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Small area estimation for semicontinuos
skewed georeferenced data

Emanuela Dreassi, Alessandra Petrucci, Emilia Rocco

Dept. of Statistics “G. Parenti” University of Firenze
Viale Morgagni, 59 - I 50134 Firenze Italy

Abstract: Semicontinuous random variables combine continuous
distributions with point masses at one or more locations. A par-
ticular type of semicontinuous variable has been considered in this
paper: a mixture of zeros and highly skewed continuously distributed
positive values. This kind of variable occurs in economic surveys of
individuals or establishments (e.g. specific types of income or expen-
ditures), as well as in agricultural, epidemiological and environmen-
tal surveys. Frequently, this type of variable describes phenomena
that have a spatial distribution and reliable small area estimates of
their means or totals could be required. As in other small area esti-
mation (SAE) problems, the small sample sizes (in at least some of
the sampled areas) and/or the existence of non sampled areas need
to use model based estimation methods. However, commonly used
small area estimation methods, which assume that a linear mixed
model can be used to characterize the regression relationship be-
tween the response variable and at least one auxiliary variable, are
not suitable for this kind of data.

In this paper we propose the use of a two-part random effects SAE
model that accounts for excess of zero but also for skewness of the
distribution of non zero responses. This is carried out by specifying,
in the first part, a logistic regression model for the probability of
a non zero occurrence and, in the second part, a gamma regression
model for the mean of the non zero values. The model includes a
correlation structure on the area random effects that appears in the
two parts and incorporates a bivariate smooth function of the ge-
ographical coordinates of the units in order to consider the spatial
structure in the data within each small area. A hierarchical Bayesian
approach is suggested to fit the model, produce the small area es-
timates of interest, and evaluate their precision. An application to
real agricultural survey data from the Italian Statistical Institute
demonstrates the satisfactory performance of the method.

Keywords: Geostatistical models; Hierarchical Bayesian models;
Linear mixed model; Penalized splines; Two-part random effects
models.
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1 Introduction

Direct survey estimators for small areas are usually unreliable due to the unduly
small size of the sample in the areas. Hence it becomes necessary to use models,
either explicit or implicit, to connect the small areas and obtain estimators of
improved precision by ‘borrowing strength’. The most popular class of models
for small area estimation (SAE) are linear mixed models which include inde-
pendent random area effects to account for the variability between the areas
exceeding that explained by auxiliary variables. The response variable can ei-
ther be observed at the small area level or at a smaller unit or respondent level.
Fay and Herriot (1979) studied the area level model and proposed an empirical
Bayes estimator for this case. Battese et al. (1988) considered the unit level
model and constructed an empirical best linear unbiased predictor (EBLUP)
for the small area means. Numerous extensions to this set-up have been consid-
ered in literature, including cases in which data follow various generalized linear
models, or have more complicated random-effects structures. Jiang and Lahiri
(2006) provide a general review.

The extension that we propose in this paper is a two-part SAE model at
a unit level for variables that describe spatial phenomena, have a portion of
values equal to zero and a continuous, skewed distribution, with the variance
increasing with the mean among the remaining values. In many fields of applied
research, including agricultural, environmental and epidemiological framework,
researchers encounter data with these characteristics. The small area estimation
approach suggested in order to deal with them arises from putting together
several different methodologies developed separately within the framework of
small area estimation methods or different contexts.

In literature, the ‘excess’ zeros in data are usually described by non standard
two component mixture models that mix a degenerate distribution with point
mass of one at zero and a standard distribution. This is carried out considering a
pair of regression models: a model, usually logit or probit, for the mixing propor-
tion and a conditional regression model (linear or Poisson, or others depending
on the nature of data) for the mean response given that it is non zero. These
models were originally developed to analyze count data and in this context are
referred to as zero inflated (ZI) models. Examples include regression models for
zero inflation relating to a Poisson (ZIP models), zero inflated negative binomial
(ZINB) and zero inflated binomial (ZIB). Lambert (1992), Hall (2000), Ridout
et al. (2001) among others, have studied these models extensively.

Naturally large numbers of zeros sometimes occur in continuous data as
well, but continuous distributions have a null probability of yielding at zero
and therefore there is little motivation to model them as a ZI model since it
is possible to tell from which distribution in the mixture each response comes
simply from its value. Unfortunately, this simplification may not occur for
clustered data, and therefore in the presence of cluster correlation the mixture
models become interesting. ZI models for clustered semicontinuous data in
literature are referred to as two-part models and have been developed mainly for
analyzing longitudinal response variables in biomedical application (Olsen and
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Shafer, 2001; Berk and Lachenbruch, 2002; Tooze et al., 2002; Albert and Shen,
2005; Gosh and Albert, 2009). Moreover, they usually include a cluster specific
random effect in both the logit or probit model used for the probability of non
zero response and in the conditional regression model used for the mean response
given that is non zero, which is commonly assumed to be linear in the log-
transformed scale. Even though the lognormal distribution is a popular model
in biostatistics and other fields of statistics, Bayesian inference on the mean of
the distribution is problematic due to the fact that for many popular choices of
the prior for variance (on the log-scale) parameter, the posterior distribution has
no finite moments, leading to infinite expected loss on Bayes estimators for the
most common choices of the loss function (Fabrizi and Trevisano, 2012). The
Gamma distribution could be a valid alternative to the lognormal choice for the
non zero response distribution (Grunwald and Jones, 2000 and Hyndman and
Grunwald, 2000). In this paper we adopt a Gamma distribution to model the
non-zero values of a variable for which we are interested in producing small area
estimates. The problem of zero inflated data for SAE has already been discussed
in literature. Pfeffermann et al. (2008) and Chandra and Sud (2012) dealt with
it under a two-part random effects model using a Bayesian and a frequentist
approach respectively, but both considered a ‘non skewed’ distribution for the
non zero responses, adopting a Normal distribution to model their means. Here
we consider a variable for which the non-zero values have a skewed distribution
and in order to deal with this we suggest a two-part random effects model
consisting of a logit random effects model for the probability of non-zero values,
and a conditional gamma random effects model for the mean response given
that is non zero. The model includes a correlation structure on the area random
effects that appears in two parts and incorporates a bivariate smooth function
of geographical coordinates of the units in order to consider the spatial structure
of the data within each small area.

The inclusion of the spatial proximity effect in a random effects model is
possible by using penalized splines to represent the smoothing trend. The pos-
sibility of incorporating the spatial proximity effects and more generally, the
non linear covariate effects into the small area estimation by using penalized
splines has already been investigated in literature by Opsomer et al. (2008),
who in turn exploited the close connection between penalized splines and the
linear mixed model shown by Wand (2003). Here we extend this possibility
within the framework of SAE two-part random effects models. It must also
be noted that, in a different perspective, the possibility of analyzing the spatial
distribution of a study variable while accounting for possible linear or non-linear
covariate effects was also suggested by Kammann and Wand (2003). They rep-
resent these effects by merging an additive model (Hastie and Tibshirani, 1990)
- that accounts for the non-linear relationship between the variables - and a
kriging model - that accounts for the spatial correlation - and by expressing
both as a linear mixed model, which, due to its specific generation process (a
fusion of a geostatistical and an additive model) is called geoaddive. The mixed
model structure provides a unified and modular framework that allows for easily
extending the model to include various kinds of generalization and evolution,
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and for our purposes in particular, to include the specific cluster/area random
effects. Considering this perspective, our proposed model can also be referred
to as a geospatial or geoadditive two-part SAE model.

The study is motivated by a real small area estimation problem. We are in-
terested in producing estimates of the per-farm average grapevine production in
Tuscany (Italian region) at a subregional level using the Farm Structure Survey
data collected by the Italian Statistical Institute. The survey is structured so as
to provide reliable estimates at the level of the Administrative Regions - NUTS2
level. Therefore, to produce estimates at a subregional level it is necessary to
employ indirect estimators. We intend to produce estimates at an Agrarian Re-
gion level (aggregations of municipalities with uniform natural and agricultural
characteristics) and moreover, our response variable, the per-farm grapevine
production, shows a point mass at zero, a highly skewed distribution of the non
zero values and a spatial trend. All these aspects are considered in our proposed
model. It is consequently fitted to data and estimates of the per-farm average
grapevine production at Agrarian Region level and the corresponding credibility
intervals are obtained. The results demonstrate a satisfactory performance of
the suggested small area estimation approach.

The paper is organized as follows. Our modelling small area approach is
described in Section 2. Section 3 describes the motivating application, followed
by the discussion in Section 4.

2 The model

2.1 Basic Setup, Definitions and Assumptions

A small area estimation problem is usually formulated as follows. A finite
population U of N units partitioned in m subsets (areas) of size Ni, such that∑m

i=1 Ni = N is considered. A sample r of n units is selected from U according
to a non-informative sampling design p(r). r may be decomposed as r =

∪m
i=1 ri

where ri is the area specific sample of size ni. A response variable y is observed
for each unit in the sample; yij denotes the value of the response variable for
the unit j = 1, . . . , Ni in small area i = 1, . . . ,m. Of primary interest is the
estimation of the area means Y i = N−1

i

∑Ni

j=1 yij (or area totals Yi =
∑Ni

j=1 yij).

These means may be decomposed as Y i = N−1
i (

∑
j∈ri

yij +
∑

j∈qi
yij) where

qi is the complement of the area specific sample ri to the area population (thus
of size Ni − ni). The sample area sizes ni are too small to calculate reliable
direct estimates. The values of some covariates are available at area and/or
unit level for j ∈ ri and also in j ∈ qi therefore, generally speaking, indirect
estimation could be considered. Here we assume that for each unit j in small
area i two vectors xij and x∗

ij of covariates and the spatial location sij (s ∈ R2)
of the unit are known (xij and x∗

ij may coincide, or be partial or completely
different). We further assume that the response variable Y is a semicontinuous
skewed variable.
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2.2 Hierarchical Bayesian non standard mixture model for
SAE with semicontinuous skewed and georeferenced
data

Due to its semicontinuous nature we decompose the response variable into two
variables:

Iij =

{
1 if yij > 0
0 if yij = 0

and y′ij =

{
yij if yij > 0
irrelevant if yij = 0

for which we assume a two-part superpopulation model. The two-part model is
specified conditionally on the covariates (xij ,x

∗
ij), the geographical coordinates

(sij) and two sets of random area effects {u1, . . . , um} and {u∗
1, . . . , u

∗
m}. Specif-

ically, for unit j in area i, let θij = (xij ,x
∗
ij , sij , ui, u

∗
i ) and πij = P (Iij = 1|θij),

the two ‘parts’ of the model are the following.
Part one, the mixing proportions πij are modelled as

ηij = log
πij

1− πij
= β0x + xT

ijβx + h(sij) + ui (1)

where h(·) is an unspecified bivariate smooth function depending on geographi-
cal unit coordinates sij and {ui : ∀i = 1, . . . ,m} is a set of area specific random
effects.
By representing h(·) with a low rank thin plate spline (Ruppert et al., 2003)
with K knots (κ1, . . . , κK) that is

h(sij) = β0s + sTijβs +

K∑
k=1

γkbtps(s, κK)

the model (1) can be written as a mixed model (Kammann and Wand, 2003;
Opsomer et al., 2008):

η = Xβ + Zγ +Du (2)

where:

- X = [1,xT
ij , s

T
ij ] is the matrix of covariates pertaining to the fixed effects

referring to the N population units;

- Z = [C (si − κK)]1≤i≤N,1≤k≤K [C (κh − κK)]
−1/2
1≤h,k≤K with C(r) = ∥r∥2 log ∥r∥

is the matrix of the thin plate spline basis functions;

- D = [d1, . . . ,dN ]T with di = [di1, . . . , dim]T and dij an indicator taking
value 1 if observation i is in small area j and otherwise 0 is the matrix
that model the structure of the area random effects;

- β = (β0x + β0s,β
T
x ,β

T
s )

T is a vector of unknown coefficients;

- u is the vector of the m area specific random effects;
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- γ is the vector of the K thin plate spline coefficients (seen as random
effects).

Part two, the probability distribution of (Yij | Iij = 1,θij) is a Gamma dis-
tribution with shape parameter ν and scale parameter δij , therefore with a
constant coefficient of variation over units 1/

√
ν (see McCullagh and Nelder,

1989, pages 30 and 49). Considering mean parameterized Gamma distribution,
E(Yij | Iij = 1,θij) = µij = δijν and Var(Yij | Iij = 1,θij) = V (µij) = µ2

ij/ν,
the means µij are modelled through a log-link function as

logµij = β∗
0x + xT∗

ij β∗
x + h∗(sij) + u∗

i (3)

where h∗(·) is an unspecified bivariate smooth function depending on geograph-
ical unit coordinates sij and {u∗

i : ∀ i = 1, . . . ,m} a set of area specific random
effects.
By representing h∗(·) with a low rank thin plate spline with K knots, as we did
for h(·), the model (3) became

log(µ) = X∗β∗ + Z∗γ∗ +D∗u∗ (4)

where all terms (X∗,β∗,Z∗,γ∗,D∗,u∗) have the same meaning as those indi-
cated by the same symbol without an asterisk in model (2). It must be noted
that even if the same covariates are used in both parts, X∗ ̸= X, Z∗ ̸= Z and
D∗ ̸= D as the (4) only concern the population units with positive responses.

Two different assumptions could be adopted on the relationship between
the two parts of the model. First, both the random area effects and the spline
random effects from the two parts are assumed to be jointly normal and possibly
correlated,

(ui, u
∗
i )

T ∼ N

(
0,Σu =

[
σ2
u σuu∗

σuu∗ σ2
u∗

])
and

(γk, γ
∗
k)

T ∼ N

(
0,Σγ =

[
σ2
γ σγγ∗

σγγ∗ σ2
γ∗

])
.

Second, the two parts of the model are assumed to be independent, that is:
ui ∼ N(0, σ2

u), u∗
i ∼ N(0, σ2

u∗), γk ∼ N(0, σ2
γ) and γ∗

k ∼ N(0, σ2
γ∗). This

last assumption corresponds to estimate separately the two models (hereafter
separate two-part model). Otherwise, the first assumption and any other in
which at least one of the two random components are assumed correlated, define
a full two-part model.

Within a Bayesian framework we assume independent, noninformative priors
for the parameters of the whole model given by (2) and (4). More specifically,
we assume a noninformative normal distribution for each element of β and for
each element of β∗. Noninformative half-Cauchy distributions (as suggested by
Gelman, 2006) are assumed as priors for ν, the shape parameters of Gamma
distribution (the squared reciprocal of the standard deviation-like coefficient of
variation). Under the assumption of correlated random effects, the variance-
covariance matrices Σu and Σγ are assumed to follow a noninformative inverse
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Wishart. On the contrary, under the assumption of independence, a half-Cauchy
distribution is given for each variance parameter.

It must also be noted that the model specified through the expressions (2)
and (4) may easily be extended to include other random effects (due, for ex-
ample, to other non-linear covariate effects or to a clustering process inside the
areas). Moreover, even if the area random effects and the spatial proximity
random effects are present in both the expressions (2) and (4), there may be
situations in which a random effect is relevant for one part of the model but not
for the other part and therefore it is only included in one part.

After obtaining estimates for all the parameters via the MCMC sampling
procedure (using data on the sample: j ∈ ri), we extended to j ∈ qi all posterior
distribution of the parameters and obtained the posterior distribution for yij
when j ∈ qi and finally the posterior distribution for the means of each small
area Y i with their credibility interval.

Ŷi = N−1
i

∑
j∈ri

yij +
∑
j∈qi

ŷij


where the predicted values ŷij are obtained as: ŷij = π̂ij ỹij with π̂ij = exp(η̂ij)/(1+

exp(η̂ij) and ỹij = exp
(
xT
ijβ̂ + zTij γ̂ + ûi

)
.

3 A real example on SAE: Tuscany’s grapevine
production estimation

A ten-yearly Agricultural Census and a two-yearly Farm Structure Survey are
routinely conducted by the Italian Statistical Institute (ISTAT). The unit of
observation for both the census and the survey is the farm, and surface areas
(measured in hectares) allocated to different crops as well as many other so-
cioeconomic variables registered for each unit. In the Fifth Agricultural Census
conducted in 2000 (see census2000 below) spatial information was collected for
the first time. This consists of the universal transverse Mercator (UTM) ge-
ographical coordinates of each farm’s administrative centre. Moreover, in the
Farm Structure Survey, up until 2005, the productions of each crop (quantity
in quintals) were observed.

We are interested in the estimation of the per-farm average grapevine pro-
duction for the 52 Agrarian Regions the Tuscany is divided into, with reference
to 2003 for which the Farm Structure Survey (see FSS2003 below) data are
available. The FSS2003 survey is designed to obtain estimates at just a regional
level, so when the interest is on an agrarian region we have to consider indirect
estimators that ‘borrow strength’ from related areas using as auxiliary variables
(known for all the units in the population) the spatial information and other
variables registered at census2000 time. In fact, due to the high correlation val-
ues observed over sampled data between the explicative variables in years 2000
and 2003 (about 90% for the grapevines surface), we can assume that the time
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lag between the response and the explicative variables would have a negligible
effect.

Classical small area estimations are not feasible in this study because a large
number (1,489 compared to a total of 2,450) of farms in the FSS2003 sample do
no’t produce grapevines, and a few (961 units) produce the majority of the total
production in the region. See Figure 1 for the spatial pattern of zero grapevine
production farms and Figure 2 for the elevated skewness of positive grapevine
production distribution for the whole region (on the left) and for each agrarian
region (on the right). Figure 3 shows the grapevine production coefficients of
variation at an agrarian regional level evaluated by only considering the positive
values. On observing Figure 2 and Figure 3, the Gamma distribution param-
eterized with a constant coefficient of variation McCullagh and Nelder (1989)
seems to be a valid model.

The peculiarity of the agrarian region, as an aggregation of homogeneous
municipalities with respect to natural and agricultural characteristics, makes
the random area effects sufficient for explaining the spatial heterogeneity in the
probability of zero occurrence. The choice of not considering the geospatial
term in the logit part has also been motivated by DIC criteria (Spiegelhalter
et al., 2002): comparing different models with various combinations of random
effects. While, with regard to the quantity of grapevine produced with the
same allocated surface, some spatial heterogeneity persists inside each area (see
Figure 4). These considerations, confirmed by an explorative data analysis,
induce us to adopt a two-part SAE model in which the random effects due to
the smooth function of spatial coordinates is only enclosed in the second part
of the model. For this part of the model, the K = 50 spline knots are set by
means of the clara space-filling algorithm of Kaufman and Rousseeuw (2003);
using the clara function on library Cluster on R package.

The selection of the covariates to be included in each of the two parts of
the model, among several socioeconomic variables available at census2000, was
first performed using explorative analysis. For the logit model, two auxiliary
variables are considered: the surface allocated to grapevines in logarithmic scale
and a dummy variable that indicates the selling of grapevine related products,
both at census2000. In the log-linear model for gamma we include the same two
variables plus the number of days worked by farm family members in 2000.

We allow for non zero correlation between the random area effects in the two
parts, as we expected that a farm located in an area with an elevated per-farm
average of grapevine production would have a higher probability of a non zero
grapevine production. Figure 5 provides evidence of this possible covariance
structure. However, the magnitude of this correlation and the importance of
accounting for it when fitting the model, depends on the prediction power of
the covariates available for the two parts of the model. Therefore, as our covari-
ates and above all the surface allocated to grapevine, have a strong prediction
power (the correlation coefficient among the surfaces allocated to grapevine and
the grapevine production, evaluated using the FSS2003 sample data is greater
than 85%, when the zero values are included and also when they are excluded)
we expected a lower value for the estimated covariance parameter. This same
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consideration has also led us to consider the ‘separate’ two-part model.
Estimation of both the models (full and separate two-part models) was per-

formed using MCMC simulation methods. We used the library BRugs (an inter-
face for OpenBugs) on R package. Convergence was stated using Gelman and
Rubin (1992) convergence diagnostic criteria. The algorithm seems to converge
after a few thousand iterations. However, also given the very high number of
(non monitored) parameters in the model, we decided to discard the first 200,000
iterations (burn-in) and to store 2,000 samples (one each 100) of the following
200,000 iterations for estimation. All sampled MCMC chains are used on the
two-part model to predict grapevine production distribution for each farm not
present in the sample FFS2003 but for which we have all the information: co-
variates and geographical locations at census2000. Therefore, estimates related
to 136,817 non sampled on FFS2003 farms are combined with values observed
for 2,450 farms on the sample to obtain the grapevine mean production pre-
dictions at an agrarian region level. Results on grapevine means production
estimates at an agrarian region level and their credibility interval (95%) from
the simulated posterior distribution are illustrated in Figure 6 for both models.
Coefficient estimates are reported in Table 1. We observed that covariance σuu∗

was not significantly different from zero. As stated above, this could be due to
the strong prediction power of the covariates. From DIC values, we observed
that the models are comparable: the full two-part model has a higher complexity
but a greater goodness of fit than the separate two-part model.

The map of the estimated agrarian region means for both model is shown
in Figure 7(a) (the maps for both models are coincident). The map presents an
evident geographical pattern, with the higher values in the areas belonging to
the Chianti area and the lower values in the northern mountainous area of the
provinces of Massa Carrara and Lucca, confirming the pattern of the experts’
estimate means produced by ISTAT. These experts’ estimates are obtained via
determination of a crop specific coefficient of soil productivity and are released
at a provincial level. To better compare them with our results, we calculate
the agrarian region level experts’ estimate by multiplying the agrarian region
grapevine mean surfaces at year 2000 by the coefficient of soil productivity at
a regional level. This experts’ estimates map is illustrated in Figure 7(b). The
comparison between the two maps confirms that our estimates are very close to
those of the experts.

4 Conclusions

This paper presents a Hierarchical Bayesian small area estimation approach for
estimating the small area means of a variable that is semicontinuous, highly
skewed and with a relevant spatial structure. Even if literature relating to each
of these aspects of the data is plentiful, to the best of our knowledge, the problem
as a whole has never been considered before.

The application to real survey data shows on one hand the concrete presence
of this sort of problem in real situations, and on the other, the usefulness of the
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Figure 2: Positive grapevine production distribution: (a) the histogram for the
whole region (b) the box-plot for each agrarian region

10



0 10 20 30 40 50

0.
5

1.
0

1.
5

2.
0

area

co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n

Figure 3: Coefficient of variation for grapevine positive production for each
agrarian region

Longitude

La
tit

ud
e

< 10
10 − 25
25 − 80
80 − 512
> 512

Figure 4: Positive grapevine production and his spatial pattern

11



0 500 1000 1500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

mean for positive productions for each area

pr
op

or
tio

n 
of

 p
os

iti
ve

 p
ro

du
ct

io
ns

 fo
r 

ea
ch

 a
re

a

Figure 5: Proportion of positive grapevine production by average of positive
grapevine production for each agrarian regions

0 10 20 30 40 50

0
50

10
0

15
0

20
0

25
0

30
0

area

gr
ap

ev
in

e 
m

ea
n 

pr
od

uc
tio

n 
es

tim
at

e

0 10 20 30 40 50

0
50

10
0

15
0

20
0

25
0

30
0

area

gr
ap

ev
in

e 
m

ea
n 

pr
od

uc
tio

n 
es

tim
at

e

(a) (b)

Figure 6: Estimated grapevine mean productions and their 95% credibility in-
terval from: (a) full two-part model (b) separate two-part model
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Table 1: Results from full two-part model and separate two-part model: coeffi-
cient estimates with their 95% credibility interval and DIC criteria values

full two-part model separate two-part model
parameter estimates IC95% estimates IC%95

first constant -1.367 -1.644 - -1.082 -1.369 -1.657 - -1.094
log surface allocated to grapevines 1.908 1.558 - 2.286 1.907 1.559 - 2.271
selling of grapevines products 1.098 0.743 - 1.488 1.103 0.758 - 1.472
σu 0.868 0.661 - 1.121 0.882 0.680 - 1.139

second constant 0.369 0.291 - 0.457 -0.234 -0.258 - -0.201
x coordinate 0.281 0.254 - 0.308 0.044 -0.0001 - 0.102
y coordinate -0.021 -0.039 - -0.005 0.050 0.040 - 0.060
log surface allocated to grapevines 1.195 1.139 - 1.253 1.114 1.070 - 1.169
selling of grapevines products 0.314 0.242 - 0.410 0.580 0.525 - 0.621
number of days worked 0.0004 0.0002 - 0.0006 0.0004 0.0002 - 0.0006
σ∗
u 0.397 0.288 - 0.533 0.382 0.255 - 0.535

σ∗
γ 1.865 1.319 - 2.568 1.056 0.604 - 1.644

σuu∗ -0.0005 -0.170 - 0.181

Dbar 12750 12760
Dhat 12650 12660
DIC 12850 12850
pD 98.20 92.45

suggested approach.
It is well established in literature that by ignoring the accumulation of zeros

in fitting a model, the model assumptions are rendered invalid and therefore
problems with inference are liable to occur. More specifically, highly biased
predictors and wrong coverage rate of credibility intervals may be obtained.
Clearly the relevance of these problems depends on the percentage of zeros. In
the application considered in this work, where the percentage of zero values for
the response variable exceeds 60%, estimates using a linear mixed model were
unacceptable.

Another inefficient approach to analyzing zero inflation in data consists of

Longitude

La
tit

ud
e

< 10.73
10.73 − 27.52
27.52 − 58.47
58.47 − 101.13
>= 101.13

Longitude

La
tit

ud
e

< 10.73
10.73 − 27.52
27.52 − 58.47
58.47 − 101.13
>= 101.13

(a) (b)

Figure 7: Estimates grapevine mean productions at an agrarian region level:
(a) using suggested models (b) experts’ estimates
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only considering the data greater than zero. If only the data greater than zero
are used in the analysis, important information about units with zero response
is lost, and estimates of means/totals will not include zero values. When relying
on estimates to make policy decisions, inaccurate conclusions may be arrived at,
thus leading to policies that are inadequate or inappropriate for the population
of interest. In addition, this method does not account for the relationship that
may exist between the probability of a non zero response and the level of the
non zero response.

Fitting the full two-part model, is the only way to take into account all the
population units and possible relationship that may exist between the probabil-
ity of a non zero response and the level of the non zero response.

Clearly, in the choice of the model it is necessary to consider not only the
accumulation of zeros but also the distribution of the non zero values, and if it is
highly skewed a linear random effects model to model the mean of the positive
responses may be inopportune. This justifies our choice of the gamma model in
the second part, the effectiveness of which is confirmed by the results. To our
knowledge, within the context of SAE, the skewness of data is usually treated
using the lognormal distribution. The aim of this paper is also to stress how the
Gamma distribution with its high flexibility could be a valid alternative (see for
example Firth, 1988).

The last message of the paper is that when small areas of study are geo-
graphical areas, and the study variable shows a spatial trend, an adequate use
of geographic information and geographical modelling is able to provide more
accurate estimates for small area parameters.

Even if the suggested approach provides the flexibility to model the data in
accordance with a scientifically plausible data generating mechanism and the
results are encouraging, further research is still necessary. An accurate evalu-
ation of the conditions that make the full two-part model actually preferable
to the separate estimation of the two components represents a future topic of
research. Moreover, in this paper we adopted a Bayesian approach, however we
intend to investigate the possibility of developing a similar SAE method with a
frequentist perspective in the future.
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