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SUMMARY

We consider a new approach to identify the causal effects of a binary treatment when the out-
come is missing on a subset of units and dependence of nonresponse on the outcome cannot be
ruled out even after conditioning on observed covariates. We provide sufficient conditions un-
der which the availability of a binary instrument for nonresponse allows us to partially identify
causal effects in some latent subgroups of units, defined by their nonresponse behavior in all pos-
sible combinations of treatment and instrument, named Principal Strata. Examples are provided
as possible scenarios where our assumptions may be plausible; they are used to discuss the key
role of the instrument for nonresponse in identifying average causal effects in presence of non-
ignorable missing outcomes and provide new guidelines on study designs for causal inference.

Some key words: Bounds; Causal Inference; Missing Outcomes; Principal Stratification; Instrumental Variables.

1. INTRODUCTION

In the potential outcome approach to causal inference (Rubin, 1974, 1978), a causal inference
problem is viewed as a problem of missing data, where the assignment mechanism is explicitly
posed as a process for revealing the observed data. The assumptions on the assignment mech-
anism are crucial for identifying and deriving methods to estimate causal effects. A commonly
invoked identifying assumption is unconfoundedness (Rosenbaum & Rubin D.B., 1983), which
usually holds by design in randomized experiments. However, even under such assumption, in-
ference on causal effects may be invalidated due to the presence of post-treatment complications,
such as noncompliance (Angrist et al., 1996), censoring due to death (Rubin, 1998; Lee, 2009;
Zhang et al., 2009) and missing outcome values (Frangakis & Rubin, 1999). Here, we focus
on identifying causal effects in the presence of missing outcome values, primarily due to nonre-
sponse. Because nonresponse occurs after treatment assignment, respondents are not comparable
by treatment status: the observed and unobserved characteristics of respondents in each treatment
group are likely to differ and may be associated with the values of the missing outcome, making
the missing mechanism nonignorable (e.g., Little & Rubin, 2002).

Outcome missingness is a pervasive problem in empirical studies, characterizing most of the
longitudinal surveys and medical and social experiments with follow-ups1. Often analysts use
1 Just to give a couple of examples, in the Tennessee Student/Teacher achievement ratio study (STAR) of 1985 the percentage

of missing in reading and math scores ranged between 30% and 50% (Krueger, 1999); while in the National Job Corps Study

1
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ad hoc procedures to handle missing data, such as dropping cases with missing observations, or
sample mean substitution, which lead to valid inferences only under strong ignorability assump-
tions of the missing mechanism (Little & Rubin, 2002; Rubin, 1976).

A relatively recent approach to deal with post-treatment complications within the potential
outcome approach is principal stratification, introduced by Frangakis & Rubin (2002). Princi-
pal stratification can be viewed as having its roots in the instrumental variables method: the
approach to adjust for noncompliance applied in Angrist et al. (1996) is a special case of princi-
pal stratification, where the compliers are a principal stratum with respect to the post-treatment
compliance behavior. In recent years, various identification strategies, leading to either partially
or point identify the causal estimands of interest, and several applications for the concepts of
principal stratification have been developed (e.g., Cheng et al. (2009); Frangakis et al. (2007);
Imai (2008); Lee (2009); Zhang & Rubin (2003); Zhang et al. (2009))

In this paper, we apply principal stratification in order to develop a novel approach to deal
with nonignorable missing outcome values without imposing any restriction on treatment effect
heterogeneity. We rely on the presence of a binary instrument for nonresponse and provide new
sufficient conditions for partial identification of causal effects for subsets of units (unions of
principal strata) defined by their nonresponse behavior in all possible combinations of treatment
and instrument values. The framework allows us to clarify and discuss substantive behavioral
assumptions, which may differ from those required by other approaches.

The paper is organized as follows: in Section 2 principal stratification is presented and identi-
fication issues with missing outcome values are briefly described. Section 3 introduces a binary
instrument for nonresponse; alternative sets of assumptions are proposed, which allow one to
either partially or point identify causal estimands for specific subpopulations of units. Some
examples are used to characterize these latent groups and related causal estimands. Section 4
provides some discussion and concludes.

2. PRINCIPAL STRATIFICATION AND ITS ROLE FOR CAUSAL INFERENCE

Principal stratification was first introduced by Frangakis & Rubin (2002), in order to address
post-treatment complications, i.e., events which cannot be ignored when inferring on causal
effects, and require adjusting for them, although conditioning on their observed values (e.g.,
including them in a regression model) may lead to estimating parameters which are not, in
general, causal effects. We first introduce potential outcomes for one post-treatment variable,
Y , and a binary treatment, T . If unit i in the study (i = 1, . . . , N ) is assigned to treatment
Ti = t (t = 1 for treatment and t = 0 for no treatment), we denote with Yi(Ti = 1) = Yi(1)
and Yi(Ti = 0) = Yi(0) the two potential outcomes, either of which can be observed depending
on the value taken by T . A causal effect of T on Y is defined, on a single unit, as a comparison
between Yi(1) and Yi(0). The fact that only two potential outcomes for each unit are defined
reflects the acceptance of the stable unit treatment value assumption (SUTVA; Rubin, 1980)
that there is no interference between units and that both levels of the treatment define a single
outcome for each unit. We also denote with Si(t) the post-treatment potential variable, which
represents a response indicator for Yi(t): the observation of Yi(t) is missing if Si(t) = 0. To
simplify the notation, we will drop the i subscript in the sequel.

Throughout the paper, we will maintain the assumption that treatment assignment is uncon-
founded given a vector X of observed pre-treatment variables and that in infinite samples treated
and controls can be compared for all values of X (overlap):

(Burghardt et al., 2001) missing rate due to attrition on post-treatment occupational status varied between 12% and 30% depend-
ing on the time from the initial treatment assignment.
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ASSUMPTION 1. (Strong ignorability - Rosenbaum & Rubin, 1983)

T⊥⊥S(0), S(1), Y (0), Y (1) | X and 0 < P (T = 1 | X) < 1.

Strong ignorability amounts to assuming that, within cells defined by the values of pre-treatment
variables X , the treatment is randomly assigned or, at least, is assigned independently of the
relevant post-treatment variables. We define

Sobs = TS(1) + (1− T )S(0) and Yobs =

{
TY (1) + (1− T )Y (0) (Sobs = 1),
missing (Sobs = 0).

Strong ignorability guarantees that the comparison of treated and control units with the same
value of X leads to valid inference on causal effects. In general, though, we cannot compare
treated with controls conditional on the observed value of S, Sobs (i.e., respondent treated with
respondent control units), because these two groups are obtained by conditioning on different
variables for units under treatment and under control, S(1) and S(0), respectively.

Consider now the potential response indicators S(0) and S(1). Within each cell defined by
values of the covariates, units under study can be stratified into four latent groups, named Princi-
pal Strata, according to the joint values (S(0), S(1)): stratum 11 : S(1) = S(0) = 1 comprises
those who would respond under treatment and under control; stratum 10 : S(1) = 1, S(0) = 0
comprises those who would respond under treatment but not under control; stratum 01 : S(1) =
0, S(0) = 1 comprises those who would not respond under treatment but would respond under
control; and stratum 00 : S(1) = S(0) = 0 comprises those who would never respond regardless
of treatment assignment.

This stratification of units corresponds to the basic principal stratification, as defined in Fran-
gakis & Rubin (2002). More generally, a principal stratification with respect to the post-treatment
variable S is a partition of the units, whose sets are unions of sets in the basic principal strat-
ification. The principal stratum membership, G = {11, 10, 01, 00}, is not affected by treatment
assignment by definition, so it only reflects characteristics of subjects, and can be regarded as a
covariate, which is only partially observed in the sample (Angrist et al., 1996).

Assumption 1 implies the following: (a) S(0), S(1)⊥⊥T | X , so that G is guaranteed to have
the same distribution in both treatment arms, within cells defined by pre-treatment variables;
(b) Y (0), Y (1)⊥⊥T | S(0), S(1), X , so that potential outcomes are independent of the treatment
given the principal strata. While it is in general improper to condition on Sobs, treated and control
units can instead be compared conditional on a principal stratum, (S(0), S(1)); (c) Y (0), Y (1)
⊥⊥ T, Sobs | S(0), S(1), X , so that, conditional on a principal stratum, comparison of respondent
treated and respondent controls leads to valid inference on causal effects.

Note that, although causal effects of the treatment are well defined for the whole population,
and thus for all latent groups, only in stratum 11 we can observe Y (1) for some respondent units
under treatment and Y (0) for some other respondent units under control. On the contrary, in the
other three strata we can observe the outcome only for respondents in at most one of the two
treatment arms. What makes stratum 11 interesting is the fact that only in this stratum can we
hope to learn something about the causal effect, even if it may not be an interesting stratum per
se. This is a different case from noncompliance with treatment assignment or censoring due to
death, such as, for instance, censoring of quality of life due to death, which can also be regarded
as special cases of principal stratification. In this setting, causal effects are well defined only for
specific subgroups of units which may be relevant subpopulations. For example, the group of the
always survivors is the only group for which the treatment effect on quality of life is well defined,
quality of life being well defined only for units who are still alive (Rubin, 1998). Although
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conceptually a different problem, the identification issues in estimating the effect for the stratum
of the always respondents are analogous to those related to the identification of the treatment
effect on the always survivors. Zhang et al. (2009) and Mealli & Pacini (2008) point identify
the effect on the always survivors and the always respondent respectively, but using additional
distributional assumptions. Zhang & Rubin (2003), Lee (2009), and Imai (2008) derive large
sample bounds for the effect on the always survivors, but without using instruments.

Some of the assumptions that may be invoked to deal with nonresponse essentially assume that
nonresponse is ignorable. The missing completely at random (MCAR) assumption states that the
response probability is constant across units, thus allowing one to ignore nonresponse and use
only the sample of respondents. This assumption can be tested and is usually rejected by the data.
A weaker assumption is missing at random (MAR), that is, independence between the missing
data mechanism and the outcome of interest, after conditioning on observed variables. MAR
allows the probability of nonresponse to depend on observed but not on unobserved values, thus
assuming that missing values carry no information about the probability of missingness. Unlike
MCAR, MAR is not testable without auxiliary information. Both assumptions describe ignorable
missing data mechanisms (Little & Rubin, 2002)2, which are convenient because they allow us
to avoid an explicit probability model for nonresponse. If the response probability depends on
both observable and unobserved characteristics, then nonresponse is nonignorable.

In the econometric literature alternative ways to deal with nonresponse include instrumental
variable assumptions (e.g., Manski (2003)). Plausible instrumental variables for nonresponse
can be found relatively easily (unlike finding instruments for other intermediate variables): data
collection characteristics, for example, are likely to affect the response probability but not the
outcome values. Characteristics of the interviewer (e.g., gender), interview mode, length and
design of the questionnaire can be convincing instruments for nonresponse (see, for example,
Fumagalli et al. (2010); Lepkowski & Couper (2002); Nicoletti & Peracchi (2005); Nicoletti
(2010); Schräpler (2004)).

We use a binary instrument for nonresponse in a causal inference framework; in this context
complications arise because we have to deal simultaneously with the nonresponse behavior under
treatment and under control. Recently, Chen et al. (2009) have addressed the problem of identify-
ing causal effects in randomized experiments with noncompliance and completely nonignorable
missing data, using principal stratification only to represent noncompliance, and proposing al-
ternative nonignorable missing data models, under which the complier average causal effect is
identifiable. Although similar, the setting and the framework we consider are different. First, we
focus on the problem of missing outcomes, by proposing a new approach to handle missing-
ness, which can be applied both in randomized experiment where compliance is perfect and in
observational studies, both suffering from missing outcome data. Second, we account for nonig-
norability of the missing data mechanism by defining principal strata according to the joint values
of the potential response indicators in all possible combinations of treatment and instrument for
nonresponse.

2 Ignorability requires that, in addition to MAR, the parameters of a MAR missing data process be distinct from those of the data
distribution.
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3. IDENTIFYING CAUSAL EFFECT WITH NONIGNORABLE NONRESPONSE ON THE
OUTCOME AND AN INSTRUMENTAL VARIABLE

3·1. Principal stratification with a binary treatment and a binary instrument for nonresponse
We assume that the distributions that are asymptotically revealed by the sampling process

are known, or can be consistently estimated, thereby not taking account of specific statistical
inference problems related to estimation in finite samples.

In addition to treatment T , whose causal effect on Y is still our primary interest, suppose that
units are exposed to an additional treatment Z which is related to nonresponse S but unrelated to
the outcome Y . Consider the following three simplified examples, as potential empirical scenar-
ios which allow us to informally introduce and later discuss some of the identifying assumptions.

Example 1. Consider a randomized trial to assess the effects of a campaign for AIDS preven-
tion. Let T be a binary treatment which represents the offer of free condoms. T is randomly
assigned to a group of individuals at high risk of HIV infection. The post-assignment HIV in-
fection status Y may be missing due to refusal of some patients to participate in the HIV-test;
presumably non-participants are more likely to be HIV-positive than individuals who take the
test3. The identity of nurses, Z, can be reasonably used as an instrument for nonresponse if (a)
the propensity to take the HIV test varies with the nurses; (b) nurses, whose identity cannot affect
the result of the test (HIV infection status), are randomly assigned to patients.

Example 2. Consider a social experiment to assess the effects of a training program on em-
ployment. Let T be a binary treatment which represents the offer to enroll in the program. T is
randomly assigned to a group of target disadvantaged individuals. The post-assignment employ-
ment status Y may be missing due to refusal to respond to the follow-up interview. Presumably
nonresponse is related with the employment status, e.g., unemployed individuals, especially if
trained, may be less likely to declare their occupational status. Due to budget constraints, some
questionnaires are administered by a phone interview, while some others with a direct interview.
The mode of interview, Z, can be reasonably used as an instrument for nonresponse if (a) the
propensity to respond on the employment status varies with the mode; (b) the mode of interview,
which cannot affect the employment status, is randomly assigned to participants.

Example 3. Consider an observational study concerning the evaluation of firms’ subsidies.
Let T be a binary treatment which represents public financial assistance to firms. T is assumed
strongly ignorable given a vector of pre-treatment covariate X . The outcome variable of interest
is sales, Y ; post-treatment questionnaires are administered via phone interviews. Not all inter-
viewed firms respond to the question on sales, which can be potentially nonignorably missing.
The interviewer’s gender, Z, can be reasonably used as an instrument for nonresponse if (a) the
propensity to provide information on sales varies with the interviewer’s gender; (b) the inter-
viewer’s gender, which cannot affect sales, is randomly assigned to participants.

In all these examples the variable Z can be regarded as a treatment, because an intervention on
it can be contemplated. The assignment of two binary treatments, T and Z, implies that four
potential outcomes can be defined for each post-treatment variable, the primary outcome, Y ,
and the response indicator, S, in our case: S(t, z), Y (t, z) for t = 0, 1 and z = 0, 1. Principal
strata are defined according to the joint values of S(0, 0), S(0, 1), S(1, 0), and S(1, 1). Because
the response indicator is binary, the stratum membership, G, takes on 16 values (see Table 1).
Unlike the case discussed in the previous Section with no instrument, there is more than one
stratum from which we can hope to learn something about the causal effect of T on Y , i.e.,

3 This example was suggested by the study in Janssens et al. (2008).
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Table 1. Principal strata with a binary treatment and a binary instrument for nonresponse

G 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S(0, 0) 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
S(0, 1) 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
S(1, 0) 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
S(1, 1) 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

all the strata where some units respond under treatment and some units respond under control
(G = 6, 7, 8, 10, 11, 12, 14, 15, 16). In this setting, estimands of interest are causal effects for
some (union) of these strata. Note that these strata include subjects who are more responsive to
the instrument, i.e., are more inclined to respond if properly “encouraged”.

3·2. Basic Assumptions
Due to the presence of two treatments, assumptions are required on the compound assign-

ment mechanism. Both treatments are assumed randomized conditional on a set of pre-treatment
covariates, so that:

ASSUMPTION 2.

T,Z ⊥⊥ S(0, 0), S(0, 1), S(1, 0), S(1, 1), Y (0, 0), Y (0, 1), Y (1, 0), Y (1, 1) | X

and

0 < Pr(T = t, Z = z |X) < 1 (t = 0, 1; z = 0, 1);

where the second condition is an overlap assumption which guarantees that in large samples we
can find treated and control units, as well as units with the different values of the instrument,
for all values of X . For the sake of notational simplicity we will omit an explicit indication of
conditioning on X in the sequel.

In order to characterize Z as an instrument, we propose the following exclusion-restriction
assumption:

ASSUMPTION 3. Y (0, 0) = Y (0, 1) and Y (1, 0) = Y (1, 1),

which says that the value of the instrument is unrelated to the outcome. We further require that
the instrument Z has some effect on S, both under treatment and under control:

ASSUMPTION 4. E(S(0, 1)− S(0, 0)) 6= 0, and E(S(1, 1)− S(1, 0)) 6= 0.

Assumption 4 warrants that there is at least one principal stratum where the response behaviour
is different depending on the value of the instrument.

3·3. Main Identification Results
Let us now analyze how the presence of an instrument can be exploited to achieve identi-

fication of some causal estimands. Some identification assumptions can be stated as forms of
monotonicity4 of S:

4 An alternative stronger assumption, trivially leading to identification of population average treatment effect, (and other estimands
defined as comparisons of features of the marginal distributions of Y (T = 1) and Y (T = 0)) is the following perfect instrument
assumption: S(0, 1) = 1 and S(1, 1) = 1. This assumption can be easily falsified by the data. In our examples, having such an
instrument would amount to finding persons with the same job task, all of whom provided information on the outcome variable,
or finding a nurse with whom all the patients took the HIV test. In Appendix A we show how the population average treatment
effect can be identified under the perfect instrument assumption.



Identification of causal effects in the presence of nonignorable missing outcome values 7

Table 2. Principal strata with a binary treatment and binary instrument
for nonresponse under Assumptions 5 and 6

G 1 2 4 6 8 16

S(0,0) 0 0 0 0 0 1
S(0,1) 0 0 0 1 1 1
S(1,0) 0 0 1 0 1 1
S(1,1) 0 1 1 1 1 1

ASSUMPTION 5. S(t, 0) ≤ S(t, 1) ∀ t,

and

ASSUMPTION 6. S(0, z) ≤ S(1, z) ∀ z.

Assumption 5 relates to the response behavior with respect to the instrument: for a fixed treatment
level, units responding when Z = 0 would respond also when Z = 1. Assumption 6 relates to
the response behavior with respect to the treatment: for a fixed value of the instrument, units
responding under control would respond also when treated. These assumptions may often be
plausible. Taking Example 2, participants in a training program usually have a higher response
rate than nonparticipants. In addition, if an individual is willing to provide information on his/her
occupational status in a phone interview, he/she would reasonably do so also in a direct interview.
In Example 3, we may reasonably assume that exposure to the treatment, i.e., the receipt of
public incentives, makes the interviewed person more responsive to administrative requests, and
also that the interviewee may be more willing to provide information on sales if the interviewer
is a female.

Assumptions 5 and 6 reduce the number of strata to 6 (Table 2)5, allowing us to point identify
the proportion of units who belong to the first and the last principal stratum (see Table 2), and
derive large sample bounds for the other principal stratum proportions and the causal estimands
of interest. Note that, under the monotonicity assumptions, the strata containing information
on causal effects are strata 6, 8 and 16, so that the goal is to isolate these three strata from the
remaining ones. For this purpose, identification (at least partial) of strata proportions is crucial for
disentangling the mixtures and to bound the marginal distributions of Y (T = 0) and Y (T = 1)
within strata.

We first obtain large sample bounds for the proportions in each principal stratum. Let
Ps|t,z = pr(Sobs = s | T = t, Z = z), s = 0, 1, t = 0, 1 and z = 0, 1, be the conditional distri-
bution of the observed response indicator given the treatment and instrument values, and define
πj = pr(G = j), j = 1, 2, 4, 6, 8, 16.

Note that, due to Assumption 2, π1 = pr(G = 1) = pr(G = 1 | T = 1, Z = 1). Also,
pr(G = 1 | T = 1, Z = 1) = pr(S(1, 1) = 0|T = 1, Z = 1) (see fourth row of Table 2), and
pr(S(1, 1) = 0 | T = 1, Z = 1) = pr(Sobs = 0 | T = 1, Z = 1), so in large sample we have:

π1 = 1− P1|1,1. (1)

Analogously, in large sample the proportion of stratum G = 16 is the proportion of respondents
within the observed group where T = 0 and Z = 0 (see first row of Table 2):

π16 = P1|0,0. (2)

5 Assumption 5 together with 4 is a form of strict monotonicity, because inequality in 5 must hold for at least one unit; Assumption
6 is not strict so that the strata implied by these assumptions are at most those reported in Table 2.
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Equations (1) and (2) imply that

π2 + π4 = P1|1,1 − P1|0,1 (3)
π2 + π6 = P1|1,1 − P1|1,0 (4)
π4 + π8 = P1|1,0 − P1|0,0 (5)
π6 + π8 = P1|0,1 − P1|0,0 (6)

In order for Equations (3) - (6) to hold, the differences on their right must be non negative.
Note that P1|1,1 − P1|0,1 and P1|1,0 − P1|0,0 are the average causal effects of the treatment on
the response indicator among units randomly assigned to Z = 1 and Z = 0, respectively; and
P1|1,1 − P1|1,0 and P1|0,1 − P1|0,0 are the average causal effects of the instrument on the re-
sponse indicator among units randomly assigned to the standard and active treatment, respec-
tively. Therefore, Assumptions 5 and 6 are not falsified by the data if in large sample these
causal effects are non negative.

Using Equations (1), (2), (3) and (4), and taking into account that the principal strata propor-
tions need to add up to one (1 = π1 + π2 + π4 + π6 + π8 + π16), we have

π4 = P1|1,1 − P1|0,1 − π2 (7)
π6 = P1|1,1 − P1|1,0 − π2 (8)
π8 = π2 + (P1|1,0 − P1|0,0)− (P1|1,1 − P1|0,1) (9)

Equations (7), (8) and (9) hold for any π2 such that

max
{

0; (P1|1,1 − P1|0,1)− (P1|1,0 − P1|0,0)
}
≤ π2 ≤ min

{
P1|1,1 − P1|0,1;P1|1,1 − P1|1,0

}
.

(10)
Under the previously stated assumptions (Assumptions 2 through 6), we can now derive large

sample bounds on the causal effect of T for the union of strata 6, 8, and 16, which include
units reacting to the instrument under control and/or under treatment (strata 6 and 8) and always
respondents (stratum 16). For the sake of simplicity, henceforth we focus on average treatment
effects. Note that the same identification strategies could be used to identify the entire outcome
distribution under both values of the treatment for particular strata.

Define Etz1(Y obs) = E(Y obs | T = t, Z = z, Sobs = 1) and let E≤αtz1 (Y obs) and E≥αtz1 (Y obs)
be the conditional expectations of Y obs in the α (0 < α < 1) fraction of the observed respondents
(Sobs = 1) assigned to T = t and Z = z with the smallest and largest values of the outcome
variable, Y , respectively. The following proposition is proved in Appendix A.

PROPOSITION 1. If Assumptions 2–6 hold, then the following bounds on the average treat-
ment effect for the union of strata 6, 8 and 16 can be derived:

E
≤π6,8,16|111
111 (Y obs)− E011(Y obs) ≤

E(Y (T = 1)− Y (T = 0) | G ∈ {6, 8, 16}) ≤ E≥π6,8,16|111111 (Y obs)− E011(Y obs) (11)

where π6,8,16|111 = pr(G ∈ {6, 8, 16} | T = 1, Z = 1, Sobs = 1) =
P1|0,1
P1|1,1

.

Under Assumptions 2 through 6, we can also derive large sample bounds on the causal effect
of T separately for each of the three principal strata 6, 8, and 16, as well as bounds on the causal
effects of T for the pair unions of strata 6 and 8, 6 and 16, and 8 and 16. Bounds on these six
alternative causal estimands are provided in Appendix B. The choice of focusing on the causal
effect for a specific subgroup of units among those belonging to principal strata either 6, or 8,
or 16, rather than the causal effect for the union of the strata 6, 8, and 16, is a subject matter,
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and depends on the specific evaluation problem at hand. Comparing bounds for the alternative
estimands may be of interest also for assessing the heterogeneity of the treatment effect across
subpopulations characterized by different response behaviors. If the treatment effect is highly
heterogeneous with respect to the response behavior, the average treatment causal effects within
sub-unions of principal strata can provide useful information, which could be difficult to detect
by focusing only on the aggregate average causal effect of the treatment for the union of principal
strata 6, 8, and 16.

The sampling process allows us to identify the conditional distributions, Ps|t,z , the conditional
expectations Etz1(Y obs

i ), and the conditional lower and upper trimmed means E≤αtz1 (Y obs
i ) and

E≥αtz1 (Y obs
i ), 0 < α < 1. Therefore finding estimators for the bounds defined in Proposition 1 is

relatively straightforward. For instance, a moment-based estimator can be derived by replacing
the means of Y and the strata proportions by their sample counterparts:

P̂s|t,z =

∑n
i=1 1(Ti = t)1(Zi = z)1(Sobsi = s)∑

i 1(Ti = t)1(Zi = z)
, (s = 0, 1)

Êtz1(Y obs
i ) =

∑n
i=1 1(Ti = t)1(Zi = z)Sobsi Y obs

i∑n
i=1 1(Ti = t)1(Zi = z)Sobsi

≡ Y tz1

Ê≤αtz1 (Y obs) =

∑[nα]
i=1 1(Ti = t)1(Zi = z)Sobsi Y obs

(i)∑[nα]
i=1 1(Ti = t)1(Zi = z)Sobsi

≡ Y ≤αtz1

Ê≥αtz1 (Y obs) =

∑n
i=n−[nα]+1 1(Ti = t)1(Zi = z)Sobsi Y obs

(i)∑n
i=n−[nα]+1 1(Ti = t)1(Zi = z)Sobsi

≡ Y ≤αtz1

t, z = 0, 1, where 1(.) is the indicator function, [nα] is the largest integer not greater than nα,
and Y obs

(i) , i = 1, . . . , n, are the ordered statistics. In small samples, bounds can be wrapped in
confidence bands to account for sampling variability in various ways (e.g., Imbens & Manski
(2004)).

The benefit of using an instrument for nonresponse is due to the fact that more information
can be extracted from the data about the causal effects of the treatment. Specifically, in the pres-
ence of an instrument for nonresponse, strata containing information on the causal effects are
strata 6, 8 and 16, which in general include a larger proportion of units than the group of the
always respondents without instrument (stratum 11, see Section 2). The bound on the average
treatment effect for the always respondents, E(Y (1)− Y (0) | S(1) = S(0) = 1), depends on
the proportion of the always respondents (see, for instance, Manski (2003) and Zhang & Rubin
(2003)), as well as the bound on E(Y (1)− Y (0) | G ∈ {6, 8, 18}) depends on the proportion
of strata 6, 8, and 16; therefore, when the instrument is not available or is ignored, we have a
loss of information. In other words, the presence of an instrument for nonresponse provides in-
formation on the causal effect also for subjects who, without the instrument, would not respond
under either the standard treatment or the active treatment (i.e., principal strata 10 and 01), but
would respond regardless treatment assignment when assigned to Z = 1. Each principal stratum
defined by (S(0), S(1)) is split into more principal strata when an instrument for nonresponse is
introduced, digging out information on a larger proportion of units. If causal effects are homoge-
neous, this implies using more information to estimate the same causal estimands (leading also
to a better precision if the instrument is used in a parametric estimation approach). If causal ef-
fects are heterogeneous, this implies estimating an average effect for a larger proportion of units,
which has higher chances to mimic the behavior of the target overall population. Therefore, when
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an instrument for nonresponse is available, using it might help identification and estimation of
causal effects. Our discussion suggests that an instrument for nonresponse should be included as
a design variable in the planning phase of the study design.

3·4. Latent Ignorability of Nonresponse and Restrictions on the Number of Principal strata
The bounds in Proposition 1 can be tightened if additional assumptions are introduced. Here

we investigate different sets of assumptions, whose plausibility should be judged in specific
empirical case studies.

A first set of additional assumptions we focus on includes latent ignorability (Frangakis &
Rubin, 1999) of nonresponse. Latent ignorability defines a nonignorable missing data process,
assuming that potential outcomes are independent of missingness conditional on variables that
are only partially observed (e.g., union of principal strata). The following assumption requires
latent ignorability for a union of strata, having the same response behavior when Z = 1:

ASSUMPTION 7. Y (1, 0) ⊥⊥ S(0, 0), S(1, 0) | S(0, 1) = 1, S(1, 1) = 1.

Assumption 7 amounts to stating that the distribution of Y (1, 0) is the same within strata 6, 8
and 16 (see Table 2); heuristically, for units with a similar response behavior pattern, differences
in response behavior can be considered random and not related to Y .

PROPOSITION 2. If Assumptions 2–6 and 7 hold and π2 < P1|1,1 − P1|1,0, then the follow-
ing bounds on the average treatment effect for the union of strata 6, 8 and 16, E(Y (T =
1)− Y (T = 0) | G ∈ {6, 8, 16}), can be derived:

max

{
E
≤π6,8,16|111
111 (Y obs); minπ2

{
∆−π2E

≥π2|111
111 (Y obs)

P1|1,1−P1|1,0−π2

}}
− E011(Y obs)

≤ E(Y (T = 1)− Y (T = 0) | G ∈ {6, 8, 16}) ≤ (12)

min

{
E
≥π6,8,16|111
111 (Y obs); maxπ2

{
∆−π2E

≤π2|111
111 (Y obs)

P1|1,1−P1|1,0−π2

}}
− E011(Y obs)

where ∆ = E111(Y obs)(π2 + π4 + π6 + π8 + π16)− E101(Y obs)(π4 + π8 + π16), π6,8,16|111

= pr(G ∈ {6, 8, 16} | T = 1, Z = 1, Sobs = 1) =
P1|0,1
P1|1,1

, π2|111 = pr(G = 2 | T = 1, Z = 1,

Sobs = 1) = π2
P1|1,1

,
∑
j∈{2,4,6,8,16} πj = P1|1,1,

∑
j∈{4,8,16} πj = P1|1,0, and bounds on π2 are

given in Equation (10).

The proof of Proposition 2 is given in Appendix A. Note that, if π2 were equal to P1|1,1 −
P1|1,0, then stratum 6 would not exist (π6 = 0), and the average treatment effect would be for
the union of strata 8 and 16. As we could expect, the bounds in Equation 12, derived under
the latent ignorability Assumption 7, are not larger than those in Equation 11. However, they
can be the same in some situations. Therefore, we might be interested in understanding when
the latent ignorability Assumption 7 leads to strictly more informative bounds on the average
treatment effect for the union of strata 6, 8, and 16,E(Y (T = 1)− Y (T = 0) | G ∈ {6, 8, 16}).
A sufficient condition under which the bounds in Equation (12) are strictly tighter than those in
Equation (11) is given in Appendix A.

It is worth to note that, if π2 = 0, that is, if stratum 2 does not exist, the principal strata propor-
tions πg, g = 1, 4, 6, 8, 16 can be point identified from the four observed response proportions
P1|t,z , t = 0, 1 and z = 0, 1, and the large sample bounds in Equation (12) degenerate, leading
to point identify the average causal effect of T for the union of principal strata 6, 8 and 16.
Formally, the following proposition holds (see Appendix A).



Identification of causal effects in the presence of nonignorable missing outcome values 11

PROPOSITION 3. If Assumptions 2–6 and 7 hold and π2 = 0, then the average treatment effect
for the union of strata 6, 8 and 16, E()Y (T = 1)− Y (T = 0)|G ∈ {6, 8, 16}), is

E(Y (T = 1)− Y (T = 0)|G ∈ {6, 8, 16}) = (13)
E111(Y obs)(π2 + π4 + π6 + π8 + π16)− E101(Y obs)(π4 + π8 + π16)

π6
− E011(Y obs)

where (π2 + π4 + π6 + π8 + π16) = P1|1,1, (π4 + π8 + π16) = P1|10, and π6 = P1|1,1 − P1|1,0.

Nonexistence of stratum 2 is a restriction on the response behavior, and amounts to assuming
that there is no unit who reacts to the instrument only if treated: if one reacts under treatment, the
same must be true under control. For example, this assumption appears plausible in double blind
experiments, where both doctors and patients do not know the treatment the patient is assigned
to. If the doctor is able to convince the patient to take a diagnostic test, the same should plausibly
be true under control.

The following proposition, proved in Appendix A, shows that point identification of the causal
estimandE(Y (T = 1)− Y (T = 0)|G ∈ {6, 8, 16}) can be also reached under an alternative set
of assumptions, which does not impose latent ignorability of nonresponse, but requires that both
stratum 2 and stratum 4 do not exist: π2 = 0 and π4 = 0.

PROPOSITION 4. If Assumptions 2–6 hold and π2 = 0 and π4 = 0, then the average treatment
effect for the union of strata 6, 8 and 16, E(Y (T = 1)− Y (T = 0)|G ∈ {6, 8, 16}), is

E(Y (T = 1)− Y (T = 0) | G ∈ {6, 8, 16}) = E111(Y obs)− E011(Y obs). (14)

The assumption that both principal strata 2 and 4 do not exist (π2 = 0 and π4 = 0) can be
easily falsified by the data. For example, if π2 = 0 and π4 = 0, then under Assumptions 5 and 6,
one would expect to observe the same proportion of respondents among treated and controls with
Z = 1, and a larger proportion of respondents among treated with Z = 0 than among controls
with Z = 0. Note that the set of assumptions 2 through 6, along with the assumptions of nonex-
istence of principal strata 2 and 4, is very similar to the perfect instrument assumption because,
with the exception of the stratum of the never respondents, all the other units respond when the
instrument is equal to one.

4. CONCLUDING REMARKS

In this paper, we tackled the problem of identifying treatment effects when some outcome
values are missing. Identification results were obtained relying on a binary instrument for non-
response. We proposed sets of sufficient assumptions allowing identification of causal estimands
for some subpopulations of units (union of principal strata) defined by the nonresponse behav-
ior under all possible combinations of treatment and instrument values. Results were derived
within the principal stratification framework, where the latent strata are generated by the prim-
itive potential outcomes. Because our main concern was on nonparametric identification, when
the assumptions are stated conditional on the covariates, we assumed to be within cells defined
by them and provided moment-based estimators of identifiable causal estimands. Our result sug-
gest that an instrument for nonresponse should be included as a design variable in the planning
phase of the study design, and it should be considered in drawing causal inference in the presence
of missing outcome data, whenever it is available.

The framework we considered was sufficiently rich for discussing and addressing the identifi-
cation problems. However, in finite samples it would be infeasible to work within cells defined by
the covariates, in particular if they are continuous: methods to accommodate covariates should
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be developed, which may include either flexible parametric specifications (e.g., Hirano et al.
(2000)) or be semiparametric as in and Frölich (2007).

Using principal stratification, the result of inference is usually a local causal effect. An issue
that often arises regarding the principal stratification approach is that we cannot univocally iden-
tify the group the causal effect refers to. Note, however, that the fact that proper causal effects
can only be identified for latent subgroups of units is a limitation created by the missing mecha-
nism, rather than a drawback of the framework of principal stratification. In this paper, the focus
on these subgroups was primarily driven by our goal of providing valid causal effect estimates in
the presence of nonignorable missing data under sets of credible assumptions. These subgroups
may not be ex ante the most interesting ones, but the data is in general not informative about
effects for other subgroups without extrapolation.

APPENDIX A
Proofs

Proof of Proposition 1. Assumption 2 guarantees that the distribution ofG is the same under treatment
and under control; therefore, under Assumptions 5 and 6, the proportion of units who belong to the union
of principal strata 6, 8 and 16 can be identified by the observed response proportion P1|01: π6,8,16 = P1|01.
Under control, the observable E011(Y obs) is equal to E(Y (T = 0, Z = 1) | G ∈ {6, 8, 16}) and also
to E(Y (T = 0, Z = 0) | G ∈ {6, 8, 16}), by Assumption 3. Therefore, E011(Y obs) identifies E(Y (T =
0) | G ∈ {6, 8, 16}).
The observed group of units with T = 1, Z = 1 and Sobs = 1, is the π2|111, π4|111, π6|111, π8|111,
and π16|111 mixture of the principal strata 2, 4, 6, 8, and 16. Under Assumption 2 and Assumptions
5 and 6, the conditional probability that a unit belongs to either stratum 6, or stratum 8, or stratum
16 given T = 1, Z = 1 and Sobs = 1 is π6,8,16|111 = P1|01/P1|11. In addition, Assumption 3 implies
thatE(Y (T = 1) | G ∈ {6, 8, 16}) = E(Y (T = 1, Z = 1) | G ∈ {6, 8, 16}). Thus, in large samples, the
maximum value of E(Y (T = 1) | G ∈ {6, 8, 16}) is the expected value of Y for the π6,8,16|111 fraction
of largest values of Y for units in the observed group with T = 1, Z = 1 and Sobs = 1. Analogously, the
minimum value of E(Y (T = 1) | G ∈ {6, 8, 16}) is the expected value of Y for the π6,8,16|111 fraction

of smallest values of Y for units in the same observed group. Formally, E
≤π6,8,16|111
111 (Y obs) ≤ E(Y (T =

1) | G ∈ {6, 8, 16}) ≤ E≥π6,8,16|111
111 (Y obs). Therefore, the average treatment effect for the union of strata

6, 8 and 16, E(Y (T = 1)− Y (T = 0) | G ∈ {6, 8, 16}), is at least E
≤π6,8,16|111
111 (Y obs)− E011(Y obs),

and at most E
≥π6,8,16|111
111 (Y obs)− E011(Y obs). �

Proof of Proposition 2. As in proof of Proposition 1, Assumptions 2–6 imply that under control, the
expected value E(Y (T = 0) | G ∈ {6, 8, 16}) can be identified by E011(Y obs). In addition, bounds on
the estimand E(Y (T = 1)− Y (T = 0) | G ∈ {6, 8, 16}) in Equation (11) derived in Proposition 1 still
hold.
On one other hand, under treatment, the observable mean E101(Y obs) is equal to

E(Y (T = 1, Z = 0) | G = 4)π4 + E(Y (T = 1, Z = 0) | G = 8)π8 + E(Y (T = 1, Z = 0) | G = 16)π16

π4 + π8 + π16

and the observable mean E111(Y obs) is equal to∑
j=2,4,6,8,16E(Y (T = 1, Z = 1) | G = j)πj

π2 + π4 + π6 + π8 + π16
.

By Assumption 3, E(Y (T = 1, Z = 0) | G = j) = E(Y (T = 1, Z = 1) | G = j), j = 2, 4, 6, 8, 16. In
addition, Assumption 7 implies that E(Y (T = 1, Z = 0) | G = 6) = E(Y (T = 1, Z = 0) | G = 8) =
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E(Y (T = 1, Z = 0) | G = 16). Therefore,∑
j=2,4,6,8,16E(Y (T = 1, Z = 1) | G = j)πj

π2 + π4 + π6 + π8 + π16
=∑

j=2,4E(Y (T = 1, Z = 1) | G = j)πj + E(Y (T = 1, Z = 1) | G = 8)(π6 + π8 + π16)

π2 + π4 + π6 + π8 + π16
.

Given a fixed value of π2, E(Y (T = 1, Z = 1) | G = 8) is equal to

E111(Y obs)(π2 + π4 + π6 + π8 + π16)− E101(Y obs)(π4 + π8 + π16)− E(Y (T = 1, Z = 1) | G = 2)π2

π6
,

where E(Y (T = 1, Z = 1) | G = 2) = E(Y (T = 1) | G = 2) by Assumption 3, and π6 = P1|1,1 −
P1|1,0 − π2, by Assumptions 2, 5 and 6. Using a reasoning as that in proof of Proposition 1, the following
bounds on the expected value of the outcome Y under treatment in stratum 2, E(Y (T = 1) | G = 2), can
be derived: E

≤π2|111
111 (Y obs) ≤ E(Y (T = 1) | G = 2) ≤ E≥π2|111

111 (Y obs). Define ∆ = E111(Y obs)(π2 +
π4 + π6 + π8 + π16)− E101(Y obs)(π4 + π8 + π16), then

∆− π2E
≥π2|111
111 (Y obs)

P1|1,1 − P1|1,0 − π2
≤ E(Y (T = 1) | G ∈ {6, 8, 16}) ≤ ∆− π2E

≤π2|111
111 (Y obs)

P1|1,1 − P1|1,0 − π2
.

Therefore, given a fixed value of π2, the average causal effect of T for the union of strata 6, 8 and 16

is at least ∆−E
≥π2|111
111 (Y obs)π2

P1|1,1−P1|1,0−π2
− E011(Y obs) and at most ∆−E

≤π2|111
111 (Y obs)π2

P1|1,1−P1|1,0−π2
− E011(Y obs). Minimiz-

ing (maximizing), the lower (upper) bound over the possible range of π2 gives the following bounds on
E(Y (T = 1)− Y (T = 0) | G ∈ {6, 8, 16}):

min
π2

{
∆− π2E

≥π2|111
111 (Y obs)

P1|1,1 − P1|1,0 − π2

}
− E011(Y obs)

≤ E(Y (T = 1)− Y (T = 0) | G ∈ {6, 8, 16}) ≤

max
π2

{
∆− π2E

≤π2|111
111 (Y obs)

P1|1,1 − P1|1,0 − π2

}
− E011(Y obs).

Combining these bounds with those in Equation (11) derived in Proposition 1, we have the desired bounds
on E(Y (T = 1)− Y (T = 0) | G ∈ {6, 8, 16}) in Equation (12). �

Proof of Proposition 3. Due to Assumptions 5 and 6 and the assumption of nonexistence of stratum 2,
at most 5 strata (G = 1, 4, 6, 8, 16) exist (see Table 2). There are thus 4 free of variation strata proportions
to be identified (π4, π6, π8, π16). Under Assumption 2 (which guarantees that the distribution of G is
the same under treatment and under control), these proportions can be identified as linear combination of
the 4 observable response proportions: π16 = P1|0,0, π6 + π8 + π16 = P1|0,1, π4 + π8 + π16 = P1|1,0,
π4 + π6 + π8 + π16 = P1|1,1.
As in proof of Proposition 1, Assumptions 2–6 imply that under control, the expected value E(Y (T =
0) | G ∈ {6, 8, 16}) can be identified by E011(Y obs).
Under treatment, the observable mean E101(Y obs) is equal to

E(Y (T = 1, Z = 0) | G = 4)π4 + E(Y (T = 1, Z = 0) | G = 8)π8 + E(Y (T = 1, Z = 0) | G = 16)π16

π4 + π8 + π16

and the observable mean E111(Y obs) is equal to∑
j=4,6,8,16E(Y (T = 1, Z = 1) | G = j)πj

π4 + π6 + π8 + π16
.

By Assumption 3, E(Y (T = 1, Z = 1) | G = j) is equal to E(Y (T = 1, Z = 0) | G = j), j =
4, 6, 8, 16. In addition by Assumption 7, E(Y (T = 1, Z = 0) | G = 6) = E(Y (T = 1, Z = 0) | G =
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8) = E(Y (T = 1, Z = 0) | G = 16), so that∑
j=4,6,8,16E(Y (T = 1, Z = 1) | G = j)πj

π4 + π6 + π8 + π16

is equal to

E(Y (T = 1, Z = 1) | G = 4)π4 + E(Y (T = 1, Z = 1) | G = 8)(π6 + π8 + π16

π4 + π6 + π8 + π16
.

By difference, we can now identify E(Y (T = 1, Z = 1) | G = 8) as

E111(Y obs)(π4 + π6 + π8 + π16)− E101(Y obs)(π4 + π8 + π16)

π6
.

Therefore, the average causal effect E(Y (T = 1)− Y (T = 0) | G ∈ {6, 8, 16}) is identified as

E111(Y obs)(π4 + π6 + π8 + π16)− E101(Y obs)(π4 + π8 + π16)

π6
− E011(Y obs).

�

Proof of Proposition 4. Due to Assumptions 5 and 6 and the assumptions of nonexistence of strata 2
and 4, at most 4 strata (G = 1, 6, 8, 16) exist. Respondents with Z = 1 under treatment and under control
are union of the same strata 6, 8 and 16. Due to Assumption 3, we trivially identifyE(Y (T = 1)− Y (T =
0) | G ∈ {6, 8, 16}) as E111(Y obs)− E011(Y obs). �

The perfect instrument assumption
PROPOSITION 5. Under Assumptions 2 and 3, and the perfect instrument assumption, the population

average treatment effect can be identified as

E(Y (T = 1)− Y (T = 0)) = E(Y (T = 1, Z = 1)− Y (T = 0, Z = 1)).

Proof. The perfect instrument assumption removes some of the strata (1− 5,7,9− 13,15). Those units
with Z = 1 and Sobs = 1 in the treatment and control group are comparable since now the strata in
both groups are the same and Assumption 2 guarantees that strata distribution is the same in both treat-
ment arms. Assumption 3 implies that: F (Y (0, 1)) = F (Y (0, 0)) = F (Y (T = 0)) and F (Y (1, 0)) =
F (Y (1, 1)) = F (Y (T = 1)), where F (U) denotes the generic cdf of U . The population average treat-
ment effect (as well as other estimands defined as comparisons of features of the marginal distribu-
tions of Y (T = 1) and Y (T = 0)) can be identified as E(Y (T = 1)− Y (T = 0)) = E(Y (T = 1, Z =
1)− Y (T = 0, Z = 1)).

This result is related to Manski (2003, pp. 30-31) and Frangakis et al. (2007) where the use of a key
variable, with the same features as our Z, has been exploited within a principal stratification design,
in order to draw valid inference for the marginal distribution of some input data nonignorably missing
(missing due to death).

A sufficient condition under which bounds on the average treatment effect for the union of strata 6, 8,
and 16 in Equation (11) are strictly tighter than those in Equation (12).

The width of the bounds in Equation (11) is

w = E
≥π6,8,16|111
111 (Y obs)− E≤π6,8,16|111

111 (Y obs),

and the width of the bounds in Equation (12), derived under the latent ignorability Assumption 7, is

wLI = min

{
w; max

π2

{
∆− π2E

≤π2|111
111 (Y obs)

P1|1,1 − P1|1,0 − π2

}
−min

π2

{
∆− π2E

≥π2|111
111 (Y obs)

P1|1,1 − P1|1,0 − π2

}}
,

which depends on π2. Therefore, the latent ignorability Assumption 7 allows us to tighten the bounds on
the causal effect of the treatment for the union of principal strata 6, 8, and 16 if the observable proportions
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Ps|t,z , s,= 0, 1, z, t = 0, 1, lead to bounds on π2 such that wLI < w. Define

πm2 = arg min
π2

∆− π2E
≥π2|111
111 (Y obs)

P1|1,1 − P1|1,0 − π2
and πM2 = arg max

π2

∆− π2E
≥π2|111
111 (Y obs)

P1|1,1 − P1|1,0 − π2
.

Then,

wLI = min

w;
∆− πM2 E

≤πM2|111
111 (Y obs)

P1|1,1 − P1|1,0 − πM2
− ∆− πm2 E

≥πm2|111
111 (Y obs)

P1|1,1 − P1|1,0 − πm2

 .

Therefore, a sufficient condition for wLI < w is that

πM2

(
E
≥π6,8,16|111
111 (Y obs)− E

≤πM2|111
111 (Y obs)

)
≤
(
P1|1,1 − P1|1,0

)
E
≥π6,8,16|111
111 (Y obs)−∆

πm2

(
E
≥πm2|111
111 (Y obs)− E≤π6,8,16|111

111 (Y obs)
)
≤ ∆−

(
P1|1,1 − P1|1,0

)
E
≤π6,8,16|111
111 (Y obs),

with at least one strict inequality.

APPENDIX B
Supplementary Material

PROPOSITION 6. If Assumptions 2–6 hold, then, in addition to the bounds on E(Y (T = 1)− Y (T =
0)|G ∈ {6, 8, 16}) given in Equation (11) in Proposition 1, the following bounds can be derived:

Bounds on the average treatment effect in stratum 6

minπ2

{
max

{
E
≤π6|111
111 (Y obs);

∆6
1−π2E

≥π2|111
111 (Y obs)

π6

}
−min

{
E
≥π6|011
011 (Y obs);

∆6
0−π8E

≤π8|011
011 (Y obs)

π6

}}
≤ E(Y (T = 1)− Y (T = 0) | G = 6) ≤ (A1)

maxπ2

{
min

{
E
≥π6|111
111 (Y obs);

∆6
1−π2E

≤π2|111
111 (Y obs)

π6

}
−max

{
E
≤π6|011
011 (Y obs);

∆6
0−π8E

≥π8|011
011 (Y obs)

π6

}}
where

∆6
0 = E011(Y obs)(π6 + π8 + π16)− E001(Y obs)π16

∆6
1 = E111(Y obs)(π2 + π4 + π6 + π8 + π16)− E101(Y obs)(π4 + π8 + π16)

π6|011 = pr(G = 6 | T = 0, Z = 1, Sobs = 1) =
(P1|1,1−P1|1,0+π2)

P1|0,1

π6|111 = pr(G = 6 | T = 1, Z = 1, Sobs = 1) = 1− P1|1,0+π2

P1|1,1

π2|111 = pr(G = 2 | T = 1, Z = 1, Sobs = 1) = π2

P1|1,1

π8|011 = pr(G = 8 | T = 0, Z = 1, Sobs = 1) =
(P1|1,0−P1|0,0)−(P1|1,1−P1|0,1)+π2

P1|0,1∑
j=2,4,6,8,16 πj = P1|1,1,

∑
j=4,8,16 πj = P1|10,

∑
j=6,8,16 πj = P1|0,1, π6, π8 and π16 are given in

Equations (8), (9) and (2), respectively, and bounds for π2 are given in Equation (10).

Bounds on the average treatment effect in stratum 8

minπ2

{
max

{
E
≤π8|101
101 (Y obs);E

≤π8|111
111 (Y obs)

}
−min

{
E
≥π8|011
011 (Y obs);

∆8
0−π6E

≤π6|011
011 (Y obs)

π8

}}
≤ E(Y (T = 1)− Y (T = 0) | G = 8) ≤ (A2)

maxπ2

{
min

{
E
≥π8|101
101 (Y obs);E

≥π8|111
111 (Y obs)

}
−max

{
E
≤π8|011
011 (Y obs);

∆8
0−π6E

≥π6|011
011 (Y obs)

π8

}}
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where

∆8
0 = E011(Y obs)(π6 + π8 + π16)− E001(Y obs)π16

π8|tz1 = Pr(G = 8 | T = t, Z = z, Sobs = 1) =
π2+(P1|1,0−P1|0,0)−(P1|1,1−P1|0,1)

P1|t,z
(t = 0, 1; z = 0, 1)

π6|011 = Pr(G = 6 | T = 1, Z = 1, Sobs = 1) =
P1|1,1−P1|1,0−π2

P1|0,1
,

and
∑
j=6,8,16 πj = P1|0,1, π6, π8 and π16 are given in Equations (8), (9) and (2), respectively, and

bounds for π2 are given in Equation (10).

Bounds on the average treatment effect in stratum 16

max
{
E
≤π16|101
101 (Y obs);E

≤π16|111
111 (Y obs)

}
− E001(Y obs) ≤

E(Y (T = 1)− Y (T = 0) | G = 16) ≤ min
{
E
≥π16|101
101 (Y obs);E

≥π16|111
111 (Y obs)

}
− E001(Y obs) (A3)

where π16|1z1 = pr(G = 16 | T = 1, Z = z, Sobs = 1) =
P1|0,0
P1|1,z

, z = 0, 1.

Bounds on the average treatment effect for the union of strata 6 and 8

E
≤π6,8|111
111 (Y obs)− E011(Y obs)(π6+π8+π16)−E001(Y obs)π16

π6+π8

≤ E(Y (T = 1)− Y (T = 0) | G ∈ {6, 8}) ≤ (A4)

E
≥π6,8|111
111 (Y obs)− E011(Y obs)(π6+π8+π16)−E001(Y obs)π16

π6+π8

where π6,8|111 = pr(G ∈ {6, 8} | T = 1, Z = 1, Sobs = 1) =
P1|0,1−P1|0,0

P1|1,1
, π6 + π8 + π16 = P1|0,1,

π6 + π8 = P1|0, − P1|0,0 and π16 is given in Equation (2).

Bounds on the average treatment effect for the union of strata 6 and 16

min
π2

{
E
≤π6,16|111
111 (Y obs)− E≥π6,16|011

011 (Y obs)
}
≤

E(Y (T = 1)− Y (T = 0) | G ∈ {6, 16}) ≤ maxπ2

{
E
≥π6,16|111
111 (Y obs)− E≤π6,16|011

011 (Y obs)
}

(A5)

where π6,16|011 = pr(G ∈ {6, 16} | T = 0, Z = 1, Sobs = 1) =
P1|1,1−P1|1,0−π2+P1|0,0

P1|0,1
, and π6,16|111 =

pr(G ∈ {6, 16} | T = 1, Z = 1, Sobs = 1) = 1− P1|1,0−P1|0,0+π2

P1|1,1
.

Bounds on the average treatment effect for the union of strata 8 and 16

minπ2

{
max

{
E
≤π8,16|101
101 (Y obs);E

≤π8,16|111
111 (Y obs)

}
− E≥π8,16|011

011 (Y obs)
}

≤ E(Y (T = 1)− Y (T = 0) | G ∈ {8, 16}) ≤ (A6)

maxπ2

{
min

{
E
≥π8,16|101
101 (Y obs);E

≥π8,16|111
111 (Y obs)

}
− E≤π8,16|011

011 (Y obs)
}

where π8,16|tz1 = pr(G ∈ {8, 16} | T = t, Z = z, Sobs = 1) =
π2+P1|1,0−(P1|1,1−P1|0,1)

P1|t,z
, t = 0, 1, z =

0, 1.

Proof. Assumption 2 guarantees that the distribution of G is the same under treatment and under con-
trol; therefore, under Assumptions 5 and 6, the principal strata proportions π1 and π16 can be identified
by the observed response proportions P1|10 and P1|0,0, as shown in Equations (1) and (2). In large sam-
ple, under Assumptions 2, 5 and 6, we also have π6 + π8 + π16 = P1|0,1, π4 + π8 + π16 = P1|1,0, and
π2 + π4 + π6 + π8 + π16 = P1|1,1. These linear combinations of the six observable response proportions
imply Equations (7)–(9). Using Equations (1) through (9), we can partially identified π2 as in Equation
(10) and the remaining principal strata proportions, πj , j = 4, 6, 8.
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Let πg|tz1 denote the conditional probability that a unit belongs to the (union of) principal strata g, g ⊆
{1, 2, 4, 6, 8, 16}, given that the unit belongs to the observed group with T = t, Z = z (t, z = 0, 1), and
Sobs
i = 1:

πg|tz1 = pr(Gi ∈ g | T = t, Z = z, Sobs
i = 1) =

pr(Gi ∈ g)

P1|t,z
.

These conditional probabilities cannot be point identified, except for g = {1}, g = {16}, g = {6, 8, 16},
g = {4, 8, 16}, and g = {2, 4, 6, 8, 16}. However large sample bounds on them can be easily derived using
Equations (7)–(9) and Equation (10).
Bounds on the average treatment effect in stratum 6. Assume that the value of π2 is known. Under
control, E011(Y obs) is equal to

E(Y (T = 0, Z = 1) |G = 6)π6+E(Y (T = 0, Z = 1) |G = 8)π8+E(Y (T = 0, Z = 1) |G = 16)π16

π6 + π8 + π16
,

and E(Y (T = 0, Z = 1) | G = j) = E(Y (T = 0, Z = 0) | G = j), j = 6, 8, 16, by Assumption 3.
Therefore, E(Y (T = 0) | G = 6) can be bounded from below (above) by the expected value of Y for
the π6|011 fraction of smallest (largest) values of Y for units in the observed group with T = 0, Z = 1

and Sobs = 1: E
≤π6|011
011 (Y obs) ≤ E(Y (T = 0) | G = 6) ≤ E≥π6|011

011 (Y obs).
On the other hand, E001(Y obs) is equal to E(Y (T = 0, Z = 0) | G = 16) and also to, by Assumption 3,
E(Y (T = 0, Z = 1) | G = 16). Therefore, E(Y (T = 0) | G = 6)π6 = E011(Y obs)(π6 + π8 + π16)−
E001(Y obs)π16 − E(Y (T = 0, Z = 1) | G = 8)π8, where E(Y (T = 0, Z = 1) | G = 8) = E(Y (T =
0, Z = 0) | G = 8) by Assumption 3. The observed group of units with T = 0, Z = 1 and Sobs = 1
is the π6|011, π8|011, π16|011 mixture of principal strata 6, 8, and 16, therefore the minimum (maximum)
value of E(Y (T = 0) | G = 8) is the expected value of Y for the π8|011 fraction of smallest (largest)

values for units in the observed group with T = 0, Z = 1 and Sobs = 1: E
≤π8|011
011 (Y obs) ≤ E(Y (T =

0) | G = 8) ≤ E≥π8|011
011 (Y obs). Define ∆6

0 = E011(Y obs)(π6 + π8 + π16)− E001(Y obs)π16, then

∆6
0 − E

≥π8|011
011 (Y obs)π8

π6
≤ E(Y (T = 0) | G = 6) ≤ ∆6

0 − E
≤π8|011
011 (Y obs)π8

π6
,

Combining the two bounds on E(Y (T = 0) | G = 6), given π2, we have

max

{
E
≤π6|011
011 (Y obs);

∆6
0 − E

≥π8|011
011 (Y obs)π8

π6

}
≤

E(Y (T = 0) | G = 6) ≤ min

{
E
≥π6|011
011 (Y obs);

∆6
0 − E

≤π8|011
011 (Y obs)π8

π6

}
.

Using information provided by the observable means E101(Y obs) and E111(Y obs), a similar reasoning
leads to derive the following bounds on E(Y (T = 1) | G = 6) for a fixed value of π2:

max

{
E
≤π6|111
111 (Y obs);

∆6
1 − E

≥π2|111
111 (Y obs)π2

π6

}
≤

E(Y (T = 1) | G = 6) ≤ min

{
E
≥π6|111
111 (Y obs);

∆6
1 − E

≤π2|111
111 (Y obs)π2

π6

}
,

where ∆6
1 = E111(Y obs)(π2 + π4 + π6 + π8 + π16)− E101(Y obs)(π4 + π8 + π16). Hence, given π2,

max

{
E
≤π6|111
111 (Y obs);

∆6
1−E

≥π2|111
111 (Y obs)π2

π6

}
−min

{
E
≥π6|011
011 (Y obs);

∆6
0−E

≤π8|011
011 (Y obs)π8

π6

}
≤ E(Y (T = 1)− Y (T = 0) | G = 6) ≤
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min

{
E
≥π6|111
111 (Y obs);

∆6
1−E

≤π2|111
111 (Y obs)π2

π6

}
−max

{
E
≤π6|011
011 (Y obs);

∆6
0−E

≥π8|011
011 (Y obs)π8

π6

}
Minimizing (maximizing) the lower (upper) bound over the possible range of π2 gives the desired bounds
on E(Y (T = 1)− Y (T = 0) | G = 6) in Equation (A1).
Bounds on the average treatment effect in stratum 8. Assume that the value of π2 is known. Then, the
following bounds for E(Y (T = 0) | G = 8) can be derived, using a similar reasoning as for bounding
E(Y (T = 0) | G = 6) (see the proof of bounds on the average treatment effect in stratum 6):

max

{
E
≤π8|011
011 (Y obs);

∆8
0 − E

≥π6|011
011 (Y obs)π6

π8

}
≤

E(Y (T = 0) | G = 8) ≤ min

{
E
≥π8|011
011 (Y obs);

∆8
0 − E

≤π6|011
011 (Y obs)π6

π8

}
,

where ∆8
0 = E011(Y obs)(π6 + π8 + π16)− E001(Y obs)π16.

The observed group of units with T = 1, Z = 1 and Sobs = 1 is the π2|111, π4|111, π6|111, π8|111,
and π16|111 mixture of principal strata 2, 4, 6, 8, and 16. Similarly, the observed group of units
with T = 1, Z = 0 and Sobs = 1 is the π4|111, π8|111 and π16|111 mixture of principal strata 4,
8, and 16. In addition, Assumption 3 implies that E(Y (T = 1, Z = 0) | G = 8) = E(Y (T = 1, Z =
1) | G = 8). Therefore, in large samples, given π2, E(Y (T = 1) | G = 8) is at least (at most) the
maximum (minimum) between the expected value of Y for the π8|101 fraction of smallest (largest)
values of Y for units in the observed group with T = 1, Z = 0 and Sobs = 1, and the expected
value of Y for the π8|111 fraction of smallest (largest) values of Y for units in the observed group

with T = 1, Z = 1 and Sobs = 1: max
{
E
≤π8|101
101 (Y obs);E

≤π8|111
111 (Y obs)

}
≤ E(Y (T = 1) | G = 8) ≤

min
{
E
≥π8|101
101 (Y obs);E

≥π8|111
111 (Y obs)

}
. Hence, given π2,

max
{
E
≤π8|101
101 (Y obs);E

≤π8|111
111 (Y obs)

}
−min

{
E
≥π8|011
011 (Y obs);

∆8
0−E

≤π6|011
011 (Y obs)π6

π8

}
≤ E(Y (T = 1)− Y (T = 0) | G = 8) ≤

min
{
E
≥π8|101
101 (Y obs);E

≥π8|111
111 (Y obs)

}
−max

{
E
≥π8|011
011 (Y obs);

∆8
0−E

≥π6|011
011 (Y obs)π6

π8

}
.

Minimizing (maximizing) the lower (upper) bound over the possible range of π2 gives the desired bounds
on E(Y (T = 1)− Y (T = 0) | G = 8) in Equation (A2).
Bounds on the average treatment effect in stratum 16. Under control, due to Assumption 3, E(Y (T =
0) | G = 16) can be identified as E001(Y obs). Under treatment, using a similar reasoning as for bound-
ing E(Y (T = 1) | G = 8) (see the proof of bounds on the average treatment effect in stratum 8), we
can partially identify E(Y (T = 1) | G = 8) as follows: max

{
E
≤π16|101
101 (Y obs);E

≤π16|111
111 (Y obs)

}
≤

E(Y (T = 1) | G = 16) ≤ min
{
E
≥π16|101
101 (Y obs);E

≥π16|111
111 (Y obs)

}
. Hence,

max
{
E
≤π16|101
101 (Y obs);E

≤π16|111
111 (Y obs)

}
− E001(Y obs)

≤ E(Y (T = 1)− Y (T = 0) | G = 16) ≤

min
{
E
≥π16|101
101 (Y obs);E

≥π16|111
111 (Y obs)

}
− E001(Y obs).

Bounds on the average treatment effect for the union of strata 6 and 8. Under control, the observable
mean E011(Y obs) is equal to

E(Y (T = 0, Z = 1) |G = 6)π6+E(Y (T = 0, Z = 1) |G = 8)π8+E(Y (T = 0, Z = 1) |G = 16)π16

π6 + π8 + π16
,
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where E(Y (T = 0, Z = 1) | G = j) = E(Y (T = 0, Z = 0) | G = j), j = 6, 8, 16, by Assumption 3.
The observable mean E001(Y obs) is equal to E(Y (T = 0, Z = 0) | G = 16) and also to, by Assump-
tion 3, E(Y (T = 0, Z = 1) | G = 16). Therefore, we can, by difference, identify E(Y (T = 0, Z = 1) |
G = 6)π6 + E(Y (T = 0, Z = 1) | G = 8)π8 as E011(Y obs)(π6 + π8 + π16)− E001(Y obs)π16.
Under treatment, due to Assumption 3, E(Y (T = 1, Z = 0) | G ∈ {6, 8}) = E(Y (T = 1, Z = 1) | G ∈
{6, 8}). The observed group of units with T = 1, Z = 1 and Sobs = 1 is the π2|111, π4|111, π6|111, π8|111,
and π16|111 mixture of principal strata 2, 4, 6, 8, and 16, thus the minimum (maximum) value ofE(Y (T =
1) | G ∈ {6, 8}) is the expected value of Y for the π6,8|111 fraction of smallest (largest) values of Y

for units in the observed group with T = 1, Z = 1 and Sobs = 1: E
≤π6,8|111
111 (Y obs) ≤ E(Y (T = 1) |

G ∈ {6, 8}) ≤ E≥π6,8|111
111 (Y obs). Therefore, the average causal effect, E(Y (T = 1)− Y (T = 0) | G ∈

{6, 8}) is at least

E
≤π6,8|111
111 (Y obs)− E011(Y obs)(π6 + π8 + π16)− E001(Y obs)π16

π6 + π8
,

and at most

E
≥π6,8|111
111 (Y obs)− E011(Y obs)(π6 + π8 + π16)− E001(Y obs)π16

π6 + π8
.

Bounds on the average treatment effect for the union of strata 6 and 16. Assume that the value of π2

is known. By Assumption 3, E(Y (T = t, Z = 0) | G ∈ {6, 16}) = E(Y (T = t, Z = 1) | G ∈ {6, 16}),
t = 0, 1. The observed group of units with T = 0, Z = 1 and Sobs = 1 is the π6|011, π8|011, and
π16|011 mixture of principal strata 6, 8, and 16, thus the minimum (maximum) value of E(Y (T = 0) |
G ∈ {6, 16}) is the expected value of Y for the π6,16|011 fraction of smallest (largest) values of Y

for units in the observed group with T = 0, Z = 1 and Sobs = 1: E
≤π6,16|011
011 (Y obs) ≤ E(Y (T = 0) |

G ∈ {6, 16}) ≤ E≥π6,16|011
011 (Y obs). Analogously, the observed group of units with T = 1, Z = 1 and

Sobs = 1 is the π2|111, π4|111, π6|111, π8|111, and π16|111 mixture of principal strata 2, 4, 6, 8, and 16,
thus the minimum (maximum) value of E(Y (T = 1) | G ∈ {6, 16}) is the expected value of Y for the
π6,16|111 fraction of smallest (largest) values of Y for units in the observed group with T = 1, Z = 1

and Sobs = 1:E
≤π6,16|111
111 (Y obs) ≤ E(Y (T = 1) | G ∈ {6, 16}) ≤ E≥π6,16|111

111 (Y obs). Therefore, the av-
erage causal effect, E(Y (T = 1)− Y (T = 0) | G ∈ {6, 16}), given π2 is at least E

≤π6,16|111
111 (Y obs)−

E
≥π6,16|011
011 (Y obs), and at most E

≥π6,16|111
111 (Y obs)− E≤π6,16|011

011 (Y obs). Minimizing (maximizing) the
lower (upper) bound over the possible range of π2 gives the desired bounds on E(Y (T = 1)− Y (T =
0) | G ∈ {6, 16}) in Equation (A5).
Bounds on the average treatment effect for the union of strata 8 and 16. Assume that the value of
π2 is known. Under control, using a similar reasoning as for bounding E(Y (T = 0) | G ∈ {6, 16})
(see the proof of bounds on the average treatment effect in strata 6 and 16), we have that, given π2,
E(Y (T = 0) | G ∈ {8, 16}) is at least E

≤π8,16|011
011 (Y obs) and at most E

≥π8,16|011
011 (Y obs). Analogously,

under treatment, using a similar reasoning as for bounding E(Y (T = 1) | G = 16) (see the proof of
bounds on the average treatment effect in stratum 16), we have that, given π2,E(Y (T = 1) | G ∈ {8, 16})
is at least (at most) the maximum (minimum) between the expected value of Y for the π8,16|101 frac-
tion of largest values of Y for units in the observed group with T = 1, Z = 0 and Sobs = 1, and the
expected value of Y for the π8,16|111 fraction of largest values of Y for units in the observed group

with T = 1, Z = 1 and Sobs = 1: max
{
E
≤π8,16|101
101 (Y obs);E

≤π8,16|111
111 (Y obs)

}
≤ E(Y (T = 1) | G ∈

{8, 16}) ≤ min
{
E
≥π8,16|101
101 (Y obs);E

≥π8,16|111
111 (Y obs)

}
. Hence, given π2,

max
{
E
≤π8,16|101
101 (Y obs);E

≤π8,16|111
111 (Y obs)

}
− E≥π8,16|011

011 (Y obs)

≤ E(Y (T = 1)− Y (T = 0) | G ∈ {8, 16}) ≤

min
{
E
≥π8,16|101
101 (Y obs);E

≥π8,16|111
111 (Y obs)

}
− E≤π8,16|011

011 (Y obs)
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Minimizing (maximizing) the lower (upper) bound over the possible range of π2 gives the desired bounds
on E(Y (T = 1)− Y (T = 0) | G ∈ {8, 16}) in Equation (A6). �

Proposition 2 shows how Assumption 7 allows us to tighten the bounds on the causal estimandsE(Y (T =
1)− Y (T = 0) | G ∈ {6, 8, 16}) given in Proposition 1. Analogously, the bounds in Proposition 6 on the
causal estimands E(Y (T = 1)− Y (T = 0) | G ∈ g), for g = {6}, {8}, {16}, {6, 8}, {6, 16}, {8, 16},
can be tightened using alternative latent ignorability assumptions for nonresponse. Here, we omit these
results, which are available upon request from the authors.
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