
 

 

 
 
 
 
 
 
 

Volat i l i ty  Swings  

in the US F inanc ia l  Markets  

 
 
 
 
 
 
 

W
O

R
K

I
N

G
 

P
A

P
E

R
 

2
0

1
2

/
0

3
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Giampiero  Gal lo ,  

Edoardo Otranto  

 
 

 

 

 

 

 

 
 

U n i v e r s i t à  d e g l i  S t u d i  
d i  F i r e n z e  

 

 

 

 

 

 

 

 

 

D
ip

a
r
t
im

e
n

t
o

 d
i 

S
t
a

t
is

t
ic

a
 “

G
. 

P
a

r
e

n
t
i”

 
–

 V
ia

le
 M

o
r
g

a
g

n
i 

5
9

 
–

 5
0

1
3

4
 F

ir
e

n
z
e

 
-
 w

w
w

.d
s
.u

n
if

i.
it

 



Volatility Swings in the US Financial Markets∗

Giampiero M. Gallo
Dipartimento di Statistica “G. Parenti”, Università di Firenze
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Abstract

Empirical evidence shows that the dynamics of high frequency–based measures of volatility
exhibit persistence and occasional abrupt changes in the average level. By looking at volatil-
ity measures for major indices, we notice similar patterns (including jumps at about the same
time), with stronger similarities, the higher the degree of company capitalization represented in
the indices. We adopt the recent Markov Switching Asymmetric Multiplicative Error Model to
model the dynamics of the conditional expectation of realized volatility. This allows us to address
the issues of a slow moving average level of volatility and of different dynamics across regimes.
An extension sees a more flexible model combining the characteristics of Markov Switching and
smooth transition dynamics.

Keywords: MEM models, regime switching, smooth transition, realized volatility

1 Introduction

Direct measures of financial volatility were made possible by the availability of ultra high fre-

quency data: several estimators were developed (for a review, see Andersen et al., 2010) under

a number of assumptions on the underlying continuous time process driving prices. In what fol-

lows, we will use the version called realized kernel volatility, proposed by Barndoff-Nielsen et al.

(2008), shown to filter out the presence of market microstructure noise and jumps.

When put next to one another, financial market volatilities generally exhibit similar behavior,

being also subject to sudden, seemingly common, changes. Whether patterns of spillover can be

∗Thanks are due to participants in the following conferences: ERCIM 2010 (London, Dec. 10-12, 2010), ECTS 2011
(Monte Porzio Catone, Jun. 13-14, 2011), SCO 2011 (Padova, Sep. 19-21, 2011). Financial support from Italian MIUR
under Grant 20087Z4BMK 002 is gratefully acknowledged.
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detected from one market to another is the object of a large debate in the literature (see, for ex-

ample, Gallo and Otranto, 2008; Engle et al., 2012, and references therein) which extends to the

consequences of capital markets integration for portfolio diversification. In this paper we want to

model volatilities in a univariate context with the aim to identify which indices present common

features in the dynamics, given that each of them represents a different degree of market capital-

ization. The econometric approach is an extension of the Multiplicative Error Model pioneered by

Engle (2002) in the direction of identifying regimes of volatility with a Markov Switching behav-

ior. Sudden changes typically occur when large shocks hit the markets and possibly showing up

in the series as common to several indices. This impression is confirmed by the graphs in Fig. 1

where volatilities of six US indices are plotted on the period between January 3, 1996 and Febru-

ary 27, 2009: Standard & Poor’s 500 (S&P500, 3263 obs.), Dow Jones 30 (DJ30, 3261 obs.), the

S&P400 Midcap (S&P400, 3258 obs.), Russell1000 (RU1, 3262 obs.), Russell2000 (RU2, 3264

obs.) and Russell3000 (RU3, 3262 obs.).1

The visual inspection of these time series reveals a high degree of persistence and several

abrupt changes, particularly clear in the most recent period, with turbulence leading to the burst

of the tech bubble, the 2001 recession, the low level of volatility in mid decade and then the

explosion of uncertainty following the subprime mortgage crisis. On the other hand, these peaks

seem less marked, especially in the first part of the series, for S&P400 and RU2, which are indices

representing companies with a lower degree of capitalization.

Recently, Gallo and Otranto (2012) have conjectured the presence of changing levels of the

prevailing average volatility by subperiods: the series show in fact alternating regimes which

visually involve changes in the level but may also correspond to differences in the dynamics in the

series. They propose to extend the class of Multiplicative Error Models (MEMs), developed by

Engle (2002) and expanded by Engle and Gallo (2006), including a Markov Switching dynamics

in the parameters to capture the presence of regimes. Being a MEM, this class of models applies

to non–negative valued processes, therefore capturing dynamics without resorting to logs and

producing forecasts of volatility (and not of log–volatility); moreover, considering the presence

of regimes, these models capture the different phases of volatility, characterized by quiet periods,

turmoil phases and accommodating brief abnormal peaks, leading to more realistic interpretations.

In particular, applying their model to the same S&P500 volatility series analyzed here, Gallo and

Otranto (2012) show that it is possible to obtain a better fit relative to the standard MEM, to

avoid the high persistence in the estimated series (which contrasts with the empirical evidence)

and to eliminate the residual autocorrelation which affect many realized volatility models. In this

paper we propose a further extension of this class of models, allowing also for the possibility that

the parameters relative to the error distribution can follow a different change in regime than the

parameters of the conditional expected volatility. This is achieved by considering, as in Otranto

(2011), smooth transition dynamics for the error coefficients, along the lines of Chan and Tong

(1986); for some series this extension improves the model performance. We select the best model

1Data are expressed as percentage annualized volatility, i.e. the square root of the realized variance series taken from
the Oxford-Man Institute’s realised library version 0.1 (Heber et al., 2009), and multiplied by

√
252 ∗ 100.
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in this class judging upon its statistical properties and drawing some considerations about the

similarities in the changes in regimes across the six series.

The paper is organized as follows: in the next section we introduce the new class of Markov

Switching models within the MEM framework. In section 3 we show the empirical results, keep-

ing the standard MEM model as a benchmark. Some final remarks will conclude the paper.

2 A Class of Markov Switching AMEM

The basic MEM idea is introduced in Engle (2002) and successively developed in Engle and Gallo

(2006): for what is of interest here, the volatility xt of a certain financial time series is modeled

as the product of a time varying scale factor µt (the conditional mean of xt) which follows a

GARCH-type dynamics, and a nonnegative valued error εt:

xt = µtεt, εt|Ψt−1 ∼ Gamma(a, 1/a) ∀t

µt = ω + αxt−1 + βµt−1 + γDt−1xt−1, whereDt =

{
1 if rt < 0

0 if rt ≥ 0

(2.1)

where Ψt represents the information available at time t. This base specification takes the presence

of asymmetric responses of volatility to the sign of the returns (Engle and Gallo, 2006), where the

coefficient γ captures a stronger reaction to past volatility when accompanied by negative returns.

We call this model Asymmetric MEM (AMEM); setting γ to zero gives us the standard MEM.

Constraints can be imposed to ensure the positiveness of µt (ω > 0, α ≥ 0, β ≥ 0, γ ≥ 0) and

the stationarity of the process (persistence (α + β + γ/2) less than 1). The Gamma distribution

depends only on a single parameter a, providing a mean and a variance of the conditional error

equal to 1 and 1/a respectively. Correspondingly, the conditional mean and variance of xt are µt
and µ2t /a respectively. Further lags could be added.

In order to extend the capabilities of the model to capture extreme events which change market

characteristics, such as sudden and persistent changes in the level of the series, Gallo and Otranto

(2012) introduce the Markov–Switching AMEM (MS–AMEM):

xt = µt,stεt, εt|Ψt−1 ∼ Gamma(ast , 1/ast) ∀t

µt,st = ω +
∑n

i=1 kiIst + αstxt−1 + βstµt−1,st−1 + γstDt−1xt−1

(2.2)

where st is a discrete latent variable which ranges in [1, . . . , n], representing the regime at time t.

Ist is an indicator equal to 1 when st ≤ i and 0 otherwise; ki ≥ 0 and k1 = 0. Accordingly, the

constant in regime j is given by (ω +
∑j

i=1 ki). The changes in regime are driven by a Markov

chain, such that:

Pr(st = j|st−1 = i, st−2, . . . ) = Pr(st = j|st−1 = i) = pij (2.3)
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Also in (2.2) the positiveness and stationary constraints given for (2.1) hold within each regime.

Gallo and Otranto (2012) identify three regimes for the S&P500 realized kernel volatility, that

can be interpreted as the low, medium-high and very high volatility states. Dealing with the same

S&P500 series and in order to compare the changes in regimes of this series with other five series

with similar dynamics, we also fix n = 3. When γst = 0, no asymmetric effects are present

(MS–MEM).2

Accordingly, the unconditional mean of the volatility within each regime is:

mst =
ω +

∑n
i=1 kiIst

1− αst − βst − γst/2
, (2.4)

The hypothesis that all the coefficients follow the same Markovian dynamics could be quite re-

strictive; for example, it would be plausible to think that the coefficient of the Gamma distribution

follows its own dynamics not subject to the same regime changes as the coefficients of the con-

ditional mean µt. We propose an alternative model, to be used when the MS–AMEM does not

fit the data adequately: we add another equation to (2.2) for the time-varying parameter of the

Gamma distribution which changes more or less abruptly, depending on the value of the returns:

at = b0 + b1{1 + exp[−δ(rt−1 − c)]}−1 (2.5)

where b0 > 0, b1 ≥ 0, δ > 0 and c are unknown parameters. In practice, we are adding a time-

varying smooth transition variance (see Teräsvirta, 2009), not dependent on regimes, but with a

suitable dynamic behavior. We call the model (2.2)-(2.3)-(2.5), the MS–AMEM with Smooth

Transition Variance (MS–AMEM–STV). This specification would provide more flexibility to the

Markov Switching model, in particular to capture the sizeable jumps, such as the highest peaks in

2008 (see Fig. 1). When δ approaches∞, equation (2.5) is equivalent to a threshold model (Tong,

1990), and equation (2.5) is substituted by:

at =

{
b0 if rt−1 ≤ c
b0 + b1 if rt−1 > 0

(2.6)

In this case we obtain different regimes for the conditional mean equation and for the Gamma

coefficient, which will follow proper dynamics with two regimes. We call the model represented

by equations (2.2)-(2.3)-(2.6), the MS–AMEM with Threshold Variance (MS–AMEM–TV).

2Details about the reparameterization of βst to guarantee a certain coherence between the regime and the level of
volatility, and about the solution of possible estimation problems, are in Gallo and Otranto (2012). In the same work
another specification of the MS–AMEM is given, in which the asymmetry deriving from the sign of the returns may affect
also the transition probabilities (the so called Asymmetry in Probability MS–AMEM).
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3 Empirical Results

As a complement to the profile of the six volatility series shown in Fig. 1 above, we have calculated

the usual descriptive statistics (not shown here to save space). They confirm the compatibility

with the presence of regimes, especially a very large range with a thick right tail (high kurtosis).

Time dependence is reflected in the autocorrelation functions, which are characterized by slowly

declining high values, a fact typically seen as evidence of the presence of regimes.

We estimate the MS–AMEMs for all the series and verify if they have a good performance

in terms of fitting and statistical tests; in particular we adopt the autocorrelation pattern of the

residuals as a guideline, in the sense that, if they are correlated, we estimate the alternative MS–

AMEM–STV (the MS–AMEM–TV if δ diverges) choosing the one with better properties in terms

of results of the Ljung-Box statistics. This procedure selects the MS-AMEM only for the S&P500

volatility (as shown in detail in Gallo and Otranto, 2012), the MS–MEM for the DJ30 series,

the MS–AMEM–STV for the S&P400 volatility and the MS–AMEM–TV for the three Russell

indices.

We have also estimated the original AMEM, shown in equation (2.1), for all the series and

compared its statistical performance with respect to the selected MS models. For this purpose

we calculated the AIC3 and some loss functions of interest, namely, the Root Mean Squared

Error (RMSE), the Mean Absolute Error (MAE) and Theil’s U (the latter calculated using the

first differences of observed and forecasted data to detect the capability of the model to capture

the turning points). On all accounts Markov Switching behavior is detected (see Table 1), with a

strong improvement in the residual diagnostics.

One of the motivations to adopt a MS volatility model is the presence of autocorrelated resid-

uals in the AMEM. In the same Table 1 we show the p-values of the Ljung-Box test statistics, in

correspondence of lags 1, 5 and 10, for the AMEM and the selected MS models to check how

uncorrelated the residuals are.4 What we observe is that the models with three regimes are able to

capture a large portion of the strong residual dependence structure still present in the AMEM.

The estimation results for the MS models are reported in Tables 2 and 3. From Table 2, we

notice a strong difference in model dynamics when the assumption of common dependence of

the coefficients on the regimes is relaxed. Starting from the intercepts, the MS models show a

significant increase in these coefficients when regimes change, with an increase of more than

5 points in the high volatility third regime; the models with MS and STV or TV do not show

similar differences in the intercepts. In this case the more flexible variance is able to capture also

abrupt jumps in the series maintaining small intercepts. As a consequence, volatility dynamics

3Tests based on the likelihood function cannot be used to compare the AMEM with respect to the corresponding
MS models because of the presence of nuisance parameters present only under the alternative hypothesis; in this case,
with the proper caution, a classical information criterion could provide some information (see Psaradakis and Spagnolo,
2003); in particular the AIC seems to choose the correct state dimension more successfully than the BIC, provided that
the parameter changes are not too small and the hidden Markov chain is fairly persistent.

4For MS models we have used the generalized residuals, introduced by Gourieroux et al. (1987) for latent variable
models, defined as E(ε̂t|Ψt−1) =

∑3
i=1 ε̂st,ttPr(st = i|Ψt−1), where ε̂st,t are the residuals at time t derived from the

parameters of the model in state st.
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is represented by different coefficient behavior; in the case of models type (2.2), the α and γ

coefficients increase with the regime whereas the β coefficients show an opposite behavior; this

involves a strong dependence on the most recent observation and on the sign of returns for the

regimes of high volatility and a lower persistence. The models containing equation (2.6) show that

the third regime depends only on the values corresponding to negative returns and an increasing

persistence in the third regime. It is interesting to note also that the estimated coefficients of the

RU1 and RU3 volatility are very similar (pointing to a common DGP), whereas they differ from

the one of RU2. We can argue that the companies with larger capitalization present in both RU1

and RU3 dominate the behavior of the volatility, while the smaller caps in RU2 behave differently.

In terms of transition probabilities (Table 3), it is evident that there is a strong permanence in

the same regime for all the indices, in particular in regime 1 and 2. Regime 3 is less persistent

for all Russell’s and for S&P400. Some further insights are gained by looking at the off-diagonal

elements of the transition probability matrix, with similar considerations for all the indices. Being

in regime 1 there is a very low probability to switch to either of the other two regimes. From the

regime of intermediate volatility there is a higher probability to move to the high volatility regime

than to revert to a low volatility regime. By the same token, we note that the downward transition

from the high volatility states occurs preferably with a move to the intermediate state: joint with

the considerations above, there seems to be a strong interaction between regimes 2 and 3 while

the period of low volatility is a sort of self standing regime.

The different behavior of the previous coefficients could be misleading in the interpretation

of regimes; the level of the volatility within each regime is represented by the unconditional

mean (2.4) by regime, which is shown in Table 4 for each series and signals the interpretability

of regimes as increasing volatility. Moreover, S&P500, DJ30, RU1 and RU3 present similar

levels of volatility in regime 1 and 2, which are higher with respect to the corresponding levels

of S&P400 and RU2. The third regime is the one presenting the main differences among the

six series; S&P500 and DJ30 are again similar, whereas S&P400, RU1 and RU2 show very high

levels of average volatility, with RU3 in an intermediate position. Using smoothed probabilities,

we can superimpose the average volatility levels to the observed series as in Figure 2. Bursts of

volatilities, as well as sudden reductions in their values, correspond to a discrete change in the

average value around which volatility follows its dynamics. More erratic behavior is apparent in

the less frequently inspected indices. It is clear that the MS–AMEM with STV or TV consider the

third regime as a state which absorbs the highest peaks, whereas the MS–AMEM corresponds to

a higher duration in the regime.

In practice, it seems that there is a certain consistency in the behavior of the high capitalization

indices, whereas S&P400 and RU2 show a sort of definitive permanent level shift at the end of

1998, with consistently higher levels of volatility from there on. The coherence among the indices

can be evaluated in Table 5, where we show the percentage of cases in which the indices fall in

the same regime. The high capitalization indices are in the same regime in more than 82% of

cases, with a maximum in correspondence of RU1 and RU3 (96%). The coherence between high

and low capitalization indices is low (between 44% and 65%), whereas there is a high coherence

6



between S&P400 and RU2 (88.5%).

Figure 3 addresses the issue of whether regimes are coherent across indices or whether the

non–homogeneity is relative to a specific state: we build a bar graph where the frequency in

each regime for one index is broken down by the frequency across its own regimes for another

index. The S&P500 is the reference index in five panels while the last one reports results between

S&P400 and RU2. If regimes agreed perfectly we would have each side bar of the color of the

same regime. Variety signals different regime partition. The most striking result is the large

coherence between S&P500 and DJ30 at one hand (top left panel) and between S&P400 and RU2

on the other (bottom right panel). The most striking contrast is between the latter two each with

the S&P500 (right column, top and middle). This suggests that the small cap companies have a

more similar behavior as the mid caps, while the largest of the large caps (well represented by the

S&P500) dominate volatility behavior when inserted within an index.

4 Concluding Remarks

With direct volatility measurement, many interesting questions can be addressed about its dynam-

ics. We have investigated the possibility that abrupt changes seen in the time series of realized

kernel volatility may signal the presence of regimes corresponding to different average levels of

turbulence. With our Markov Switching specification of a Multiplicative Error Model we have

allowed for the possibility that the shape parameter of the Gamma distribution ruling the tails

of the error term may be made dependent on the value of the lagged returns. This significantly

adds to the catalog of available volatility models for forecasting. While run on individual series,

the analysis allows to compare results and establish commonalities. Company size shows up in

different behavior in the volatility of indices for large caps on the one side and for mid and small

caps on the other, an issue which is seldom investigated.
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Tables and Figures

Table 1: Likelihood-based criteria, in sample forecasting performance and autocorrelation testsa for
AMEM and MS models. Sample: January 3, 1996 to February 27, 2009.

Log-lik AIC RMSE MAE Theil U p(Q1) p(Q5) p(Q10)

S&P500
AMEM -8389.66 5.145 4.490 2.811 0.381 0.002 0.000 0.002

MS–AMEM -8328.77 5.118 4.428 2.632 0.367 0.140 0.027 0.103
Dow Jones

AMEM -8056.77 4.944 4.059 2.478 0.370 0.002 0.000 0.000
MS–MEM -8025.82 4.933 4.074 2.330 0.361 0.809 0.008 0.091

S&P400
AMEM -7516.42 4.617 3.528 2.197 0.339 0.001 0.000 0.005

MS–AMEM–STV -7467.62 4.598 3.312 1.929 0.295 0.140 0.014 0.011
Russell 1000

AMEM -8158.18 5.005 4.194 2.620 0.378 0.002 0.000 0.002
MS–AMEM–TV -8100.88 4.980 3.716 2.303 0.334 0.270 0.017 0.023

Russell 2000
AMEM -7462.25 4.576 3.717 2.245 0.376 0.003 0.000 0.003

MS–AMEM–TV -7423.91 4.562 3.515 1.970 0.325 0.169 0.005 0.001
Russell 3000

AMEM -8054.88 4.942 4.081 2.542 0.376 0.001 0.000 0.001
MS–AMEM–TV -8013.71 4.927 3.668 2.260 0.335 0.146 0.036 0.052

a In the table, p(Qj) (j = 1, 5, 10) indicates the p-values of the Ljung-Box Statistics at lag j.
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Table 2: Coefficient estimates of the main equation of Markov Switching AMEM specifications with
three regimes (standard errors in parentheses). Sample: January 3, 1996 to February 27, 2009.a

S&P500 Dow Jones S&P400 Russell 1000 Russell 2000 Russell 3000

ω 1.872 2.367 0.911 1.652 0.843 1.637
(0.229) (0.927) (0.018) (0.166) (0.121) (0.151)

k2 0.685 1.048 0.000 0.001 0.000 0.000
(0.228) (0.242) (0.001) (0.006) (0.005) (0.001)

k3 5.188 5.990 0.989 0.827 0.901 0.717
(1.326) (2.775) (0.002) (0.117) (0.082) (0.334)

α1 0.199 0.311 0.160 0.180 0.206 0.182
(0.028) (0.112) (0.007) (0.022) (0.021) (0.021)

α2 0.161 0.270 0.073 0.098 0.055 0.101
(0.029) (0.096) (0.003) (0.011) (0.010) (0.012)

α3 0.257 0.385 0.000 0.000 0.000 0.000
(0.058) (0.086) (0.000) (0.000) (0.000) (0.000)

β1 0.525 0.377 0.637 0.563 0.554 0.559
(0.056) (0.224) (0.008) (0.043) (0.051) (0.041)

β2 0.594 0.460 0.789 0.714 0.807 0.707
(0.058) (0.191) (0.004) (0.024) (0.020) (0.023)

β3 0.343 0.230 0.932 0.896 0.928 0.876
(0.108) (0.171) (0.009) (0.063) (0.013) (0.031)

γ1 0.076 0.042 0.077 0.035 0.077
(0.007) (0.010) (0.010) (0.023) (0.010)

γ2 0.083 0.067 0.091 0.083 0.091
(0.010) (0.014) (0.008) (0.006) (0.009)

γ3 0.143 0.068 0.104 0.072 0.124
(0.018) (0.009) (0.062) (0.013) (0.031)

a1 15.808 21.062 b0 4.314 5.226 3.945 5.012
(0.632) (1.249) (1.554) (1.947) (1.259) (2.247)

a2 18.742 20.677 b1 14.537 11.249 11.568 11.256
(1.452) (1.675) (1.557) (2.068) (1.518) (2.280)

a3 10.946 11.127 δ 0.936
(0.751) (1.194) (0.021)

c -3.531 -3.636 -4.310 -3.630
(0.734) (0.022) (0.021) (0.008)

a The model selected are: a MS–AMEM for S&P500, a MS–MEM for Dow Jones, a MS–AMEM–
STV for S&P400, a MS–AMEM–TV for Russell1000, Russell2000 and Russell3000.
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Table 3: Coefficient estimates of the transition probabilities for Markov Switching AMEM specifica-
tions with three regimes (standard errors in parentheses). Sample: January 3, 1996 to February 27,
2009.a

S&P500 Dow Jones S&P400 Russell 1000 Russell 2000 Russell 3000

p11 0.989 0.977 0.994 0.992 0.985 0.993
(0.002) (0.009) (0.002) (0.001) (0.004) (0.001)

p12 0.007 0.018 0.000 0.004 0.010 0.004
(0.001) (0.004) (0.000) (0.001) (0.006) (0.001)

p13 0.004 0.005 0.006 0.004 0.005 0.003
p21 0.007 0.013 0.000 0.003 0.003 0.004

(0.001) (0.005) (0.000) (0.002) (0.002) (0.001)
p22 0.977 0.975 0.951 0.945 0.948 0.950

(0.002) (0.003) (0.002) (0.016) (0.009) (0.009)
p23 0.016 0.012 0.049 0.052 0.049 0.046
p31 0.006 0.007 0.007 0.014 0.013 0.011

(0.002) (0.012) (0.001) (0.009) (0.008) (0.004)
p32 0.042 0.049 0.247 0.210 0.203 0.170

(0.001) (0.008) (0.013) (0.097) (0.019) (0.042)
p33 0.952 0.944 0.746 0.776 0.784 0.819

a The model selected are: a MS–AMEM for S&P500, a MS–MEM for Dow Jones, a MS–AMEM–
STV for S&P400, a MS–AMEM–TV for Russell1000, Russell2000 and Russell3000. The coeffi-
cients pi3 (i = 1, 2, 3) are not directly estimated, but they are obtained as pi3 = 1− pi1 − pi2.

Table 4: Unconditional mean of the volatility within each regime of US financial indices in the period
from January 3, 1996 to February 27, 2009.

S&P500 Dow Jones S&P400 Russell 1000 Russell 2000 Russell 3000

m1 7.891 7.599 5.011 7.561 3.780 7.424
m2 12.609 12.648 8.551 11.557 8.719 11.184
m3 23.570 24.442 55.937 47.675 48.513 37.986
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Table 5: Percentage of common regimes between pairs of US financial indices in the period from
January 3, 1996 to February 27, 2009.

Dow Jones S&P400 Russell 1000 Russell 2000 Russell 3000

S&P500 89.26 52.71 86.45 44.47 85.74
Dow Jones 52.30 83.15 45.23 82.20

S&P400 62.54 88.49 64.68
Russell 1000 54.23 95.92
Russell 2000 56.74
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Figure 1: Realized kernel volatility of six US indices.
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Figure 2: Original series (dotted lines) with regime-specific average volatilities (bold lines) in the
sample period January 3, 1996 to February 27, 2009.

14



Figure 3: Distribution of the regimes between pairs of financial US indices in the sample period
January 3, 1996 to February 27, 2009. A vs B indicates that the frequency in each regime for index A
is broken down by the frequency across its own regimes for index B.
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