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Abstract

Fast and reliable screening of the carcinogenic potential of a chemi-
cal compound can be performed using in vitro methods such as the cell
transformation assay (CTA), in which selected cell lines grow under differ-
ent treatment conditions (with/without chemical under evaluation) and
colonies (foci) formed at the end of the assay are scored and classified
by light microscopy. While foci can mostly be divided into three canonic
classes (Type I, II and III), often more undefined phenotypes can be spot-
ted, resulting in an uncertain class attribution (mixed and intermediate).
Here, we describe the R code developed to calculate a quantitative dis-
similarity index and classify mixed or intermediate foci by exploiting the
quantitative information provided by digital images of foci colonies.

Keywords: Cell transformation assay, cluster analysis, carcinogenic poten-
tial, unsupervised learning
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1 Introduction

The evaluation of the carcinogenic potential of chemical compounds is of great
concern in public health. The 2 year in vivo rodent bioassay is the standard
for assessment of the carcinogenic potential of chemicals. Though preliminar,
fast and reliable screening tests are of great interest (1). In vitro methods, such
as the cell transformation assay (CTA), are important tools for both research
and screening of chemical compounds. Cell transformation assays are based on
selected cell lines growing under different treatment conditions (with/without
chemical under evaluation). At the end of the assay, the formed colonies (foci)
are scored and classified by a trained expert by light microscopy. Foci are
then divided into three classes called Type I, Type II and Type III on the
basis of morphological features (e.g. multilayering, polarization, criss-crossing
of the cells) (2). While Type I foci are composed of non-transformed cells,
both Type II and Type III are transformed and induce tumors if inoculated in
animals (3). Though in most cases foci fall into this well defined categories, often
more undefined morphologies are found. In fact, colonies presenteing features
intermediate between two classes (intermediate foci) and colonies presenting
features belonging to two different classes in the same time (mixed foci) are both
documented, though uncommon. This morphologically undefined colonies result
in an uncertain class attribution, which may in turn generate an under/over-
estimation of the carcinogenic potential of a chemical compound.
In a previous work (4) we defined a new index of dissimilarity which is calculated
on digital foci images, and which can be exploited for classifying mixed or
intermediate foci. Here, we describe the R code developed to calculate this
quantitative dissimilarity index.

2 Setting up the R environment

The packages that will be needed for the descriptors extraction and images
classification have to be loaded into the R environment. A Startup function
that will load the ”biOps”, ”fBasics” and ”cluster” libraries will be built and
then ran.

> Startup <- function() {

+ library(biOps)

+ library(fBasics)

+ library(cluster)

+ }

> Startup()

[1] "cluster" "fBasics" "timeSeries" "timeDate" "MASS"

[6] "biOps" "stats" "graphics" "grDevices" "utils"

[11] "datasets" "methods" "base"
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3 Preprocessing

In this section, the function needed to extract the image descriptors from an
image’s gray levels distributions will be described. An example on how to apply
this function to an image will also be provided.

3.1 Step 1. Building the function

The DescrExtr function is compiled to extract from an image the following de-
scriptors:

� mean

� skewness

� kurtosis

� the 16 central vigintiles (quantiles of m/20 order, spanning from Q15 to
Q85)

� the Canny’s edge enhancement derived index, calculated as the number of
enhanced (edgy) pixels over the image

> DescrExtr <- function(immagine) {

+ myQ <- seq(0.15, 0.85, by = 0.05)

+ x <- readTiff(immagine)

+ x <- imgRGB2Grey(x)

+ x <- imgNormalize(x)

+ x <- imgBlur(x)

+ meanX <- mean(c(x))

+ skX <- skewness(c(x))

+ kuX <- kurtosis(c(x))

+ quX <- quantile(x, probs = myQ)

+ canX <- imgCanny(x, 0.5)

+ cnX <- length(which(canX == 0))

+ tmpX <- c(meanX, skX, kuX, quX, cnX)

+ names(tmpX) <- c("Mean", "Skewness", "Kurtosis",

+ "Q15", "Q20", "Q25", "Q30", "Q35", "Q40",

+ "Q45", "Q50", "Q55", "Q60", "Q65", "Q70",

+ "Q75", "Q80", "Q85", "CannyDerived")

+ return(tmpX)

+ }

3.1.1 Exemple of descriptors extraction

In this part, the DescrExtr function will be applied to a given image tile (Figure
1 ).

The 512x512 image shown in Figure 1 is a tile generated from a 1024x1024
image, hereon referred to as parent image (Figure 2 ). We will work on the
assumption that maximum 4 tiles will be generated for a single parent image.
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Figure 1: 512x512 tile (resized)

In fact, more than 4 512x512 tiles will only represent an over-sampling of the
1024x1024 original image.

Figure 2: 1024x1024 parent image (resized)

The DescrExtr function is used to extract the image’s descriptors from the
processed tile the gray levels distribution (Figure 3).

Finally, the function will build a vector out of the extracted descriptors.

> Esempio <- DescrExtr("7[c]05-piastra 3 tipo III luce 7 p_A.tif")

Mean Skewness Kurtosis Q15

7.111242e+01 1.081049e+00 2.917967e-01 2.200000e+01

Q20 Q25 Q30 Q35

2.700000e+01 3.100000e+01 3.500000e+01 3.900000e+01

Q40 Q45 Q50 Q55

4.400000e+01 4.900000e+01 5.500000e+01 6.100000e+01

Q60 Q65 Q70 Q75

6.800000e+01 7.600000e+01 8.500000e+01 9.700000e+01
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Q80 Q85 CannyDerived

1.120000e+02 1.320000e+02 2.131200e+04

3.2 Step 2. Creating the database

Following the described procedure, we applied the DescrExtr function to the
image database. All the tiles were collected in the project folder. The used
database featured:

� 82 parent images of canonical morphology (MD class)

� 20 parent images of unconventional morphology (MU class)

� 196 tiles generated from the MD parent images (from number 1 to number
196)

� 52 tiles generated from the MU parent images (from number 197 to number
248)

> Images <- dir()

> DescrTable <- DescrExtr(Images)

A parent object was created and the names of the corresponding parent
image for each tile were stored. This vector was then added to the DescrTable

table. This step is needed in order to keep the linkage between tiles and gener-
ating parent images.

Figure 3: Graphic of the gray levels distribution for the 512x512 tile

6



> DescrTable <- cbind(DescrTable, parent)

The first 3 records are shown for exemplificative purposes. Row names of
the generated table represent the tiles names.

Mean Skewness Kurtosis Q15 Q20 Q25

1[c]01-MN1_A.tif 193.2694 -1.458412 2.995726 167 175 181

1[c]01-MN1_B.tif 191.8352 -1.665833 3.624617 163 173 180

1[c]01-MN1_C.tif 201.0577 -1.737660 3.632982 172 183 190

Q30 Q35 Q40 Q45 Q50 Q55 Q60 Q65 Q70 Q75

1[c]01-MN1_A.tif 186 190 194 197 199 202 205 208 210 214

1[c]01-MN1_B.tif 185 190 193 197 199 202 205 208 211 214

1[c]01-MN1_C.tif 196 200 204 207 210 213 214 217 220 223

Q80 Q85 Canny Parent

1[c]01-MN1_A.tif 216 221 12965 1[c]01-MN1

1[c]01-MN1_B.tif 215 220 15092 1[c]01-MN1

1[c]01-MN1_C.tif 226 229 14170 1[c]01-MN1

Finally, all the expert scoring for the parent images were included in the
ExpClass object. This vector will exclusively be used for evaluation of agree-
ment purposes. Therefore, the unsupervised classification is ensured. Expert
classification scores are present for MD images only.

> ExpClass

[1] MN MN MN MN MN MN MN MN MN MN MN MN MN MN MN MN MN T2

[19] T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 MN T1

[37] T1 T1 T1 T1 T1 T1 T1 T2 T2 T2 T2 T2 T3 T3 T3 T3 T3 T3

[55] T3 T3 T3 T3 T3 T3 T3 T3 T3 T3 T3 T3 T3 MN MN T1 T1 MN

[73] MN MN MN MN MN MN T1 T1 T1 T2 T2 T2 T2 T2 T2 T2 T3 T3

[91] T3 T3 T3 T3 T3 T3 T3 T3 T1 T1 T1 T1 T1 T1 MN MN MN MN

[109] T1 T1 T1 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2

[127] T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T3 T3 T3 T3 T3 T3 T3 T3

[145] T3 T3 T3 T3 T3 T3 T3 T3 T3 T3 T3 T3 MN MN MN MN T1 T1

[163] T1 T1 T1 T1 T1 T1 MN MN MN MN MN MN MN MN MN MN MN MN

[181] MN MN MN MN MN MN MN T1 T1 T1 T1 T1 T1 T1 T1 T1

Levels: MN T1 T2 T3
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4 Clustering

4.1 Clustering in F1

The classification scheme applied in this work is based on a hierarchical classi-
fication approach as described elsewhere in detail (4-6). Briefly, we developed a
two-steps classification model:

� in the first step of classification (hereon, F1) we will divide the tiles images
in two classes, corresponding to the transformed/untransformed biological
division (2,3).

� in the second step of classification (F2) we will further divide the two F1
obtained classes in two sub-classes each, corresponding to the canonical
foci classification. See section 4.2 for further details on this classification
step.

Both F1 and F2 steps of classification are based on the PAM clustering algo-
rithm (7).

4.1.1 F1 clustering

The PAM algorithm was applied to the DescrTable table generated in the
Preprocessing step (section 3). In this step the dataset will be divided in two
classes using a PAM k paramenter of 2.

� The C1 (score of 1) class corresponding to normal monolayer or untrans-
formed foci(noted as ”NT”)

� The C2 (score of 2) class corresponding to transformed foci (noted as ”T”)

The Canny’s derived index (contained in the column 19) was not exploited in
this step of classification. Moreover, the parent images scoring (column 20) was
excluded to ensure the unsupervisedness of the classification process.

> clus512_F1_k2 <- pam(DescrTable[, -c(19, 20)], k = 2)

The obtained clus512_F1_k2 object contains the classification vector for F1:

> as.numeric(clus512_F1_k2$cluster)

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 2 2 2 2 2 2 2 2 1 1 1

[38] 1 1 1 1 1 1 1 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 1 1 1 1 1 1 1 1

[75] 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1

[112] 2 2 2 2 1 2 2 2 2 2 1 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 1 2 2 2 2

[149] 2 2 2 2 1 2 2 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[186] 1 1 2 1 1 1 1 1 1 1 1 2 1 2 2 2 2 2 2 2 1 1 2 1 1 2 2 1 1 2 2 2 2 2 2 2 2

[223] 2 2 2 2 2 1 2 2 2 1 1 1 1 2 1 1 1 1 1 2 1 2 1 2 2 2
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4.1.2 F1 confusion matrix

In order to evaluate the performances of the classifier in terms of agreement of
judgment with the expert and of sensitivity and specificity, a confusion matrix
was built for each step of classification. The matrices featured:

� by rows: the expert scoring

� by columns: the algorithm scoring

� by diagonal: images (tiles) where the expert and the algorithm agree on.

The confusion matrix will be built around the images that are of the MD class
(tiles 1 to 196), while images of mixed and intermediate nature (MU) will be
excluded (tiles 197 to 248).

> confusion512_F1_k2 <- table(ExpClass, clus512_F1_k2$clustering[1:196])

ExpClass 1 2

MN 54 0

T1 37 2

T2 16 38

T3 4 45

The total number of tiles of the MD class scored as C1 is 111, while tiles scored
as C2 are a total of 85. Moreover, while the automatic classifier is set to divide
the images in 2 classes (C1 and C2), the expert scoring is on based on 4 classes
(MN and the three canonical foci classes). For the sake of comparison of results,
we will transform the confusion matrix from a 4x2 matrix in a 2x2, by modifing
the ExpClass object transforming all the ”MN” and ”T1” instances in ”NT”
(untransformed), and the ”T2” and ”T3” in ”T” (transformed).
The obtained ExpClass_F1 vector is shown.

> ExpClass_F1

[1] NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT T T T T T T T T

[26] T T T T T T T T T NT NT NT NT NT NT NT NT NT T T T T T T T

[51] T T T T T T T T T T T T T T T T T NT NT NT NT NT NT NT NT

[76] NT NT NT NT NT NT T T T T T T T T T T T T T T T T T NT NT

[101] NT NT NT NT NT NT NT NT NT NT NT T T T T T T T T T T T T T T

[126] T T T T T T T T T T T T T T T T T T T T T T T T T

[151] T T T T T T NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT

[176] NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT

Levels: NT T

The modified confusion matrix will be as follows:

> confusions512_F1_k2_2x2 <- table(ExpClass_F1, clus512_F1_k2$clustering[1:196])

ExpClass_F1 1 2

NT 91 2

T 20 83

Agreement, sensitivity and specificity values calculated on the 2x2 matrix
are reported.
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Summary Value

Agreement 88.78%
Sensitivity 97.85%
Specificity 80.58%

4.2 Clustering in F2

During the F1 step of classification, the tiles were divided in 2 classes (C1
and C2), corresponding to the biological classes of transformed and untrans-
formed foci. Though biologically highly relevant, this classification is only par-
tial. Therefore, during the F2 step of classification, the two F1 clusters were
further divided in two classes each, so to mimick the division of the untrans-
formed images in normal monolayer and Type I, and of the transformed images
in Type II and Type III.
In this step of classification, we also exploited the Canny’s edge enhancement
algorithm derived descriptor.

4.2.1 Dividing the database

The classification vector obtained in F1 (clus512_F1_k2$clustering) was used
to divide the database in two blocks:

� DescrTable_C1 containing the C1 scored tiles (111 MD, 19 MU)

� DescrTable_C2 containing the C2 scored tiles (85 MD, 33 MU)

> estrC1 <- which(clus512_F1_k2$cluster == 1)

> DescrTable_C1 <- DescrTable[estrC1, ]

> DescrTable_C2 <- DescrTable[-estrC1, ]

4.2.2 MN and T1 clustering

The PAM algorithm was applied to each of the two blocks separately, each time
with k=2. First, the DescrTable_C1 database was processed.

> clus512_F2_k2_MNT1 <- pam(DescrTable_C1[, -20],

+ 2)

The expert scoring for the MD images classified as C1 during F1 was ex-
tracted from the ExpClass object. The obtained vector was used to build the
partial 4x2 confusion matrix on the 111 MD tiles. Column names were set as
”C’1” and ”C’2”.

> confusioni512_k2_F2_MNT1 <- table(ExpClass_C1,

+ clus512_F2_k2_MNT1$clustering[1:111])

> colnames(confusioni512_k2_F2_MNT1) <- c("C'1",

+ "C'2")

ExpClass_C1 C'1 C'2

MN 52 2

T1 1 36

T2 2 14

T3 2 2
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4.2.3 T2 and T3 clustering

The approach used for MN and T1 classification was repeated to cluster the
tiles contained in the DescrTable_C2 table.

> DescrTable_C2 <- DescrTable[-estrC1, ]

> clus512_F2_k2_T2T3 <- pam(DescrTable_C2[, -20],

+ 2)

The expert scoring for the C2 images was extracted from the ExpClass

object, and the classification matrix built. Column names were set as ”C’3” and
”C’4”.

> confusioni512_k2_F2_T2T3 <- table(ExpClass_C2,

+ clus512_F2_k2_T2T3$clustering[1:85])

> colnames(confusioni512_k2_F2_T2T3) <- c("C'3",

+ "C'4")

ExpClass_C2 C'3 C'4

MN 0 0

T1 1 1

T2 31 7

T3 4 41

4.2.4 Obtaining the 4x4 confusion matrix

Finally, the two partial 4x2 matrices were joined to obtain the complete F2 4x4
confusion matrix, on which agreement, sensitivity and specificity were calcu-
lated.

C'1 C'2 C'3 C'4

MN 52 2 0 0

T1 1 36 1 1

T2 2 14 31 7

T3 2 2 4 41

Summary Value

Agreement 81.63%
Sensitivity 82.42%
Specificity 94.01%
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5 Merging tiles into parent images

5.1 Merging in F1

Following the tiles classification, we approached the problem of scoring the
parent images. In fact, while the scores we obtained in both F1 and F2 are
relative to 512x512 tiles, the expert classification we used for comparison is
relative to the parent images. Therefore, a majority of voting criterion was
applied to assess a parent image’s score based on the scores of its derived tiles.
In case of draw, higher class was chosen.

5.1.1 Grouping the classification scores in F1

A Voti function was built to divide the classification tiles scores contained in a
generic y table presenting in column 1 the parent images names and in column
2 the actual scores, grouping them on the basis of the generating parent images
number (n = x)

> Voti <- function(x, y) {

+ matVoti <- matrix(0, x, 4)

+ rownames(matVoti) <- rep(0, x)

+ auxI <- 1

+ auxII <- 1

+ for (aux in 1:nrow(y)) {

+ if (aux < nrow(y)) {

+ if (y[aux, 1] == y[aux + 1, 1]) {

+ matVoti[auxI, auxII] <- y[aux, 2]

+ auxII <- auxII + 1

+ }

+ if (y[aux, 1] != y[aux + 1, 1]) {

+ matVoti[auxI, auxII] <- y[aux, 2]

+ rownames(matVoti)[auxI] <- y[aux, 1]

+ auxI <- auxI + 1

+ auxII <- 1

+ }

+ }

+ if (aux == nrow(y)) {

+ if (y[aux, 1] == y[aux - 1, 1]) {

+ matVoti[auxI, auxII] <- y[aux, 2]

+ auxII <- auxII + 1

+ rownames(matVoti)[auxI] <- y[aux, 1]

+ }

+ if (y[aux, 1] != y[aux - 1, 1]) {

+ matVoti[auxI, 1] <- y[aux, 2]

+ rownames(matVoti)[auxI] <- y[aux, 1]

+ }

+ }

+ }

+ matVoti

+ }
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The built function was then applied to our database. The list of the parent
images was acquired from the column 20 of the DescrTable object created
during section 3.

Mean Skewness Kurtosis Q15 Q20 Q25 Q30 Q35 Q40 Q45 Q50

1[c]01-MN1_A.tif 193.2694 -1.458412 2.995726 167 175 181 186 190 194 197 199

1[c]01-MN1_B.tif 191.8352 -1.665833 3.624617 163 173 180 185 190 193 197 199

1[c]01-MN1_C.tif 201.0577 -1.737660 3.632982 172 183 190 196 200 204 207 210

Q55 Q60 Q65 Q70 Q75 Q80 Q85 Canny Parent

1[c]01-MN1_A.tif 202 205 208 210 214 216 221 12965 1[c]01-MN1

1[c]01-MN1_B.tif 202 205 208 211 214 215 220 15092 1[c]01-MN1

1[c]01-MN1_C.tif 213 214 217 220 223 226 229 14170 1[c]01-MN1

The clus512_F1_k2$clustering F1 clustering vector generated in section
4.1.1 will be exploited in this classification step. For clarity’s sake, we remind
that a vote of ”1” represents untransformed images (”NT”), while a vote of ”2”
represents transformed images (”T”).

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 2 2 2 2 2 2 2 2 1 1 1

[38] 1 1 1 1 1 1 1 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 1 1 1 1 1 1 1 1

[75] 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1

[112] 2 2 2 2 1 2 2 2 2 2 1 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 1 2 2 2 2

[149] 2 2 2 2 1 2 2 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[186] 1 1 2 1 1 1 1 1 1 1 1

For the 196 MD derived tiles, the parent images names (column 1) and the
scores of classification (column 2) were united in the SchedaVoti table.

> SchedaVoti <- cbind(as.character(DescrTable[1:196, 20]), clus512_F1_k2$clustering[1:196])

Finally, the Voti function was applied to the SchedaVoti table.

� x=82 (number of parent images)

� y=SchedaVoti

� ”0” characters are used as neutral characters when less than 4 tiles were
extrated from a single parent image

The generated table will feature:

� by rows the parent images

� by columns the corresponding tiles scores

> F1_1024x1024 <- Voti(82, SchedaVoti)

The first 10 records are shown for exemplificative purposes.

[,1] [,2] [,3] [,4]

1[c]01-MN1 "1" "1" "1" "1"

1[c]02-MN2 "1" "1" "1" "1"

2[c]02-MN1piastra1 "1" "1" "1" "0"

2[c]03-MN2piastra1 "1" "1" "0" "0"
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2[c]04-MNpiastra1 "1" "1" "1" "1"

2[c]05-Tipo II_bordo_f1 "1" "1" "0" "0"

2[c]07-Tipo II_bordo_f2 "2" "1" "0" "0"

2[c]08-Tipo II_bordo_f3 "1" "2" "1" "0"

2[c]09-Tipo II_bordo_f4 "1" "1" "2" "0"

5.1.2 Applying the majority of voting criterion

The MoV function was built to extract a vector containing the majority of voting
for each parent image from the table generated in section 4.1.1. In case of
draw (e.g. if 2 ”NT” tiles and 2 ”T” tiles were generated from the same parent
image), the highest corresponding biological damage class was chosen.

> MoV <- function(Scheda_MoV) {

+ mov <- c(NULL)

+ for (aux in 1:nrow(Scheda_MoV)) {

+ L1 <- length(which(Scheda_MoV[aux, ] == 1))

+ L2 <- length(which(Scheda_MoV[aux, ] == 2))

+ ifelse(L2 >= L1, mov <- c(mov, 2), mov <- c(mov, 1))

+ }

+ mov

+ }

Finally, the MoV function was applied to the F1_1024x1024 table. The ob-
tained clus_F1_1024 vector is the clustering vector for parent images in F1.

> clus_F1_1024 <- MoV(F1_1024x1024)

[1] 1 1 1 1 1 1 2 1 1 2 2 2 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2

[39] 2 2 1 1 1 1 1 1 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 1 1 1 1 1 1

[77] 1 2 1 1 1 1

5.1.3 F1 parent images confusion matrix

In order to obtain the confusion matrix, the expert scores for the parent images
were copied in an Exp_parent_F1 vector.

� untransformed images are scored as ”1”

� transformed images are scored as ”2”

[1] 1 1 1 1 1 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2

[39] 2 2 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1

[77] 1 1 1 1 1 1

Finally, the confusion matrix was obtained, featuring the expert scores (by
row) versus the parent images scores obtained through the majority of voting
for F1 tiles scoring (by column).

> confusioni1024_F1_k2_2x2 <- table(Exp_parent_F1, clus_F1_1024)

clus_F1_1024

Exp_parent_F1 1 2

1 35 2

2 5 40

Agreement of classification, sensitivity and specificity are as follows.
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Summary Value

Agreement 91.46%
Sensitivity 94.59%
Specificity 88.89%

5.2 Merging in F2

The procedure described in the previous section was applied to the classification
scores obtained in F2 in section 4.2 in order to obtain the F2 scores for parent
images.

5.2.1 Grouping the classification scores in F2

A DescrTable_Ext table was built starting from the DescrTable table created
in section 3, by adding a column (column 21) containing the classification scores
obtained in F2. Classification scores will be extracted from the DescrTable_C1

and DescrTable_C2 tables and modified:

� C’1 images are flagged as 1 (from the clus512_F2_k2_MNT1$cluster vec-
tor)

� C’2 images are flagged as 2 (from the clus512_F2_k2_MNT1$cluster vec-
tor)

� C’3 images are flagged as 3 (from the clus512_F2_k2_T2T3$cluster vec-
tor)

� C’4 images are flagged as 4 (from the clus512_F2_k2_T2T3$cluster vec-
tor)

> DescrTable_Ext <- cbind(DescrTable, rep(0, nrow(DescrTable)))

> colnames(DescrTable_Ext)[21] <- "Voti_F2"

> for (aux in 1:nrow(DescrTable_C1)) {

+ tmp <- which(rownames(DescrTable) == rownames(DescrTable_C1[aux,

+ ]))

+ DescrTable_Ext[tmp, 21] <- as.numeric(clus512_F2_k2_MNT1$cluster[aux])

+ }

> for (aux in 1:nrow(DescrTable_C2)) {

+ tmp <- which(rownames(DescrTable) == rownames(DescrTable_C2[aux,

+ ]))

+ DescrTable_Ext[tmp, 21] <- as.numeric((2 + clus512_F2_k2_T2T3$cluster[aux]))

+ }

The obtained classification vector is shown.

> DescrTable_Ext[1:196, 21]

[1] 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 2 3 2 2 3 2 2 2 3 3 3 3 3 3 3 3 1 2 2

[38] 1 2 2 2 2 2 2 2 3 3 2 4 4 4 4 4 4 4 4 4 4 4 1 4 3 4 4 4 4 2 1 1 2 2 1 1 2

[75] 1 1 1 1 2 2 2 4 3 3 3 3 3 3 4 4 3 4 4 4 4 4 3 4 2 2 2 2 2 2 1 1 1 1 2 2 2

[112] 4 3 3 3 2 3 3 3 3 3 2 2 3 4 4 1 4 3 3 4 3 1 4 2 3 4 3 4 4 4 4 4 2 4 4 4 4

[149] 4 4 4 4 1 4 4 4 1 1 1 1 3 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[186] 1 1 4 2 2 2 2 2 2 2 2
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5.2.2 Majority of voting criterion extraction modified

In order to apply the Voti function generated in the previous section to divide
the scores by parent images, we built a SchedaVoti_F2 table featuring:

� the parent images names (DescrTable_Ext column 20)

� the scores of classification for F2 (DescrTable_Ext column 21)

> SchedaVoti_F2 <- DescrTable_Ext[1:196, 20:21]

The Voti function was then applied to the SchedaVoti_F2 table, and the
F2_1024x1024 table obtained. The first 10 records are shown for exemplificative
purposes.

> F2_1024x1024 <- Voti(82, SchedaVoti_F2)

[,1] [,2] [,3] [,4]

1 1 1 1 1

2 1 2 1 1

4 1 1 1 0

5 1 1 0 0

6 1 1 1 1

7 2 2 0 0

8 3 2 0 0

9 2 3 2 0

10 2 2 3 0

The MoV_F2 function represents a modified version of the MoV function, de-
veloped in order to extract the majority of voting out of four classes.

> MoV_F2 <- function(Scheda_MoV) {

+ mov <- c(NULL)

+ for (aux in 1:nrow(Scheda_MoV)) {

+ L1 <- length(which(Scheda_MoV[aux, ] == 1))

+ L2 <- length(which(Scheda_MoV[aux, ] == 2))

+ L3 <- length(which(Scheda_MoV[aux, ] == 3))

+ L4 <- length(which(Scheda_MoV[aux, ] == 4))

+ L1234 <- c(L1, L2, L3, L4)

+ MaxL1234 <- which(L1234 == max(L1234))

+ if (length(MaxL1234) == 1) {

+ mov <- c(mov, MaxL1234)

+ }

+ if (length(MaxL1234) != 1) {

+ mov <- c(mov, max(MaxL1234))

+ }

+ }

+ mov

+ }

The MoV_F2 function was applied to the F2_1024x1024 table.

> clus_F2_1024 <- MoV_F2(F2_1024x1024)
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The obtained clustering vector for parent images in F2 is shown.

[1] 1 1 1 1 1 2 3 2 2 3 3 3 1 2 2 2 2 3 4 4 4 4 4 4 4 4 4 1 1 2 1 1 2 2 3 3 4 4

[39] 4 4 2 2 2 2 1 2 3 3 3 3 2 3 4 4 3 4 4 3 4 4 4 4 4 4 4 4 4 1 3 2 2 2 1 1 1 1

[77] 1 4 2 2 2 2

5.2.3 F2 parent images confusion matrix

The expert classification for the parent images was copied in the Exp_parent_F2
object with the following modifications:

� monolayer images were flagged as 1

� Type I foci images were flagged as 2

� Type II foci images were flagged as 3

� Type III foci images were flagged as 4

[1] 1 1 1 1 1 3 3 3 3 3 3 3 1 2 2 2 3 3 4 4 4 4 4 4 4 4 4 1 1 2 1 1 2 2 3 3 4 4

[39] 4 4 2 2 2 2 1 2 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 1 2 2 2 2 1 1 1 1

[77] 1 2 2 2 2 2

The confusion matrix for this step of classification was obtained obtained
by crossing the expert scores in Exp_parent_F2 with the parent images scores
obtained through the majority of voting for F2 tiles scoring contained in the
clus_F2_1024 vector.

clus_F2_1024

Exp_parent_F2 1 2 3 4

1 17 0 0 0

2 0 18 1 1

3 0 5 14 4

4 0 0 0 22

Summary Value

Agreement 86.58%
Sensitivity 87.72%
Specificity 95.48%
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6 The quantitative index

In section 4 we described the hierarchical classification of the MD tiles. In sec-
tion 5 we described the merging of the classified tiles to assess a classification
score for the generating parent images. We evaluated the performances of each
step by means of confusion matrices. In this last section we will describe how a
quantitative index suitable for MU scoring was extracted from the MD images
classification. In fact, due to their uncanonical morphology, mixed and interme-
diate (MU) foci can sometimes be of hard or doubtful classification (2,3). We
suggest the use of the quantitative index to describe how different MU images
are from canonical classes, thus indentifying the less dissimilar class (4).

6.1 Calculating the centers of the canonical classes

In order to assess the distance between the MU images and the canonical classes,
the coordinates of each class center were calculated.
A stdTab function was built to standardize y columns in the descriptors table
(x).

> stdTab <- function(x, y) {

+ tmp <- matrix(0, nrow(x), ncol(x))

+ for (aux in c(y)) {

+ tmpM <- sum(x[, aux])/nrow(x)

+ tmpV <- var(x[, aux])

+ for (auxI in 1:nrow(x)) {

+ tmp[auxI, aux] <- (x[auxI, aux] -

+ tmpM)/tmpV

+ }

+ }

+ tmp <- cbind(tmp[, y], x[, -y])

+ colnames(tmp) <- colnames(x)

+ rownames(tmp) <- rownames(x)

+ tmp

+ }

The described function was applied to the DescrTable_Ext table, excluding
the columns 20 and 21 due to their non-numerical nature.

> Descr_Std <- stdTab(DescrTable_Ext, c(1:19))

The first 3 records of the normalized table are shown for exemplificative
purposes.

Mean Skewness Kurtosis Q15

1[c]01-MN1_A.tif 0.03439151 -1.198333 0.4516872 0.03257787

1[c]01-MN1_B.tif 0.03354178 -1.400649 0.5651086 0.03100364

1[c]01-MN1_C.tif 0.03900589 -1.470708 0.5666173 0.03454565

Q20 Q25 Q30

1[c]01-MN1_A.tif 0.03051734 0.02912371 0.02822432

1[c]01-MN1_B.tif 0.02977477 0.02876278 0.02786610

1[c]01-MN1_C.tif 0.03348763 0.03237209 0.03180653

18



Q35 Q40 Q45

1[c]01-MN1_A.tif 0.02751783 0.02713246 0.02665857

1[c]01-MN1_B.tif 0.02751783 0.02676451 0.02665857

1[c]01-MN1_C.tif 0.03112865 0.03081205 0.03045085

Q50 Q55 Q60

1[c]01-MN1_A.tif 0.02604615 0.02583097 0.02571289

1[c]01-MN1_B.tif 0.02604615 0.02583097 0.02571289

1[c]01-MN1_C.tif 0.03040288 0.03041956 0.02971506

Q65 Q70 Q75

1[c]01-MN1_A.tif 0.02570930 0.02512342 0.02560046

1[c]01-MN1_B.tif 0.02570930 0.02565581 0.02560046

1[c]01-MN1_C.tif 0.03005059 0.03044736 0.03102482

Q80 Q85 Canny

1[c]01-MN1_A.tif 0.02449218 0.02473621 -8.013620e-05

1[c]01-MN1_B.tif 0.02379288 0.02391011 -6.694615e-05

1[c]01-MN1_C.tif 0.03148511 0.03134496 -7.266370e-05

Parent Voti_F2

1[c]01-MN1_A.tif 1[c]01-MN1 1

1[c]01-MN1_B.tif 1[c]01-MN1 1

1[c]01-MN1_C.tif 1[c]01-MN1 1

The tiles with the normalized descriptors were divided on the basis of their
scores of classification as obtained in F2, thus creating four different tables, one
for each cluster group (namely C’1, C’2, C’3 and C’4). For each table, the
class center was calculated as the mean values for the 19 featured descriptors.
The class center will act as a virtual paragon tile for each class, from which to
calculate the distance for all the MU tiles.

> estr_MD_MN <- which(Descr_Std[1:196, 21] == 1)

> estr_MD_T1 <- which(Descr_Std[1:196, 21] == 2)

> estr_MD_T2 <- which(Descr_Std[1:196, 21] == 3)

> estr_MD_T3 <- which(Descr_Std[1:196, 21] == 4)

> tabMN <- Descr_Std[estr_MD_MN, ]

> tabT1 <- Descr_Std[estr_MD_T1, ]

> tabT2 <- Descr_Std[estr_MD_T2, ]

> tabT3 <- Descr_Std[estr_MD_T3, ]

The ClassCenter function was built to extract from a table (x) the mean
value (thus, the class center) for the desired descriptors (y).

> ClassCenter <- function(x, y) {

+ tmp <- c(NULL)

+ for (aux in y) {

+ tmp <- c(tmp, mean(x[, aux]))

+ }

+ tmp

+ }

6.2 Assessing the distances

The four class centers were then united in a comprehensive table.
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> centerMN <- ClassCenter(tabMN, c(1:19))

> centerT1 <- ClassCenter(tabT1, c(1:19))

> centerT2 <- ClassCenter(tabT2, c(1:19))

> centerT3 <- ClassCenter(tabT3, c(1:19))

> tabCenter <- rbind(centerMN, centerT1, centerT2,

+ centerT3)

> colnames(tabCenter) <- colnames(Descr_Std[, 1:19])

Mean Skewness Kurtosis Q15

centerMN 0.02982862 -1.3841773 0.57690088 0.028297083

centerT1 0.01246654 -0.2281752 -0.17059001 0.005524537

centerT2 -0.01632886 0.4061967 -0.25242681 -0.015053341

centerT3 -0.02747331 1.0254952 -0.08899969 -0.019901621

Q20 Q25 Q30 Q35

centerMN 0.026869618 0.025805680 0.025063183 0.02449647

centerT1 0.006645006 0.007646646 0.008522186 0.00935677

centerT2 -0.014377366 -0.013847130 -0.013408881 -0.01305369

centerT3 -0.020060952 -0.020434325 -0.020925017 -0.02154504

Q40 Q45 Q50 Q55

centerMN 0.02409197 0.02377777 0.02359332 0.02344520

centerT1 0.01011099 0.01087848 0.01163374 0.01237422

centerT2 -0.01269901 -0.01238768 -0.01200922 -0.01167723

centerT3 -0.02220397 -0.02296610 -0.02380971 -0.02462643

Q60 Q65 Q70 Q75

centerMN 0.02330222 0.02322977 0.02320867 0.02314733

centerT1 0.01308875 0.01382882 0.01450511 0.01513122

centerT2 -0.01134427 -0.01105767 -0.01097586 -0.01118140

centerT3 -0.02549860 -0.02635663 -0.02718158 -0.02780674

Q80 Q85 Canny

centerMN 0.02265193 0.02131588 -8.204021e-05

centerT1 0.01558266 0.01569506 3.690068e-05

centerT2 -0.01214301 -0.01399846 3.528646e-05

centerT3 -0.02751239 -0.02589160 -6.682832e-05

A tabMU table was created, by joining the MU tiles (52, in our case) and the
four class centers. The distances between the tiles and the class centers table
were calculated in the tabDist table.

> tabMU <- rbind(Descr_Std[197:248, 1:19], tabCenter)

> tabDist <- as.matrix((dist(tabMU)))[53:56, -c(53:56)]

> colnames(tabDist) <- parent[197:248]

The first 3 records of table tabDist are shown for exemplificative purposes.

2[c]01-Incerto_bordo_h 2[c]01-Incerto_bordo_h

centerMN 1.6554299 1.7447085

centerT1 0.2879688 0.3786066

centerT2 0.3683948 0.2831108

centerT3 1.0036536 0.9211005

2[c]11-Tipo II_centro1_f

centerMN 1.98940693
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centerT1 0.68120000

centerT2 0.07467855

centerT3 0.59183746

A Distanze function extracting from an x table the mean distances for each
of the composing y parent MU images from the distances of the derived tiles
was built.

> Distanze <- function(x, y) {

+ mat <- matrix(0, 4, 4)

+ auxI <- 1

+ auxII <- 1

+ vec <- matrix(0, 4, y)

+ colnames(vec) <- rep(0, y)

+ for (aux in 1:ncol(x)) {

+ if (aux != ncol(x)) {

+ if (colnames(x)[aux] == colnames(x)[aux +

+ 1]) {

+ mat[, auxI] <- as.numeric(x[,

+ aux])

+ auxI <- auxI + 1

+ }

+ if (colnames(x)[aux] != colnames(x)[aux +

+ 1]) {

+ mat[, auxI] <- as.numeric(x[,

+ aux])

+ for (auxIII in 1:4) {

+ vec[auxIII, auxII] <- (sum(mat[auxIII,

+ ])/length(which(mat[auxIII,

+ ] != 0)))

+ }

+ colnames(vec)[auxII] <- colnames(x)[aux]

+ auxI <- 1

+ auxII <- auxII + 1

+ mat <- matrix(0, 4, 4)

+ }

+ }

+ if (aux == ncol(x)) {

+ if (colnames(x)[aux] == colnames(x)[aux -

+ 1]) {

+ mat[, auxI] <- as.numeric(x[,

+ aux])

+ for (auxIII in 1:4) {

+ vec[auxIII, auxII] <- (sum(mat[auxIII,

+ ])/length(which(mat[auxIII,

+ ] != 0)))

+ }

+ colnames(vec)[auxII] <- colnames(x)[aux]

+ }

+ if (colnames(x)[aux] != colnames(x)[aux -

+ 1]) {
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+ vec[, auxII] <- as.numeric(x[,

+ aux])

+ }

+ colnames(vec)[auxII] <- colnames(x)[aux]

+ }

+ }

+ vec

+ }

The Distanze function was applied to the tabDist table. The obtained
distances are the mean distance between a parent image and the four class
centers, and by extension, to the canonic classes themselves.

> DistMU <- Distanze(tabDist, 20)

The first 3 records of the DistMU table are shown for exemplificative purposes.

2[c]01-Incerto_bordo_h 2[c]11-Tipo II_centro1_f

[1,] 1.7000692 1.9254976

[2,] 0.3332877 0.6051854

[3,] 0.3257528 0.0939840

[4,] 0.9623770 0.6716120

2[c]15-Tipo II-incerto_bordo_h

[1,] 2.1984268

[2,] 0.8931625

[3,] 0.2615870

[4,] 0.3981819

6.3 Quantitative Index of Dissimilarity (QIoD) in graphics

The mean distances between the parent images and the class centers represent a
quantitative value of how much each of the MU images is distant (thus, dissim-
ilar) from a typical image belonging to one of the canonical classes (monolayer,
Type I, Type II, Type III). The smaller the dissimilarity, the closer the image
is to that canonical class.
A barchart graphic of the dissimilarity index was built featuring:

� on the x axis the ID of the MU parent images (from 1 to 20)

� on the y axis the correspoinding distances. Bars represent, from bottom
to top in grayshades, classes MN, T1, T2 and T3 respectively.

By definition, the sum of the four distances was set to 1. The QiD function was
built to achieve this last feature and applied to the DistMU table.

> QiD <- function(x) {

+ mat <- matrix(0, nrow(x), ncol(x))

+ for (aux in 1:ncol(x)) {

+ tmp <- sum(x[, aux])

+ mat[, aux] <- x[, aux]/tmp

+ }

+ mat

+ }

> QiD_MU <- QiD(DistMU)
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An extract of the obtained table QiD_MU is shown.

[,1] [,2] [,3]

MN 0.51183984 0.58414278 0.58603488

T1 0.10034292 0.18359654 0.23809043

T2 0.09807439 0.02851215 0.06973128

T3 0.28974285 0.20374853 0.10614341

The barchart for the QiD_MU table was built with the R basic function
barplot.

> barplot(QiD_MU, names.arg = c(1:20), xlab = "Parent Images",

+ ylab = "Quantitative index of Dissimilarity (QiD)")

Figure 4: Barchart for the QIoD. In grayshades (from dark to light): MN, T1,
T2 and T3
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