0.34 0.61 0.10 0.95 39.10 0.41 2.69 0.30 0.68 0.09 0.99 37.38 0.37 2.83

Estimated parameters of our model (left) and the univariate MEM (right). πi = αi + βi + 1
2γi is a

measure of persistence. QLL stands for the Quasi Log-likelihood Loss function.
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Figure 3: Volatility decomposition

(a) Estimated fit SPDR (b) Estimated fit S&P100

(c) Systematic volatility SPDR (d) Systematic volatility S&P100

(e) Idiosyncratic volatilities SPDR (f) Idiosyncratic volatilities S&P100

The top row shows the estimated fit of the annualized volatilities entailed by the model√
252 âT i φ̂T ξ(zt) µ̂i t, the middle row shows the systematic volatility

√
φ̂T ξ(zt), and the bottom row

shows the annualized idiosyncratic volatilities
√

252 âT i µ̂i t. Left column is for SPDR and right column
for S&P100.
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Figure 4: Idiosyncratic volatilities for Energy, Financial and Technology

The thick solid line shows the idiosyncratic volatility for Energy, the dashed for Financial and the thin solid
for Technology.

Table 5: SPDR Depependence among innovations
Mat Ener Fin Ind Tech Stap Util Heal Disc

Mat 1.00
Ener 0.41 1.00
Fin 0.40 0.39 1.00
Ind 0.43 0.40 0.47 1.00
Tech 0.41 0.35 0.44 0.44 1.00
Stap 0.39 0.31 0.40 0.40 0.37 1.00
Util 0.34 0.33 0.36 0.38 0.33 0.33 1.00
Heal 0.38 0.35 0.41 0.45 0.44 0.42 0.37 1.00
Disc 0.44 0.39 0.50 0.47 0.43 0.43 0.36 0.46 1.00
R̄i 0.40 0.37 0.42 0.43 0.40 0.38 0.35 0.41 0.43
%R̄i/ρ̄i 48.7 46.8 54.5 53.1 60.6 49.3 48.6 56.1 52.4
The top panel shows the dependencies among variance innovations estimated as the cor-
relation matrix R. As for the bottom panel, the row R̄i shows the cross–sectional average
dependence among innovations. The row R̄i/ρ̄i shows the percentage difference between
the cross–sectional average dependence and the cross–sectional average sample correla-
tion of Table 2.
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Figure 5: S&P100 Dependence among realized variances and their innovations

(a) Innovations

(b) Realized Variances

The heat map is a diagrammatic representation of the dependencies among innovations (top plot) and re-
alized variances (bottom plot) for the 90 constituents. The assets are sorted according to the same sector
classification as SPDR. The average value for the realized variances is 0.78 and 0.26 for the innovations.
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Table 6: Explanatory power of the idiosyncratic volatilities
SPDR

Mat Ener Fin Ind Tech Stap Util Heal Disc
0.30 0.28 0.14 0.28 0.28 0.33 0.28 0.31 0.30

S&P100
Mat Ener Fin Ind Tech Stap Util Heal Disc

q0.25 0.48 0.46 0.17 0.48 0.41 0.49 0.45 0.50 0.44
q0.50 0.49 0.48 0.28 0.49 0.44 0.50 0.46 0.50 0.46
q0.75 0.49 0.50 0.35 0.49 0.46 0.52 0.46 0.51 0.48
The top panel shows the explanatory power of the idiosyncratic volatilities for
SPDR. The bottom shows the minimum and maximum explanatory powers of the
idiosyncratic volatilities for S&P100 as well as the 25, 50 and 75 quantiles.

Table 7: SPDR residual diagnostics.
ρ̂day ρ̂week ρ̂month Qday Qweek Qmonth ρ̄day ρ̄week ρ̄month

Mat -0.00 0.00 0.03 0.86 0.86 0.20 0.01 0.00 0.00
Ener -0.01 0.02 0.02 0.58 0.19 0.05 0.00 0.00 -0.00
Fin -0.00 -0.02 0.01 0.92 0.01 0.19 0.00 -0.00 0.00
Ind -0.03 -0.01 0.01 0.15 0.75 0.35 0.00 -0.00 0.00
Tech -0.01 -0.06 -0.00 0.66 0.04 0.27 0.01 -0.00 -0.00
Stap 0.04 0.02 -0.02 0.05 0.11 0.09 0.00 0.00 0.00
Util -0.01 -0.03 0.00 0.70 0.05 0.07 0.01 0.00 0.00
Heal -0.03 -0.01 0.00 0.17 0.21 0.78 0.00 -0.00 0.00
Disc -0.01 0.00 0.00 0.55 0.75 0.27 0.00 0.00 0.00

Lag one correlation matrix
Mat Ener Fin Ind Tech Stap Util Heal Disc

Mat -0.01
Ener 0.02 -0.01
Fin -0.02 0.02 -0.01
Ind 0.03 0.02 0.01 -0.03
Tech 0.03 -0.02 0.01 0.01 -0.01
Stap 0.04 0.04 0.02 0.05 0.05 0.03
Util 0.02 0.01 0.01 0.03 0.01 0.04 0.01
Heal 0.00 0.00 0.01 0.02 0.01 0.03 0.03 -0.04
Disc 0.04 0.04 0.03 0.00 0.06 0.02 0.07 0.03 -0.02
The top part shows the autocorrelations of order 1, 5 and 22 (ρ̂day, ρ̂week and ρ̂month), the p-values of
the Ljung-Box tests for autocorrelations of order 1, 5 and 22 (Qday, Qweek, Qmonth), and the average
lagged cross-correlations of order 1, 5 and 22 (ρ̄day, ρ̄week, ρ̄month). The bottom part of the table
shows the lagged one correlation matrix of the residuals.
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Figure 6: S&P100 lag one and lag five autocorrelation matrices of the residuals

(a) Lag 1

(b) Lag 5

The heat map is a diagrammatic representation of the lagged correlations between the residuals of S&P100.
The cell ij correspond to the correlation between ε̂i t and ε̂j t−l, where l equals one (top plot) or five (bottom
plot).
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