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Abstract

Persistence and occasional abrupt changes in the average level characterize the dynamics of
high frequency based measures of volatility. Since the beginning of the 2000s, this pattern can
be attributed to the dot com bubble, the quiet period of expansion of credit between 2003 and
2006 and then the harsh times after the burst of the subprime mortgage crisis. We conjecture that
the inadequacy of many econometric volatility models (a very high level of estimated persistence,
serially correlated residuals) can be solved with an adequate representation of such a pattern. We
insert a Markovian dynamics in a Multiplicative Error Model to represent the conditional expec-
tation of the realized volatility, allowing us to address the issues of a slow moving average level
of volatility and of a different dynamics across regime. We apply the model to realized volatility
of the S&P500 index and we gauge the usefulness of such an approach by a more interpretable
persistence, better residual properties, and an increased goodness of fit.

Keywords: MEM models, regime switching, realized volatility, volatility persistence

1 Introduction
A consolidated literature in financial econometrics is devoted to measuring asset volatility exploit-
ing the information contained in asset price data collected at a very high frequency. The volatility
estimators, known as realized volatility measures, have allowed for deeper insights into the dynam-
ics of volatility, traditionally analyzed in a modeling and forecasting framework within the GARCH
paradigm (Engle, 1982; Bollerslev, 1986; and further extensions – for a review, see Teräsvirta, 2009).
Starting from the plain realized volatility, largely studied in Andersen et al. (2000, 2003), other
measures have been introduced to take into consideration the presence of jumps, and other market
microstructure issues (for a review, see Andersen et al., 2010). The most recent addition in the family
of volatility estimators is the realized kernel volatility (developed by Barndoff-Nielsen et al., 2008),
designed to possess robustness to market microstructure noise.

While volatility measurement from an end-of-day perspective has reached a mature stage, the
question of volatility forecasting is still open, since there is still a wide debate as of which model is

∗Thanks are due to participants in the following conferences: ERCIM 2010 (London, 10-12 December 2010), ECTS
2011 (Monte Porzio Catone, 13-14 June 2011), SCO 2011 (Padova, 19-21 September 2011). Financial support from
Italian MIUR under Grant 20087Z4BMK 002 is gratefully acknowledged.
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Figure 1: Realized kernel volatility of S&P500 index.

appropriate to characterize volatility dynamics, based on the current information available (cf. among
others, Brownlees and Gallo, 2010; Shephard and Sheppard, 2010; Hansen et al., 2011; Cipollini
et al., 2012). As a matter of fact, the visual inspection of the time series profile of high frequency
based measures of volatility reveals a high degree of persistence: this is the case, for example, of
the behavior of the kernel volatility of the S&P500 index, relative to the 500 most important US
companies, shown in Figure 1 on a period between January 3, 1996 and February 27, 2009.1 One
can conjecture the presence of changing levels of the prevailing average volatility by subperiods: the
series shows in fact alternating regimes which visually involve changes in the level but may also
correspond to differences in the dependence in the series. This is particularly clear in the past ten
years, with the turbulence leading to the burst of the tech bubble, the 2001 recession, the low level of
volatility in mid decade and then the explosion of uncertainty following the subprime mortgage crisis.

The modeling effort which we will present in this paper aims at addressing the empirical reg-
ularities that ensue from the analysis of kernel volatility, keeping model diagnostics as a guideline
for correct specification. The volatility series can be modeled as the product of a time-varying scale
factor evolving autoregressively and a random disturbance (Multiplicative Error Models – MEM –
developed by Engle, 2002, and expanded by Engle and Gallo, 2006); as it is applied to non–negative
values, a MEM has the advantage of capturing dynamics without resorting to logs thus producing
forecasts of volatility (and not of log–volatility).

For series such as the one at hand, the original MEM with an asymmetric response of volatility to
the sign of lagged returns still suffers from residual autocorrelation. The question as of which features
in the series need to be accommodated is addressed here by explicitly considering the existence of
volatility regimes. With the introduction of a new member in the MEM family possessing Markov
Switching properties (Hamilton, 1989, 1990), we want to represent the existence of different phases
of volatility (quiet periods, turmoil periods and brief abnormal peaks), through changes in regimes

1Data are expressed as percentage annualized volatility, i.e. the square root of the realized variance series taken from
the Oxford-Man Institute’s realised library version 0.1 (Heber et al., 2009), and multiplied by

√
252 ∗ 100.
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in the MEM data generating process. Our proposal is a MEM where Markov Switching parameters
capture the presence of regimes with different dynamics. We try several specifications, starting from
the most general and then imposing some constraints on the coefficients. Finally, further exploiting
the information deriving from the sign of the lagged returns, we also propose a new time-varying
probability Markov Switching model. Both sets of models provide several interesting interpretations
deriving from the parameter estimation and a correct identification of the volatility related events,
favoring a better fit relative to the base MEM.

Our work has several points of contact with various contributions in the literature: Markov Switch-
ing models have received an increasing attention in financial econometrics, starting from the SWARCH
model, proposed by Hamilton and Susmel (1994), the MS GARCH model of Dueker (1997) and
Klaassen (2002), or the recent multivariate extensions (Edward and Susmel, 2003, Higgs and Wor-
thington, 2004, Gallo and Otranto, 2007, 2008). The issue of time varying underlying level of volatil-
ity is addressed by Engle and Rangel (2008), who adapt a spline function to capture a low frequency
component of volatility (which they connect to macroeconomic factors). A different type of spline
function, the P-Spline, is used by Brownlees and Gallo (2010) in a MEM context with the same
motivation.

The paper is organized as follows: in the next section we introduce the Markov Switching ex-
tensions within the MEM framework. After discussing the data, in section 3 we show in detail the
empirical results using the S&P500 stock index, illustrating the different performance with respect to
the classical MEM model. Some final remarks will conclude the paper.

2 The Asymmetric Multiplicative Error Model with Markov Switch-
ing

The basic MEM idea is introduced in Engle (2002) and successively developed in Engle and Gallo
(2006); Cipollini et al. (2012) suggest an extension to the multivariate case. The volatility xt of a
certain financial time series is modeled as the product of a time varying scale factor µt, representing
the conditional mean of xt, which follows a GARCH-type dynamics, and a positive valued error εt:

xt = µtεt, εt|Ψt−1 ∼ Gamma(a, 1/a) for each t

µt = ω + αxt−1 + βµt−1 + γDt−1xt−1

Dt =


1 if rt < 0

0 if rt ≥ 0

(2.1)

where Ψt represents the information available at time t. This base specification takes the presence
of asymmetric responses of volatility to the sign of the returns (Engle and Gallo, 2006), similarly to
the TGARCH model (Zakoı̈an, 1994) and the coefficient γ captures a stronger response to negative
returns. We call this model Asymmetric MEM (AMEM); setting γ to zero gives us the simple MEM.
Constraints can be imposed to ensure the positiveness of µt (ω > 0, α ≥ 0, β ≥ 0, γ ≥ 0) and the
stationarity of the process (persistence (α + β + γ/2) less than 1 under zero median of the returns).
The Gamma distribution depends only on a single parameter a, providing a mean and a variance of the
conditional error equal to 1 and 1/a respectively. Correspondingly, the conditional mean and variance
of xt are µt and µ2

t/a respectively. Further lags can be added to the specification.
In this context, the unconditional mean of the volatility across the entire period is given by:

µ =
ω

1− α− β − γ/2
, (2.2)

3



As noted in the introduction, this feature may be too restrictive for series such as our leading example,
especially if we want to allow for sudden and persistent changes in the level of the series. In order to
extend the capabilities of the model to capture extreme events which may have an impact on market
dynamics, we introduce switching parameters that follow a discrete Markov chain. We define the
Markov–Switching AMEM (MS–AMEM) as:

xt = µt,stεt, εt|Ψt−1 ∼ Gamma(ast , 1/ast) for each t

µt,st = ω +
∑n

i=1 kiIst + αstxt−1 + βstµt−1,st−1 + γstDt−1xt−1

(2.3)

where st is a discrete latent variable which ranges in [1, . . . , n], representing the regime at time t. Ist
is an indicator equal to 1 when st ≤ i and 0 otherwise; ki ≥ 0 and k1 = 0. In other terms, the constant
in regime j is given by (ω +

∑j
i=1 ki). The changes in regime are driven by a Markov chain, such

that:
Pr(st = j|st−1 = i, st−2, . . . ) = Pr(st = j|st−1 = i) = pij (2.4)

The positiveness and stationary constraints given for (2.1) hold within each regime in (2.3) as well.
It is useful to impose a particular reparameterization for βst to guarantee a certain coherence

between the regime and the level of volatility, ensuring that states of volatility (from low to high)
increase with the regime identifier. For example, let us assume two regimes corresponding to low
and high volatility, respectively, and that at time t an abrupt jump occurs in the volatility level; this
would force a sizeable increase in the value of xt and st will switch to 2. Let us now think that at
time t+ 1 the level will stay in the same regime with xt+1 ' xt; this event would not be captured by
model (2.3), because the high value of xt+1 will correspond to a small value of the intercept ω+kst+1 ,
pushing st+1 to revert to 1. To allow for a correct identification of the state (cf. in Hamilton, 1990
in the context of business cycle analysis), it is more appropriate to subtract the mean of the expected
volatility from each xt in the second equation of (2.3):

µt,st = ω +
n∑
i=1

kiIst + α∗
st(xt−1 − µt−1,st−1) + β∗

stµt−1,st−1 + γ∗stDt−1(xt−1 − µt−1,st−1)

This model is equivalent to model (2.3), with unconditional expected value within state j, j =
1, . . . , n, equal to:

µj =
ω +

∑j
i=1 ki

1− α∗
j − γ∗j /2− (β∗

j − α∗
j − γ∗j /2)

so that, from (2.2), αj = α∗
j , γj = γ∗j , βj = β∗

j − αj − γj/2. It is convenient to estimate β∗
j , with

the constraint (αj + γj/2) ≤ β∗
j < 1, and then obtain βj from it. This constraint, together with the

particular reparameterization of the constant in (2.3), achieves the desired property that the constant
term itself increases with the volatility level.

The estimation of model (2.3) does not present particular problems because it can be performed
along the lines of the Hamilton filter and smoother (Hamilton, 1994, ch.22). The only computational
problem is due to the dependence of µt,st on st−1, its regime at time t−1. This means that, evaluating
the likelihood recursively, we need to keep track of all possible paths taken by the regime between
t = 1 and t = T , involving a non tractable model. A typical solution adopted in this case is the
one proposed by Kim (1994), dealing with a similar problem with a state-space MS model (see the
many examples shown in Kim and Nelson, 1999). After each step of the Hamilton filter, at time t we
collapse the n2 possible values of µt into n values, by an average over the probabilities at time t− 1:

µ̂t,st =

∑n
i=1 Pr[st−1 = i, st = j|Ψt]µ̂t,st−1,st

Pr[st = j|Ψt]
(2.5)

where a hat indicates the estimate of the unknown variable and the probabilities in (2.5) are obtained
by the Hamilton filter.
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Finally, the asymmetry deriving from the sign of the returns may affect not only the average
level within a certain regime, but also the transition probabilities. For this purpose, we suggest an
extension to the model, called Asymmetry in Probability MS–AMEM (AsyP–MS–AMEM), with the
same expression (2.3) for the level of volatility, whereas the transition probabilities are given by:

Pr(st|st−1, rt−1) = pij,t =

{
p−ij if rt−1 < 0
p+ij if rt−1 ≥ 0

(2.6)

A possible reparameterization of the transition probabilities could be made using a multinomial logit:

pij,t =
exp(φij+ϑijDt−1)

1+
∑n−1

h=1 exp(φih+ϑihDt−1)

pin,t = 1−
∑n−1

j=1 pij,t

i = 1, ..., n; j = 1, ...n− 1

(2.7)

with pij,t = p−ij when Dt−1 = 1 and pij,t = p+ij when Dt−1 = 0. Expression (2.7) can be considered
a particular time-varying transition probability MS model, proposed in the econometric literature by
Filardo (1994) and Diebold et al. (1994). The advantage of this reparameterization is that the MS–
AMEM can be nested into the AsyP–MS–AMEM, by constraining all the coefficients ϑij to be 0, and
a comparison can be made via a likelihood ratio test. Tests based on the likelihood function cannot
be used to compare the MEM and AMEM with respect to the corresponding MS models because
of the presence of nuisance parameters present only under the alternative hypothesis; in this case,
with the proper caution, a classical BIC and AIC could provide some information (see Psaradakis and
Spagnolo, 2003); in particular the AIC seems to choose the correct state dimension more successfully
than the BIC, provided that the parameter changes are not too small and the hidden Markov chain is
fairly persistent.

3 Regimes in the Volatility of the S&P500 Index
As a complement to the profile of the S&P500 volatility series shown in Figure 1 before, the descrip-
tive statistics in Table 1 confirm the compatibility with the presence of regimes, especially a very large
range (touching almost 120% at the maximum relative to a mean of about 13%) with a thick right tail
(high kurtosis). Time dependence is reflected in the autocorrelation function, reported at lag 1 (one
day), 5(one week), 22 (one month), which is characterized by slowly declining high values, a fact
typically seen as evidence of the presence of regimes (as an alternative to a long memory explanation,
not discussed here).

3.1 Model Specification
We start from estimating the benchmark models MEM and AMEM, which will be used as guidelines
in what follows. The estimation results are reported in Table 2. We pinpoint to a small but statistically
significant threshold coefficient γ. We calculated the information criteria and some loss functions of
interest, namely, the Root Mean Squared Error (RMSE), the Mean Absolute Error (MAE) (a compar-
ison based on the levels of volatility) and Theil’s U (the latter calculated using the first differences of
observed and forecasted data to detect the capability of the model to capture the turning points). On
all accounts the AMEM is favored, revealing that the presence of asymmetric effects must be taken
into account. The estimated persistence, measured as (α + β) for the MEM, and (α + β + γ/2) for
the AMEM, is very high and around 0.94 for both models.
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Table 1: Descriptive statistics for S&P500 realized kernel volatility (in annualized percentage terms).
Sample: January 3, 1996 to February 27, 2009.

Mean 13.363
Median 11.392

Min 2.387
Max 118.75

St.Dev. 8.611
Skewness 3.415

Kurtosis 20.132
ACF(1) 0.821
ACF(5) 0.698

ACF(22) 0.525

Table 2: S&P500 realized kernel volatility (in annualized percentage terms). Coefficient estimates
for the two benchmark models MEM and AMEM (standard errors in parentheses), together with
likelihood-based criteria and loss functions. Sample: January 3, 1996 to February 27, 2009.

ω α β γ a
MEM 0.721 0.412 0.532 13.444

(0.068) (0.028) (0.032) (0.427)
AMEM 0.690 0.312 0.591 0.083 13.842

(0.078) (0.031) (0.035) (0.008) (0.452)
log-lik AIC BIC RMSE MAE Theil-U

MEM -8438.48 5.175 5.182 4.591 2.873 0.390
AMEM -8389.66 5.145 5.155 4.490 2.811 0.381

As with other MS models, it is crucial to avoid over–parameterization in order to achieve a parsi-
monious representation with reliable parameter estimates: we start from the most general specifica-
tion (2.3)-(2.6) with 3 regimes, involving 27 coefficients.2 In Table 3 we show the estimation results
for the parameters present in equation (2.3), whereas in Table 4 we report the estimated transition
probabilities leaving to Section 3.2 some comments about the dynamics and the interpretation of the
regimes. The differences of the transition probabilities p+ij and p−ij are not so large so as to suggest a
formal Wald test on the equality restrictions. The results are shown at the bottom of Table 4 in the
form of p–values associated with the null hypothesis reported. The only hypothesis that is rejected is
p+21 = p−21 and p+22 = p−22 at the significance level of 5%. With this in mind, the evidence (cf. also how
similar estimated parameters of MS–AMEM and the AsyP–MS–AMEM are from Table 3) points to
no major asymmetry in the transition probabilities and thus favors the MS–AMEM. With an eye to a
simplification of the specification, we can calculate the Wald test statistics for the joint hypotheses in
the MS–AMEM:

αi = αj
βi = βj

for each i, j = 1, 2, 3 and i 6= j. The corresponding p-values are 0.09 for (i, j) = (1, 2) and 0.00
for (i, j) = (1, 3) and (2, 3). On this basis we suggest a new model constrained to have the same
MEM dynamics in regimes 1 and 2; the estimation results are shown in the last column of Tables 3
and 4. We label this model as MS–AMEM(c), with c as a reference to it being constrained. LR test,
AIC and BIC favor this last model relative to the previous two models, with very similar values of the
loss functions. As a further check, we have also estimated a model with the same MEM dynamics

2For the sake of completeness, we have also considered the case of 2 regimes; the outcome is in favor of the models
with three regimes, based on the AIC and BIC.
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Table 3: S&P500 realized kernel volatility (in annualized percentage terms). Coefficient estimates for
Markov Switching MEM specifications with three regimes and Gamma innovations: i. AsyP–MS–
AMEM, ii. MS–AMEM and iii. MS–AMEM with parameters on the volatility dynamics constrained
to be the same across regimes 1 and 2 (standard errors in parentheses). Likelihood-based criteria and
in sample forecasting performance are reported in the lower portion. Sample: January 3, 1996 to
February 27, 2009.

AsyP–MS–AMEM MS–AMEM MS–AMEM(c)
ω 1.858 1.872 1.731

(0.163) (0.229) (0.121)
k2 0.645 0.685 1.040

(1.128) (0.228) (0.038)
k3 5.103 5.188 5.005

(1.880) (1.326) (1.276)
α1 0.200 0.199 0.180

(0.020) (0.028) (0.015)
α2 0.158 0.161

(0.079) (0.029)
α3 0.259 0.257 0.259

(0.058) (0.058) (0.051)
β1 0.524 0.525 0.561

(0.040) (0.056) (0.028)
β2 0.602 0.594

(0.155) (0.058)
β3 0.345 0.343 0.339

(0.111) (0.108) (0.093)
γ1 0.075 0.076 0.080

(0.002) (0.007) (0.010)
γ2 0.082 0.083

(0.018) (0.014)
γ3 0.137 0.143 0.143

0.019 0.018 0.018
a1 15.919 15.808 15.818

(0.379) (0.632) (0.623)
a2 19.006 18.742 18.613

(2.616) (1.452) (1.248)
a3 10.831 10.946 11.013

(0.814) (0.751) (0.753)
log-lik -8326.58 -8328.77 -8329.12

AIC 5.120 5.118 5.116
BIC 5.171 5.157 5.150

RMSE 4.452 4.428 4.433
MAE 2.635 2.632 2.635

Theil-U 0.367 0.367 0.368
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Table 4: S&P500 realized kernel volatility (in annualized percentage terms). Markov Switching
MEM specifications with three regimes and Gamma innovations: estimates of transition probabilities
(standard errors in parentheses; pi3 (i = 1, 2, 3) is computed as 1 − pi1 − pi2). P-values associated
with Wald test statistics for the equality of the rows of the transition probability matrix in the AsyP–
MS–AMEM.

AsyP–MS–AMEM MS–AMEM MS–AMEM(c)
p+ij p−ij

p11 0.980 0.995 0.989 0.989
(0.006) (0.003) (0.002) (0.001)

p12 0.017 0.000 0.007 0.007
(0.008) (0.000) (0.001) (0.001)

p13 0.003 0.005 0.004 0.004
p21 0.000 0.018 0.007 0.007

(0.000) (0.007) (0.001) (0.001)
p22 0.994 0.956 0.977 0.977

(0.017) (0.016) (0.002) (0.002)
p23 0.006 0.026 0.026 0.026
p31 0.012 0.000 0.006 0.004

(0.008) (0.000) (0.002) (0.001)
p32 0.054 0.026 0.042 0.041

(0.023) (0.012) (0.001) (0.006)
p33 0.934 0.974 0.952 0.955

AsyP–MS–AMEM
Null Hypothesis: p-value

p+11 = p−11 and p+12 = p−12 0.069
p+21 = p−21 and p+22 = p−22 0.017
p+31 = p−31 and p+32 = p−32 0.359
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Table 5: Diebold-Mariano statistics for comparison of in sample forecast errors.
MEM AMEM MS–AMEM(c)

Squared Errors
MEM 3.192 1.908

AMEM -3.192 0.609
MS–AMEM(c) -1.908 -0.609

Absolute Errors
MEM 5.070 7.880

AMEM -5.070 6.130
MS–AMEM(c) -7.880 -6.130

Squared Errors in first differences
MEM 5.139 6.017

AMEM -5.139 5.521
MS–AMEM(c) -6.017 -5.521

in all the regimes, with the constant term and the coefficient of the Gamma distribution as the only
switching parameters, but the LR and Wald tests again favor the MS–AMEM(c) which will be kept
as the MS model of reference to be compared with the MEM and the AMEM.

In terms of goodness of fit, the MS–AMEM(c) seems to be clearly superior relative to the MEM
and the AMEM, with lowest AIC and BIC, in spite of the larger number of estimated coefficients,
and the lowest RMSE, MAE and Theil’s U. To verify whether the differences among the models syn-
thesized by loss functions measures are significant, we have applied a Diebold-Mariano test (Diebold
and Mariano, 1995), with the correction proposed by Harvey et al. (1997), to test the null hypothesis
of no difference in the accuracy of two competing forecasts. In practice we verify if the mean of
the differences of the squared forecast errors, absolute forecast errors and squared forecast errors in
first differences of each pair of models is zero. In Table 5 we show the Diebold-Mariano statistics:
a positive sign of the statistic in position (i, j) indicates that the model in the j − th column has, on
average, better performance than the model in the i− th row. Whether that performance is significant
is gauged by the statistic’s value relative to a Student’s t distribution.3

The fact that the MS–AMEM(c) is significantly better than the MEM and the AMEM in terms of
absolute errors (see MAE values in Table 3) and squared errors in the first differences (see Theil’s U
values) is confirmed. Since its corresponding column in Table 5 is always positive, the results of the
Diebold Mariano test show that MS–AMEM(c) is the best model. The analysis of squared errors is
a puzzling case, because there is a significant better performance of AMEM with respect to MEM,
whereas MS–AMEM(c) is not significantly better than the other two models. Maybe this is due to
isolated large errors in the MS model, which become even larger when squared.

One of the motivations to adopt a MS model to analyze volatility is the presence of autocorrelated
residuals in the MEMs with constant parameters. In Table 6 we show the Ljung-Box statistics (Q) and
the corresponding p-value (p) for the three models to check how uncorrelated the residuals are up to
lag 20.4 What we observe is that the model with three regimes are able to capture the strong residual
dependence structure still present in the MEM and the AMEM.

3Often the Diebold–Mariano test, or, more generally, the predictive ability tests, are applied with out-of-sample fore-
casts, but Inoue and Kilian (2004) show, both analytically and via Monte Carlo simulations, that out-of-sample tests have
lower power than their in-sample counterparts. In our case, the out-of-sample behavior could be misleading for the high
volatility regime that characterizes the latest period of our time series; in fact, the out-of-sample forecasts would evaluate
just the behavior of the models in a particular phase of volatility and not the global forecasting capability of the models
across different regimes.

4For MS–AMEM(c) we have used the generalized residuals, introduced by Gourieroux et al. (1987) for latent variable
models, defined as E(ε̂t|Ψt−1) =

∑3
i=1 ε̂st,ttPr(st = i|Ψt−1), where ε̂st,t are the residuals at time t derived from the

parameters of the model in state st.
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Table 6: Ljung-Box Q statistics and corresponding p-value.
MEM AMEM MS–AMEM(c)

lag Q p-value Q p-value Q p-value
1 16.22 0.00 18.55 0.00 2.27 0.13
2 20.39 0.00 22.43 0.00 2.90 0.23
3 35.40 0.00 35.26 0.00 5.45 0.14
4 35.89 0.00 35.54 0.00 9.18 0.06
5 36.71 0.00 36.02 0.00 12.82 0.03
6 36.90 0.00 36.23 0.00 12.99 0.04
7 36.92 0.00 36.23 0.00 13.08 0.07
8 36.98 0.00 36.24 0.00 13.15 0.11
9 39.72 0.00 38.30 0.00 15.13 0.09

10 41.04 0.00 39.17 0.00 16.32 0.09
11 41.55 0.00 39.23 0.00 16.53 0.12
12 43.91 0.00 40.81 0.00 17.03 0.15
13 46.26 0.00 42.70 0.00 18.45 0.14
14 48.23 0.00 44.26 0.00 19.16 0.16
15 53.19 0.00 49.69 0.00 22.49 0.10
16 55.80 0.00 51.43 0.00 23.07 0.11
17 56.21 0.00 52.47 0.00 23.69 0.13
18 57.21 0.00 53.22 0.00 24.01 0.15
19 63.01 0.00 59.06 0.00 27.20 0.10
20 69.37 0.00 66.43 0.00 33.06 0.03

3.2 Inference on the regimes
Going back to Table 4 we are now in a position to comment on the transition probabilities in the
light of the discussion about the model specification above. The probabilities to stay in the same
regime allow for estimating the duration in a certain regime i as 1

1−pii . While such probabilities are
high across all MS models, in reference to our favorite MS–AMEM(c) model, the estimates imply,
on average, a 91 days permanence in the state of low volatility, which decreases to 43 days for the
intermediate volatility state, and to 22 days for the high volatility state. This result is consistent with
the empirical evidence that the turmoil periods have a lower duration with respect to quieter spells.

Some further insights are gained by looking at the off-diagonal elements of the transition proba-
bility matrix. Being in regime 1 there is a very low probability to switch to either of the other two
regimes. From the regime of intermediate volatility there is a higher probability to move to the high
volatility regime than to revert to a low volatility regime. By the same token, note that the downward
transition from the high volatility states occurs preferably with a move to the intermediate state: joint
with the considerations above, there seems to be a strong interaction between regimes two and three
while the period of low volatility is a sort of self standing regime.

These comments are further validated by calculating the smoothed probabilities Pr(st|ΨT ) to
obtain an inference on the regimes. Each period is assigned to a regime based on the mode of the
probabilities of being in one of the three states for each t; to be true, these probabilities are, in
general, near zero or one, denoting a clear–cut association of each period with either regime.

Each state corresponds to a different average level of volatility, namely

µj =
ω +

∑j
i=1 ki

1− αj − βj − γj/2
j = 1, 2, 3. (3.1)

From our estimates of the MS–AMEM(c), we derive the corresponding levels of volatility by regime
which are 7.89% in regime 1, 12.62% in regime 2 and 23.53% in regime 3. We can superimpose
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such average volatility levels to the observed series as done in the Panel A. of Figure 2. Bursts of
volatilities, as well as sudden reductions in their values correspond to a discrete change in the average
value around which volatility follows its dynamics. Moreover, the estimated persistence is clearly
different than the one in the MEM and AMEM (0.94 for both models, cf. Table 2) and also within
each regime: based on the values in Table 3, we estimate it to be equal to 0.78 during the low and
medium volatility, and to a smaller 0.67 in the high volatility regime. These results are consistent
with the intuitive notion that turmoil periods have a lower persistence when compared to the quiet
periods. Moreover, the regime 3 of high volatility depends mainly on the most recent observation and
on the sign of the returns (the values of α3 and γ3 are higher and the value of β3 is lower, relative to
corresponding coefficients of regime 1 and 2). It is interesting to note also that γ3 ' 2γ1, showing that
bad news has a bursting effect in turmoil periods. Finally, values of the shape parameter ast across
regimes are also of interest. Larger values of a correspond to a density approaching the Normal
distribution, whereas smaller values polarize the random variable to take on either small or large
values. In our case, the estimated values are the largest for the state of medium volatility and the
smallest for the state of high volatility, in keeping with the interpretation of the regimes.

Further insights on the value added in considering our Markov Switching AMEM can be gained
by dividing the original data by the regime specific average volatility as done in Panel B. of Figure 2.
It is apparent that the model manages to remove the underlying slow–moving trend in the evolution of
volatility: now the series oscillates around 1, with the exception of the episode started in September
2008 with the collapse of Lehman Brothers which lasted for a relatively short period.

From the Panel A. of Figure 2 it seems that, after a first year (1996), in which the volatility is low
with an abrupt, but brief, peak in July, we have a period of medium volatility until the middle of 1998,
which includes the Asian crisis; from July 1998 until the beginning of 2003 there are many peaks
of high volatility, consistent with the Russian crisis of August 1998, the dot-com bubble (which has
its peak on March 2000), the 2001 recession. After this long period, there is a quiet period between
October 2003 and July 2007, with only one sudden passage to the regime of high volatility on July
24, 2007. On such a day, the value of the index dropped by 2% and started a short–lived bearish rally
around the first measures taken by the Fed in response to the first signs of the liquidity crisis later
exploded in August 2007.

Low volatility is fairly persistent and experienced at the beginning of the sample period, a brief
bout in 1998, and then from 2003 to 2007. The worsening of the financial crisis is marked by a
permanent change to regime 3 until the end of the sample period.

The Panel B. of Figure 2 shows a fairly regular behavior of the transformed series with some signs
of autocorrelation (captured by the multiplicative structure of the model) with much less pronounced
peaks relative to the original series. The fact that the observed series is well above the average level
in the last portion of the sample may be an indication that the height of the crisis may be marked by
an even higher average level of volatility, and a fourth (very short lived) regime would in principle
accommodate that. In results not reported here this is indeed the case, but it implies a worsening of
the inference in the other regimes. We opt not to fit an extra regime given the exceptional nature of
the market volatility dynamics following the demise of Lehman Brothers. By the same token, the
Ljung–Box autocorrelation statistics of Table 6 are fairly reassuring as of the little impact that the
burst of volatility at the end of 2008 has on the overall picture.

3.3 Estimation accuracy
In order to evaluate the properties of our volatility estimates, we resort to the calculation of 95% confi-
dence intervals for the expected volatility values, using the three models. Given that E(xt|Ψt−1) = µt
and V ar(xt|Ψt−1) = µ̂2

t/â, we compute the lower and upper values of the intervals, respectively,
as the 2.5 and the 97.5 percentiles for the Gamma distribution with parameters â and µ̂t/â. For the
MS–AMEM(c), paralleling the way µ̂t is computed, we derive the intervals’ bounds as the weighted
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Figure 2: S&P500 realized kernel volatility series. Features of the regimes identified by the MS–
AMEM(c).

A. Original series with regime–specific average volatilities in bold line.

B. Volatility divided by the regime–specific average volatilities.
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Table 7: Average widths and standard deviations of the 95% confidence intervals of the conditional
expected volatility for the whole period and within each regime identified by MS–AMEM(c).

Whole Regime 1 Regime 2 Regime 3
Mean st.dev. Mean st.dev. Mean st.dev. Mean st.dev.

MEM 14.09 7.38 9.22 1.86 14.05 3.02 24.68 10.79
AMEM 13.89 7.35 9.09 1.94 13.84 3.08 24.38 10.77

MS–AMEM(c) 13.32 7.99 7.94 1.41 12.26 2.59 27.62 8.50

Table 8: Percentage of errors, distinguished by overprediction and underprediction. Percentage shares
of the overprediction and underprediction errors by regimes.

Overall Overprediction Underprediction
% by Regime % by Regime

total over under 1 2 3 1 2 3
MEM 5.5 1.9 3.6 44.4 38.1 17.5 17.8 33.0 49.2

AMEM 5.4 2.1 3.3 48.5 32.4 19.1 16.7 36.1 47.2
MS–AMEM(c) 4.7 2.1 2.6 44.1 47.1 8.8 34.9 40.7 24.4

average of the relevant percentiles from a distribution Gamma(âst , µ̂st/âst) in each regime, with
weights equal to the corresponding smoothed probabilities.

In Table 7 we show the mean width of the intervals (together with their standard deviation) as
values computed across the T intervals and then the corresponding values by each regime identified
by the MS–AMEM(c). For the full period, we can note that the MS–AMEM(c) provides on average
smaller intervals (more precise), with a larger standard deviation which we interpret as a capability
of being more flexible in adapting to the volatility of volatility. In turn, this feature is consistent with
the mean values by regime: in regime 1 and 2 the average width of intervals calculated under MS–
AMEM(c) is substantially low relative to the others, whereas in the third regime of very high volatility
we get a larger average width with an overall smaller dispersion (lower standard deviations).

Note that conditional expected volatilities obtained by the MS–AMEM(c) explicitly consider a
different underlying regime–specific average volatility. Relative to other models, this should imply
fewer observed volatilities falling outside the interval bounds. For a nominal confidence interval of
95% and for each model, we show the percentage of out–of–bound observations in the left part of
Table 8, distinguishing conditional overprediction (i.e. the observed data falls below the lower bound
of the interval) from underprediction (the observed data falls over the upper bound of the interval).
The relative incidence of such occurrences is lower for the MS–AMEM(c) (4.7% against more than
5.4% for the other models) and it is equally spread between overprediction and underprediction. By
the same token, the MEM and the AMEM underpredict more frequently. We find it instructive to
further decompose the incidence of overprediction, respectively, underprediction obtaining the share
in each regime (central and right part of the Table 8). It is clear that the MEM and the AMEM, in
general, have a decreasing pattern of overprediction as the volatility regime increases while they have
higher shares of underprediction with higher volatility regimes. By contrast, the MS–AMEM(c) has
patterns balanced between over– and underprediction, concentrating the out–of–bound observations
in the first and (more so) in the second regime.

4 Concluding Remarks
Judging upon the results of the analysis of the leading case of the S&P500 index, the introduction of
regimes and the inclusion of asymmetric effects in a MEM does improve the fitting performance of
the model and increases the possibility of interpreting and capturing crucial events in the volatility
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dynamics. The presence of residual autocorrelation which is fairly strong in the MEM and AMEM
is substantially reduced when adopting a regime switching specification. This seems to be reassuring
for the series at hand which presents enormous peaks very often, especially in the last part of the
series analyzed.

The model proposed presents several possible specifications: with or without threshold parame-
ters, with or without a threshold change in the transition probabilities, with all the parameters switch-
ing or just a part of them. The advantage is that we can nest the resulting models, so it is possible to
choose the best model simply using Wald tests or information criteria. Further extensions such as the
introduction of a fourth regime are encumbered by the difficulty of reaching convergence: results not
reported here show that while a better fit is obtained on the more extreme episodes, there is a general
worsening of the fit and of the prediction capabilities for the other regimes.

Briefly put, this good performance can be replicated also for other time series; we have experi-
mented this new model for other American stock indices, differing by degrees of capitalization: the
Dow Jones industrial index, which is based on the main 30 stocks exchanged on Wall Street; the
S&P400 Midcap index, relative to 400 companies of the mid-cap equities sector; Russell 3000, which
deals with the first 3000 companies with larger capitalization; Russell 1000 (the first 1000 companies
considered in Russell 3000); Russell 2000 (the last 2000 companies considered in Russell 3000). For
the Dow Jones index we have obtained a performance similar to the one of the S&P500. For the
S&P400 Midcap index and the Russell indices we obtain a better performance in terms of fitting and
in sample forecasting performance with respect to the MEM and AMEM, but not of the residual un-
correlatedness. An interesting fact is that, for these four series, we can capture large part of residual
autocorrelation providing a time-varying smooth transition variance, not dependent on regimes, but
with a proper dynamics. The idea is that the dynamics of the coefficient of the Gamma distribution is
driven by the following model (see Teräsvirta, 2009):

at = a0 + a1(1 + exp(−δ[rt−1 − c]))−1

where a0 > 0, a1 ≥ 0, δ > 0 and c are unknown parameters. In terms of inference on the regime,
the results show a behavior of the Russell 1000 and the Russell 3000 very similar to the one of the
S&P500 and the Dow Jones, and a separate behavior of S&P400 Midcap and Russell 2000, similar to
one another. In practice the subdivision in regimes seems linked to the degree of liquidity behind the
indices.

A detailed analysis and the comparison of several indices is contained in Gallo and Otranto (2012).
The lesson we learn is that the increasing flexibility of the distribution hypothesized for the error
terms favors the possibility to respect the statistical hypothesis of the model; in practice the correct
hypothesis about the error distribution seems to be a crucial task to increase the quality of the model
estimation.
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