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Abstract

Financial time series analysis has focused on data related to market trading activ-
ity. Next to the modeling of the conditional variance of returns within the GARCH
family of models, recent attention has been devoted to other variables: first, and
foremost, volatility measured on the basis of ultra–high frequency data, but also
volumes, number of trades, durations. In this paper, we examine a class of models,
named Multiplicative Error Models, which are particularly suited to model such non-
negative time series. We discuss the univariate specification, by considering the base
choices for the conditional expectation and the error term. We provide also a general
framework, allowing for richer specifications of the conditional mean. The outcome
is a novel MEM (called Composite MEM) which is reminiscent of the short– and
long–run component GARCH model by Engle and Lee (1999). Inference issues are
discussed relative to Maximum Likelihood and Generalized Method of Moments es-
timation. In the application, we show the regularity in parameter estimates and fore-
casting performance obtainable by applying the MEM to the realized kernel volatility
of components of the S&P100 index. We suggest extensions of the base model by
enlarging the information set and adopting a multivariate specification.
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1 Introduction

Multiplicative Error Models (MEMs) are born out of the availability of financial data at
a very fine detail. Examples are: durations between trades or quotes, number of trades
and volumes, number buys and sells within (possibly fine) intervals, volatility measures
derived from ultra–high frequency data (and measures of jumps) as detailed elsewhere in
this Handbook. All these variables share the feature of being non–negative valued and of
exhibiting persistence features similarly to returns’ variance modeled as GARCH. MEMs
were first introduced as Autoregressive Conditional Duration (ACD) models by Engle
and Russell (1998) and were generalized to any non–negative valued process by Engle
(2002). Early work is by Chou (2005) (for range) and Manganelli (2005) (in a multivariate
setting).

In a univariate setting, the simplest MEM expresses the dynamics of the variable of in-
terest as the product of two non–negative terms, namely a scale factor (evolving in a
conditionally autoregressive way paralleling GARCH specifications) times an i.i.d. er-
ror term with unit mean. The scale factor thus represents the expectation of the process
conditionally on the available information, and, as such, it can be used for forecasting
purposes.

There are several reasons why a direct specification of the dynamics of the variables is
preferable to taking logarithms and adopt a linear model. There could be zeros in the data;
even nonzero but small values may have a severe impact on estimation in a logarithmic
model; deriving direct forecasts for the variable of interest is better than transforming
forecasts expressed in logs; finally, as we will see in what follows, under non restrictive
assumptions, the proposed estimator of the parameters in the conditional mean can be
interpreted as a Quasi Maximum Likelihood estimator.

This Chapter is structured as follows. In Section 2 we introduce the univariate specifica-
tion, discussing the base choices for the conditional expectation and the error term. In the
same section we provide a general framework, allowing for richer specifications of the
conditional mean. The outcome is a novel MEM (called Composite MEM) which is rem-
iniscent of the short– and long–run component GARCH model by Engle and Lee (1999).
Inference issues are discussed relative to Maximum Likelihood and Generalized Method
of Moments estimation. Section 3 handles a univariate application with several kernel re-
alized volatilities computed on Blue Chips traded on the NYSE. The estimated models are
evaluated on the basis of the residual diagnostics and of forecast performance. Section 4
briefly discusses some extensions handling the presence of components in the conditional
mean with a different dynamics and multivariate extensions. Concluding remarks follow.
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2 Theory and Methodology

2.1 Model Formulation

Let {xt} be a discrete time process defined on [0,+∞), t ∈ N, and let Ft−1 the informa-
tion available for forecasting xt.1 {xt} follows a MEM if it can be expressed as

xt = µtεt (1)

where, conditionally on Ft−1: µt is a positive quantity that evolves deterministically ac-
cording to a parameter vector θ,

µt = µ(θ,Ft−1); (2)

εt is a random variable (rv) with probability density function (pdf) defined over a [0,+∞)
support, unit mean and unknown constant variance,

εt|Ft−1 ∼ D+(1, σ2). (3)

Irrespective of the specification of the function µ(.) and of the distribution D+, equations
(1)-(2)-(3) entail (see Engle (2002))

E(xt|Ft−1) = µt (4)
V (xt|Ft−1) = σ2µ2

t . (5)

2.1.1 Specifications for µt

Any practical specification of µ(.) in (2) depends on the available information Ft−1: in
what follows, we list some examples. In order to simplify the exposition, we discuss
formulations including only one lag, at most, of the lagged effects appearing in the right
hand sides. Richer structures, useful in some applications, can be obtained in a trivial
way.

When Ft−1 includes only past values of the series, µt can be specified as

µt = ω + β1µt−1 + α1xt−1, (6)

which we label as baseline MEM model. The term β1µt−1 represent an inertial compo-
nent, whereas α1xt−1 stands for the contribution of the more recent observation. Alter-
native representations are possible: defining the forecast error in the t-th observation as

1The occurrence of zeros is relevant for some financial variables observed at a very high frequency; for
example, fixed short intervals or illiquid assets may deliver zero volumes; large trades against small orders
may correspond to zero durations; absolute returns may also be zero. Hautsch et al. (2010) discuss the issue
at length.
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vt = xt − µt, and β∗1 = β1 + α1, we can write

xt = ω + β∗1xt−1 + vt − β1vt−1

which is an ARMA representation (with heteroskedastic errors).

Sometimes an observed signed variable determines different dynamics in xt according to
its (lagged) sign. For example, we may want to consider lagged returns (e.g. rt−1) in
Ft−1, and define x(−)

t ≡ xt I(rt < 0), where I(·) denotes the indicator function. To this
end, we will assume that, conditionally on Ft−1, rt has a zero median and is uncorrelated
with xt: this implies E

(
x

(−)
t |Ft−1

)
= µt/2. Accordingly, µt can be specified as

µt = ω + β1µt−1 + α1xt−1 + γ1x
(−)
t−1, (7)

which we refer to as the Asymmetric MEM. In applications where market microstructure
is of interest, another relevant variable is signed trades where the sign can be attributed
on the basis of whether they are ‘buy’ or ‘sell’.

If {xt} is mean-stationary, then E(xt) = E(µt) ≡ µ. In such a case, by taking the
expectation of both members of (7) one obtains

ω = µ− (β1 + α1 + γ1/2)µ, (8)

which is interesting for at least two reasons. The first one is related to inference. If µ is
estimated by means of the unconditional mean x, then ω is removed from the optimization
algorithm and can be estimated in a second step by means of (8), once estimates of α1,
γ1 and β1 are obtained. This strategy, that we can name expectation targeting, parallels
the variance targeting approach within the GARCH framework proposed by Engle and
Mezrich (1996) and investigated by Kristensen and Linton (2004) and Francq et al. (2009)
from a theoretical point of view. The second reason deals with model interpretation. By
means of (8), equation (7) can be rewritten as

µt = µ+ ξt

ξt = β1ξt−1 + α1x
(ξ)
t−1 + γ1x

(ξ−)
t−1 , (9)

where
x

(ξ)
t = xt − µ x

(ξ−)
t = x

(−)
t − µ/2,

which shows µt as the sum of a long-run average level, µ, and a zero-mean-stationary
component, ξt, driven by the past values of the series (with asymmetries).

Such a representation inspires further formulations of the conditional mean, constructed
by replacing the constant average level µ by time varying structures. Considering the
simplest case of just one time varying component χt in the place of µ, the dynamics is
given by

µt = χt + ξt (10)
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with ξt defined in (9) and, this time,

x
(ξ)
t = xt − χt x

(ξ−)
t = x

(−)
t − χt/2. (11)

Let us consider some possible choices for χt. In the presence of deterministic or prede-
termined variables (Ft−1 is extended to include other indicators, calendar variables, etc.
denoted as zt), we can write

χt = ω(χ) + δ′zt. (12)

A direct inclusion of the δ′zt term into the expression (7) of the conditional mean may
entail unwanted persistence effects, whereby a large value of δ′zt would increase µt,
driving the following values of the conditional mean. By contrast, expression (12) allows
for the distinct identification of the contribution of the past observations of xt (together
with asymmetric effects), keeping it separate from the predetermined variable(s), and
preserving also its mean-stationarity.

The second extension, inspired to Brownlees and Gallo (2010), is useful when the data
show a pattern evolving around some slow moving trend. In such a case, χt can be struc-
tured as a smooth spline function, say (omitting technical details) s(t). The methodology
introduced by Engle and Rangel (2008) in the GARCH context lends itself to capturing
an underlying average volatility that is not constant.

As an alternative to splines, but in the same vein as the Component GARCH model pro-
posed by Engle and Lee (1999) (see also Andersen et al. (2006, p.806)), we suggest here
a third type of specification, in which we specify the long run component as

χt = ω(χ) + β
(χ)
1 χt−1 + α

(χ)
1 x

(χ)
t−1, (13)

where
x

(χ)
t = xt − ξt. (14)

We can reparameterize the short and the long run dynamics of the model, respectively (9)
and (13), as

ξt = β∗1ξt−1 + α1vt−1 + γ1v
(−)
t−1

χt = ω(χ) + β
(χ)∗
1 χt−1 + α

(χ)
1 vt−1, (15)

where
vt = xt − µt v

(−)
t = x

(−)
t − µt/2. (16)

β∗1 = β1 + α1 + γ1/2 and β
(χ)∗
1 = β

(χ)
1 + α

(χ)
1 . This expression of the conditional

mean emphasizes the role of the innovations vt as the driving force behind µt, in both the
short and the long run components ξt and χt which can be interpreted as such only if we
identify the model (on the interchangeability of the two components, cf. Engle and Lee
(1999, p. 478)) by imposing

β∗1 < β
(χ)∗
1 . (17)

We name this model an Asymmetric Composite MEM2 with the possibility to constrain

2We prefer the term Composite, since the Component MEM is one in which the dynamics of the con-
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γ1 to be zero.

By following Lütkepohl (2005, Section 11.6), the conditional mean of such a model has
the MEM-like representation

µt = ω(µ) + β
(µ)
1 µt−1 + β

(µ)
2 µt−2

+ α
(µ)
1 xt−1 + α

(µ)
2 xt−2 + γ

(µ)
1 x

(−)
t−1 + γ

(µ)
2 x

(−)
t−2 (18)

where

ω(µ) = (1− β∗1)ω(χ) α
(µ)
1 = α1 + α

(χ)
1 γ

(µ)
1 = γ1

α
(µ)
2 = −(β∗1α

(χ)
1 + β

(χ)∗
1 α1) γ

(µ)
2 = −β(χ)∗

1 γ1

β
(µ)
1 = β∗1 + β

(χ)∗
1 − α(µ)

1 − γ
(µ)
1 /2 β

(µ)
2 = −β∗1β

(χ)∗
1 − α(µ)

2 − γ
(µ)
2 /2.

By means of (18), necessary and sufficient conditions for µt ≥ 0 can be expressed, by
following Nelson and Cao (1992, Section 2.2), as ω(µ) ≥ 0, α∗1 ≥ 0,

−1 ≤ β
(µ)
2 < 0, 2

√
−β(µ)

2 ≤ β
(µ)
1 < 1− β(µ)

2 , β
(µ)
1 α∗2 +

(
β

(µ)2
1 + β

(µ)
2

)
α∗1 ≥ 0

or
0 ≤ β

(µ)
2 < 1, 0 ≤ β

(µ)
1 < 1− β(µ)

2 , β
(µ)
1 α∗2 + α∗1 ≥ 0

where α∗l indicate both α(µ)
l and α(µ)

l + γ
(µ)
l , l = 1, 2.

Stationarity conditions can be obtained by adapting the Corollary 2.2 (and the subsequent
Remark) in Bougerol and Picard (1992): if all the coefficients into (18) are non-negative
and β(µ)∗

1 + β
(µ)∗
2 ≤ 1 (where β(µ)∗

l = β
(µ)
l + α

(µ)
l − γ

(µ)
l /2, l = 1, 2) then the Composite

MEM is strictly stationary. A better insight can be gained by rewriting such a condition
as
(

1− β(χ)
1

)
(1− β∗1) ≥ 0: we note immediately that the Composite MEM is strictly

stationary if β(χ)∗
1 , β∗1 ≤ 1. If β(χ)

1 , β(ξ)
1 < 1, then the process is also second order

stationary; otherwise if β(χ)∗
1 = 1 (remembering the identification condition (17)) then

the model is strictly stationary but not second order stationary. Note that conditions in
this discussion are weaker than in Engle and Lee (1999).

2.1.2 Specifications for εt

In principle, the conditional distribution of the error term εt can be specified by means
of any pdf having the characteristics in (3). Examples include Gamma, Log-Normal,
Weibull, Inverted-Gamma and mixtures of them. Engle and Gallo (2006) favor a Gam-
ma(φ, φ) (implying σ2 = 1/φ); Bauwens and Giot (2000), in an ACD framework, con-
sider a Weibull (Γ(1 + φ)−1, φ) (in this case, σ2 = Γ(1 + 2φ)/Γ(1 + φ)2 − 1). De Luca
and Gallo (2010) investigate (possibly time-varying) mixtures, while Lanne (2006) adopts

ditional mean originates from elements entering multiplicatively in the specification: cf. for example, the
MEM for intra–daily volume in Brownlees et al. (2011), discussed later in Section 4.
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mixtures and a conditional expectation specification with time varying parameters.

An alternative strategy, leading to a semiparametric specification of the model, is to leave
the distribution unspecified, excepts for the two conditional moments in (3).

2.2 Inference

2.2.1 Maximum Likelihood Inference

We describe Maximum Likelihood (ML) inference by assuming a MEM formulated as in
Section 2.1, where εt has a conditional pdf expressed in generic terms by fε(εt|Ft−1) (we
suppress the dependence on parameters).

Because of such assumptions, fx(xt|Ft−1) = fε(xt/µt|Ft−1)/µt so that the average log-
likelihood function is

lT = T−1

T∑
t=1

lt = T−1

T∑
t=1

[ln fε(εt|Ft−1) + ln εt − lnxt] ,

where εt = xt/µt. The portions relative to θ of the average score function, of the av-
erage outer product of gradients (OPG) and of the average Hessian are thus given by,
respectively,

sT = T−1

T∑
t=1

∇θlt = −T−1

T∑
t=1

(εtbt + 1)at, (19)

IT = T−1

T∑
t=1

∇θlt∇θ′lt = T−1

T∑
t=1

(εtbt + 1)2ata
′
t, (20)

HT = T−1

T∑
t=1

∇θθ′lt = T−1

T∑
t=1

[εt (bt + εt∇εtbt)ata
′
t − (εtbt + 1)∇θa

′
t] , (21)

where

at =
1

µt
∇θµt

bt = ∇εt ln fε(εt|Ft−1).

It is worth discussing the case when εt is taken to be conditionally distributed as Gam-
ma(φ, φ) (see Section 2.1.2). In such a case,

bt =
φ− 1

εt
− φ ⇒ εtbt + 1 = φ(1− εt), (22)

and
∇θlt = φ(εt − 1)at. (23)

7



Plugging this result into (19), (20) and (21), one obtains the corresponding expressions
for the three objects. In particular, the resulting average score

sT = φT−1

T∑
t=1

(εt − 1)at, (24)

leads to the first order condition

T∑
t=1

(εt − 1)at = 0. (25)

As a consequence, the solution θ̂(ML)
T does not depend on the dispersion parameter φ. This

result also allows for a computational trick based on the similarity between a MEM and a
GARCH model and the fact that any choice for φ leads to identical point estimates. Given
that µt is the conditional expectation of xt, its parameters can be estimated by specifying a
GARCH for the conditional second moment of

√
xt while imposing its conditional mean

to be zero. The wide availability of GARCH estimation routines (usually based on a
normal distribution assumption) made this shortcut fairly convenient at the early stage of
diffusion of MEMs: in fact, the point was raised by Engle and Russell (1998) for the case
of the exponential (φ = 1) in the context of ACDs, but was then shown by Engle and
Gallo (2006) to be valid for any other value φ.3

Moreover, under a correct specification of µt, (24) guarantees that the expected score is
zero even when the Gamma(φ, φ) is not the true distribution of the error term. Note also
that

E (∇θlt∇θ′lt) = E
(
φ2(εt − 1)2ata

′
t

)
= φ2σ2ata

′
t

and
E (∇θθ′lt) = E (−φεtata′t + φ(εt − 1)∇θat) = −φata′t

As per (20) and (21), (22) leads to the corresponding limiting expressions

I∞ = lim
T→∞

[
T−1

T∑
t=1

E (∇θlt∇θ′lt)

]
= φ2σ2A

H∞ = lim
T→∞

[
T−1

T∑
t=1

E (∇θθ′lt)

]
= −φA,

where

A = lim
T→∞

[
T−1

T∑
t=1

E (ata
′
t)

]
.

Correspondingly, the OPG, Hessian and Sandwich versions of the asymptotic variance

3However, the code for a direct estimation of the parameters assuming any conditional pdf for εt is fairly
easy to implement.
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matrix are, respectively,

AvarI(θ̂
(ML)
T ) = φ−2σ−2A−1

AvarH(θ̂
(ML)
T ) = φ−1A−1

AvarS(θ̂
(ML)
T ) = σ2A−1. (26)

Following the discussion above, the value of φ is irrelevant for point estimation; by the
same token, from an inferential point of view, taking φ as fixed (e.g. φ = 0.5 as in
GARCH routines) leads to three different versions of the asymptotic variance matrix, up
to a scale coefficient. Equivalence is ensured by taking φ = σ−2; hence, a consistent
estimator is

Âvar(θ̂
(ML)
T ) = σ̂2

T

[
T−1

T∑
t=1

âtâ
′
t

]−1

,

where σ̂2
T is a consistent estimator of σ2 and ât means at evaluated at θ̂(ML)

T .

As per σ2, in general its ML estimator depends on the way it is related to the natural
parameterization of fε(εt|Ft−1). Considering again the Gamma(φ, φ) case, the ML esti-
mator of φ solves

lnφ+ 1− ψ(φ) + T−1

T∑
t=1

[ln ε̂t − ε̂t] = 0,

where, ψ(·) denotes the digamma function and ε̂t indicates xt/µt when µt is evaluated at
θ̂

(ML)
T . This estimator, of course, is efficient if the true distribution is Gamma but it is

unfeasible if zeros are present in the data, given that ln εt = lnxt − lnµt.

2.2.2 Generalized Method of Moments Inference

A different way to estimate the model, which does not need an explicit choice of the error
term distribution, is to resort to Generalized Method of Moments (GMM). Let

ut =
xt
µt
− 1. (27)

Under model assumptions, ut is a conditionally homoskedastic martingale difference,
with conditional expectation zero and conditional variance σ2. As a consequence, let
us consider any (M, 1) vectorGt depending deterministically on the information set Ft−1

and writeGtut ≡ gt. We have

E(gt|Ft−1) = 0 ∀ t ⇒ E(gt) = 0,

by the law of iterated expectations. This establishes that Gt and ut are uncorrelated and
that gt is also a martingale difference. Gt satisfies the requirements to play the instrumen-
tal role in the GMM estimation of θ (Newey and McFadden (1994)): should it depend on
a nuisance parameter σ2, we can assume for the time being that σ2 is a known constant,
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postponing any further discussion about it to the end of this section.

If M = p, we have as many equations as the dimension of θ, and hence the moment
criterion is

gT = T−1

T∑
t=1

gt = 0. (28)

Under correct specification of µt and some regularity conditions, the GMM estimator
θ̂

(GMM)
T , obtained solving (28) for θ, is consistent (Wooldridge (1994, th. 7.1)). Further-

more, under additional regularity conditions, we have asymptotic normality of θ̂(GMM)
T ,

with asymptotic covariance matrix (Wooldridge (1994, th. 7.2))

Avar(θ̂
(GMM)
T ) = (S′V −1S)−1, (29)

where

S = lim
T→∞

[
T−1

T∑
t=1

E (∇θ′gt)

]
(30)

V = lim
T→∞

[
T−1V

(
T∑
t=1

gt

)]
= lim

T→∞

[
T−1

T∑
t=1

E (gtg
′
t)

]
. (31)

The last equality for V comes from the fact that the gt’s are serially uncorrelated given
that they are a martingale difference. Moreover, the same property allows one to exploit a
martingale Central Limit Theorem and hence to some simplifications in the assumptions
needed for asymptotic normality.

The martingale difference structure of ut leads to a simple formulation of the efficient
choice of the instrument Gt, i.e. having the ’smallest’ asymptotic variance within the
class of GMM estimators considered here. Such an efficient choice is

G∗t = −E(∇θut|Ft−1)E(u2
t |Ft−1)

−1. (32)

Inserting E (gtg
′
t) into (31) and E (∇θ′gt) into (30), we obtain

E (gtg
′
t) = −E (∇θ′gt) = σ2E (G∗tG

∗′
t ) ,

so that

V = −S = σ2 lim
T→∞

[
T−1

T∑
t=1

E (G∗tG
∗′
t )

]
(33)

and (29) specializes to

Avar(θ̂
(GMM)
T ) = (S′V −1S)−1 = −S−1 = V −1.

Considering the specific form of ut in this model (equation (27)), we have

∇θut = −(ut + 1)at,
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so that (32) becomes
G∗t = σ−2at.

Substituting it into gt = Gtut (and this, in turn, into (28)) and (33), we obtain that the
GMM estimator of θ solves the criterion equation (25) and has the asymptotic variance
matrix given in (26). In practice, the same properties of θ̂(ML)

T assuming Gamma dis-
tributed errors.

In the spirit of a semiparametric approach, a straightforward estimator for σ2 is

σ̂2
T = T−1

T∑
t=1

û2
t

where ût represents ut evaluated at θ̂(GMM)
T . Note that while this estimator does not

suffer from the presence of zeros in the data, the corresponding model is not capable of
predicting zero values. If such a property is needed, the model must be changed specifying
a distribution of the error term as a mixture of a point mass at zero and an absolutely
continuous component, following, for example, the suggestion of Hautsch et al. (2010).
In our volatility framework such a feature is irrelevant.

3 MEMs for realized volatility

We illustrate some features of a few MEM specifications by means of an application on
realized volatility, that is an ultra high frequency data based measure of daily return vari-
ability. The list of estimators proposed in the literature is quite extensive (among others
Andersen et al. (2003), Aı̈t-Sahalia et al. (2005), Bandi and Russell (2006), Barndorff-
Nielsen et al. (2008)). In this work we use realized kernels (Barndorff-Nielsen et al.
(2008)), a family of heteroskedastic and autocorrelation consistent (HAC) type estimators
robust to various forms of market microstructure frictions, known to contaminate high
frequency data. For the sake of space, we will not discuss the important but somewhat
intricate issues about data handling and the construction of the estimator (cf. Brownlees
and Gallo (2006) and Barndorff-Nielsen et al. (2009)).

Realized volatility measurement delivers a positive valued time series characterized by
empirical regularities of persistence and asymmetric behavior according to the sign of the
lagged return of the corresponding asset (cf. Andersen et al. (2001), among others, for
equities).

We analyze volatility dynamics of ten stocks (constituents of the DJ30, as of December
2008, for which data exist between January 2, 2001 and December 31, 2008 correspond-
ing to 1989 observations): BA (Boeing), CSCO (CISCO), DD (du Pont de Nemours),
IBM (International Business Machines), JPM (JP Morgan Chase), MCD (McDonald’s),
PFE (Pfizer), UTX (United Technologies), WMT (Wal-Mart Stores) and XOM (Exxon
Mobil). For illustration purposes we choose BA as a leading example, synthesizing the
results for the other tickers. We start by fitting the realized volatility series prior to the be-
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Figure 1: BA realized volatility expressed on a percent annualized scale. Jan. 2, 2001 to
Dec. 31, 2008 (out–of–sample period starting Jul. 2 2007 is shaded).

Ticker Mean St.dev. Kurt ρ1d ρ1w ρ1m

BA 28.82 13.42 5.80 0.81 0.71 0.58
CSCO 31.01 16.71 14.20 0.86 0.75 0.61
DD 26.53 11.54 7.93 0.79 0.70 0.50
IBM 22.14 11.39 9.02 0.86 0.77 0.63
JPM 30.20 20.98 11.23 0.86 0.76 0.64
MCD 28.35 14.06 6.69 0.72 0.60 0.51
PFE 25.21 12.08 8.96 0.74 0.62 0.52
UTX 25.59 10.76 10.29 0.76 0.63 0.48
WMT 24.37 12.63 5.93 0.86 0.78 0.67
XOM 22.25 10.05 9.01 0.80 0.73 0.54

Table 1: Realized volatility for 10 constituents of the DJ30 index. Descriptive statistics:
means, standard deviations, kurtosis, as well as autocorrelations at daily, weekly and
monthly levels.

ginning of the credit crunch period (January 2, 2001 to June 29, 2007, 1612 observations)
and we then perform a static out–of–sample forecasting exercise for the period between
July 2, 2007 and December 31, 2008 (377 observations).

The time series plot of BA realized volatility in Figure 1 shows the customary strong
persistence (the widely documented volatility clustering), alternating periods of great tur-
moil to others of great calm. We discern the steep surge in volatility following the 9/11
terrorist attacks, the crisis of confidence in 2002, the protracted period of low volatility
between 2003 and 2007, and the financial crisis starting in August 2007 peeking in March
2008 with the Bear Sterns demise and in September 2008 with the collapse of Lehman
Brothers.

Focusing for the moment on just the two top panels of Figure 2 (histogram and auto-
correlogram of the raw series), the unconditional realized volatility distribution exhibits
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Figure 2: BA realized volatility: Histogram and autocorrelogram of the raw data (top
level) and of the ACM residuals (bottom level).

a strong positive asymmetry slowly tapering off. Table 3 reports summary descriptive
statistics for the various tickers, with an average volatility ranging from 22.14 to 31.01, a
volatility of volatility typically around 12, and a varying degree of occurrence of extreme
values as indicated by the kurtosis. Interestingly, the inspection of the autocorrelations at
daily, weekly, and monthly levels reveals a common slowly decaying pattern.

We employ four different specifications for the conditional expected volatility: the (base-
line) MEM (M), the Asymmetric MEM (AM), the Composite MEM (CM) and the Asym-
metric Composite MEM (ACM). For each ticker and specification, the coefficients esti-
mated over the period January 2, 2001 to June 29, 2007 are reported on the left–hand side
of Table 2.

All coefficients are statistically significant at 5% (details not reported) except for the
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Ticker Model α1 γ1 β∗1 α
(χ)
1 β

(χ)∗
1 Q1d Q1w Q1m

BA M 0.301 0.982 0.046 0.070 0.257
AM 0.249 0.049 0.982 0.044 0.024 0.131
CM 0.215 0.802 0.1154 0.9957 0.733 0.926 0.975

ACM 0.151 0.100 0.830 0.1083 0.9957 0.489 0.864 0.947
CSCO M 0.433 0.970 0.005 0.000 0.000

AM 0.409 0.032 0.971 0.005 0.000 0.000
CM 0.324 0.674 0.1554 0.9917 0.864 0.103 0.509

ACM 0.302 0.044 0.682 0.1501 0.9917 0.941 0.099 0.514
DD M 0.306 0.972 0.100 0.040 0.098

AM 0.243 0.044 0.973 0.038 0.039 0.127
CM 0.193 0.765 0.1335 0.9917 0.676 0.953 0.574

ACM 0.186 0.073 0.868 0.0772 0.9948 0.240 0.532 0.347
IBM M 0.349 0.979 0.008 0.001 0.038

AM 0.285 0.059 0.980 0.010 0.000 0.011
CM 0.248 0.863 0.1235 0.9932 0.206 0.047 0.324

ACM 0.166 -0.032 0.380 0.2602 0.9864 0.980 0.420 0.525
JPM M 0.323 0.988 0.038 0.011 0.009

AM 0.278 0.049 0.988 0.058 0.004 0.004
CM 0.256 0.853 0.1001 0.9962 0.707 0.785 0.341

ACM 0.245 0.029 0.850 0.0947 0.9962 0.764 0.787 0.332
MCD M 0.213 0.990 0.001 0.000 0.001

AM 0.197 0.026 0.988 0.002 0.000 0.001
CM 0.191 0.642 0.0955 0.9967 0.880 0.871 0.937

ACM 0.164 0.045 0.644 0.0948 0.9968 0.913 0.879 0.934
PFE M 0.256 0.979 0.000 0.000 0.000

AM 0.252 0.004 0.979 0.000 0.000 0.000
CM 0.233 0.385 0.1376 0.9920 0.679 0.677 0.376

ACM 0.255 -0.043 0.376 0.1396 0.9920 0.722 0.697 0.383
UTX M 0.311 0.976 0.464 0.803 0.046

AM 0.261 0.053 0.978 0.497 0.838 0.028
CM 0.229 0.849 0.0900 0.9956 0.924 0.689 0.226

ACM 0.212 0.029 0.851 0.0880 0.9955 0.928 0.691 0.219
WMT M 0.272 0.984 0.008 0.021 0.037

AM 0.256 0.037 0.984 0.024 0.041 0.028
CM 0.206 0.814 0.0978 0.9947 0.369 0.382 0.575

ACM 0.205 0.003 0.815 0.0976 0.9947 0.364 0.380 0.574
XOM M 0.281 0.978 0.134 0.475 0.286

AM 0.237 0.052 0.974 0.362 0.651 0.435
CM 0.200 0.930 0.0909 0.9940 0.306 0.439 0.376

ACM 0.109 0.118 0.922 0.1064 0.9912 0.264 0.424 0.364

Table 2: Estimation results for the four models analyzed: the (baseline) MEM (M), the
Asymmetric MEM (AM), the Composite MEM (CM) and the Asymmetric Composite
MEM (ACM). Coefficient estimates reported on the left–hand side (first five columns);
Ljung-Box statistics at lag 1, 5 and 22 on the right–hand side. In–sample period: January
2, 2001 to June 29, 2007.
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Figure 3: Panels on estimated components from the Asymmetric Composite MEM for BA
(from top to bottom): overall conditional expectation; permanent component; transitory
component; multiplicative residuals. Jan. 2, 2001 to Dec. 31, 2008.

asymmetric effect, for which there is a difference between the MEM and its Compos-
ite version: γ1 is almost always significant in the AM (PFE is the only exception), but it
is usually not significant in the ACM (for which only BA and XOM are have a signifi-
cant γ1). We may notice that the estimated coefficient values by specification are within
a fairly narrow range providing evidence that volatility dynamics have a certain degree
of homogeneity (see, among others, Bauwens and Rombouts (2007), Shephard and Shep-
pard (2010), Pakel et al. (2010), Barigozzi et al. (2010) and Brownlees (2010)). The
baseline MEM exhibits a β∗1 very close to one, showing a high degree of persistence, and
an α1 coefficient usually between 0.25 and 0.30, which makes the dynamics more reactive
to past realizations of the process than what is typically implied by past squared returns
in a GARCH framework (cf. Shephard and Sheppard (2010)). Similar comments hold for
the AM estimates where the asymmetric effects have an impact on the corresponding α1’s
(which become smaller), while not changing the persistence parameter β∗1 . The Compos-
ite MEM enriches the specification in the direction of allowing us to confirm that the long
run component has a high degree of persistence (β(χ)∗

1 is close to unity) which is coherent
with its slow moving underlying pattern. The short run component provides a very varied
asset–specific response in the dynamics and, in particular, in the persistence β∗1 (which is
lower than the other one as required by the identification condition 17). Finally, in view
of the generalized non significance of the asymmetric effects, the Asymmetric Composite
MEM does not seem to add much to the CM.

Figure 3 illustrates the features of the Asymmetric Composite MEM in producing the two
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components, and the size of the multiplicative residual for the BA ticker (for which asym-
metry is significant): the overall estimated conditional expectation reproduced in the top
panel is split between the permanent component (2nd panel) and the transitory compo-
nent (3rd panel); the estimated multiplicative residuals are added in the bottom panel. We
can notice that the most important events (e.g. 9/11 in 2001, the WorldCom scandal in
mid 2002, Bear Sterns’ demise in March 2008 and Lehman Brothers’ bankruptcy in Sep.
2008) are well recognizable in all panels being captured by the expected volatility divided
between a sudden change in the permanent component, some turbulence in the temporary
component and relatively high values of the residuals.

The right part of Table 2 reports the p–values associated with the 1 day, 1 week and 1
month Ljung–Box test statistics for each ticker and specification. Only for UTX and
XOM are the test statistics non significant across specifications. For all the others, au-
tocorrelation is a problem for the base specifications and is not solved by considering
asymmetric effects. By contrast, the empirical significance levels are very high for the
Composite MEMs (a typical correlogram for such a class is the one reported in the bot-
tom right panel of Figure 2, next to a typical residual histogram – bottom left – which
shows a reduction in asymmetry relative to the raw data).

It is interesting to note that the consideration of a Composite specification solves the
autocorrelation problem revealed in the base specification while, at the same time, it be-
littles the evidence about the presence of asymmetric effects in the short run dynamics.
Thus, taking the absence of autocorrelation as a lead into an improved specification, the
Composite MEM would come out as the favored model. Our model provides yet another
plausible ‘short–memory’ process capable of reproducing the ‘long–memory’ empirical
features in the realized volatility data: for log–volatility, see Corsi (2009) who exploits
dynamic components moving at different speeds as an alternative to the ARFIMA mod-
eling of Giot and Laurent (2004).4 Moreover, whether asymmetric effects are relevant or
not in this context, becomes an empirical question (in our case, in seven out of nine tickers
we lose relevance, for PFE it is never relevant). For the BA ticker, the bottom panel of
Figure 3 allows for the appreciation of the uncorrelatedness of the residuals as providing
no information on the volatility dynamics.

This strong result based on statistical significance is mitigated by the outcome of an out of
sample static forecasting exercise of realized volatility between July 2007 and December
2008. For each day we compute the predicted realized volatility for the next period using
data up to the current observation and the in–sample parameter estimates. We choose the
Quasi Loglikelihood loss function, defined as

QL =
1

T ∗

T+T ∗∑
t=T+1

(
xt
µ̂t
− ln

xt
µ̂t

)
− 1,

for its appealing theoretical properties (see Hansen and Lunde (2005), Patton (2010)). In
fact, it is a consistent loss function for ranking volatility models: as T ∗ grows, the model
ranking based on the volatility proxy xt approximates well the one based on the actual

4For a comparison between the Component GARCH and the FIGARCH models having similar decay
of the volatility shocks see Andersen et al. (2006, p.807).
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Ticker M CM ACM
BA 3.27 5.07 -0.61
CSCO 1.91 3.67 1.63
DD 0.62 3.82 -0.43
IBM 4.61 6.46 7.38
JPM 4.07 3.74 0.53
MCD 1.24 8.06 7.60
PFE 0.24 0.90 3.66
UTX 6.16 8.91 4.74
WMT 2.64 6.06 5.81
XOM 1.18 1.33 -0.06

Table 3: Static forecasting results: July 2007 to December 2008. The table reports the
percentage difference in QL loss against the AM model (equation 34).

unobserved volatility. It reaches the value 0 when all forecasts coincide with the observed
values and it is greater otherwise. Furthermore, the QL loss function is a natural choice
in the MEM framework in that it is related to the out–of–sample log–likelihood function
under the assumption of Gamma disturbances. It turns out that the QL values for each
model are fairly similar to one another, with the AM model corresponding to the lowest
value in seven out of ten cases and the ACM model in the remaining three. To appreciate
the differences for comparison purposes, Table 3 shows a relative index constructed as
follows (

QLm
QLAM

− 1

)
× 100 m = M,CM,ACM. (34)

The table indicates that the gains from the Composite model are of little relevance, while
the gains from the AM are more substantial. Thus, judging upon these results, in choosing
a single best model in forecasting, that model should be the AM model. Not surprisingly,
in the crisis period the role of asymmetries becomes crucial for forecasting: in all cases
the best performing model contains an asymmetric component. On the other hand, even
if the Composite specifications appear to improve significantly in–sample fit, in the crisis
period they improve performance only in three cases (only marginally so). This result
is also in line with the findings (Brownlees et al. (2010)) that the TGARCH model is
the best performing specification in forecasting among several GARCH alternatives. The
appealing features reported in the two mid–panels of Figure 3 make the Composite model
one in which some additional insights on the evolution of the dynamics are possible.

4 MEM Extensions

4.1 Component Multiplicative Error Model

The Component MEM, proposed by Brownlees et al. (2011), is an interesting representa-
tion of the model illustrated in Section 2.1. Built to reproduce the dynamics of (regularly

17



spaced) intra-daily volumes, the Component MEM is motivated by the salient stylized
facts of such series: a clustering of daily averages, clear evidence that the overall series
moves around a daily dynamic component; a regular U-shaped intra-daily pattern which
emerges once daily averages are removed; and, yet, a distinctive non periodic intra-daily
dynamics. The same framework can be adopted in all other contexts (volatility, number of
trades, average durations) where data aggregated by intra-daily bins show some periodic
features together with overall dynamics having components at different frequencies.

According to such empirical evidence, a Component MEM for xt,i (where t ∈ {1, . . . , T}
indicates the day and i ∈ {1, . . . , I} denotes one of the I equally spaced time bins be-
tween market opening and closing times) is thus given by

xt,i = ηt φi µt,i εt,i,

where: ηt is a daily component; φi is an intra-daily periodic component, aimed at repro-
ducing the time–of–day pattern; µt,i is an intra-daily dynamic (non-periodic) component;
again, εt,i is a non-negative disturbance term assumed i.i.d. and, conditionally on the rel-
evant information set Ft,i−1, with mean 1 and constant variance σ2. More specifically, the
components entering in the conditional mean E (xt,i|Ft,i−1) = ηt φi µt,i can be structured
according to the following, relatively simple, specifications.

The daily component is specified as

ηt = ω(η) + β
(η)
1 ηt−1 + α

(η)
1 x

(η)
t−1 + γ

(η)
1 x

(η−)
t−1 (35)

where

x
(η)
t =

1

I

I∑
i=1

xt,i
φi, µt,i

, (36)

is the standardized daily volume, that is the daily average of the intra-daily volumes nor-
malized by the intra-daily components φi and µt,i, and x(η−)

t ≡ x
(η)
t I(rt,. < 0) (where rt,.

is the total return in day t) is a term built to capture the asymmetric effect.

The intra-daily dynamic component is formulated as

µt,i = ω(µ) + β
(µ)
1 µt,i−1 + α

(µ)
1 x

(µ)
t,i−1 + γ

(µ)
1 x

(µ−)
t,i−1 (37)

where
x

(µ)
t,i =

xt,i
ηt, φi

(38)

is the standardized intra-daily volume and x(µ−)
t,i ≡ x

(µ)
t,i I(rt,i < 0) (where rt,i is the return

at bin i of day t) is the corresponding asymmetric term. µt,i is constrained to have un-
conditional expectation equal to 1 in order to make the model identifiable, allowing us to
interpret it as a pure intra-daily dynamic component. If rt,i is assumed conditionally un-
correlated with xt,i and to have zero conditional mean (cf. Section2.1.1), such a constraint
implies ω(µ) = 1− (β

(µ)
1 + α

(µ)
1 + γ

(µ)
1 /2).

In synthesis, the system nests the daily and the intra-daily dynamic components by al-
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ternating the update of the former (from ηt−1 to ηt) and of the latter (from µt−1,I = µt,0
to µt,I): the time-varying ηt adjusts the mean level of the series, whereas the intra-daily
component φi µt,i captures bin–specific (periodic, respectively non–periodic) departures
from such an average level.

Finally, the intra-daily periodic component φi can be specified in various ways. In Brown-
lees et al. (2011) a Fourier (sine/cosine) representation (whose details are omitted here for
the sake of space) is supported.

Parameter estimation of the Component MEM can be done via ML or GMM, along the
lines outlined in Section 2.2. In Brownlees et al. (2011) the GMM approach is discussed
in detail.

There are two major differences in the Component MEM relative to the model defined in
Section 2.1 above. The first is general: several components, each with a different mean-
ing, are combined together multiplicatively, rather than additively as in the Composite
MEM. The second aspect is related to the specific analysis of intra–daily data: when mar-
kets close, the data are not equally spaced (the time lag between two contiguous bins of
the same day is different from the lag occurring between the first bin of a day and the
last one of the previous day). As a consequence, some adjustments may be needed in the
formulation of the dynamic component for the first daily bin (see Brownlees et al. (2011)
for details).

4.2 Vector Multiplicative Error Model

There are many instances in which the joint consideration of several non–negative pro-
cesses is of interest. For example, different measures (realized volatility, daily range,
absolute returns) summarize information on return volatility but no individual one ap-
pears to be a sufficient measure (i.e. depending solely on its own past). Analyzing their
joint dynamics may thus be of interest.

A second example concerns the dynamic interactions among volatilities in different mar-
kets (evaluated by means of a proxy, e.g. the daily range of the market indices) for ana-
lyzing the transmission mechanisms (spillovers, contagion) across markets (Engle et al.
(2011)).

A third example involves order-driven markets, in which there is a tradeoff between the
potential payoff of placing orders at a better price, against the risk of these orders not
executing. Therefore it is relevant to investigate the dynamics of the quantity of stock to
be executed at a given distance from the current price in itself, but also in the interaction
with one another at different distances. In this framework, zeros are relevant because there
are times when the quantity which could be executed at a certain distance from current
price can be zero. Forecasts can be used for a trading strategy (Noss (2007)).

In a ultra-high frequency framework, the market activity is evaluated by different indica-
tors, like the time elapsed since the last trade, the (possibly signed) volume and the return
associated with the trade. A model for the dynamic interrelationship between such vari-
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ables can reveal the speed (in market and calendar time) at which private information is
incorporated into prices (cf. Manganelli (2005), Hautsch (2008)).

The MEM as defined in Section 4.2 can be extended to handle these situations (cf. Cipollini
et al. (2007) and Cipollini et al. (2009)). Let {xt} be the corresponding K–dimensional
process with non–negative elements5. Paralleling (1)-(2)-(3), {xt} follows a vector MEM
(or vMEM for shortly) if it can be expressed as

xt = µt � εt = diag(µt)εt,

where � indicates the Hadamard (element–by–element) product and diag(·) denotes a
diagonal matrix with the vector in the argument on the main diagonal. Conditionally on
the information set Ft−1, µt can be defined as

µt = µ(Ft−1;θ),

except that now we are dealing with a K– dimensional vector depending on a (larger)
vector of parameters θ. The innovation vector εt is a K–dimensional random variable
defined over a [0,+∞)K support, with unit vector 1 as its expectation and a general
variance–covariance matrix Σ,

εt|Ft−1 ∼ D+
K(1,Σ). (39)

From the previous conditions we have

E(xt|Ft−1) = µt

V (xt|Ft−1) = µtµ
′
t �Σ = diag(µt)Σ diag(µt),

where the latter is a positive definite matrix by construction (cf. the parallel equations (4)
and (5) in the univariate case).

As far as the conditional mean is concerned, the generalization of (7) becomes

µt = ω + β1µt−1 +α1xt−1 + γ1x
(−)
t−1.

Among the parameters (whose nonzero elements are arranged in the vector θ) ω has di-
mension (K, 1), whereas α1, γ1 and β1 have dimension (K,K). As above, the term
γ1x

(−)
t−1 aims to capture asymmetric effects associated with the sign of an observed vari-

able. For example, when different volatility indicators of the same asset are considered,
such an indicator assumes value one when its previous day’s return rt−1 is negative. In
a market volatility spillover study, each market i would have its own indicator function
built from the sign of its own returns rt−1,i. Finally, in a microstructure context, we can
think of assigning positive or negative values to volumes according to whether the trade
was a buy or a sell.

5In what follows we will adopt the following conventions: if x is a vector or a matrix and a is a scalar,
then the expressions x ≥ 0 and xa are meant element by element; if x1, . . . ,xK are (m, n) matrices then
(x1; . . . ;xK) means the (mK, n) matrix obtained stacking the matrices xi’s columnwise.
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As for the error term εt, a completely parametric formulation of the vMEM requires
a full specification of its conditional distribution: Ahoniemi and Lanne (2009) adopt a
bivariate Gamma (and mixtures) for call and put volatilities. In Cipollini et al. (2007)
marginals for the components εt,i satisfying the unit mean constraint are linked together
using copulas. Relying on the considerations of Section 2.2.1, a reasonable choice is
to take Gamma(φi, φi) (i = 1, . . . , K) marginals whereas, for what concerns copulas,
the Normal or Student’s t represent rather flexible choices. Alternatively, Cipollini et al.
(2009) suggest a semiparametric formulation relying on the first two moments in (39).
In such a case, the estimation can be done via GMM along the lines illustrated in section
2.2.2. The resulting estimator generalizes the one obtained in the univariate case (equation
(25)), in the sense of solving the criterion equation

T∑
t=1

atΣ
−1(εt − 1) = 0 (40)

and having the asymptotic variance matrix

Avar(θ̂
(GMM)
T ) =

[
lim
T→∞

T−1

T∑
t=1

E
[
atΣ

−1a′t
]]−1

,

where
εt = xt � µt − 1

(� denotes the element by element division) and

at = ∇θµ
′
t diag(µt)

−1.

The main differences with respect to the univariate case are the dependence of the criterion
equation (40) on Σ and the fact that the same equation cannot be derived as a score
function based on a known parametric distribution of the error term.

As a possible extension to univariate volatility modeling (cf. Section 3), we can analyze
the joint dynamics of different measures within the vMEM framework. For example,
let us consider absolute returns (|rt|) and realized kernel volatility (rvt), so that xt =
(xt,1;xt,2) = (|rt|; rvt) has conditional mean given by(

µt,1
µt,2

)
=

(
ω1

ω2

)
+

(
α1,1 α1,2

α2,1 α2,2

)(
xt−1,1

xt−1,2

)
+

(
β1,1 β1,2

β2,1 β2,2

)(
µt−1,1

µt−1,2

)
,

where asymmetric effects are not included for the sake of space. This equation shows
that the vMEM encompasses the GARCH model, when α1,2 = β1,2 = 0; the GARCH-X
model of Engle (2002), when β1,2 = 0; the HEAVY model of Shephard and Sheppard
(2010), when α1,1 = α2,1 = β1,2 = β2,1 = 0. A vMEM formulation is thus preferable:
substantial efficiency may be gained from the joint estimation of the equations (given
the high contemporaneous correlation of errors) and from modeling the possible dynamic
interdependence related to a non diagonal β; more specific models will result if testable
restrictions are satisfied.
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Other approaches for non negative joint processes are present in the literature. Manganelli
(2005) proposes a model for durations, volumes and volatility which rests on factoring the
conditional distribution

f(xt|Ft−1) = f(xt,1|Ft−1)f(xt,2|xt,1,Ft−1) . . . f(xt,K |xt,1, . . . , xt,K−1,Ft−1).

Assuming uncorrelated errors, each factor can be formulated as a univariate MEM, but is
driven by contemporaneous information as well. Hautsch (2008) adopts a similar strategy
for modeling the intra–day dynamics of volatility, average volume per trade and number of
trades evaluated at equally spaced time intervals; in comparison with Manganelli (2005),
the essential difference lies in the dependence of the univariate conditional distributions
on a common latent component (assumed to represent the information flow). Hansen
et al. (2010) propose the Realized-GARCH model, where the unobservable conditional
variance of returns is assumed to be driven just by the realized variance as in the HEAVY
model. Since such a quantity is considered a noisy measure of the true latent variance, it
ends up being indirectly dependent on the contemporaneous return as well.

A drawback from vMEMs is that the number of parameters tends to increase very rapidly
with K, a fact which could potentially hinder the application domain. One possible so-
lution is to resort to model selection techniques to isolate the elements of the coefficient
matrices which could be zero (off-diagonal or γ1 elements, in particular). In Cipollini
and Gallo (2010) an automated general to specific selection procedure is proposed and
investigated. Another solution is the one investigated by Barigozzi et al. (2010) for a vec-
tor of volatilities where each series follows univariate MEM dynamics around a common
(systematic) component (estimated nonparametrically).

5 Concluding Remarks

In this Chapter we have presented the main theoretical features of a class of models, called
Multiplicative Error Models, which are particularly suitable to represent the dynamics of
non–negative financial time series observed at daily or intra–daily frequency. The main
advantages are a direct modeling of the persistence in the conditional mean, without re-
sorting to logarithmic transformations which could be unfeasible in the presence of zeros
or introduce numerical problems, and the possibility of forecasting the variable of inter-
est directly. In a univariate context, several components evolving at different speeds can
be considered (e.g. long– versus short–run, or daily versus intra–daily components): in
most cases estimation proceeds in a fairly straightforward manner, either via a Maximum
Likelihood or a Generalized Method of Moments approach. Multivariate specifications
are possible, including those where some (factor–like) common features in the data can
be exploited, allowing for full dynamic interdependence across several variables.

The application run for illustration purposes shows that an asymmetric specification is
well suited in one-step ahead forecasting of volatility even if more sophisticated repre-
sentations allow to better capture the dependence structure in the data.
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