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Abstract

Two models for jointly analysing the spatial variation of incidences of
three (or more) diseases, with common and uncommon risk factors, are
compared via a simulation experiment. In both models, the linear predic-
tor can be decomposed into shared and disease-specific spatial variability
components (named shared clustering and specific clustering respectively).
The two models are the shared model on the original formulation that use
exchangeable Poisson distribution as response multivariate variable and
shared components model that use a Multinomial one. The simulation
study shows that models behave similarly. However, Multinomial shared
components model performs better for disease-specific spatial variability
clustering terms but it is lower for the shared one.

1 Introduction

A great amount of the literature deals with disease mapping, as the sta-
tistical analysis of geographical patterns of disease. Any spatial variation
may be explained by different risk factors, therefore disease mapping al-
lows to state hypotheses concerning their aetiology. Interest in joint dis-
ease mapping increased over recent years: joint statistical modelling of
several diseases on the same spatial location, with different and common
aetiologies. Joint analysis highlights common and uncommon geographi-
cal patterns of risk and obtains more precise and convincing results.

Various attempts to consider simultaneously more than one disease
have been made: by a multilevel model as Langford et al. (1999) and Ley-
land et al. (2000), or by an ecological regression approach where a disease
represent a covariate of the model as Bernardinelli et al. (1997). However,
the joint modelling approach seems to be more naive, as all diseases en-
ter as response variables with reference to unobserved latent risk factors.
More recently, joint modelling following a Multivariate Gaussian Markov
random field has been proposed; see Gelfan and Vounatsou (2003) and
Jin et al. (2005).

1



In this paper, we focus on a particular class of models: shared com-
ponent models. Originally introduced by Knorr-Held and Best (2001),
these models have been extended to more than two diseases by Held et
al. (2005) and from exchangeable Poisson response to a Multinomial one
by Dreassi (2007).

In Dreassi (2007) a Multinomial model (PL) is presented and compared
with exchangeable Poisson model (SC) by a real example. In this paper,
a simulation study is conducted to evaluate and compare more deeply the
performances of both models.

The paper is organized as follows. Sect. 2 introduces the joint analy-
sis with shared components model following exchangeable Poisson model
(SC) and Multinomial models (PL). Sect. 3 describe the simulation ex-
periment. Results are showed in Sect. 4 and conclusion in Sect. 5.

2 Shared components models

Shared components models highlight common and specific spatial com-
ponents, allowing the linear predictor to be decomposed into shared and
disease-specific spatial variability terms.

2.1 Shared components Poisson model

Let yik denote the number of death cases for k-th disease (k = 1, . . . , K)
and i-th area (i = 1, . . . , I). Each yik is assumed to follow a Poisson
distribution with parameters Eikθik, where Eik represent the expected
cases in i-th area and k-th disease and θik the relative risk. Following the
standard model of Besag et al. (1991) on consider a log link for θik

log(θik) = αk + uik + vik (1)

where αk represents a cause-specific intercept, such as an overall risk level,
uik is a spatially structured term, and vik a spatially unstructured term.

The prior distribution for the model parameters is as follows. The
intercept αk has a flat non-informative distribution. The heterogeneity
terms vik are independent, each vik being Normal (0, λ−1

vk ) (λvk represents
the precision parameter). Using Gaussian Markov random fields (GMRFs)
models in order to cope the spatial structure, the clustering terms uik are
modeled conditionally on ul∼ik terms (∼ i indicates adjacent areas to i-
th ones, l = 1, . . . , I and ni their number; where adjacent means that
two areas share an edge or, for islands, that exists a boat connection), as
Normal (ūik, (λukni)

−1) where ūik =
∑

l∼i
ulk
ni

.
The hyperprior distributions of the precision parameters λvk and λuk

are assumed to be Gamma (0.5, 0.0005) as suggested by Kensall and Wake-
field (1999).

Following Knorr-Held and Best (2001) and Held et al. (2005), a model
on the shared components formulation is considered: the structured spa-
tial terms (clustering) uik in 1 are decomposed into a shared and a disease-
specific effect. So, for example, when K = 3 each disease’s clustering term

2



could be
ui1 = us1i × ω1 + us2i × δ1 + upi1

ui2 = us1i × ω2 + us2i × δ2 + upi2

ui3 = us1i × ω3

(2)

where us1i and us2i represent the shared clustering components (the know
risk factors pattern) and upi1 and upi2 the specific ones. The scale pa-
rameters ω1, . . . , ω3 and δ1, δ2 allow the shared components to vary per
cause by a constant factor.

Terms log ω1, . . . , log ω3 and log δ1, log δ2, constrained to
∑3

k=1
log ωk =

0 and
∑2

k=1
log δk = 0, are assumed to be multivariate normal distributed

with zero mean and variance covariance matrix respectively

Σω = σ2
ω

(
1 −1/2 −1/2

−1/2 1 −1/2
−1/2 −1/2 1

)
(3)

Σδ = σ2
δ

(
1 −1
−1 1

)
(4)

Knorr-Held and Best (2001) consider σ2
ω = σ2

δ = 0.17. The us1i, u12i,
upi1 and upi2 terms are modelled following a GMRF as described before.

2.2 Shared components Multinomial model

Dabney and Wakefield (2005) remade a proportional mortality model (see
Breslow and Day (1987)) to the joint mapping of two diseases. Originally,
this model was used when the population at risk is unknown. Instead
of adopting a Poisson model with expected cases as offset, the model
makes use of a simultaneous estimation of age and spatial effects that
should be preferred to the Poisson one, since it includes variability in the
age estimates. Proportionality is assumed in the model, so that sums over
strata population are allowed; only a single parameter per confounder (i.e.
age, sex, race) for each area is considered. Inference on the differences in
log relative risks can be made without knowledge of the population counts
of those at risk.

In Dreassi (2007), Following suggestions to highlight similarity and dis-
similarity on spatial patterns by proportional mortality model and shared
component model, an other shared component model is introduced: a
Multinomial (or polytomous logit) (PL) model. In this model, a disease
is regarded as reference category, and for each predictor on adopt the
shared components model formulae. In the model on assume proportion-
ality and then on consider the model for death for each disease, area and
age-stratum without knowledge of the population at risk; the latter may
be unknown or subject to data anomalies as migration or census under-
count.

Let yij = (yij1, . . . , yijk, . . . , yijK)′ be distributed according to a multi-
nomial with parameters mij and probability vector πij = (πij1, . . . , πijk, . . . , πijK)′,
where mij =

∑K

k=1
yijk and

∑K

k=1
πijk = 1. A polytomous logit model is

3



considered: each category probability is modeled as

πijk = φijk/

K∑
r=1

φijr (5)

where each log odd

log(φijk) = α¦k + a¦jk + u¦ik + v¦ik (6)

is decomposed additively into a disease-specific intercept α¦k (representing
overall difference between k-th disease and K-th reference disease), a¦jk a
time-structured term by age and disease representing difference between
k-th disease and reference category, and structured u¦ik and unstructured
v¦ik spatial effects (again representing difference on the spatial structured
and unstructured spatial terms between the disease k considered and the
reference disease).

For the a¦jk term a first order random walk with independent Gaus-
sian increments is assumed (see Clayton (1996)). For the other terms
prior are equal to SC model. This is a time-structured term by age that
represents the additive effect of the j-th age for each disease on the log
odds; conditionally to the adjacent (on time scale) terms ajk ∼ Normal
(ājk, (λaknj)

−1) where ājk is the mean of the (j − 1)-th and (j + 1)-th
terms and nj = 2; for the extreme age classes j = 1, 13, nj = 1 and ājk

is the (j + 1)-th or (j − 1)-th term. Hyperprior for precision parameter
λak are again assumed to be Gamma (0.5, 0.0005) as suggested by Kensall
and Wakefield (1999)

Representing, for example, the third disease the reference category
(when K = 3), α¦3 = 0, a¦j3 = 0 (for each age-class j = 1, . . . , 13), u¦i3 = 0
and v¦i3 (for each area i = 1, . . . , I) has defined, as constraint for identifi-
ability.

Note that terms u¦i1 and u¦i2 represent differences between first disease
and reference category disease clustering, and between third disease and
reference category disease clustering, respectively,

u¦i1 = ui1 − ui3 and u¦i2 = ui2 − ui3 (7)

We consider a model where the difference structured spatial terms (clus-
tering) in equation (6) are decomposed into a shared and a disease-specific
effect (Held et al. (2005)). We can represent each clustering term for the
first and second disease, respectively, as

u¦i1 = us2i × δ1 + upi1 and u¦i2 = us2i × δ2 + upi2 (8)

where us2i is the shared clustering component and upi1 and upi2 is the
disease specific one; both are distributed according GMRF models. Prior
distributions are the same described before for SC model. Note that
equation (7) and equation (8) imply

ui1 = ui3 + uai × δ1 + upi1 and ui2 = ui3 + uai × δ2 + upi2 (9)

which is different from equation (2) because we are forcing to be ω1 =
ω2 = ω3. Nevertheless, since these terms are constant on the space,
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spatial patterns for usi and difference between upi1 and upi2 are still
informative. Interest is focused on the estimate of disease-specific spatially
structured effects upi1 and upi2 because these are considered as latent
variables denoting disease-specific risk factors.

3 Simulation study

To evaluate the proposed shared components models, considering ex-
changeable Poisson (SC) or Multinomial (PL) models, we conducted a
simulation study.

The shared components models used for the simulation experiment has
been conceived with reference to a specific application: three diseases, a
common risk factor and another risk factor shared by two diseases only. In
the present application, the incidence of the disease that shared only one
risk factor represents the reference category for the Multinomial model
(PL). Then a shared component, representing the second risk factor com-
mon only for the two diseases adjusted for the first risk factor, is con-
sidered. Finally, including disease specific terms in the predictors, the
possibility of other different risk factors is investigated.

We used three different disease maps (each map with n=225 areas)
taken square areas over a 15 × 15 grid. For each i-th area i = 1, . . . , 225,
and for each k disease k = 1, 2, 3, we generated 100 deaths counts from
Poisson (100 θ0

ik). We assumed that each log θ0
ik for k = 1, 2, 3 is equal to

log θ0
i1 = us10

i + us20
i + up10

i

log θ0
i2 = us10

i + us20
i + up20

i

log θ0
i3 = us10

i

(10)

and a range of us10 from −0.20 to 0.22, of us20, up10 and up20 from 0 to
0.15. We fix ω1, ω2, ω3, δ1 and δ2 equal to 1 and α and heterogeneity uik

equal to zero.
Figure 1 shows the map of each clustering terms, shared us10 and us20

and specific up10 and up20 respectively; Figure 2 the three disease true
map θ0

k.
We estimate us1 us2 up1 up2 using (SC) shared poisson model and

us2 up1 and up2 using (PL) multinomial model.
The marginal posterior distributions of the parameters of interest for

both models are approximated by Monte Carlo Markov Chain methods.
The estimates for SC model are obtained using specific MCMC soft-

ware. It uses joint updates of the latent spatial fields and it is able to
incorporate sum to zero constraints in spatial fields explicitly in the prior
and in the MCMC algorithm.

For PL model we used WinBUGS software (Spiegelhalter et al (2004))
in order to perform the MCMC analysis. The convergence of the algo-
rithm has been evaluated using the test proposed by Gelman and Rubin
(1992) for multiple chains for a subset of identifiable parameters (precision
hyperparameters) for some simulation iteration. The algorithm seems to
converge after a few thousand iterations. However, given also the very
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Table 1: Average MSE and average variance from shared component Poisson
model (SC) and shared components Polytomous model (PL) for shared compo-
nents and specific components
clustering AMSE (SC) AMSE (PL) AVAR (SC) AVAR (PL)

us1 0.001559 0.000475
us2 0.001555 0.001569 0.000121 0.000127
up1 0.001278 0.001226 0.000212 0.000185
up2 0.001277 0.001240 0.000223 0.000192

high number of (non monitored) parameters in the model, we decided to
discard the first 200,000 iterations (burn-in) and to store for estimation
2,000 samples (one each 100) of the following 200,000 iterations.

The estimates obtained through the two models are compared using
the average mean square error and the average variance, respectively

AMSE =

225∑
i=1

100∑
j=1

(uo∗ij − uo0
i )

2

225 100
and AVAR =

225∑
i=1

100∑
j=1

(uo∗ij − ūo∗i )
2

224 100

(11)
where uo∗ij denotes the estimates under model ∗ (SC or PL) for i-th area
and j-th simulated data for the generic clustering term uo (us1, us2, up1
and up2); uo0

i represent the true value for the generic clustering term and
ūo∗i the average over all the simulations for uo0

i .

4 Results

Figure 3 and Figure 4 show the average over the 100 simulated data of
clustering terms estimates by the two different models. Each average map
is on a 15× 15 grid, with the same levels of gray (from −0.177 to 0.168).

Results about AMSE and AVAR are reported on Table 1. They suggest
a similar behavior of the models; however PL performs better than SC
for specific clustering terms while it is lower for shared clustering term.
Results are consistent with previous analysis (Dreassi, 2007) on a real
example: specific clustering estimated terms with PL model have smaller
standard deviation respect to SC estimates.

Figure 5 and Figure 6 show the relative error maps. Denoting with
abs(·) the absolute value, the relative error for each i-th area (i = 1, . . . , 225)
is defined as

abs
ūo∗i − uo0

i

uo0
i

, (12)

where ūo∗i is the average, over the 100 simulated data, of the estimates
for a given model (∗ states for SC o PL), and uo0

i is the true clustering
parameter (uo states for us1, us2, up1 and up2).
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5 Conclusion

As stated in Dreassi (2007), the SC model for joint disease mapping is
perhaps more ‘natural’ and ‘elastic’ than PL model: both risk factors
are considered as shared components of the model, and both common
clustering terms are allowed to vary per cause for a multiplicative constant
factor. In turn, the PL model gives some advantages: it allows to analyse
mortality data without knowing the population at risk and to consider
variability on age effect estimates in the model. Using a particular disease
as reference category, we can omit a GMRF for the shared terms common
to all the diseases; using a Multinomial model instead than exchangeable
Poisson for a multivariate problem seem to be more convenient.

Advantages and disadvantages for each model have been disregarded
using an unrealistic, but particular simulation experiment. Accordingly,
results from simulation give us information about the performances on
estimating clustering terms.

The simulation study suggests that both models provide similar esti-
mates. However, PL model behaves better for specific clustering terms,
once hypotheses (even if strong, unfortunately) of this model are accom-
plished.
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Figure 1: True clustering terms
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θ03

Figure 2: True map of disease
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us1SC us2SC

up1SC up2SC

Figure 3: Estimated clustering terms with SC
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us2PL

up1PL up2PL

Figure 4: Estimated clustering terms with PL
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error us1SC error us2SC

error up1SC error up2SC

Figure 5: Relative error maps with SC
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Figure 6: Relative error maps with PL
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