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Abstract. In standard survey estimation the problem of nonresponse is well known and a 

variety of methods exist to adjust for this phenomenon. Less well understood are the effects of 

nonresponse on small area estimation. In this paper we propose a probability weighted 

estimation procedure that adjusts for the effect of an informative nonresponse mechanism on 

the small area mean predictor when a small area model at unit level is adopted. We follow the 

approach suggested by Pfefferman et al. (1998) to compensate for the effect of unequal 

sample selection probabilities in multilevel models. Since the survey sampler has no control 

over the response mechanism, our situation is further complicated by the fact that the 

response probabilities are unknown and need to be estimated. To analyse the performance of 

the suggested weighted estimation procedure we present the results of several Monte Carlo 

experiments implemented under different scenarios. These results show that the proposed 

procedure is effective if the response probabilities are “properly” estimated and, above all, 

that the nonresponse and small area estimation problems, if both present in a survey, need to 

be addressed simultaneously.  

 

Keywords: Informative nonresponse; Multilevel pseudo maximum likelihood; Survey 

weights; Unit level random effects models; Weights scaling. 

 

1. Introduction 

Small area estimation has received a lot of attention in recent years due to a growing demand 

for reliable small area statistics (see Rao 2003 for a review of available methods). Traditional 

area-specific direct estimators do not provide adequate precision because sample sizes in 

small areas are seldom large enough. This makes it necessary to employ indirect estimators 
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that borrow strength from related areas, in particular model-based indirect estimators. In 

addition to the problem of small sample sizes, a further complication may be that not all 

sampled units respond to the survey, and the probability that a sampled unit responds may be 

related to the study variable. The work presented here addresses the problem of estimating 

small area means in the presence of possibly non-random nonresponse using a unit level 

random effects model.  

When multilevel models are estimated from survey data, typically estimators do not 

make use of the survey weights. However, if the sampling design is “informative” in the sense 

that the outcome variable is correlated with design variables not included in the model, even 

after conditioning on the model covariates, standard estimates of the model parameters, and 

consequently small area estimates, can be severely biased. Standard inference may be biased 

even when the original sample design is not informative but the presence of nonresponse 

results in de facto different posterior inclusion probabilities. Assuming that the nonresponse 

may be viewed as an additional phase of sampling that follows the first phase of sampling 

determined by the original sample design, the inclusion probabilities are actually the product 

of the sample selection probabilities and the response probabilities and the survey weights are 

the reciprocals of these products. 

The use of probability weighting procedures that adjust for the effect of an informative 

sample design on multilevel model parameter estimators has been suggested and studied in 

depth in the relatively recent literature by Pfefferman et al. (1998), Korn and Graubard 

(2003), Grilli and Pratesi (2004), Asparouhov (2006), Rabe-Hesketh and Skrondal (2006), 

Carle (2009).  In the context of small area estimation, You and Rao (2002) proposed a 

pseudo-empirical best linear unbiased prediction (pseudo-EBLUP) estimator to estimate small 

area means by combining a nested error linear regression model and the survey weights. This 

last solution produces an estimator that is design consistent and that automatically satisfies the 

benchmarking property without any adjustment, however it assumes that the weights are 

ignorable for estimation of the model variance components and uses them only to estimate the 

regression parameters. In this paper we adopt the former approach, in which the survey 

weights are used for estimating all the model parameters. Thus, we extend the framework 

developed to adjust for the effect of an informative sample design on multilevel model 

parameter estimators to the case of unequal response probabilities. Via simulation studies we 

investigate: 



3 

 

1) the effects of some informative nonresponse mechanisms on the traditional unweighted 

small area mean predictor;  

2) the potential of multilevel pseudo maximum likelihood (MPML) estimation procedure to 

adjust for the effect of  informative nonresponse; 

3) how the MPML small area mean predictor works when the true response probabilities 

(usually unknown) are replaced with estimated response probabilities. 

The results of our simulation studies indicate that the MPML estimation procedure may 

be effective to adjust for the effect of informative nonresponse on small area estimates based 

on unit level random effects models if the unknown response probabilities included in the 

weights are “properly” estimated; moreover, our simulation results suggest that in a survey it 

is opportune to deal simultaneously with the nonresponse and small area estimation problems. 

The paper is organized as follows. Section 2 reviews the use of the MPML estimation 

for unit-level small area models and the nonresponse framework, and develops a small area 

predictor in presence of nonresponse. The performance of this small area mean predictor is 

then evaluated in Section 3 through simulation studies considering different scenarios. 

Concluding remarks are set out in Section 4. 

 

2. Methodological framework  

Unit level random effects models are often used in small area estimation to obtain efficient 

model-based estimators of small area means. Such model-based estimators typically do not 

make use of the survey weights. In Section 2.1 we briefly summarize the unit-level small area 

model and show how the survey weights can be used in the estimation process. We also show 

that the use of a weighted estimation procedure may be induced by nonresponse, and, in 

section 2.2, we briefly review the weighting adjustment method that is usually applied to 

compensate for unit nonresponse. In section 2.3 we clarify the concept of weights scaling and 

finally, in section 2.4, we show the expression of the small area mean estimator suggested in 

this study. 

 

2.1 Unit-level small area model and MPML estimation procedure 

In a general small area model at unit level it is assumed that, given a two-level population 

with M level 2  units (areas) and iN  level 1 units within the thi  area ( Mi ,...1 ), the value of 

the response variable associated with the unit j  within the area i , ijy , is generated by a one-
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fold nested error linear regression model MiNjevy iiji

T

ijij ,...1,,...,1,  bx , where 



x ij  xij1,...,xijp 
T

 is a fixed covariate vector of dimension p , b  is a fixed 1p  vector of 

parameters, iv  and ije  are normally distributed mutually independent terms of error 

respectively at area and unit level with means zero and variances 2

  and 2

e . Small area 

mean estimation under this model is typically based on the empirical best linear unbiased 

predictor (EBLUP) computed by substituting maximum likelihood or restricted maximum 

likelihood (ML or REML) estimates for the unknown model parameters under the hypothesis 

that sample values obey the assumed population model (Rao, 2003). This assumption is 

satisfied under not informative sample selection. When it is not satisfied, the estimators of the 

model parameters and consequently the EBLUP small area mean predictor are biased.  

When nonresponse occurs and the response probabilities are related to the target 

variable even after conditioning on the covariates, the hypothesis that the observed values 

obey the assumed population model may be violated even if the sample selection mechanism 

is noninformative. In such cases, ignoring the effect of nonresponse on the distribution of the 

observed values may bias the inference very severely. The Pseudo Maximum Likelihood 

(PML) approach developed by Skinner (1989) is the solution usually suggested for 

informative sample designs:  in this paper this approach is extended to the case of informative 

nonresponse mechanisms.  

In the context of multilevel models the implementation of the PML approach is 

complicated by the fact that the population log-likelihood is not a simple sum of elementary 

unit contributions, but rather a function of sums across level-2 and level-1 units. The usual 

marginal population log-likelihood expression is: 
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where  
1,,|  iijij xyf  and  2,|  ii x  are the density functions respectively for ijy , and i ; 

1  and 2 are the parameters to be estimated. Therefore the application of the PML approach 

requires the knowledge of the survey weights at every level of the population structure, since 
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each sum over the level 2 population units i  need to be replaced by a weighted sum using the 

level 2 weights iw , and each sum over the level 1 units j  need to be replaced by a weighted 

sum using the level 1 weights ijw | . In absence of nonresponse the survey weights coincide 

with the reciprocal of the sample selection probabilities at the corresponding level ( iiw 1  

and ijijw || 1  ).  

When nonresponse occurs we may assume that it corresponds to an additional phase of 

sampling that follows the first phase of sampling determined by the original sample design; 

then, the survey weights are equal to the reciprocal of the product of the sample selection 

probabilities and the response probabilities. As we are interested in investigating the effects of 

nonresponse, we assume here that the sample design is self-weighting and thus that the 

weights to be used in MPML procedure are function only of the response probabilities. The 

extension to the case of not self-weighting sample design is straightforward.  

Moreover, we assume here that nonresponse concerns only level-1 units. In many 

situations in which level-2 units are small areas, they usually are institutional units for which 

the participation to the survey is a duty, or they may be geographic areas or socio-

demographic groups that cannot decide, as a whole, to participate or not to the survey. 

Therefore, we believe that in the context of the small area estimation problems nonresponse 

usually concerns only the level-1 units, even if the individual response probabilities may 

depend not only on individual characteristics but also on characteristics of the small areas 

(level-2 units) which the units belong to. Under these assumptions, as formalized in the next 

subsection, the weights for the MPML procedure become 1iw  and ijij pw 1|   where 



pij  

denotes the response probability of unit j  belonging to area i . 

 

2.2 Response probabilities 

Unit nonresponse, a common problem in sample surveys, appears when for a part of the 

sampled units the data are not observed. Weighting adjustments are usually applied to 

compensate for unit nonresponse. Treating nonresponse as a second phase sampling from the 

original sample, weighting adjustment methods operate by increasing the sampling weights of 

the respondents in the sample, multiplying them by the reciprocal of their response 

probabilities.  Formally, let U  be the target population, s  a sample drawn from U  according 

to a probabilistic sampling design  sp , and j  the inclusion probability of unit j , for all 

Uj . When nonresponse occurs, we only observe the values of the study variable for the 
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units in a subset sr  . According to the two-phase sampling theory, the survey data may be 

considered as the results of a two-step process:  (1) selection of the sample using a sampling 

design  sp  having the usual properties   0sp  for all Ss  and   1S
sp , where S is 

the set of all possible samples s; (2) given s, selection of a sub-sample of respondents r 

through the response probability  srp . Unlike the sampling selection, the survey sampler 

has no control over the response mechanism. Nevertheless, it is usually assumed that 

  0srp  for all sRr  and   1Rs
srp , where sR  is the set of all the possible sub-

samples of respondent units given sample s. Another common hypothesis is that the units 

respond independently from each other and from s, that is: 

 

   
 j

j

sj jj ppsrp
 

 
1

1  

 

where jp  and j are respectively the individual response probability and the individual 

response indicator for unit j. 

Given these assumptions, the survey weight of unit 



j , for all Uj , may be defined as 

jj

j
p

w


1
 . Specifically, in our situation where the nonresponse concerns only the level-1 

units, the first level survey weights become 
ijij

ij
p

w
|

|

1


  where ijp  denotes the response 

probability of unit j  belonging to area i . As already underlined in the previous subsection, 

when the sample design is self-weighting the first level weights for the MPML procedure 

reduce to ijij pw 1|  . 

Since response probabilities are usually unknown, they must be estimated using the 

available information. The simplest and maybe most diffuse way to estimate individual 

response probabilities consists in partitioning the sampled units in “weighting classes”, 

assumed homogeneous with respect to the mechanism of response, and then in estimating 

response probabilities as rates of respondent units within each class. Another common way to 

estimate individual response probabilities is by expressing them as a logit function of a set of 

known variables. Many other response probabilities estimation methods are present in the 

literature (among others see Lessler and Kalsbeek, 1992; Lundström and Särndal, 2005); a 

detailed discussion of these methods is beyond the scope of the current paper. 

 



7 

 

2.3 Weights scaling 

One of the key issues in the multilevel weighted estimation literature is that the parameter 

estimators are usually only approximately unbiased, i.e. they are unbiased for sufficiently 

large cluster (level 2 units) sample sizes, but can be severely biased when the cluster sample 

sizes are small. For this reason, different scaling methods of the weights have been proposed 

(Pfefferman et al., 1998; Stapleton, 2002; Asparouhov, 2006; Korn and Graubard, 2003).  

In multilevel modelling scaling of the weights consists in multiplying the weights by cluster 

specific scaling constants so that the sum of the weights at the cluster level is equal to some 

cluster characteristic. Different scaling methods, however, may have different effects on the 

estimation technique and model parameters. Until now there have been no theoretical results 

to support one scaling method over another. In this paper we do not wish to discuss the 

relative merits of the various scaling methods; therefore, in the simulation studies discussed in 

section 3, we consider the two most popular scaling methods:  

Scaling method 1. 
i

ijscaling

w

w
w

ij

|1

|
  with 



w i  w j |ijri




 


/nri , where ir  is the set of 

responding units in area i, so that for the thi  area the sum of the scaled weights equals the 

number on respondents rin  in the area; 

Scaling method 2. 
i

ijscaling

w

w
w

ij ~
|2

|
  where 



˜ w i  w2
j |i

jri




 


/ w j |ijri

  so that in each area 

the sum of the scaled weights equals the “effective respondent set size” 



nr0i  w j |ijri




 




2

/ w2
j |i

jri




 


, which correspond to the “effective sample size” defined by 

Potthoff et al. (1992) in the context of informative sampling. 

 

2.4 Proposed small area mean estimator 

The expression of the small area mean estimator used in this study is:  

 

                                                     



ˆ y i  Ni

1 yijjri

  ˆ y ijjU i ri






                                         (2) 

 

where ir  and ii rU   are respectively the set of respondents and the set of non-sampled plus 

nonrespondent units in area i, and i

T

ijij vxy ˆˆˆ  b  with b̂  and iv̂  obtained using the MPML 
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estimation procedure with weights 1iw  and ijij pw 1|   where the 



w j |i can be unscaled or 

scaled, and the response probabilities 



pij  may be true or estimated.  

 

3. Simulation studies 

3.1 Description 

To illustrate the bias of the small area estimators that can occur when ignoring an informative 

response mechanism and to assess the performance of the MPML estimation procedure based 

on the true or estimated response probabilities, we designed three simulation studies hereafter 

called study A, study B, and study C. Each simulation study consists of the following steps:  

1. Generate area indexes 30,...,1  Mi , and population sizes 

))~22.07.0exp(70int( ii uN  , with iu~  generated from ),0( 2N  truncated below by 

5.1  and above by 5.1 ; for 10  the 



N i  lie in the range [70, 126].  

2.  Generate the population random area effects, 



ui ~ N(0,u

2), i 1,...,30,
2  200  and the 

covariates T

ijij iii )2010/)]
30

3int(
3

30int[10,1( x , assuming )1,0(~ Uij . 

This rather complicated formula for generating the auxiliary variables follows the one used 

by Pfefferman and Sverchkov (2007) and guarantees that the covariates are the same in 

each of the three groups of areas, except for the random disturbances ij . The three groups 

consist respectively in areas 101  i , areas 2011  i  and areas 3021  i . 

3. Generate the y  values according to the model defined in section 2, with )30,10(  and 

200),,0(~ 22 eeij Ne  .  

4. Associate to each level-1 unit a response probability as follows: in study A for each unit in 

each area the response probability is obtained through an exponential function of 

βx
T

ijijij yz  ; in study B we split the areas into 4 groups using the quartiles of the 

random area effects distribution, and in each group the response probabilities are generated 

through an exponential function of the ijz  values but the parameters of this function 

change from a group to another; in study C we proceed as in study B but the exponential 

function used to generate the nonresponse is assumed to depend only from the individual 

random effects ije . In all the studies the parameters of the nonresponse generating function 

are chosen to produce an expected overall population response rate of about 0.7. 

5. Select a stratified sample of the first level units with strata equal to the second level units 
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and a sampling fraction equal to 0.1 in each stratum.  

6. Classify each level-1 unit in the sample as respondent or not respondent carrying out for 

each of them a Bernoulli experiment.  

7. Repeat steps 2-6 1000 times. 

In study A for each set of respondents, we computed the following six predictors of the 

area means: 

a) the standard (unweighted) EBLUP estimator calculated on the set of respondents;  

b) the MPML predictor (2) with weights computed using the true response probabilities;  

c) the MPML predictor (2) with weights computed using response probabilities estimated 

with the weighting within cells method and using the ijz
3
 values to define the cells; 

d) the MPML predictor (2) with weights computed using response probabilities estimated 

with a logit model function of the ijz ; 

e) the MPML predictor (2) with weights computed using response probabilities estimated as 

in point (d), but assuming as explicative in the logit model ijijz  , with )100,0(~ Nij ; 

f) the standard (unweighted) EBLUP estimator calculated on the entire sample.  

For study B and study C we compute the same predictors with the exception that the 

estimator described at point (e) is replaced by:  

g) the MPML predictor (2) with weights computed using response probabilities estimated 

with a logit model assuming as covariate not only ijz  but also a categorical variable that 

identifies the groups of areas with different response mechanisms. 

In all the three studies and for all the probability weighting estimation procedures, 

unscaled and scaled weights (method 1 and method 2) are used.  

For each case (response mechanism × estimation procedure × scaling method) and each 

area we consider the following performance indexes. The percentage relative bias (RB): 

 

 
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3
 We are aware that in real situations the ijz  values are unknown and the response probabilities are estimated using auxiliary 

information that approximate them. Thus, the use of the ijz  values here may be viewed as a perfect approximation. Note 

however that in our analyses we also show what happens when the ijz values are perturbed, that is when the available 

auxiliary information is not perfectly predictive of the response mechanism. 
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where 



ˆ y hi and 



y hi are respectively the predicted and the true mean of y in area i for the h 

replica, and the Relative Root Mean Squared Error (RRMSE), that is 
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3.2 Results 

To compute the estimates of interest we used the SAS NLMIXED Procedure. Table 1 

shows, for each weighted estimation procedure, the mean
4
 of the iRB  values across the areas. 

 

Table 1. Mean of the percentage relative biases iRB  of the small area mean predictor across 

the areas.  
 

Predictor Unscaled Scaled 1 Scaled 2 

 Study A 

b -0.281 -0.426 -0.454 

c -0.304 -0.454 -0.480 

d -0.278 -0.425 -0.450 

e -0.451 -0.587 -0.605 

 Study B 

b -0.306 -0.330 -0.348 

c -0.701 -0.762 -0.776 

d -0.700 -0.763 -0.768 

g -0.298 -0.330 -0.344 

 Study C 

b -0.315 -0.259 -0.270 

c -0.906 -0.893 -0.891 

d -0.908 -0.896 -0.893 

g -0.358 -0.305 -0.303 

 

A first evident result is that the performance of scaling method 2 is always worse or at 

the most equivalent to the performance of scaling method 1: therefore, hereafter all 

                                                 
4 The mean of the relative biases is an appropriate performance index here since all the RB values are negative. 
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comparisons will address only the other two methods. In study A the mean predictors based 

on unscaled weights are less biased than those based on scaled weights (method 1). This 

happens also in study B, but the differences are smaller. In study C the order is reversed. We 

think that these results are related to the role of the area random effects on the response 

mechanism: whereas in Study A the function used to generate the response mechanism is 

continuous respect to the iv  values, in study C it is a step function of the iv  values. In study 

B, for which the results are intermediate, the response mechanism is a piecewise continuous 

function of the iv  values.  

To further investigate the performance of the small area mean estimators, Figure 1, 

Figure 2 and Figure 3 show respectively for study A, study B, and study C the areas 

percentage relative biases of the six considered predictors ((a), (b), (c), (d), (e) or (g), (f)). In 

all the figures the predictor (f), which corresponds to the hypothesis of complete responses, is 

considered and shown as benchmark.  

From all the figures it is evident that an informative response mechanism may induce a 

significant bias in the estimation of the small area means if the hierarchical regression model 

is fitted using the standard ML estimation method (case a). The bias can be reduced in an 

effective manner by the probability-weighted estimation procedure (MPML), assuming 

unrealistically that the response probabilities are known (case b). 

Figure 1 provides evidence also of the reduction of bias that occurs if auxiliary variables 

predictive of the response behaviour are available and the unknown response probabilities are 

estimated through a logit model (cases d and e). Obviously, the more predictive of the 

response mechanism are the available auxiliary variables, the greater is the bias reduction 

(case d versus e). In particular, when the response mechanism (conditionally to the auxiliary 

variables) becomes fully ignorable, the estimated response probabilities produce a bias 

reduction equivalent to that obtained with the true response probabilities. The performance of 

the weighting within cells method (case c) is equivalent to the performance of true response 

probabilities when based on auxiliary variables predictive of the response behaviour. 

The two response probabilities estimation methods using as covariates only the ijz , 

parametric the first, non-parametric the second (weighting class method), appear equivalent 

not only in study A, in which they have a good performance, but also in studies B and C, in 

which they do not reduce in a significant manner the bias of the traditional EBLUP estimator. 
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Figure 1 – Percentage Relative Bias for all estimators and small areas: Study A – unscaled 

(top), scaling 1 (center) and scaling 2 (bottom) weighting method. 
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Figure 2 – Percentage Relative Bias for all estimators and small areas: Study B – unscaled 

(top), scaling 1 (center) and scaling 2 (bottom) weighting method. 
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Figure 3 – Percentage Relative Bias for all estimators and small areas: Study C – unscaled 

(top), scaling 1 (center) and scaling 2 (bottom) weighting method. 
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In these two studies, to have a good performance of the suggested MPML predictor it is 

necessary to include in the estimation process of the response probabilities a categorical 

variable that identifies the groups of areas with different response mechanisms. The 

advantage of introducing this categorical variable in the procedure to estimate the response 

probabilities in studies B and C is obvious. The point in question is the following: both the 

response estimation procedures that use only the ijz  values almost remove the bias of the 

whole population mean direct estimator 





r ij

r ijij

p

py
y

ˆ1

ˆ
ˆ

5

 (see Table 3).  

 

Table 3. Percentage Relative Bias of the whole population mean direct estimator. 

 Response estimation method 

Study 1ˆ ijp  Logit model 
Weighting 

within cell 

A -1.833 -0.140 -0.045 

B -1.205 -0.153 -0.182 

C -0.473 -0.075 -0.038 

 

Thus, if the researcher who calculates the survey weights is not interested in the small 

area estimation problem, he may not realize this advantage. In other words, compensating for 

nonresponse using a method that works well for the estimation of the overall population mean 

without considering the estimation at the small area level may reduce or not reduce the bias of 

the small area mean predictions (predictors c and d in the different studies). This depends on 

the compensation method but also on the response mechanism. 

From Table 3 it is also evident that in Study C the bias of the whole population direct 

estimator with 1ˆ ijp  (not adjusted for nonresponse) is less than half of the bias of the 

corresponding small area mean unweighted predictor (see Figure 3). This result indicates that 

an informative response mechanism may have a modest effect on population estimators, 

having at the same time a significant effect on small areas estimators. 

Figure 4, Figure 5 and Figure 6 show for each area the Relative Root Mean Squared 

Error of the six small area mean predictors for the same settings (studies and weighting 

methods) considered respectively in Figure 1, Figure 2 and Figure 3. 

                                                 
5 The weights in the population mean direct estimator are equal to 

ijij p̂1   with 



ij   j |i i
;  in this expression we have 

only 



1 ˆ p ij  due to the sample self-weighting hypothesis. 
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Figure 4 – Percentage Relative Root Mean Squared Error for all estimators and small areas: 

Study A – unscaled (top), scaling 1 (center) and scaling 2 (bottom) weighting method. 
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Figure 5 – Percentage Relative Root Mean Squared Error for all estimators and small areas: 

Study B – unscaled (top), scaling 1 (center) and scaling 2 (bottom) weighting method. 
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Figure 6 – Percentage Relative Root Mean Squared Error for all estimators and small areas: 

Study C – unscaled (top), scaling 1 (center) and scaling 2 (bottom) weighting method. 
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In all the three studies the RRMSE of the unweighted estimator is higher than that  of all 

the other predictors even if this gap is less pronounced in study C. The differences among the 

weighted predictors are instead less evident: thus, the bias reduction of some of these 

estimators does not correspond to an equivalent reduction in variability. This result probably 

depends on the variability of the response probabilities (and consequently of the weights) 

among the areas. For example in study B and C the two worst estimators in term of bias are 

those not able to adequately incorporate in the estimated response probabilities the variability 

of the true probabilities among the areas. On the other hand, this situation corresponds to a 

lower variability respect to the other weighted estimators, but in this case the lower variability 

is not a good reason to prefer an estimator respect to another. 

 

4. Final remarks 

The growing demand for reliable small area estimates on one hand and the consciousness that 

nonresponse is a common problem in sample surveys on the other hand have motivated our 

study. 

The analysis of the effect of nonresponse on small area estimates is a wide issue. This 

article presents a first attempt of analyzing this problem and suggesting possible solutions 

only for the case in which small area estimates are produced using a unit level random effects 

model and nonresponse concerns only the level-1 units.  

The results of our simulations show that when informative nonresponse occurs it should 

not be ignored. The use of the MPML estimation procedure with weights function of response 

probabilities properly estimated may reduce the bias in a significant manner. Another 

important message standing from our simulations is the necessity to address together the 

nonresponse problem and the small area estimation problem, since a nonresponse adjustment 

method that effectively reduces the nonresponse bias of estimators referred to the whole 

population may not be able to also reduce the bias of small area estimators. This issue is 

relevant whenever some characteristics of the areas affect the response mechanism in a 

different way from an area to another, or from a group of areas to another.  

We think that the necessity to address together the two problems is important in many 

real surveys. Often the producer of data is interested in producing estimates for the whole 

population or at most for some large subpopulations; therefore, he computes the survey 

weights adopting only these goals. Secondary users of data instead may be interested in 

producing small area estimates. However, these subjects often do not have access to all the 
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original data and consequently it is impossible for them to calculate weights different from 

those provided by the producer of data. 

The nature of the available information induces to another consideration. In theory the 

effect of nonresponse on unit level random effects models can be controlled including the 

variables that affect the response process among the model covariates. However, this is less 

practical than using these variables to estimate response probabilities because in this second 

case they only need to be known for the sampled units and not for all population units. 

Another reason is that these variables may not be available at the inference stage (e.g. sensible 

data) but may be used by the producer of data to calculate the survey weights. 

The analyses performed in this work are based on the following assumptions: available 

auxiliary information allows fitting a small area model at unit level; all areas are represented 

in the set of level-1 responding units. These assumptions may appear as a limitation. We think 

that in many real situations they may be valid; nevertheless, in next developments of our work 

we plan to extend the theory presented here to cases where in some areas all the units do not 

respond to the survey, further evaluating also the role of the different scaling methods of the 

weights. 

Another direction in which we plan to extend our work is the analysis of the effect of 

nonresponse and of weighting adjustment methods to the case in which the small area mean 

estimates are produced fitting a small area model at the area level. A useful starting point in 

this direction may be the extension to the nonresponse context of the procedure suggested by 

Pfefferman and Sverchkov (2007) in order to predict small area means under informative 

sampling.  

In all these frameworks we also plan to propose an estimator of the MSE of the small 

area mean predictors proposed in this work, also considering, if necessary, bootstrap 

specifications. 
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