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COMPATIBILITY RESULTS FOR CONDITIONAL

DISTRIBUTIONS

PATRIZIA BERTI, EMANUELA DREASSI, AND PIETRO RIGO

Abstract. In various frameworks, to assess the joint distribution of a k-
dimensional random vector X = (X1, . . . , Xk), one selects some putative

conditional distributions Q1, . . . , Qk. Each Qi is regarded as a possible (or
putative) conditional distribution for Xi given (X1, . . . , Xi−1, Xi+1, . . . , Xk).
The Qi are compatible if there is a joint distribution P for X with conditionals

Q1, . . . , Qk. Three types of compatibility results are given in this paper. First,
the Xi are assumed to take values in compact subsets of R. Second, the Qi

are supposed to have densities with respect to reference measures. Third, a
stronger form of compatibility is investigated. Indeed, the law P with condi-

tionals Q1, . . . , Qk is requested to be exchangeable.

1. Introduction

Let I be a countable index set and, for each i ∈ I, let Xi be a real random
variable. Denote by P the set of all probability distributions for the process

X = (Xi : i ∈ I).

Also, for each P ∈ P and H ⊂ I (with H ̸= ∅ and H ̸= I), denote by PH the
conditional distribution of

(Xi : i ∈ H) given (Xi : i ∈ I \H) under P.

The PH are determined by P (up to P -null sets). In fact, to get PH , the obvious
strategy is to first select P ∈ P and then calculate PH . Sometimes, however, this
procedure is reverted. Let H be a class of subsets of I (all different from ∅ and I).
One first selects a collection {QH : H ∈ H} of putative conditional distributions,
and then looks for some P ∈ P inducing the QH as conditional distributions, in
the sense that

(1) QH = PH , a.s. with respect to P, for all H ∈ H.

But such a P can fail to exist. Accordingly, a set {QH : H ∈ H} of putative
conditional distributions is said to be compatible, or consistent, if there exists P ∈ P
satisfying condition (1). (See Section 2 for formal definitions).

A natural version of the previous definition is the following. Fix a proper subset
P0 ⊂ P. For instance, P0 could be the set of those P ∈ P which make X ex-
changeable, or else which are absolutely continuous with respect to some reference
measure. A natural question is whether there is P ∈ P0 with given conditional
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2 PATRIZIA BERTI, EMANUELA DREASSI, AND PIETRO RIGO

distributions {QH : H ∈ H}. Thus, a set {QH : H ∈ H} of putative conditional
distributions is P0-compatible if condition (1) holds for some P ∈ P0.

To better frame the problem, we next give three examples where compatibility
issues arise.

Example 1. (Gibbs measures). Think of I as a lattice and of Xi as the spin at
site i ∈ I. The equilibrium distribution of a finite system of statistical physics is
generally believed to be the Boltzmann-Gibbs distribution. Thus, when I is finite,
one can let

P (dx) = a exp
{
− b

∑
H⊂I

UH(x)
}
λ(dx)

where a, b > 0 are constants and λ is a suitable reference measure. Roughly
speaking, UH(x) quantifies the energy contribution of the subsystem (Xi : i ∈ H)
at point x. This simple scheme breaks down when I is countably infinite. However,
for each finite H ⊂ I, the Boltzmann-Gibbs distribution can still be attached to
(Xi : i ∈ H) conditionally on (Xi : i ∈ I \ H). If QH denotes such Boltzmann-
Gibbs distribution, we thus obtain a family {QH : H finite} of putative conditional
distributions. But a law P ∈ P having the QH as conditional distributions can fail
to exist. So, it is crucial to decide whether {QH : H finite} is compatible. See [10].

Example 2. (Complex data systems and Gibbs sampling). A joint mod-
eling of a k-dimensional random vector X = (X1, . . . , Xk) is often very hard. A
conditional specification, which should capture the various features of X sepa-
rately, may be more convenient. Well known examples are missing data imputa-
tion and spatial data modeling. In these cases, X is modeled by some collection
{QH : H ∈ H} of putative conditional distributions. But of course this makes sense
only if {QH : H ∈ H} is compatible. A similar example is the Gibbs sampler. Let
Hi = {i}. For the Gibbs sampler to apply, one needs

PHi(·) = P
(
Xi ∈ · | X1, . . . , Xi−1, Xi+1, . . . , Xk

)
for i = 1, . . . , k. The PHi are usually obtained from a given P ∈ P. But sometimes
P is not assessed. Rather, one selects a collection {QHi : i = 1, . . . , k} of putative
conditional distributions and use QHi in the place of PHi . Again, this makes sense
only if {QH1 , . . . , QHk

} is compatible. See [6], [7], [13], [15], [18], [19] and references
therein.

Example 3. (Bayesian inference). Let X = (X1, . . . , Xn, . . . , Xm). Think of
Y = (X1, . . . , Xn) as the data and of Θ = (Xn+1, . . . , Xm) as a random parameter.
As usual, a prior is a marginal distribution for Θ, a statistical model a conditional
distribution for Y given Θ, and a posterior a conditional distribution for Θ given
Y . The statistical model, say QY , is supposed to be assigned. Then, the standard
Bayes scheme is to select a prior µ, to obtain the joint distribution of (Y,Θ), and to
calculate (or to approximate) the posterior. To assess µ is typically very arduous.
Sometimes, it may be convenient to avoid the choice of µ and to assign directly a
putative conditional distribution QΘ, to be viewed as the posterior.

The alternative Bayes scheme sketched above is not unusual. Suppose QΘ is the
formal posterior of an improper prior, or it is obtained by some empirical Bayes
method, or else it is a fiducial distribution. In all these cases, QΘ is assessed
without explicitly selecting any (proper) prior. Such a QΘ may look reasonable or
not (there are indeed different opinions). But a basic question is whether QΘ is the
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actual posterior of QY and some prior µ, or equivalently, whether QY and QΘ are
compatible.

Incidentally, the alternative Bayes scheme agrees with the subjective view of
probability and has been investigated in a coherence framework; see [3], [12], [14],
[16] and references therein. However, in a coherence framework, the compatibility
of QY and QΘ is studied in a finitely additive setting.

Other significant compatibility examples are in [8], [11], [17], [20].

This paper includes three different types of compatibility results. We always
focus on finite I, say I = {1, . . . , k}, and we let Hi = {i} for i = 1, . . . , k. Most
results hold for arbitrary k ≥ 2, even if they take a nicer form for low values of k.

In Section 3, each Xi (or each Xi but one) takes values in a compact subset of the
real line. Then, necessary and sufficient conditions for compatibility are obtained
as a consequence of a general result in [5].

In Section 4, as in most real problems, the QHi have densities with respect
to reference measures. Under this assumption, compatibility is characterized by
Theorem 10. The latter result extends to any k ≥ 2 a well known criterion which
holds for k = 2. See [1], [2] and Remark 9.

Finally, P0-compatibility is concerned in Section 5. Various conditions for P0-
compatibility are provided in case P0 = {P ∈ P : X exchangeable under P}.

2. Notation and basic definitions

In the rest of this paper, we let

I = {1, . . . , k} and Hi = {i} for i = 1, . . . , k.

With reference to such a case, we next make precise some definitions informally
given in Section 1.

Since we are only concerned with distributions (both conditional and uncondi-
tional) the Xi can be taken to be coordinate random variables. Thus, for each i,
we fix a Borel set Ωi ⊂ R to be regarded as the collection of ”admissible” values

for Xi (possibly, Ωi = R). We define Ω =
∏k

j=1 Ωj and we take Xi to be the i-th
coordinate map on Ω. We define also

Yi = (X1, . . . , Xi−1, Xi+1, . . . , Xk) and Yi =
∏
j ̸=i

Ωj .

The following notation will be often used. Let i ∈ I, x ∈ Ωi and y ∈ Yi. Then,
(x, y) denotes that point ω ∈ Ω such that Xi(ω) = x and Yi(ω) = y.

For any topological space S, we let B(S) denote the Borel σ-field on S. Also, if
µ and ν are measures on the same σ-field, µ ≪ ν means that µ(A) = 0 whenever
A is measurable and ν(A) = 0, and µ ∼ ν stands for µ ≪ ν and ν ≪ µ.

A probability distribution for

X = (X1, . . . , Xk)

is a probability measure on B(Ω). Let P denote the set of all such probability
measures. Fix P ∈ P and i ∈ I. The conditional distribution of Xi given Yi, under
P , is a function Pi of the pair (y,A), where y ∈ Yi and A ∈ B(Ωi), satisfying

(i) A 7→ Pi(y,A) is a probability measure for fixed y;
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(ii) y 7→ Pi(y,A) is a Borel measurable function for fixed A;

(iii) EP

{
IB(Yi)Pi(Yi, A)

}
= P (Xi ∈ A, Yi ∈ B) for A ∈ B(Ωi) and B ∈ B(Yi).

Such Pi is P -essentially unique. Clearly, Pi(y,A) should be regarded as the condi-
tional probability of {Xi ∈ A} given that Yi = y under P .

A putative conditional distribution is a function Qi, with the same domain as
Pi, satisfying conditions (i)-(ii) but not necessarily (iii). In the sequel,

Q1, . . . , Qk are putative conditional distributions.

We say that Q1, . . . , Qk are compatible if there is P ∈ P such that

Qi(y, ·) = Pi(y, ·)
for all i ∈ I and P -almost all y ∈ Yi. In addition, given P0 ⊂ P, we say that
Q1, . . . , Qk are P0-compatible if such a condition holds for some P ∈ P0.

3. Compactly supported distributions

3.1. Two compatibility results. Let L be a set of real bounded Borel functions
on Ω which is both a linear space and a determining class. By a determining class
we mean that, given any P ∈ P and Q ∈ P,

EP (f) = EQ(f) for all f ∈ L ⇐⇒ P = Q.

For instance, L could be the set of real bounded continuous functions on Ω.
For f ∈ L and i ∈ I, write

E
(
f | Yi = y

)
=

∫
Ωi

f(x, y)Qi(y, dx) for all y ∈ Yi.

Our first result follows from applying to the present framework a compatibility
criterion stated in [5]. See also [14].

Theorem 4. Suppose that, for all f ∈ L and i ∈ I,

Ωi is compact and y 7→ E
(
f | Yi = y

)
is a continuous function.

Then, Q1, . . . , Qk are compatible if and only if

sup
ω∈Ω

k∑
i=2

{
E
(
fi | Yi = Yi(ω)

)
− E

(
fi | Y1 = Y1(ω)

)}
≥ 0(2)

for all f2, . . . , fk ∈ L.

Proof. In the notation of [5], define B = B(Ω) and Ai = σ(Yi). Also, for each ω ∈ Ω
and i ∈ I, take µi(ω) to be the only probability on B satisfying

µi(ω)
(
Xi ∈ A, Yi ∈ B

)
= IB

(
Yi(ω)

)
Qi

(
Yi(ω), A

)
where A ∈ B(Ωi) and B ∈ B(Yi). Then, for each bounded Borel function f : Ω → R,
one obtains∫

Ω

f(z)µ(ω)(dz) =

∫
Ωi

f(x, Yi(ω))Qi

(
Yi(ω), dx

)
= E

(
f | Yi = Yi(ω)

)
.

Next, let H be the linear space generated by all functions

ω 7→ E
(
f | Yi = Yi(ω)

)
− E

(
f | Y1 = Y1(ω)

)
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for f ∈ L and i = 2, . . . , k. Since L is a linear space, each h ∈ H can be written as

h(ω) =
k∑

i=2

{
E
(
fi | Yi = Yi(ω)

)
− E

(
fi | Y1 = Y1(ω)

)}
(3)

for suitable f2, . . . , fk ∈ L. Thus, under (2), compatibility of Q1, . . . , Qk fol-
lows from Theorem 6-(a) of [5]. This proves the ”if” part. Conversely, suppose
Q1, . . . , Qk are compatible. Take f2, . . . , fk ∈ L and define h according to (3). By
compatibility, there is P ∈ P such that E

(
fi | Yi = Yi(·)

)
and E

(
fi | Y1 = Y1(·)

)
are both conditional expectations under P for all i. It follows that

sup
ω∈Ω

h(ω) ≥ EP (h)

=
k∑

i=2

EP

{
E
(
fi | Yi = Yi(·)

)
− E

(
fi | Y1 = Y1(·)

)}
=

k∑
i=2

{
EP (fi)− EP (fi)

}
= 0.

Hence, condition (2) holds. �

A few brief remarks are in order.
First, under the assumptions of Theorem 4, the sup in condition (2) is attained.

Thus, condition (2) is equivalent to: for all f2, . . . , fk ∈ L, there is ω ∈ Ω such that

k∑
i=2

E
(
fi | Yi = Yi(ω)

)
≥

k∑
i=2

E
(
fi | Y1 = Y1(ω)

)
.

Second, let k = 2 and let (x, y) denote a point of Ω1 × Ω2 = Ω. Since Y2 = X1

and Y1 = X2, condition (2) reduces to

for each f ∈ L, there is (x, y) ∈ Ω such that

E
(
f | X1 = x

)
≥ E

(
f | X2 = y

)
.

Similarly, if k = 3 and (x, y, z) denotes a point of Ω1 ×Ω2 ×Ω3 = Ω, condition (2)
can be written as

for each f, g ∈ L, there is (x, y, z) ∈ Ω such that

E
(
f | X1 = x,X3 = z

)
+ E

(
g | X1 = x,X2 = y

)
≥ E

(
f + g | X2 = y,X3 = z

)
.

Third, for Theorem 4 to apply, each Ωi has to be compact. This is certainly a
strong restriction, which rules out various interesting applications. However, the
compactness assumption can be weakened at the price of replacing (2) with a more
involved condition. We give an explicit statement for k = 2 only.

Theorem 5. Suppose k = 2, Ω1 is compact, and

x 7→ E
(
f | X1 = x

)
and x 7→

∫
Ω2

E
(
f | X2 = y

)
Q2(x, dy)

are continuous functions on Ω1 for all f ∈ L. Then, Q1 and Q2 are compatible if
and only if

sup
x∈Ω1

{
E
(
f | X1 = x

)
−

∫
Ω2

E
(
f | X2 = y

)
Q2(x, dy)

}
≥ 0
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for all f ∈ L.

Proof. We just give a sketch of the proof. The ”only if” part can be proved as in
Theorem 4. As to the ”if” part, in the notation of [5], take j = 2 and ϕ = Y2 = X1.
Define also Ai, µi and B as in the proof of Theorem 4. Now, proceed as in such a
proof but apply Theorem 6-(b) of [5] instead of Theorem 6-(a). �

3.2. Examples. The possible applications of Theorems 4-5 depend on the choice
of L. We just give two examples for k = 2.

Example 6. (Putative conditional moments). Suppose Ω1 and Ω2 are com-
pact intervals and

x 7→ E
(
Xj

2 | X1 = x
)

and y 7→ E
(
Xj

1 | X2 = y
)

are continuous functions for all j ≥ 1. Then, L can be taken to be the class of
polynomials on Ω. Practically, this amounts to testing compatibility of Q1 and Q2

via conditional moments. Let

f(x, y) =
∑

0≤r,s≤n

c(r, s)xr ys

where (x, y) ∈ Ω, n ≥ 1 and the c(r, s) are real coefficients. Define

h(x, y) = E
(
f | X1 = x

)
− E

(
f | X2 = y

)
=

∑
0≤r,s≤n

c(r, s)
{
xr E

(
Xs

2 | X1 = x
)
− ys E

(
Xr

1 | X2 = y
)}

.

By Theorem 4, Q1 and Q2 are compatible if and only if suph ≥ 0 for every n ≥ 1
and every choice of the constants c(r, s).

Example 7. (Discrete random variables). Suppose Ω1 is finite and Ω2 count-
ably infinite. Let I(a, b) denote the indicator of the point (a, b) ∈ Ω. Take L to be
the class of all functions f on Ω of the type

f =
∑
a∈Ω1

∑
b∈B

c(a, b) I(a, b)

where B ⊂ Ω2 is a finite subset and the c(a, b) are real constants. Writing Qi(u, v)
instead of Qi(u, {v}), one obtains

h(x) = E
(
f | X1 = x

)
−
∫
Ω2

E
(
f | X2 = y

)
Q2(x, dy)

=
∑
b∈B

c(x, b)Q2(x, b)−
∑
a∈Ω1

∑
b∈B

c(a, b)Q1(b, a)Q2(x, b)

for all x ∈ Ω1. By Theorem 5, Q1 and Q2 are compatible if and only if maxh ≥ 0
for all finite B ⊂ Ω2 and all choices of the constants c(a, b). Suppose now that Ω1

and Ω2 are both finite. Then, L can be taken as above with B = Ω2 and Theorem
5 can be replaced by the simpler Theorem 4. Define in fact

h(x, y) = E
(
f | X1 = x

)
− E

(
f | X2 = y

)
=

∑
b∈Ω2

c(x, b)Q2(x, b)−
∑
a∈Ω1

c(a, y)Q1(y, a)

for all (x, y) ∈ Ω. By Theorem 4, Q1 and Q2 are compatible if and only if maxh ≥ 0
for every choice of the constants c(a, b).
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4. The absolutely continuous case

In Theorems 4 and 5, Q1, . . . , Qk are not requested to have densities with respect
to reference measures. When this happens, however, stronger results are available.

For each i ∈ I, let λi denote a σ-finite measure on B(Ωi). For instance, Ωi could
be countable and λi the counting measure. Or else, Ωi could be an interval and λi

the Lebesgue measure. In almost all applications, it happens that

Qi(y,A) =

∫
A

fi(x | y)λi(dx)(4)

for all i ∈ I, y ∈ Yi and A ∈ B(Ωi). Here, fi is a putative conditional density, that
is, (x, y) 7→ fi(x | y) is a non-negative Borel function on Ω satisfying∫

Ωi

fi(x | y)λi(dx) = 1 for each y ∈ Yi.

Under (4), we will say indifferently that f1, . . . , fk are compatible or thatQ1, . . . , Qk

are compatible.
We first report a classical result which holds for k = 2; see e.g. [1]-[2] and

references therein. Let

λ = λ1 × . . .× λk

denote the product measure on B(Ω).

Theorem 8. Suppose k = 2 and condition (4) holds. Then, f1 and f2 are compati-
ble if and only if there are two Borel functions u : Ω1 → [0,∞) and v : Ω2 → [0,∞)
such that

f1(x | y) = f2(y | x)u(x) v(y),(5)

λ-a.e. on the set {(x, y) : u(x) > 0, v(y) > 0},

and ∫
Ω

I{v>0}(y) f2(y | x)u(x)λ(dx, dy) =
∫
Ω1

u dλ1 =

∫
{v>0}

1/v dλ2 = 1.(6)

Our next goal is extending Theorem 8 from k = 2 to an arbitrary k ≥ 2. Before
doing this, however, a remark is in order.

Remark 9. The informal idea of Theorem 8 is that the ratio f1/f2, where it is
defined, factorizes in the product of a function of x alone times a function of y
alone. Such an idea is realized by condition (5). Instead, as far as we know, no
version of Theorem 8 includes condition (6). But some form of (6) seems to be
unavoidable to characterize compatibility. For instance, according to Theorem 1 of
[2], f1 and f2 are compatible if and only if

{f1 > 0} = {f2 > 0} = N (say) and

f1(x | y)
f2(y | x)

= u(x) v(y) for (x, y) ∈ N

for some u, v such that
∫
Ω1

u dλ1 < ∞. But, as it stands, such result does not

work. In fact, the requested conditions suffice for compatibility of f1 and f2, but
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they are not necessary (even if they are asked λ-a.e. only). As a trivial example,
take Ω1 = Ω2 = [0, 1], λ1 = λ2 =Lebesgue measure, and

f1(x | y) = I[0, 1/2)(y) + 2 I[1/2, 1](x) I[1/2, 1](y),

f2(y | x) = I[0, 1/2)(x) + 2 I[1/2, 1](y) I[1/2, 1](x).

Let f be the uniform density on S := [1/2, 1]× [1/2, 1], that is, f(x, y) = 4 IS(x, y).
Then, f1 and f2 are compatible, for they agree on S with the conditional densities
induced by f . Nevertheless,

λ(f1 = 0, f2 > 0) = λ(f1 > 0, f2 = 0) = 1/4.

In the next result, λ∗
i denotes the product measure

λ∗
i = λ1 × . . .× λi−1 × λi+1 × . . .× λk

on B(Yi). Recall that, according to Section 2, Xi is the i-th coordinate map on

Ω =
∏k

j=1 Ωj and Yi = (X1, . . . , Xi−1, Xi+1, . . . , Xk).

Theorem 10. Suppose condition (4) holds. Then, f1, . . . , fk are compatible if and
only if there are Borel functions

ui : Yi → [0,∞), i ∈ I,

such that, for each i < k,

fi(Xi | Yi) = fk(Xk | Yk)ui(Yi)uk(Yk),(7)

λ-a.e. on the set {ui(Yi) > 0, uk(Yk) > 0},
and ∫

Ω

I{ui>0}(Yi) fk(Xk | Yk)uk(Yk) dλ =

∫
Yk

uk dλ
∗
k =

∫
{ui>0}

1/ui dλ
∗
i = 1.(8)

Moreover,

(i) If f1, . . . , fk are compatible and P ∈ P has conditional distributions Q1, . . . , Qk,
then P ≪ λ. If, in addition, fi > 0 for all i ∈ I, then P ∼ λ.

(ii) If conditions (7)-(8) hold for some u1, . . . , uk, then f = fk(Xk | Yk)uk(Yk)
is a density with respect to λ and f1, . . . , fk are the conditional densities
induced by f .

In a sense, Theorem 10 is in the folklore of the existing literature on compatibility.
In fact, the spirit of Theorem 10 is the same as that of Theorem 8, even if the
conditions become less manageable as k increases. Overall, for low values of k,
Theorem 10 is useful in real problems, mainly in connection with Gibbs sampling,
missing data imputation and spatial data modeling. Nevertheless, to our knowledge,
no explicit version of Theorem 10 has been stated so far.

To illustrate a few particular cases, suppose k = 2 and (x, y) denotes a point of
Ω1 × Ω2 = Ω. Then, f1(X1 | Y1) = f1(x | y) and f2(X2 | Y2) = f2(y | x) so that
Theorem 10 reduces to Theorem 8 with u = u2 and v = u1. Similarly, if k = 3 and
(x, y, z) denotes a point of Ω1 × Ω2 × Ω3 = Ω, condition (7) can be written as

f1(x | y, z) = f3(z | x, y)u1(y, z)u3(x, y) if u1(y, z) > 0 and u3(x, y) > 0,

f2(y | x, z) = f3(z | x, y)u2(x, z)u3(x, y) if u2(x, z) > 0 and u3(x, y) > 0,

for λ-almost all (x, y, z).
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Note also that, if ui > 0 for all i, condition (8) reduces to
∫
Yk

uk dλ
∗
k = 1.

We finally prove Theorem 10. We begin with the following lemma.

Lemma 11. Suppose (4) holds, Q1, . . . , Qk are compatible and P ∈ P has condi-
tional distributions Q1, . . . , Qk. Then P ≪ λ, and P ∼ λ if fi > 0 for all i ∈ I.

Proof. We first prove P ≪ λ. Let µ(·) = P
(
Yk ∈ ·

)
be the marginal of Yk under P .

Fix A ∈ B(Ω) such that λ(A) = 0 and define

Ay = {x ∈ Ωk : (x, y) ∈ A} for y ∈ Yk and B = {y ∈ Yk : λk(Ay) = 0}.

Since ∫
Yk

λk(Ay)λ
∗
k(dy) =

∫
Yk

∫
Ωk

IA(x, y)λk(dx)λ
∗
k(dy) = λ(A) = 0,

then λ∗
k(B

c) = 0. Thus, if µ ≪ λ∗
k, condition (4) yields

P (A) =

∫
Yk

Qk(y,Ay)µ(dy) =

∫
B

Qk(y,Ay)µ(dy) = 0.

Therefore, to get P ≪ λ, it suffices to show that µ ≪ λ∗
k. Let µ1 be the marginal

of X1 under P . If A ∈ B(Ω1) and λ1(A) = 0, condition (4) implies

µ1(A) = P (X1 ∈ A) = EP

{
Q1(Y1, A)

}
= 0.

Hence, µ1 ≪ λ1. Next, let µ1,2 be the marginal of (X1, X2) under P . For µ1-almost
all x ∈ Ω1, one obtains

P
(
X2 ∈ A | X1 = x

)
= EP

{
Q2

(
(x,X3, . . . , Xk), A

)
| X1 = x

}
for each A ∈ B(Ω2).

Hence, for µ1-almost all x ∈ Ω1,

P
(
X2 ∈ A | X1 = x

)
= 0 provided A ∈ B(Ω2) and λ2(A) = 0.

Since µ1 ≪ λ1, the above condition implies µ1,2 ≪ λ1×λ2. Proceeding in this way,
one finally obtains µ ≪ λ1 × . . . × λk−1 = λ∗

k. This proves P ≪ λ. Next, suppose
fi > 0 for all i ∈ I. Then Qi(y,A) > 0, for all i ∈ I and y ∈ Yi, provided A ∈ B(Ωi)
and λi(A) > 0. Basing on this fact, P ∼ λ can be proved exactly as above. �

Proof of Theorem 10. Write Hi = {ui(Yi) > 0} and recall∫
Ωi

fi(x | y)λi(dx) = 1 for all i ∈ I and y ∈ Yi.

Note also that point (i) follows from Lemma 11.
Suppose f1, . . . , fk are compatible and fix P ∈ P having Q1, . . . , Qk as condi-

tional distributions. By point (i), P has a density f with respect to λ. Let

ϕi(y) =

∫
Ωi

f(x, y)λi(dx), y ∈ Yi,

be the marginal of f with respect to λ∗
i . Define also

ui = I{0<ϕi<∞} (1/ϕi) for i < k, uk = I{ϕk<∞} ϕk,

and note that

{0 < ϕi < ∞} = {ui > 0} and λ∗
i (ϕi = ∞) = 0 for all i ∈ I.
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Given i < k, since f1, . . . , fk are the conditional densities induced by f , one trivially
obtains

fi(Xi | Yi) =
f

ϕi(Yi)
=

f

ϕk(Yk)
ui(Yi)ϕk(Yk) = fk(Xk | Yk)ui(Yi)uk(Yk),

λ-a.e. on the set Hi ∩Hk. Further, since f = fk(Xk | Yk)uk(Yk), λ-a.e.,∫
Yk

uk dλ
∗
k =

∫
Yk

ϕk dλ
∗
k = 1,

∫
{ui>0}

1/ui dλ
∗
i =

∫
Yi

ϕi dλ
∗
i = 1,∫

Ω

IHi fk(Xk | Yk)uk(Yk) dλ =

∫
Ω

IHi f dλ = P
(
0 < ϕi(Yi) < ∞

)
= 1.

Therefore, conditions (7)-(8) hold. Conversely, suppose (7)-(8) hold. By (8),∫
Ω

fk(Xk | Yk)uk(Yk) dλ =

∫
Yk

∫
Ωk

fk(x | y)λk(dx)uk(y)λ
∗
k(dy) =

∫
Yk

uk dλ
∗
k = 1.

Thus, f := fk(Xk | Yk)uk(Yk) is a density with respect to λ. By definition, f = 0
on Hc

k. If i < k, condition (8) yields∫
Hc

i

f dλ = 1−
∫
Hi

f dλ = 1− 1 = 0.

Hence f = 0, λ-a.e., on ∪k
i=1H

c
i . By (7), it follows that

f = f IHi IHk
=

fi(Xi | Yi)

ui(Yi)
IHi IHk

, λ-a.e. for all i < k.

Moreover,∫
Hc

k

IHi

fi(Xi | Yi)

ui(Yi)
dλ =

∫
Ω

IHi

fi(Xi | Yi)

ui(Yi)
dλ−

∫
Hk

IHi

fi(Xi | Yi)

ui(Yi)
dλ

=

∫
{ui>0}

∫
Ωi

fi(x | y)λi(dx)
1

ui(y)
λ∗
i (dy)−

∫
Ω

f dλ

=

∫
{ui>0}

1/ui dλ
∗
i − 1 = 0.

Thus,

f =
fi(Xi | Yi)

ui(Yi)
IHi , λ-a.e. for all i < k.(9)

Next, define the marginal ϕi of f as above. Then, it suffices to prove that

f

ϕi(Yi)
= fi(Xi | Yi), λ-a.e. on the set {0 < ϕi(Yi) < ∞}, for all i ∈ I.

Since ϕk = uk, such condition holds for i = k. If i < k, condition (9) yields

ϕi(Yi) =

∫
Ωi

fi(x | Yi)

ui(Yi)
IHi λi(dx) =

IHi

ui(Yi)
.

Thus, {0 < ϕi(Yi) < ∞} = Hi, and condition (9) implies f/ϕi(Yi) = fi(Xi | Yi),
λ-a.e. on Hi. Since point (ii) is obvious, this concludes the proof. �
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5. Compatibility under an exchangeable law

We now turn to P0-compatibility. Various choices of P0 could be of interest.
Two of them are P0 = {P ∈ P : P ≪ λ} or P0 = {P ∈ P : P ∼ λ} but they are
already covered by Theorem 10. Another option is

P0 = {P ∈ P : X is exchangeable under P}.

Recall that X = (X1, . . . , Xk) is exchangeable in case (Xj1 , . . . , Xjk) is distributed
as (X1, . . . , Xk) for all permutations (j1, . . . , jk) of (1, . . . , k).

The latter choice of P0 looks intriguing (to us). Indeed, exchangeability plays a
role in various frameworks where compatibility issues arise, such as Bayesian and/or
spatial statistics.

In this section, we just let P0 = {P ∈ P : X exchangeable under P}. Then, it
makes sense to assume

Ω1 = . . . = Ωk = X and λ1 = . . . = λk = γ(10)

where X ∈ B(R) and γ is a σ-finite measure on B(X ). Note that condition (10)
implies Ω = X k, λ = γk, Yi = X k−1 and λ∗

i = γk−1 for all i ∈ I.
If Q1, . . . , Qk are the conditional distributions of P ∈ P0, then Q1 = . . . = Qk,

P -a.s.. Thus, we also assume

Q1 = . . . = Qk.

But such condition is not enough, even for compatibility alone. For instance, if
k = 2, X = R and Q1(x, ·) = Q2(x, ·) = N(x, 1) for all x ∈ R, then Q1 and Q2 are
not compatible (just apply Theorem 8).

Basing on the previous remarks, a question is whetherQ1, . . . , Qk are P0-compatible
provided they are compatible and Q1 = . . . = Qk. For some time, we conjectured
a negative answer. Instead, the answer is yes for k = 2. To prove this fact, a
definition is to be recalled.

Let Q be a putative conditional distribution, with k = 2 and Ω1 = Ω2 = X . Say
that Q is a reversible kernel if there is a probability measure µ on B(X ) such that∫

A

Q(x,B)µ(dx) =

∫
B

Q(x,A)µ(dx) for all A, B ∈ B(X ).(11)

If P ∈ P0 has conditional distributions Q1 and Q2, then Q1 = Q2 = Q, P -a.s.,
for some reversible kernel Q; see e.g. Theorem 3.2 of [4]. Neglecting the a.s., the
converse becomes true as well.

Theorem 12. Suppose k = 2, Ω1 = Ω2 = X and Q1 = Q2. The following
statements are equivalent:

(a) Q1 and Q2 are P0-compatible;
(b) Q1 and Q2 are compatible;
(c) Q1 is a reversible kernel.

Proof. Write Q1 = Q2 = Q and note that ”(a) ⇒ (b)” is trivial.
”(b) ⇒ (c)” Fix P ∈ P with conditionals Q1 and Q2. Let µ1(·) = P (X1 ∈ ·)

and µ2(·) = P (X2 ∈ ·) be the marginal distributions of X1 and X2 under P . Since
Q1 = Q2 = Q,∫
A

Q(x,B)µ1(dx) =

∫
A

Q2(x,B)µ1(dx) = P
(
X1 ∈ A, X2 ∈ B

)
=

∫
B

Q(x,A)µ2(dx)
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for all A, B ∈ B(X ). Hence, condition (11) holds with µ = (µ1 + µ2)/2, that is, Q
is a reversible kernel.

”(c) ⇒ (a)” Fix a probability measure µ on B(X ) satisfying (11) and define

P (A) =

∫
X

∫
X
IA(x, y)Q(x, dy)µ(dx) for A ∈ B(X 2).

Since Q is reversible,

P
(
X1 ∈ A, X2 ∈ B

)
=

∫
A

Q(x,B)µ(dx) =

∫
B

Q(x,A)µ(dx) = P
(
X1 ∈ B, X2 ∈ A

)
for all A, B ∈ B(X ). Hence, P ∈ P0. Also, Q is a conditional distribution, under
P , for X1 given X2 as well as for X2 given X1. �

Reversible kernels admit sometimes simple characterizations.

Example 13. Let X be countable. Write Q(x, y) instead of Q(x, {y}) and suppose
Q irreducible (in the sense of Markov chains). There is a non zero measure µ on
B(X ) satisfying (11) if and only if

Q(x, y) > 0 ⇔ Q(y, x) > 0 and
n∏

i=1

Q(xi−1, xi) =
n∏

i=1

Q(xi, xi−1)

whenever x, y, x0, x1, . . . , xn ∈ X and xn = x0. See e.g. page 303 of [9]. However,
µ needs not be a probability measure and some extra condition is needed in or-
der that µ(X ) < ∞. As an extreme example, suppose there is a ∈ X satisfying
Q(x, a) > 0 for all x ∈ X . Then, µ(X ) < ∞ (so that Q is reversible) if and only if∑

x Q(a, x)/Q(x, a) < ∞.

We finally turn to k ≥ 2. For arbitrary Q1, . . . , Qk, Theorem 12 does not admit
nice extensions to k ≥ 2. Hence, Q1, . . . , Qk are assumed to have densities. Next
result is quite expected but may be useful in real problems. In fact, it provides
simple (and easily checkable) conditions for P0-compatibility.

Theorem 14. Suppose conditions (4) and (10) hold. Then, Q1, . . . , Qk are P0-
compatible provided f1 = . . . = fk and

f1(x | y) = g(x, y)h(y) for all x ∈ X and y ∈ X k−1,

where g and h are Borel functions (on X k and X k−1, respectively) satisfying

h > 0,

∫
Xk−1

1/h dγk−1 = 1, g = g ◦ π for all permutations π of X k.

Proof. Since g is invariant under permutations, conditions (7)-(8) trivially hold
with uk = 1/h and ui = h for i < k. Define

f = fk(Xk | Yk)uk(Yk) = g(Xk, Yk)

and P (A) =
∫
A
f dλ for all A ∈ B(Ω). By point (ii) of Theorem 10, Q1, . . . , Qk

are the conditional distributions induced by P . Also P ∈ P0, for both f = g and
λ = γk are invariant under permutations. �
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