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Abstract

Sequential maximum likelihood and GMM estimators of distributional parameters ob-
tained from the standardised innovations of multivariate conditionally heteroskedastic dy-
namic regression models evaluated at Gaussian PML estimators preserve the consistency of
mean and variance parameters while allowing for realistic distributions. We assess the e¢ -
ciency of those estimators, and obtain moment conditions leading to sequential estimators as
e¢ cient as their joint maximum likelihood counterparts. We also obtain standard errors for
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1 Introduction

Nowadays it is well documented and widely recognised that the distribution of returns on

�nancial assets such as stocks, bonds or currencies is usually rather leptokurtic, even after

controlling for volatility clustering e¤ects. Nevertheless, many empirical researchers continue

to use the Gaussian pseudo-maximum likelihood (PML) estimators advocated by Bollerslev

and Wooldridge (1992) among others because they remain root-T consistent for the conditional

mean and variance parameters so long as those moments are correctly speci�ed and the fourth

moments are bounded.

However, academics and �nancial market participants are often interested in features of the

distribution of asset returns beyond its conditional mean and variance. In particular, the Basel

Capital Adequacy Accord forced banks and other �nancial institutions to develop models to

quantify all their risks accurately. In practice, most institutions chose the so-called Value at

Risk (VaR) framework in order to determine the capital necessary to cover their exposure to

market risk. As is well known, the VaR of a portfolio of �nancial assets is de�ned as the positive

threshold value V such that the probability of the portfolio su¤ering a reduction in wealth

larger than V over some �xed time interval equals some pre-speci�ed level � < 1=2. Similarly,

the recent �nancial crisis has highlighted the need for systemic risk measures that assess how

an institution is a¤ected when another institution, or indeed the entire �nancial system, is in

distress. Given that the probability of the joint occurrence of several extreme events is regularly

underestimated by the multivariate normal distribution, any such measure should de�nitely take

into account the non-linear dependence induced by the non-normality of �nancial returns.

A rather natural modelling strategy is to specify a parametric leptokurtic distribution for the

standardised innovations of the vector of asset returns, such as the multivariate Student t, and to

estimate the conditional mean and variance parameters jointly with the parameters characteris-

ing the shape of the assumed distribution by maximum likelihood (ML) (see for example Pesaran,

Schleicher and Za¤aroni (2009) and Pesaran and Pesaran (2010)). Elliptical distributions such

as the multivariate t are attractive in this context because they relate mean-variance analysis to

expected utility maximisation (see e.g. Chamberlain (1983), Owen and Rabinovitch (1983) and

Berk (1997)). Moreover, they generalise the multivariate normal distribution, but at the same

time they retain its analytical tractability irrespective of the number of assets. However, the

problem with non-Gaussian ML estimators is that they often achieve e¢ ciency gains under cor-
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rect speci�cation at the risk of returning inconsistent parameter estimators under distributional

misspeci�cation, as shown by Newey and Steigerwald (1997). Unfortunately, semiparametric

estimators of the joint density of the innovations su¤er from the curse of dimensionality, which

severely limits their use when the number of assets under consideration is moderately large.

Another possibility would be semiparametric methods that impose the assumption of ellipticity,

which retain univariate nonparametric rates regardless of the cross-sectional dimension of the

data, but asymmetries in the true distribution will again contaminate the resulting estimators

of conditional mean and variance parameters.

Sequential estimators of shape parameters that use the Gaussian PML estimators of the

mean and variance parameters as �rst step estimators o¤er an attractive compromise because

they preserve the consistency of the �st two conditional moments under distributional misspec-

i�cation, while allowing for more realistic conditional distributions. The focus of our paper is

precisely the econometric analysis of sequential estimators obtained from the standardised inno-

vations evaluated at the Gaussian PML estimators. Speci�cally, we consider not only sequential

ML estimators, but also sequential generalised method of moments (GMM) estimators based on

certain functions of the standardised innovations. Although we could easily extend our results

to any multivariate distribution, to keep the exposition simple we focus on elliptical distribu-

tions. We illustrate our general results with several examples that nest the normal, including

the Student t and the original Kotz (1975) distribution, as well as some rather �exible families

such as scale mixtures of normals and polynomial expansions of the multivariate normal density,

both of which could form the basis for a proper nonparametric procedure.

We explain how to compute asymptotic standard errors of sequential estimators that take

into account the sampling variability of the Gaussian PML estimators on which they are based.

We also exploit the expressions of the standard errors to assess the relative e¢ ciency of sequential

estimators, and obtain the optimal moment conditions that lead to sequential MM estimators

which are as e¢ cient as their joint ML counterparts. Although we explicitly consider multi-

variate conditionally heteroskedastic dynamic regression models, our results obviously apply in

univariate contexts as well as in static ones.

We then analyse the use of our sequential estimators in the computation of commonly used

risk management measures such as VaR, and recently proposed systemic risk measures such

as Conditional Value at Risk (CoVaR) (see Adrian and Brunnermeier (2011)). In particular,
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we compare our sequential estimators to nonparametric estimators, both when the parametric

conditional distribution is correctly speci�ed and also when it is misspeci�ed. Our analytical

and simulation results indicate that the use of sequential ML estimators of �exible parametric

families of distributions in estimating those risk measures o¤ers substantial e¢ ciency gains,

while incurring in small biases.

The rest of the paper is organised as follows. In section 2, we introduce the model, present

closed-form expressions for the score vector and the conditional information matrix, and derive

the asymptotic variances of the ML and Gaussian PML estimators. Then, in section 3 we

introduce the sequential ML and GMM estimators, and compare their e¢ ciency. In section 4,

we study the in�uence of those estimators on risk measures under both correct speci�cation and

misspeci�cation, and derive asymptotically valid standard errors. A Monte Carlo evaluation of

the di¤erent parameter estimators and risk measures can be found in section 5. Finally, we

present our conclusions in section 6. Proofs and auxiliary results are gathered in appendices.

2 Theoretical background

2.1 The dynamic econometric model

Discrete time models for �nancial time series are usually characterised by an explicit dynamic

regression model with time-varying variances and covariances. Typically the N dependent vari-

ables, yt, are assumed to be generated as:

yt = �t(�0) +�
1=2
t (�0)"

�
t ;

�t(�) = �(zt; It�1;�);
�t(�) = �(zt; It�1;�);

where �() and vech [�()] are N � 1 and N(N + 1)=2 � 1 vector functions known up to the

p� 1 vector of true parameter values �0, zt are k contemporaneous conditioning variables, It�1

denotes the information set available at t�1, which contains past values of yt and zt, �1=2t (�) is

some particular �square root�matrix such that �1=2t (�)�
1=20
t (�) = �t(�), and "�t is a martingale

di¤erence sequence satisfying E("�t jzt; It�1;�0) = 0 and V ("�t jzt; It�1;�0) = IN . Hence,

E(ytjzt; It�1;�0) = �t(�0)
V (ytjzt; It�1;�0) = �t(�0)

�
: (1)

To complete the model, we need to specify the conditional distribution of "�t . We shall initially

assume that, conditional on zt and It�1, "�t is independent and identically distributed as some

particular member of the spherical family with a well de�ned density, or "�t jzt; It�1;�0;�0 � i:i:d:

s(0; IN ;�0) for short, where � are some q additional shape parameters.
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2.2 Elliptical distributions

A spherically symmetric random vector of dimension N , "�t , is fully characterised in Theorem

2.5 (iii) of Fang, Kotz and Ng (1990) as "�t = etut, where ut is uniformly distributed on the

unit sphere surface in RN , and et is a non-negative random variable independent of ut, whose

distribution determines the distribution of "�t . The variables et and ut are referred to as the

generating variate and the uniform base of the spherical distribution. Often, we shall also refer

to &t = "�0t "
�
t , which trivially coincides with e

2
t . Assuming that E(e

2
t ) < 1, we can standardise

"�t by setting E(e
2
t ) = N , so that E("�t ) = 0 and V ("�t ) = IN . If we further assume that

E(e4t ) <1, then Mardia�s (1970) coe¢ cient of multivariate excess kurtosis

� = E(&2t )=[N(N + 2)]� 1; (2)

will also be bounded.

Some examples of elliptical distributions that we use to illustrate our general results are:

Gaussian: "�t =
p
&tut is distributed as a standardised multivariate normal if and only if &t

is a chi-square random variable with N degrees of freedom. Since this involves no additional

parameters, we shall identify the normal distribution with �0 = 0.

Student t: "�t =
p
� � 2 �

p
�t=�tut is distributed as a standardised multivariate Student t if

and only if �t is a chi-square random variable with N degrees of freedom, and �t is a Gamma

variate with mean � and variance 2�, with ut, �t and �t mutually independent. Therefore, &t

will be proportional to an F random variable with N and � degrees of freedom. In this case, we

de�ne � as 1=�, which will always remain in the �nite range [0; 1=2) under our assumptions.

Kotz : "�t =
p
&tut is distributed as a standardised Kotz if and only if &t is a gamma random

variable with mean N and variance N [(N+2)�+2], so that the coe¢ cient of multivariate excess

kurtosis itself is the shape parameter.

Discrete scale mixture of normals: "�t =
p
&tut is distributed as a DSMN if and only if

&t =
st + (1� st){
�+ (1� �){ �t

where st is an independent Bernoulli variate with P (st = 1) = �, { is the variance ratio of the

two components, which for identi�cation purposes we restrict to be in the range (0; 1] and �t is

an independent chi-square random variable with N degrees of freedom. E¤ectively, in this case

&t will be a two-component scale mixture of �20Ns, with shape parameters � and {.
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Polynomial expansion: "�t =
p
&tut is distributed as a J th-order PE of the multivariate

normal if and only if &t has a density de�ned by

h(&t) = ho(&t) � PJ(&t);

where

ho(&t) =
1

2N=2� (N=2)
&
N=2�1
t exp

�
�1
2
&t

�
denotes the density function of a �2 with N degrees of freedom, and

PJ(&t) =

241 + JX
j=2

cjp
g
N=2�1;j(&t)

35
is a J th order polynomial written in terms of the generalised Laguerre polynomial of order j and

parameter N=2� 1, pgN=2�1;j(:). For example, the second and third order standardised Laguerre

polynomials are:

pgN=2�1;2(&) =

s
2

N (N + 2)

�
N (N + 2)

4
�
�
N + 2

2

�
& +

1

4
&2
�
, and

pgN=2�1;3(&) =

s
12

N (N + 2) (N + 4)

�
�
N (N + 2) (N + 4)

24
� (N + 2) (N + 4)

8
& +

N + 4

8
&2 � 1

24
&3
�
.

As a result, the J � 1 shape parameters will be given by c2; c3; : : : ; cJ . The problem with

polynomial expansions is that h(&t) will not be a proper density unless we restrict the coe¢ cients

so that PJ(&) cannot become negative. For that reason, in Appendix C.1 we explain how to

obtain restrictions on the cj�s that guarantee the positivity of PJ(&) for all &. Figure 1 describes

the region in (c2; c3) space in which densities of a 3rd-order PE are well de�ned for all & � 0.

As we mentioned in the introduction, the multivariate Gaussian and Student t, which ap-

proaches the former as � ! 0 (or � ! 1) but has otherwise fatter tails, have been by far the

two most popular choices made by empirical researchers to model the conditional distribution

of asset returns. But the other examples are more �exible even though they continue to nest the

Gaussian distribution. In particular, the Kotz distribution reduces to the normal for � = 0, but

it can be either platykurtic (� < 0) or leptokurtic (� > 0). However, the density of a leptokurtic

Kotz distribution has a pole at 0, which is a potential drawback from an empirical point of view.

As for the DSMN, it approaches the multivariate normal when { ! 1, �! 1 or �! 0, although

near those limits the distributions can be radically di¤erent (see Amengual and Sentana (2011)
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for further details). Nevertheless, the distribution of any scale mixture of normals is necessarily

leptokurtic.1 Finally, the PE reduces to the spherical normal when cj = 0 for all j 2 f2; :::; Jg.

Interestingly, while the distribution of "�t is leptokurtic for a 2
nd order expansion, it is possible

to generate platykurtic random variables with a 3rd order expansion.

Figure 2 plots the densities of a normal, a Student t, a platykurtic Kotz distribution, a DSMN

and a 3rd-order PE in the bivariate case. Although they all have concentric circular contours

because we have standardised and orthogonalised the two components, their densities can di¤er

substantially in shape, and in particular, in the relative importance of the centre and the tails.

They also di¤er in the degree of cross-sectional �tail dependence�between the components,

the normal being the only example in which lack of correlation is equivalent to stochastic in-

dependence. In this regard, Figure 3 plots the so-called exceedance correlation between uncor-

related marginal components (see Longin and Solnik, 2001). As can be seen, the distributions

we consider have the �exibility to generate very di¤erent exceedance correlations, which will be

particularly important for systemic risk measures.

It is also convenient to study the higher order moments of elliptical distributions. In this

sense, it is easy to combine the representation of elliptical distributions above with the higher

order moments of a multivariate normal vector in Balestra and Holly (1990) to prove that the

third and fourth moments of a spherically symmetric distribution with V ("�t ) = IN are given by

E("�t"
�
t
0 
 "�t ) = 0;

E("�t"
�
t
0
"�t"�t 0) = E[vec("�t"

�
t
0)vec0("�t"

�
t )]= (�+1)[(IN2+KNN )+vec (IN ) vec

0 (IN )];

where Kmn is the commutation matrix of orders m and n and � is de�ned in (2). An alterna-

tive characterisation can be based on the higher order moment parameter of spherical random

variables introduced by Berkane and Bentler (1986), �m(�), which Maruyama and Seo (2003)

relate to higher order moments as

E[&mt j�] = [1 + �m(�)]E[&mt j0] where E[&mt j0] = 2m
mY
j=1

(N=2 + j � 1): (3)

For the elliptical examples mentioned above, we derive expressions for �m(�) in Appendix C.2.

A noteworthy property of these examples is that their moments are always bounded, with the

1Dealing with discrete scale mixtures of normals with multiple components would be tedious but fairly straight-
forward. As is well known, multiple component mixtures can arbitrarily approximate the more empirically realistic
continuous mixtures of normals such as symmetric versions of the hyperbolic, normal inverse Gaussian, normal
gamma mixtures, Laplace, etc. The same is also true of polynomial expansions.
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exception of the Student t. Appendix C.3 contains the moment generating functions for the

Kotz, the DSMN and the 3rd-order PE.

2.3 The log-likelihood function, its score and information matrix

Let � = (�0;�)0 denote the p + q parameters of interest, which we assume variation free.

Ignoring initial conditions, the log-likelihood function of a sample of size T for those values of �

for which �t(�) has full rank will take the form LT (�) =
PT
t=1 lt(�), with lt(�) = dt(�)+c(�)+

g [&t(�);�], where dt(�) = �1=2 ln j�t(�)j corresponds to the Jacobian, c(�) to the constant of

integration of the assumed density, and g [&t(�);�] to its kernel, where &t(�) = "
�0
t (�)"

�
t (�),

"�t (�) = �
�1=2
t (�)"t(�) and "t(�) = yt � �t(�).

Let st(�) denote the score function @lt(�)=@�, and partition it into two blocks, s�t(�) and

s�t(�), whose dimensions conform to those of � and �, respectively. Then, it is straightforward

to show that if �t(�), �t(�), c(�) and g [&t(�);�] are di¤erentiable

s�t(�) =
@dt(�)

@�
+
@g [&t(�);�]

@&

@&t(�)

@�
= [Zlt(�);Zst(�)]

�
elt(�)
est(�)

�
= Zdt(�)edt(�);

s�t(�) = @c(�)=@� + @g [&t(�);�] =@� = ert(�); (4)

where

@dt(�)=@� = �Zst(�)vec(IN )

@&t(�)=@� = �2fZlt(�)"�t (�) + Zst(�)vec
�
"�t (�)"

�0
t (�)

�
g;

Zlt(�) = @�0t(�)=@� ��
�1=20
t (�);

Zst(�) =
1

2
@vec0 [�t(�)] =@��[��1=20t (�)
��1=20t (�)];

elt(�;�) = �[&t(�);�] � "�t (�); (5)

est(�;�) = vec
�
�[&t(�);�] � "�t (�)"�0t (�)� IN

	
; (6)

@�t(�)=@�
0 and @vec [�t(�)] =@�0 depend on the particular speci�cation adopted, and

�[&t(�);�] = �2@g[&t(�);�]=@& (7)

can be understood as a damping factor that re�ects the kurtosis of the speci�c distribution

assumed for estimation purposes (see Appendix D.1 for further details). But since �[&t(�);�]

is equal to 1 under Gaussianity, it is straightforward to check that s�t(�;0) reduces to the

multivariate normal expression in Bollerslev and Wooldridge (1992), in which case:

edt(�;0) =

�
elt(�;0)
est(�;0)

�
=

�
"�t (�)

vec ["�t (�)"
�0
t (�)� IN ]

�
:
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Given correct speci�cation, the results in Crowder (1976) imply that et(�) = [e0dt(�); ert(�)]
0

evaluated at �0 follows a vector martingale di¤erence, and therefore, the same is true of the score

vector st(�). His results also imply that, under suitable regularity conditions, the asymptotic

distribution of the feasible, joint ML estimator will be
p
T (�̂T � �0) ! N

�
0; I�1(�0)

�
, where

I(�0) = E[It(�0)j�0],

It(�) = V [st(�)jzt; It�1;�] = Zt(�)M(�)Z0t(�) = �E [ht(�)jzt; It�1;�] ;

Zt(�) =

�
Zdt(�) 0
0 Iq

�
=

�
Zlt(�) Zst(�) 0
0 0 Iq

�
;

ht(�) denotes the Hessian function @st(�)=@�0 = @2lt(�)=@�@�
0 andM(�) = V [et(�)j�].

The following result, which reproduces Proposition 2 in Fiorentini and Sentana (2010), con-

tains the required expressions to compute the information matrix of the ML estimators:

Proposition 1 If "�t jzt; It�1;� is i:i:d: s(0; IN ;�) with density exp[c(�) + g(&t;�)], then

M(�) =

0@ Mll(�) 0 0
0 Mss(�) Msr(�)
0 M0

sr(�) Mrr(�)

1A ;

Mll(�) = V [elt(�)j�] = mll(�)IN ;
Mss(�) = V [est(�)j�] = mss(�) (IN2 +KNN ) + [mss(�)� 1]vec(IN )vec0(IN );
Msr(�) = E[est(�)e

0
rt(�)

���] = �E �@est(�)=@�0���	 = vec(IN )msr(�);

Mrr(�) = V [ ert(�)j�] = �E[@ert(�)=@�0
���];

mll(�) = E

�
�2[&t(�);�]

&t(�)

N

������ = E

�
2@�[&t(�);�]

@&

&t(�)

N
+ �[&t(�);�]

������ ;
mss(�) =

N

N + 2

h
1 + V

n
�[&t(�);�]

&t
N

����oi = E

�
2@�[&t(�);�]

@&

&2t (�)

N(N + 2)

������+ 1;
msr(�) = E

��
�[&t(�);�]

&t(�)

N
� 1
�
e0rt(�)

������ = �E� &t(�)N

@�[&t(�);�]

@�0

������ :
Fiorentini, Sentana and Calzolari (2003) provide the relevant expressions for the multivariate

standardised Student t; while the expressions for the Kotz distribution and the DSMN are given

in Amengual and Sentana (2010).2

2.4 Gaussian pseudo maximum likelihood estimators of �

If the interest of the researcher lied exclusively in �, which are the parameters characterising

the conditional mean and variance functions, then one attractive possibility would be to estimate

a restricted version of the model in which � is set to zero. Let ~�T = argmax� LT (�;0) denote

2The expression for mss(�) for the Kotz distribution in Amengual and Sentana (2010) contains a typo. The
correct value is (N�+ 2)=[(N + 2)�+ 2].
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such a PML estimator of �. As we mentioned in the introduction, ~�T remains root-T consistent

for �0 under correct speci�cation of �t(�) and �t(�) even though the conditional distribution of

"�t jzt; It�1;�0 is not Gaussian, provided that it has bounded fourth moments. The proof is based

on the fact that in those circumstances, the pseudo log-likelihood score, s�t(�;0), is a vector

martingale di¤erence sequence when evaluated at �0, a property that inherits from edt(�;0).

The asymptotic distribution of the PML estimator of � is stated in the following result, which

reproduces Proposition 3.2 in Fiorentini and Sentana (2010):3

Proposition 2 If "�t jzt; It�1;�0 is i:i:d: s(0; IN ;�0) with �0 <1, and the regularity conditions
A.1 in Bollerslev and Wooldridge (1992) are satis�ed, then

p
T (~�T � �0)! N [0; C(�0)], where

C(�) = A�1(�)B(�)A�1(�);
A(�) = �E [h��t(�;0)j�] = E [At(�)j�] ;

At(�) = �E[h��t(�;0)j zt; It�1;�] = Zdt(�)K(0)Z0dt(�);
B(�) = V [s�t(�;0)j�] = E [Bt(�)j�] ;

Bt(�) = V [s�t(�;0)j zt; It�1;�] = Zdt(�)K(�)Z0dt(�);

and K (�)=V [edt(�;0)j zt; It�1;�]=
�
IN 0
0 (�+1) (IN2+KNN )+�vec(IN )vec

0(IN )

�
;

which only depends on � through the population coe¢ cient of multivariate excess kurtosis.

But if �0 is in�nite then B(�0) will be unbounded, and the asymptotic distribution of some

or all the elements of ~�T will be non-standard, unlike that of �̂T (see Hall and Yao (2003)).

3 Sequential estimators of the shape parameters

3.1 Sequential ML estimator of �

Unfortunately, the normality assumption does not guarantee consistent estimators of other

features of the conditional distribution of asset returns, such as its quantiles. Nevertheless, we

can use ~�T to obtain a sequential ML estimator of � as ~�T = argmax� LT (~�T ;�).
4

Interestingly, these sequential ML estimators of � can be given a rather intuitive interpre-

tation. If �0 were known, then the squared Euclidean norm of the standardised innovations,

&t(�0), would be i:i:d: over time, with density function

h(&t;�) =
�N=2

�(N=2)
&
N=2�1
t exp[c(�) + g(&t;�)] (8)

3Throughout this paper, we use the high level regularity conditions in Bollerslev and Wooldridge (1992) because
we want to leave unspeci�ed the conditional mean vector and covariance matrix in order to maintain full generality.
Primitive conditions for speci�c multivariate models can be found for instance in Ling and McAleer (2003).

4 In some cases there will be inequality constraints on �, but for simplicity of exposition we postpone the details
to Appendix D.1.
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in view of expression (2.21) in Fang, Kotz and Ng (1990). Therefore, we could obtain the

infeasible ML estimator of � by maximising with respect to this parameter the log-likelihood

function of the observed &t(�0)0s,
PT
t=1 lnh [&t(�0);�]. Although in practice the standardised

residuals are usually unobservable, it is easy to prove from (8) that ~�T is the estimator so

obtained when we treat &t(~�T ) as if they were really observed.

Durbin (1970) and Pagan (1986) are two classic references on the properties of sequential

ML estimators. A straightforward application of their results to our problem allows us to obtain

the asymptotic distribution of ~�T , which re�ects the sample uncertainty in ~�T :

Proposition 3 If "�t jzt; It�1;�0 is i:i:d: s(0; IN ;�0) with �0 <1, and the regularity conditions
A.1 in Bollerslev and Wooldridge (1992) are satis�ed, then

p
T (~�T ��0)! N [0;F(�0)], where

F(�0) = I�1�� (�0) + I�1�� (�0)I 0��(�0)C(�0)I��(�0)I�1�� (�0): (9)

Importantly, since C(�0) will become unbounded as �0 !1, the asymptotic distribution of

~�T will also be non-standard in that case, unlike that of the feasible ML estimator �̂T .

Expression (9) suggests that F(�0) depends on the speci�cation adopted for the conditional

mean and variance functions. However, it turns out that the asymptotic dependence between

estimators of � and estimators of � is generally driven by a scalar parameter, in which case

F(�0) does not depend on the functional form of �t(�) or �t(�). To clarify this point, it is

convenient to introduce the following reparametrisation:

Reparametrisation 1 A homeomorphic transformation r(:) = [r01(:); r
0
2(:)]

0 of the conditional
mean and variance parameters � into an alternative set of parameters # = (#01; #

0
2)
0, where

#2 is a scalar, and r(�) is twice continuously di¤erentiable with rank[@r0 (�) =@�] = p in a
neighbourhood of �0, such that

�t(�) = �t(#1)
�t(�) = #2�

�
t (#1)

�
8t; (10)

with
E[ln j��t (#1)jj�0] = k 8#1: (11)

Expression (10) simply requires that one can construct pseudo-standardised residuals

"�t (#1) = �
��1=2
t (#1)[yt � ��t (#1)]

which are i:i:d: s(0; #2IN ;�), where #2 is a global scale parameter, a condition satis�ed by most

static and dynamic models.5 But given that we can multiply this parameter by some scalar
5The only exceptions would be restricted models in which the overall scale is e¤ectively �xed, or in which it is

not possible to exclude #2 from the mean. In the �rst case, the information matrix will be block diagonal between
� and �, so no correction is necessary, while in the second case the general expression in Proposition 3 applies.
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positive smooth function of #1, k(#1) say, and divide ��t (#1) by the same function without

violating (10), condition (11) simply provides a particularly convenient normalisation.6

We can then show the following result:

Proposition 4 If "�t jzt; It�1;�0 is i:i:d: s(0; IN ;�0) with �0 <1, the regularity conditions A.1
in Bollerslev and Wooldridge (1992) are satis�ed, and reparametrisation (1) is admissible, then

F(�0) =M�1
rr (�0)+M�1

rr (�0)m
0
sr(�0)msr(�0)M�1

rr (�0)�
�

N

2#20

�2
C#2#2(#0;�0) (12)

where

C#2#2(#;�) =
f2(�+1) +N�g

4

4#22
N

is the asymptotic variance of the feasible PML estimator of #2, while the asymptotic variance of
the feasible ML estimator of � is

I��(�0) =M�1
rr (�0)+M�1

rr (�0)m
0
sr(�0)msr(�0)M�1

rr (�0)�
�

N

2#20

�2
I#2#2(�0); (13)

with

I#2#2(�) = 1

2mss(�) +N [mss(�)� 1�msr(�)M�1
rr (�)m0sr(�)]

4#22
N

:

In general, #1 or #2 will have no intrinsic interest. Therefore, given that ~�T is numerically

invariant to the parametrisation of conditional mean and variance, it is not really necessary to

estimate the model in terms of those parameters for the above expressions to apply as long as

it would be conceivable to do so. In this sense, it is important to stress that neither (12) nor

(13) e¤ectively depend on #2, which drops out from those formulas.

It is easy to see from (9) that I�1�� (�0) � I��(�0) � F(�0) regardless of the distribution, with

equality between I�1�� (�0) and F(�0) if and only if I��(�0) = 0, in which case the sequential ML

estimator of � will be �-adaptive, or in other words, as e¢ cient as the infeasible ML estimator

of � that we could compute if the &t(�0)0s were directly observed. This condition simpli�es to

msr(�0) = 0 when reparametrisation (1) is admissible.

A more interesting question in practice is the relationship between I��(�0) and F(�0).

Theorem 5 in Pagan (1986) implies that

p
T (~�T � �̂T )! N [0;Y(�0)] ;

6Bickel (1982) exploited this parametrisation in his study of adaptive estimation in the iid elliptical case,
and so did Linton (1993) and Hodgson and Vorkink (2003) in univariate and multivariate Garch-M models,
respectively. As Fiorentini and Sentana (2010) show, in multivariate dynamic models with elliptical innovations
(10) provides a general su¢ cient condition for the partial adaptivity of the ML estimators of #1 under correct
speci�cation, and for their consistency under distributional misspeci�cation.
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where

Y(�0) = I�1�� (�0)I 0��(�0)
n
C(�0)�

�
I��(�0)� I��(�0)I�1�� (�0)I 0��(�0)

��1o I��(�0)I�1�� (�0):
Therefore, the sequential ML estimator will be asymptotically as e¢ cient as the joint ML es-

timator if and only if Y(�0) = 0. If reparametrisation (1) is admissible, the scalar nature of

#2 implies that the only case in which I��(�0) = F(�0) with I��(�0) 6= 0 will arise when the

Gaussian PMLE of #2 is as e¢ cient as the joint ML.7 Otherwise, there will be an e¢ ciency loss.

3.2 Sequential GMM estimators of �

If we can compute the expectations of L � q functions of &t, �(:) say, then we can also com-

pute a sequential GMM estimator of � by minimising the quadratic form �n0T (
~�T ;�)
�nT (

~�T ;�),

where 
 is a positive de�nite weighting matrix, and nt(�;�) = �[&t(�)]�Ef�[&t(�)]j�g. When

L > q, Hansen (1982) showed that if the long-run covariance matrix of the sample moment con-

ditions has full rank, then its inverse will be the �optimal�weighting matrix, in the sense that

the di¤erence between the asymptotic covariance matrix of the resulting GMM estimator and

an estimator based on any other norm of the same moment conditions is positive semide�nite.

This optimal estimator is infeasible unless we know the optimal matrix, but under additional

regularity conditions, we can de�ne an asymptotically equivalent but feasible two-step optimal

GMM estimator by replacing it with an estimator evaluated at some initial consistent estimator

of �. An alternative way to make the optimal GMM estimator feasible is by explicitly taking

into account in the criterion function the dependence of the long-run variance on the parameter

values, as in the single-step Continuously Updated (CU) GMM estimator of Hansen, Heaton

and Yaron (1996). As we shall see below, in our parametric models we can often compute

these GMM estimators using analytical expressions for the optimal weighting matrices, which

we would expect a priori to lead to better performance in �nite samples.

Following Newey (1984), Newey (1985) and Tauchen (1985), we can obtain the asymptotic

covariance matrix of the sample average of the in�uence functions evaluated at the Gaussian

PML estimator, ~�T , using the expansion

1

T

XT

t=1
nt(~�T ;�0) =

1

T

XT

t=1
nt(�0;�0)�Nn

p
T (~�T � �0) + op(1)

= (I;�NnA�1)
1

T

XT

t=1

�
nt(�0;�0)
s�(�0;0)

�
+ op(1)

7The Kotz distribution provides a noteworthy example in which both msr(�0) = 0 and C#2#2(�0) = I#2#2(�0).
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where

Nn = lim
T!1

1

T

XT

t=1
E

�
�@nt(�0;�0)

@�0

�����0� :
Hence, we immediately get that

lim
T!1

V

 p
T

T

XT

t=1
nt(~�T ;�0)

������0
!
=(I;�NnA�1)

�
Gn Dn
D0n B

��
I

�NnA�1
�
=En; (14)

where �
Gn Dn
D0n B

�
= lim
T!1

V

 p
T

T

XT

t=1

�
nt(�0;�0)
s�t(�0;0)

�������0
!
:

An asymptotically equivalent way of dealing with parameter uncertainty replaces the original

in�uence functions nt(�;�) with the residuals from their IV regression onto s�t(�;0) using s�t(�)

as instruments.8 More formally:

Proposition 5 If "�t jzt; It�1;�0 is i:i:d: s(0; IN ;�0) with �0 < 1, and the regularity condi-
tions A.1 in Bollerslev and Wooldridge (1992) are satis�ed, then the optimal sequential GMM
estimators based on nt(~�T ;�) and n?t (~�T ;�), where

n?t (�;�) = nt(�;�)�NnA�1s�t(�;0);

will be asymptotically equivalent.

In those cases in which reparametrisation (1) is admissible, we can obtain a third and much

simpler equivalent procedure by using the residuals from the alternative IV regression of nt(�;�)

onto &t(�)=N � 1 using �[&t(�);�]&t(�)=N � 1 as instrument. Speci�cally,

Proposition 6 If "�t jzt; It�1;�0 is i:i:d: s(0; IN ;�0) with �0 <1, the regularity conditions A.1
in Bollerslev and Wooldridge (1992) are satis�ed, and reparametrisation (1) is admissible, then
the asymptotic variance of the sample average of

n�t (�;�) = nt(�;�)�
N

2
|n(�)

�
&t(�)

N
� 1
�
;

where

|n(�2) = Cov

�
nt(�;�1);�[&t(�);�2]

&t(�)

N

�����;�1� ;
is equal to (14), which reduces to

Gn �
N

2

�
|n(0)|0n(�) + |n(�)|0n(0)

�
+

�
N

2
+
N(N + 2)�

4

�
|n(�)|n(�)0:

Finally, it is worth mentioning that when the number of moment conditions L is strictly

larger than the number of shape parameters q, one could use the overidentifying restrictions

statistic to test if the distribution assumed for estimation purposes is the true one.

8See Bontemps and Meddahi (2011) for alternative approaches in moment-based speci�cation tests.
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3.2.1 Higher order moments and orthogonal polynomials

The most obvious moments to use in practice to estimate the shape parameters are powers

of &t. Speci�cally, we can consider the in�uence functions:

`mt(�;�) =
&mt (�)

2m
Qm
j=1(N=2 + j � 1)

� [1 + �m(�)]: (15)

But given that for m = 1, expression (15) reduces to `1t(�) = &t(�)=N � 1 irrespective of �, we

have to start with m � 2.

An alternative is to consider in�uence functions de�ned by the relevant mth order orthogonal

polynomials pmt[&t(�);�] =
Pm
h=0 ah(�)&

h
t (�).

9 Again, we have to consider m � 2 because the

�rst two non-normalised polynomials are always p0t[&t(�)] = 1 and p1t[&t(�)] = `1t(�), which do

not depend on �.

Given that fp1t[&t(�)]; p2t[&t(�);�]; :::; pMt[&t(�);�]g is a full-rank linear transformation of

[`1t(�); `2t(�;�); :::; `Mt(�;�)], the optimal joint GMM estimator of � and � based on the �rst

M polynomials would be asymptotically equivalent to the corresponding estimator based on

the �rst M higher order moments. The following proposition extends this result to optimal

sequential GMM estimators that keep � �xed at its Gaussian PML estimator, ~�T :

Proposition 7 If "�t jzt; It�1;�0 is i:i:d: s(0; IN ;�0) with E[&2Mt j�0] <1, the regularity condi-
tions A.1 in Bollerslev and Wooldridge (1992) are satis�ed, and reparametrisation (1) is admis-
sible, then the optimal sequential estimator of � based on the orthogonal polynomials of order
2, 3, :::, M is asymptotically equivalent to the analogous estimator based on the corresponding
higher order moments, with an asymptotic variance that takes into account the sample uncer-
tainty in ~�T given by

Gp +
�
N

2
+
N(N + 2)�

4

�
|p(�)|p(�)0

where Gp is a diagonal matrix of order M � 1 with representative element

V [pmt[&t(�);�]j�] =
mX
h=0

mX
k=0

8<:ah(�)ak(�)[1 + �h+k(�)]2h+k
h+kY
j=1

(N=2 + j � 1)

9=;
and |p(�) is an M � 1 vector with representative element

Cov

�
pmt[&t(�);�];�[&t(�);�]

&t(�)

N

������ = mX
h=1

hah(�)[1 + �h(�0)]
2h+1

N

hY
j=1

(N=2 + j � 1):

Importantly, these sequential GMM estimators will be not only asymptotically equivalent

but also numerically equivalent if we use single-step GMM methods such as CU-GMM.

By using additional moments, we can in principle improve the e¢ ciency of the sequential

MM estimators, but the precision with which we can estimate �m(�) rapidly decreases with m.
9Appendix B contains the expressions for the coe¢ cients of the second and third order orthogonal polynomials

of the di¤erent examples we consider.
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3.2.2 E¢ cient sequential GMM estimators of �

Our previous GMM optimality discussion applies to a given set of moments. But one could

also ask which estimating functions would lead to the most e¢ cient sequential estimators of �

taking into account the sampling variability in ~�T . The following result answers this question

by exploiting the characterisation of e¢ cient sequential estimators in Newey and Powell (1998):

Proposition 8 If "�t jzt; It�1;�0 is i:i:d: s(0; IN ;�0) with �0 <1, and the regularity conditions
A.1 in Bollerslev and Wooldridge (1992) are satis�ed, then the e¢ cient in�uence function is
given by the e¢ cient parametric score of �:

s�j�t(�;�) = s�t(�;�)� I 0��(�0)I�1�� (�0)s�t(�;�); (16)

which is the residual from the theoretical regression of s�t(�0) on s�t(�0).

Importantly, the proof of this statement also implies that the resulting sequential MM esti-

mator of � will achieve the e¢ ciency of the feasible ML estimator, which is the largest possible.

The reason is twofold. First, the variance of the e¢ cient parametric score s�j�t(�0) in (16)

coincides with the inverse of the asymptotic variance of the feasible ML estimator of �, �̂T .

Second, this matrix is also the expected value of the Jacobian matrix of (16) with respect to �.

In those cases in which reparametrisation (1) is admissible, expression (16) reduces to

s�j�t(�;�) = s�t(�;�)�
m0sr(�)

(1 + 2=N)mss(�)� 1

�
�[&t(�);�]

&t(�)

N
� 1
�
; (17)

which is once again much simpler to compute.

3.3 E¢ ciency comparisons

3.3.1 An illustration in the case of the Student t

In view of its popularity, it is convenient to illustrate our previous analysis in the case of

the multivariate Student t. Given that when reparametrisation (1) is admissible Proposition

7 implies the coincidence between the asymptotic distributions of ��T and ��T , which are the

sequential MM estimators of � based on the fourth moment and the second order polynomial,

respectively, we �rst derive the distribution of those estimators in the general case:

Proposition 9 If "�t jzt; It�1;�0 is i:i:d: t(0; IN ; �0), with �0 > 8, and the regularity conditions
A.1 in Bollerslev and Wooldridge (1992) hold, then

p
T (��T � �0) ! N

�
0; E`(�0)=H2(�0)

�
and
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p
T (��T � �0)! N

�
0; Ep(�0)=H2(�0)

�
, where

E`(�0) = G`(�0) +N 0
`
(�0)C(�0)N`

(�0)� 2N 0
`
(�0)A�1(�0)D`(�0);

Ep(�0) = Gp(�0) +N 0
p(�0)C(�0)Np(�0);

D`(�0) = cov[s�t(�0; 0); `2t(�0; �0)j�0] =
4(�0 � 2)(N + �0 � 2)
N(�0 � 4)(�0 � 6)

Ws(�0);

G`(�0) = V [`2t(�0; �0)j�0] =
(�0 � 2)2
(�0 � 4)2

�
(N + 6)(N + 4)

N(N + 2)

(�0 � 2)(�0 � 4)
(�0 � 6)(�0 � 8)

� 1
�
;

Gp(�0) = V fp2t[&t(�0); �0]j�0g = G`(�0)�
8(�0 � 2)2(N + �0 � 2)
N(�0 � 6)2(�0 � 4)

;

N
`
(�0) = cov[s�t(�0; �0); `2t(�0; �0)j�0] =

4(�0 � 2)
N(�0 � 4)

Ws(�0);

Np(�0) = covfs�t(�0; �0); p2t[&t(�0); �0]j�0g = �
8(�0 � 2)

N(�0 � 4)(�0 � 6)
Ws(�0);

H(�0) = cov[s�t(�0; �0); `2t(�0; �0)j�0] = covfs�t(�0; �0); p2t[&t(�0); �0]j�0g =
2�20

(�0 � 4)2

and

Ws(�0) = Zd(�0)[0
0; vec0(IN )]

0 = E[Zdt(�0)j�0][00; vec0(IN )]0

= E

�
1

2
@vec0 [�t(�0)] =@��vec[��1t (�0)]

�����0� = E[Wst(�0)j�0] = �E f@dt(�)=@�j�0g : (18)

The following proposition compares the e¢ ciency of these estimators of � to the sequential

ML estimator:

Proposition 10 If "�t jzt; It�1;�0 is i:i:d: t(0; IN ; �0) with �0 > 8, then F(�0) � J (�0). If in
addition

A�1(�0)Ws(�0) =
(N + �0 � 2)
(�0 � 4)

B�1(�0)Ws(�0); (19)

then J (�0) � G(�0), with equality if and only if�
&t(�0)

N
� 1
�
� 2(N + �0 � 2)

N(�0 � 4)
W0

s(�0)B�1(�0)s�t(�0; 0) = 0 8t: (20)

The �rst part of the proposition shows that sequential ML is always more e¢ cient than

sequential MM based on the second order polynomial. Nevertheless, Proposition 8 implies that

there is a sequential MM procedure that is more e¢ cient than sequential ML. Condition (19)

is trivially satis�ed in the limiting case in which the Student t distribution is in fact Gaussian,

and in dynamic univariate models with no mean. Also, it is worth mentioning that (20), which

in turn implies (19), is satis�ed by most dynamic univariate Garch-M models (see Fiorentini,

Sentana and Calzolari (2004)). More generally, condition (20) will hold in any model that

satis�es reparametrisation (1).

Given that I��(�0) = 0 under normality from Proposition 1, it is clear that ~�T will be as

asymptotically e¢ cient as the feasible ML estimator �̂T when �0 = 0, which in turn is as e¢ cient
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as the infeasible ML estimator in that case. Moreover, the restriction � � 0 implies that these

estimators will share the same half normal asymptotic distribution under conditional normality,

although they would not necessarily be numerically identical when they are not zero. Similarly,

the asymptotic distributions of ��T and ��T will also tend to be half normal as the sample size

increases when �0 = 0, since ��T (~�T ) is root-T consistent for �, which is 0 in the Gaussian

case. However, while��T will always be as e¢ cient as �̂T under normality because p2t[&t(�); �] is

proportional to s�t(�0; 0), ��T will be less e¢ cient unless condition (20) is satis�ed.

Finally, note that since both G`(�0) and Gp(�0) will diverge to in�nity as �0 converges to 8

from above, ��T and��T will not be root-T consistent for 4 � �0 � 8. Moreover, since � is in�nite

for 2 < �0 � 4, ��T and ��T will not even be consistent in the interior of this range.

3.3.2 Asymptotic standard errors and relative e¢ ciency

Figures 4 to 6 display the asymptotic standard deviation (top panels) and the relative

e¢ ciency (bottom panels) of the joint MLE and e¢ cient sequential MM estimator, the sequential

MLE, and �nally the sequential GMM estimators based on orthogonal polynomials, obtained

using the results in Propositions 4 and 7 under the assumption that reparametrisation (1) is

admissible, which, as we mentioned before, covers most static and dynamic models.

Figure 4 refers to the Student t distribution. For slight departures from normality (� < :02 or

� > 50) all estimators behave similarly. As � increases, the GMM estimators become relatively

less e¢ cient, with the exactly identi�ed GMM estimator being the least e¢ cient, as expected

from Proposition 10. Notice, however, that when � approaches 12 the GMM estimator based on

the second and third orthogonal polynomials converges to the GMM estimator based only on

the second one since the variance of the third orthogonal polynomial increases without bound.

In turn, the variance of the estimator based on the second order polynomial blows up as �

converges to 8 from above, as we mentioned at the end of the previous subsection. Until roughly

that point, the sequential ML estimator performs remarkably well, with virtually no e¢ ciency

loss with respect to the benchmark given by either the joint MLE or the e¢ cient sequential

MM. For smaller degrees of freedom, though, di¤erences between the sequential and the joint

ML estimators become apparent, especially for values of � between 5 and 4.

The DSMN distribution has two shape parameters. In Figures 5a and 5b we maintain the

scale ratio parameter { equal to .5 and report the asymptotic e¢ ciency as a function of the

mixing probability parameter �. In contrast, in Figures 5c and 5d we look at the asymptotic
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e¢ ciency of the di¤erent estimators �xing the mixing probability at � = 0:05. Interestingly, we

�nd that, broadly speaking, the asymptotic standard errors of the sequential MLE and the joint

MLE are indistinguishable, despite the fact that the information matrix is not diagonal and the

Gaussian PML estimators of � are ine¢ cient, unlike in the case of the Kotz distribution. As

for the GMM estimators, which in this case are well de�ned for every combination of parameter

values, we �nd that the use of the fourth order orthogonal polynomial enhances e¢ ciency except

for some isolated values of �.

Finally, Figures 6a to 6d show the results for the PE distribution, with c2 = 0 in the �rst

two �gures and c3 = 0 in the other two. Again sequential MLE is very e¢ cient with virtually no

e¢ ciency loss with respect to the benchmark. The GMM estimators are less e¢ cient, but the

use of the fourth order polynomial is very useful in estimating c2 when c3 = 0 and in estimating

c3 when c2 = 0.

3.4 Misspeci�cation analysis

So far we have maintained the assumption that the true conditional distribution of the

standardised innovations "�t is correctly speci�ed. Although distributional misspeci�cation will

not a¤ect the Gaussian PML estimator of �, the sequential estimators of � will be inconsistent

if the true distribution of "�t given zt and It�1 does not coincide with the assumed one. To focus

our discussion on the e¤ects of distributional misspeci�cation, in the remaining of this section

we shall assume that (1) is true.

Let us consider situations in which the true distribution is i:i:d: elliptical but di¤erent from

the parametric one assumed for estimation purposes, which will often be chosen for convenience

or familiarity. For simplicity, we de�ne the pseudo-true values of � as consistent roots of the ex-

pected pseudo log-likelihood score, which under appropriate regularity conditions will maximise

the expected value of the pseudo log-likelihood function. We can then prove that:

Proposition 11 If "�t jzt; It�1;'0, is i:i:d: s(0; IN ), where ' includes # and the true shape
parameters, but the spherical distribution assumed for estimation purposes does not necessarily
nest the true density, and reparametrisation (1) is admissible, then the asymptotic distribution
of the sequential ML estimator of �, ~�T , will be given by

p
T (~�T � �1)! N

�
0;H�1rr (�1;'0)Er(�1;'0)H�1rr (�1;'0)

	
;

where �1 solves E[ ert(#0;�1)j'0] = 0,

Hrr(�1;'0) =MH
rr(#0;�1;'0); MH

rr(�;') = �E[ @ert(�)=@�0
��'];
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and

Er(�1;'0) = [Orr(�1;'0)]�1+
Nf2[�0 + 1] +N�0g

4

�[Orr(�1;'0)]�1mOsr(�1;'0)
0mOsr(�1;'0)[Orr(�1;'0)]

�1;

with

mOsr(�;') = E [f�[&t(#);�] � [&t(#)=N ]� 1g ert(�)j'] ;
Orr(�1;'0) =MO

rr(#0;�1;'0); MO
rr(�;') = V [ ert(�)j']:

4 Application to risk measures

As we mentioned in the introduction, nowadays many institutional investors all over the

world regularly use risk management procedures based on the ubiquitous VaR to control for

the market risks associated with their portfolios. Furthermore, the recent �nancial crisis has

highlighted the need for systemic risk measures that point out which institutions would be most

at risk should another crisis occur. In that sense, Adrian and Brunnermeier (2011) propose to

measure the systemic risk of individual institutions by means of the so-called Exposure CoVaR,

which they de�ne as the VaR of �nancial institution i when the entire �nancial system is in

distress. To gauge the usefulness of our results in practice, in this section we focus on the role

that the shape parameter estimators play in the reliability of those risk measures.10

For illustrative purposes, we consider a simple dynamic market model, in which reparametri-

sation (1) is admissible. Speci�cally, if rMt denotes the excess returns on the market portfolio,

and rit the excess returns on asset i (i = 2; : : : ; N), we assume that rt = (rMt; r2t; :::; rNt) is

generated as

�
�1=2
t (�)[rt � �t(�)]jzt; It�1;�0;�0 � i:i:d: s(0; IN ;�);

with

�t(�) =

��
�Mt

at(�) + bt(�)�Mt

��
(21)

�t(�) =

�
�2Mt �Mtb

0
t(�)

�Mtbt(�) �2Mtbt(�)b
0
t(�) +
t(�)

�
�2Mt = �2M + ("2Mt�1 � �2M ) + �(�2Mt�1 � �2M ):

In this model, �Mt and �
2
Mt denote the conditional mean and variance of rMt, while at(�) and

bt(�) are the alpha and beta of the other N � 1 assets with respect to the market portfolio,
10Acharya et al. (2010) and Brownlees and Engle (2011) consider a closely related systemic risk measure, the

Marginal Expected Shortfall, which they de�ne as the expected loss an equity investor in a �nancial institution
would experience if the overall market declined substantially. It would be tedious but straightforward to extend
our analysis to that measure.
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respectively, and 
t(�) their residual covariance matrix. Given that the portfolio of �nancial

institutions changes every day, a multivariate framework such as this one o¤ers important ad-

vantages over univariate procedures because we can compute the di¤erent risk management

measures in closed form from the parameters of the joint distribution without the need to re-

estimate the model.11

4.1 VaR and Exposure CoVaR

LetWt�1 > 0 denote the initial wealth of a �nancial institution which can invest in a safe as-

set with gross returns R0t, and N risky assets with excess returns rt. Letwt = (wMt; w2t; :::wNt)
0

denote the weights on its chosen portfolio. The random �nal value of its wealth over a �xed

period of time, which we normalise to 1, will be

Wt�1Rwt =Wt�1(R0t + rwt) =Wt�1(R0t +w
0
trt).

This value contains both a safe component,Wt�1R0t, and a random component,Wt�1rwt. Hence,

the probability that this institution su¤ers a reduction in wealth larger than some �xed positive

threshold value Vt will be given by the following expression

Pr [Wt�1(1�R0t)�Wt�1rwt � Vt] = Pr (rwt � 1�R0t � Vt=Wt�1)

= Pr

�
rwt � �wt
�wt

� 1�R0t � Vt=Wt�1 � �wt
�wt

�
= F

�
1�R0t � Vt=Wt�1 � �wt

�wt

�
;

where �wt = w
0
t�t and �

2
wt = w

0
t�twt are the expected excess return and variance of rwt, and

F (:) is the cumulative distribution function of a zero mean - unit variance random variable

within the appropriate elliptical class.12

The value of Vt which makes the above probability equal to some pre-speci�ed value �

(0 < � < 1=2) is known as the 100(1� �)% VaR of the portfolio Rwt. For convenience, though,

the portfolio VaR is often reported in fractional form as �Vt=Wt�1. Consequently, if we de�ne

q1(�;�) as the �th quantile of the distribution of standardised returns, which will be negative

for � < 1=2, the reported �gure will be given by

Vt=Wt�1 = 1�R0t � �wt � �wtq1(�;�).
11An attractive property of using parametric methods for VaR and CoVaR estimation is that it guarantees

quantiles that do not cross.
12Due to the properties of the elliptical distributions (see theorem 2.16 in Fang et al (1990)), the cumulative

distribution function F (:) does not depend in any way on �, � or the vector of portfolio weights, only on the
vector of shape parameters �.
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By de�nition, the Exposure CoVaR of a �nancial institution will be very much in�uenced by

the market beta of its portfolio. To isolate tail dependence from the linear dependence induced

by correlations, in what follows we focus on the CoVaR of an institution after hedging its market

risk component. More formally, if

rht = rwt �
Covt�1(rwt; rMt)

Vt�1(rMt)
rMt

denotes the idiosyncratic risk component of portfolio Rwt, we look at the Exposure CoVaR of

rht. To simplify the exposition, we assume that at(�) = 0, bt(�) = b and 
t(�) = 
, so that

the conditional mean of rht is 0 and its variance �2h =
PN
j=2w

2
jt!j . In this context, the speci�c

Exposure CoVaR, CVt, will be implicitly de�ned by

q2j1(�2; �1;�) =
1

�hw

"
1�R0t �

CVt

Wt�1
PN
j=2wjt

#
;

where q2j1(�2; �1;�) denotes the �
th
2 quantile of the (standardised) distribution of rht conditional

on the market return rMt being below its �th1 quantile. More formally,

�2 = Pr
�
"�
ht
� q2j1(�2; �1;�) j"�Mt � q1(�1;�)

�
=

Z q1(�1;�)

�1
f1("

�
1t;�)

"Z q2j1(�2;�1;�)

�1
f2j1("

�
2t; "

�
1t;�)d"

�
2t

#
d"�1t;

with

q1(�;�) =
1

�Mt

�
1�R0 � �Mt �

Vt
wMWt�1

�
:

In Appendix C.4 we provide the conditional and marginal cumulative distribution functions

required to obtain q1(�;�) and q2j1(�2; �1;�) for the multivariate Student t, DSMN and 3rd-order

PE, on the basis of which we compute the parametric VaR and CoVaR measures.

4.2 The e¤ect of sampling uncertainty on parametric VaR and CoVaR

In practice, the above expressions will be subject to sampling variability in the estimation

of �w, �w, q1(�;�) and q2j1(�2; �1;�). Given that we are assuming that �w and �w will be

evaluated at their Gaussian PML estimators in all cases, in the rest of this section we shall focus

on the sampling variability in estimating q1(�;�) and q2j1(�2; �1;�).

In parametric models, q1(�;�) and q2j1(�2; �1;�) would be known with certainty for all values

of � regardless of the sample size if we assumed we knew the true value of �, �0. More generally,

though, we have to take into account the variability in estimating �. Asymptotic valid standard
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errors for those quantiles can be easily obtained by a direct application of the delta method.

Appendix C.5 contains the required expressions for @q1(�;�)=@� and @q2j1(�2; �1;�)=@�. On

the basis of those expressions, Figure 7 displays con�dence bands for parametric VaR and CoVaR

computed with the Student t (7a), DSMN (7b) and PE (7c) distributions. To save space, we

only look at the 1% and 5% signi�cance levels for the case in which �1=�2. The dotted lines

represent the 95% con�dence intervals based on the asymptotic variance of the sequential ML

estimator for a hypothetical sample size of T = 1; 000 and N = 5. As expected, the con�dence

bands are larger at the 1% level than at the 5% one. They are also larger for CoVaR than for

VaR, the intuition being that the number of observations e¤ectively available is smaller. These

�gures also illustrate that the assumption of Gaussianity could be rather misleading even in

situations where the actual DGP has moderate excess kurtosis. This is particularly true for the

VaR �gures at the 99% level, and especially for the CoVaR numbers at both levels.

4.3 A comparison of parametric and nonparametric VaR �gures under cor-
rect speci�cation and under misspeci�cation

The so-called historical method is a rather popular way of computing VaR �gures employed

by many �nancial institutions all over the world. Some of the most sophisticated versions of

this method rely on the empirical quantiles of the returns to the current portfolio over the last

T observations after correcting for time-varying expected returns, volatilities and correlations

(see Gouriéroux and Jasiak (2009) for a recent survey). Since this is a fully non-parametric

procedure, the asymptotic variance of the �th empirical quantile of the standardised return

distribution will be given by
�(1� �)
f2 [q1(�)]

; (22)

where f(:) denotes the true density function (see p. 72 in Koenker (2005)).

By construction, the empirical quantile ignores any restriction on the distribution of stan-

dardised returns. A simple way of imposing symmetry would be to average (the absolute value

of) the sample counterparts to q1(�) and q1(1 � �). Using again the results in Koenker (2005)

for the joint asymptotic distribution of two sample quantiles, it is straightforward to prove that

the corresponding asymptotic variance will be

�

2f2 [q1(�)]
;

which is lower than (22) for any � < 1=2. This way of enforcing symmetry, though, is ine¢ cient,
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as can be seen by looking at the limiting case of the median, for which it o¤ers no gains. The

most e¢ cient estimator of q1(�) that imposes symmetry turns out to be the (1� 2�)th quantile

of the empirical distribution of the absolute values of the standardised returns. Given that

the density of the absolute values is twice the density of the original variable, the asymptotic

variance of this quantile estimator will be given by

�(1� 2�)
2f2 [q1(�)]

:

As expected, this variance goes to 0 as � ! 1=2 since we are considering standardised returns,

and the symmetry assumption implies that mean and median should coincide.

It is interesting to relate the asymptotic variances of these non-parametric quantile estimators

to the asymptotic variance implied by parametric models. In Appendix D.5 we show that the

asymptotic variance of q1(�; ~�T ) can be written as

�(1� �)
f2 [q1 (�;�0) ;�0]

E [s�t(�) j"�1t � q1 (�;�0) ;�0 ]V [~�T j�0]E
�
s0�t(�) j"�1t � q1 (�;�0) ;�0

�
; (23)

which coincides with (22) multiplied by a damping factor. Importantly, the distribution used to

compute the foregoing expectation is the same as the distribution used for estimation purposes.

Hence, this expression continues to be valid under misspeci�cation of the conditional distribution,

although in that case we must use a robust (sandwich) formula to obtain V [~�T j'0]. Speci�cally,

if "�t jzt; It�1;'0, is i:i:d: s(0; IN ), where ' includes � and the true shape parameters, but the

spherical distribution assumed for estimation purposes does not necessarily nest the true density,

then the asymptotic variance of the sequential ML estimator of q1(�; ~�T ) will still be given by

(23), but with �0 replaced by the pseudo-true value of � de�ned in Proposition 11, �1.

The top panels of Figures 8a-c display the 99% VaR numbers corresponding to the Student

t, DSMN and PE distributions obtained with the di¤erent sequential ML estimators both under

correct speci�cation and under misspeci�cation. Asymptotic standard errors for the parametric

estimators are shown in the bottom panels. Those �gures also contain standard errors for the

�th empirical quantile of the standardised return distribution, and the (1� 2�)th quantile of the

empirical distribution of the absolute values of the standardised returns, which are labeled as NP

and SNP, respectively. As can be seen, the two non-parametric quantile estimators are always

consistent but largely ine¢ cient. In contrast, the parametric estimators have fairly narrow

variation ranges, but they can be sometimes noticeably biased under misspeci�cation, especially
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when they rely on the Student t. In contrast, the biases due to distributional misspeci�cation

seem to be small when one uses �exible distributions such as DSMNs and PEs.

5 Monte Carlo Evidence

5.1 Design and estimation details

In this section, we assess the �nite sample performance of the di¤erent estimators and risk

measures discussed above by means of an extensive Monte Carlo exercise, with an experimental

design based on (21). Speci�cally, we simulate and estimate a model in which N = 5, �M = 0:1,

a = 0, b =(1; 2; 1; 2), 
 = I4,  = 0:1 and � = 0:85. As for "�t , we consider a multivariate

Student t with 10 degrees of freedom, a DSMN with the same kurtosis and � = 0:05, and �nally

a 3rd-order PE also with the same kurtosis and c3 = �1.

Although we have considered other sample sizes, for the sake of brevity we only report the

results for T = 2; 500 observations (plus another 100 for initialisation) based on 1,600 Monte

Carlo replications. This sample size corresponds roughly to 10 years of daily data. The numerical

strategy employed by our estimation procedure is described in Appendix D.2. Given that the

Gaussian PML estimators of � are unbiased, and they share the same asymptotic distribution

under the di¤erent distributional assumptions because of their common kurtosis coe¢ cient, we

do not report results for ~�T in the interest of space.

5.2 Sampling distribution of the di¤erent estimators of �

Table 1 presents means and standard deviations of the sampling distributions for three

di¤erent sequential estimators of the shape parameters under correct speci�cation. Speci�cally,

we consider sequential ML (SML), e¢ cient sequential MM (ESMM), and orthogonal polynomial-

based MM estimators that use the 2nd polynomial in the case of the Student t, and the 2nd and

3rd for the other two. The top panel reports results for the Student t, while the middle and

bottom panels contain statistics for DSMN and the 3rd-order PE, respectively.

By and large, the behavior of the di¤erent estimators is in accordance with what the asymp-

totic results from Section 3.4 would suggest. In particular, the standard deviations of ESMM

and SML essentially coincide, as expected from Figures 4-6. In contrast, the exactly identi�ed

orthogonal polynomials-based estimator is clearly ine¢ cient relative to the others, which is also

in line with the asymptotic standard errors in Figures 4�6. This is particularly noticeable in

the case of the PE, as the sampling standard deviation of the SMM-based estimator of c3 more
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than doubles those of ESMM and SML.

Another thing to note is that the estimators of the DSMN parameters � and { seem to be

slightly upward biased, and that the bias increases when those parameters are estimated using

MM orthogonal polynomials. The same comment applies to the 3rd-order PE parameters c2

and c3. In that case, however, the estimators tend to underestimate the true magnitude of the

parameters.

5.3 Sampling distribution of VaR and CoVaR measures

Having sequentially estimated the parameters of the three distributions that we are consid-

ering in each simulated sample, we then computed parametric VaR and CoVaR measures using

the conditional and marginal CDFs in Appendix C.4. In the interest of space, we report results

based on the sequential ML estimator of � only. As for the historical VaR and CoVaR, we focus

on the �th empirical quantile of the relevant standardised distribution, which we estimate by

linear interpolation in order to reduce potential biases in small samples.13 The objective of

our exercise is twofold: 1) to shed some light on the �nite sample performance of parametric

and non-parametric VaR and CoVaR estimators; and 2) to assess the e¤ects of distributional

misspeci�cation on the latter.

Figure 9a summarises the sampling distribution of the di¤erent 99% VaR measures by means

of box-plots with a di¤erent DGP on each panel. As usual, the central boxes describe the �rst and

third quartiles of the sampling distributions, as well as their median, and we set the maximum

length of the whiskers to one interquartile range. Each panel contains �ve rows with the three

SML-based measures, as well as the non-parametric one (denoted by NP) and the Gaussian

quantile as a reference.

When the true distribution is Student t, all the parametric VaR measures perform well, in

the sense that their sampling distributions are highly concentrated around the true value. In

contrast, the sampling uncertainty of the 1% non-parametric quantile is much bigger. The same

comments apply when the DGPs are either DSMN or PE distributions, although in those cases,

the bias of the misspeci�ed Student t-based VaR is pronounced.

The same general pattern emerges in Figure 9b, which compares the 95% CoVaR measures.

For the distributions we use as examples, the e¤ects of distributional misspeci�cation seem to be

13Alternatively, we could obtain estimates of the CDF by integrating a kernel density estimator, but the �rst-
order asymptotic properties of the associated quantiles would be the same (see again Koenker (2005)).
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minor compared to the potential e¢ ciency gains from using a parametric model for estimating

the quantiles. This is particularly true when we use �exible distributions such as DSMNs or

PEs to conduct inference.

6 Conclusions

In the context of the general multivariate dynamic regression model with time-varying vari-

ances and covariances considered by Bollerslev and Wooldridge (1992), we study the statistical

properties of sequential estimators of the shape parameters of the conditional distributions,

which can be easily obtained from the standardised innovations evaluated at the Gaussian PML

estimators. In particular, we consider sequential ML estimators, as well as sequential GMM

estimators. The main advantage of such estimators is that they preserve the consistency of

the conditional mean and variance functions, but at the same time allow for a more realistic

conditional distribution. We pay special attention to elliptical distributions such as the Stu-

dent t and Kotz distributions, as well as �exible families like discrete scale mixtures of normals

and polynomial expansions, which could form the basis for a proper nonparametric procedure.

These results are important in practice because empirical researchers as well as �nancial market

participants often want to go beyond the �rst two conditional moments, which implies that one

cannot simply treat the shape parameters as if they were nuisance parameters.

We explain how to compute asymptotic standard errors of sequential estimators that take

into account the sampling variability of the Gaussian PML estimators on which they are based.

Further, we exploit the asymptotic variance expressions that we derive to assess the relative

e¢ ciency of sequential estimators, and obtain the optimal moment conditions that lead to se-

quential MM estimators which are as e¢ cient as their joint ML counterparts. Moreover, our

theoretical calculations indicate that the e¢ ciency loss of sequential ML estimators is usually

very small. From a practical point of view, we also provide simple analytical expressions for the

asymptotic variances by exploiting a reparametrisation of the conditional mean and variance

functions which covers most dynamic models. Obviously, our results also apply in univariate

contexts as well as in static ones.

We then analyse the use of our sequential estimators in the calculation of commonly used

risk management measures such as VaR, and recently proposed systemic risk measures such

as CoVaR. Speci�cally, we provide analytical expressions for the asymptotic variances of those
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measures. Perhaps not surprisingly, our results indicate that the standard errors are larger for

CoVaR than for VaR, and that they increase as we lower the signi�cance level. Our �ndings also

con�rm that the assumption of Gaussianity could be rather misleading even in situations where

the actual DGP has moderate excess kurtosis. This is particularly true for the VaR �gures at

low signi�cance levels, and especially for the CoVaR numbers. We also compare our sequential

estimators to nonparametric estimators, both under correct speci�cation of the parametric dis-

tribution, and also under misspeci�cation. In this sense, our analytical and simulation results

indicate that the use of sequential ML estimators of �exible parametric families of distributions

o¤er substantial e¢ ciency gains for those risk measures, while incurring in small biases.

As we mentioned in the introduction, the sequential estimation approach that we have studied

could be equally applied models with non-spherical innovations, so it might be useful to derive the

di¤erent expressions that we have obtained for general multivariate distributions. It might also

be interesting to introduce dynamic features in higher-order moments. In this sense, at least two

possibilities might be worth exploring: either time varying shape parameters, as in Jondeau and

Rockinger (2003), or a regime switching process, following Guidolin and Timmermann (2007).

These topics constitute interesting avenues for future research.

27



Appendix

A Proofs

Proposition 3

We can use standard arguments (see e.g. Newey and McFadden (1994)) to show that the

sequential ML estimator of � is asymptotically equivalent to a MM estimator based on the

linearised in�uence function

s�t(�0;�)� I 0��(�0)A�1(�0)s�t(�0;0):

On this basis, the expression for F(�0) follows from the de�nitions of B(�0), C(�0) and I��(�0)

in Propositions 1 and 2, together with the martingale di¤erence nature of edt(�0;0) and ert(�0),

and the fact that E fedt(�;0)e0rt(�)j zt; It�1;�g = 0. �

Proposition 4

Given our assumptions on the mapping r(:), we can directly work in terms of the # parame-

ters. Since the conditional covariance matrix of yt is of the form #2�
�
t (#1), it is straightforward

to show that

Zdt(#) =

(
#
�1=2
2 [@�0t(#1)=@#1]�

��1=20
t (#1)

0

1
2f@vec

0[��t (#1)]=@#1g[�
��1=20
t (#1)
���1=20t (#1)]

1
2#
�1
2 vec0(IN )

)
=

�
Z#1lt(#) Z#1st(#)

0 Z#2s(#)

�
: (A1)

Hence, the score vector for # will be�
s#1t(#;�)
s#2t(#;�)

�
=

�
Z#1lt(#)elt(#;�) + Z#1st(#)est(#;�)

Z#2s(#)est(#;�)

�
;

where elt(#;�) and est(#;�) are given in (5) and (6), respectively. Speci�cally,

s#2t(#;�) =
N

2#2

h
�(&t;�)

&t
N
� 1
i
: (A2)

It is then easy to see that the unconditional covariance between s#1t(#;�) and s#2t(#;�) is

given by

E

��
Z#1lt(#) Z#1st (#)

� � Mll(�) 0
0 Mss(�)

� �
0

Z0#2s(#)

�����#;��
=

f2mss(�) +N [mss(�)� 1]g
2#2

E

�
1

2

@vec0[��t (#1)]

@#1
[�

��1=20
t (#1)
���1=20t (#1)]

����#;�� vec(IN )
=

f2mss(�) +N [mss(�)� 1]g
2#2

Z#1s(#;�)vec(IN ) =
f2mss(�) +N [mss(�)� 1]g

2#2
W#1(#;�);
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with Z#1s(#;�) = E[Z#1st(#)j#;�], where we have exploited the serial independence of "�t , as

well as the law of iterated expectations, together with the results in Proposition 1. In this

context, condition (11) implies thatW#1(#;�) will be 0, so that (18) reduces to

Ws(�0) =
�
0 � � � 0 N=(2#2)

�0
:

This condition also implies that the unconditional covariance between s#1t(#;�) and s�t(#;�)

will be 0 too, so that the information matrix will be block diagonal between #1 and (#2;�).

In turn, the unconditional variance of s#2t(#;�) will be given by

E

��
0 Z#2st(#)

� � Mll(�) 0
0 Mss(�)

� �
0

Z0#2st(#)

�����#;��
=

1

4#22
vec0(IN )[mss(�) (IN2 +KNN ) + [mss(�)� 1])vec(IN )vec0(IN )]vec(IN )

= f2mss(�) +N [mss(�)� 1]g
N

4#22
;

while its covariance with s�t(#;�) will be

msr(�0)
N

2#2
:

Therefore, the asymptotic variance of the feasible ML estimator of � is

I��(�0) =
�
Mrr(�0)�m0sr(�0)msr(�0)

N

f2mss(�0) +N [mss(�0)� 1]g

��1
:

Using the partitioned inverse formula, we can �nally obtain (13), with

I#2#2(�0) =
�
I#2#2(�0)� I#2�(�0)I�1�� (�0)I 0#2�(�0)

��1
=

1

2mss(�0) +N [mss(�0)� 1�msr(�0)M�1
rr (�0)m0sr(�0)]

4#22
N

:

Analogous algebraic manipulations that exploit the block-triangularity of (A1) and the con-

stancy of Z#2st(#) show that A(�0) and B(�0), and therefore C(�0), will also be block diagonal

between #1 and #2 when (11) holds. But since

s#2t(#;0) =
N

2#2

�
&t(#)

N
� 1
�
;

the expression for (12) follows. �

Proposition 5

It is easy to see that under standard regularity conditions

1

T

XT

t=1
n?t (~�T ;�0) =

1

T

XT

t=1
n?t (�0;�0)�Nn?

p
T (~�T � �0) + op(1);
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where

Nn? = lim
T!1

1

T

XT

t=1
E

�
�@n

?
t (�0;�0)

@�0

�����0� :
But since

Nn? = Nn �NnA�1A = 0;

it immediately follows that

lim
T!1

V

 p
T

T

XT

t=1
n?t (~�T ;�0)

������0
!
=
�
I �NnA�1

�� Gn Dn
D0n B

��
I

�NnA�1
�
= En.

Given that
@n?t (�;�)

@�0
=
@nt(�;�)

@�0
;

it follows that the e¢ cient sequential GMM estimators based on nt(~�T ;�) and n?t (~�T ;�) will

be asymptotically equivalent. �

Proposition 6

Let us prove that

n?t (�;�) = n
?
t (#;�) = n

�
t (#;�) = nt(#;�)�

N

2
|n(�)

�
&t(�)

N
� 1
�

by proving the �rst equality, followed by the last one, and �nally the middle one.

The chain rule for �rst derivatives implies that

s�t(�;�) = s#t(#;�)
@r0 (�)

@�
;

Cov [nt(�;�); s�t(�;�)j�] = Cov [nt(#;�); s#t(#;�)j#;�]
@r0 (�)

@�

and

Cov [s�t(�;�); s�t(�;0)j�] =
@r0 (�)

@�
Cov [s#t(#;�); s#t(#;0)j#;�]

@r (�)

@�0
:

Therefore,

n?t (�;�) = nt(�;�)� Cov [nt(�;�); s�t(�;�)j�]Cov�1 [s�t(�;�); s�t(�;0)j�] s�t(�;0)

= nt(#;�)� Cov [nt(#;�); s#t(#;�)j#;�]Cov�1 [s#t(#;�); s#t(#;0)j#;�] s#t(#;0) = n?t (#;�):

On the other hand,

n�t (�;�) = nt(�;�)�
Cov [nt(�;�); �(&t;�)&t=N � 1j�]
Cov [�(&t;�)&t=N � 1; &t=N � 1j�]

�
&t(�)

N
� 1
�

= nt(�;�)�
N

2
|n(�)

�
&t(�)

N
� 1
�
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by de�nition of |n(�) since

E
nh
�(&t;�)

&t
N
� 1
i � &t

N
� 1
�����o = 2

N

(see Fiorentini and Sentana (2010) for a proof). But since nt(�;�) depends on � only through

&t(�), it will coincide with n�t (#;�).

In order to prove the middle equality, it is convenient to note that ellipticity implies that

E
�
nt(#;�)"

0�
t (�)

�� zt; It�1;#;�� = 0
and

E
�
nt(#;�)vec

0 �"�t (�)"�0t (�)� IN��� zt; It�1;#;�	 = E

�
nt(#;�)

�
&t(�)

N
� 1
�����#;�� vec0(IN )

because the only random variable that enters nt(#;�) is &t. Therefore

Cov [nt(#;�); s#1t(#;�)j#;�] = E
�
nt(#;�)

�
e0lt(#;�)Z

0
#1lt(#) + e

0
st(#;�)Z

0
#1st(#)

���#;�	
= E

�
nt(#;�)

�
&t(�)

N
� 1
�����#;��W#1(#;�):

But since we saw in the proof of Proposition 4 thatW#1(#;�) is 0, it follows that

Cov [nt(#;�); s#1t(#;�)j#;�] = 0:

Similarly,

Cov [nt(#;�); s#2t(#;�)j#;�] =
N

2#2
Cov

�
nt(#;�); �(&t;�)

&t(#)

N
� 1
����#;�� = N

2#2
|n(�)

in view of (A2).

Further, since we also saw in the proof of Proposition 4 thatA = Cov [s#t(#;0); s#t(#;�)j#;�]

is block-diagonal with (p; p)-element equal to

A#2#2 = Cov [s#2t(#;0); s#2t(#;�)j#;�] =
N2

4#22
E
nh
�(&t;�])

&t
N
� 1
i � &t

N
� 1
�����;�o = N

2#22
;

it immediately follows that

Cov [nt(#;�); s#t(#;�)j#;�]Cov�1 [s#t(#;0); s#t(#;�)j#;�] s#t(#;0)

=
Cov [nt(#;�); s#2t(#;�)j#;�]
Cov [s#2t(#;0); s#2t(#;�)j#;�]

s#2t(#;0) =
N

2
|n(�)

�
&t(�)

N
� 1
�

regardless of the original model.
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Finally, the i:i:d: nature of &t implies that asymptotic variance of the sample average of

n�t (#;�) will be

V [n�t (#;�)j#;�] = V [nt(#;�)j#;�]�
N

2
|n(�)Cov0

h
nt(�;�);

&t
N

���#;�i
�N
2
Cov0

h
nt(�;�);

&t
N

���#;�i |0n(�) + N2

4
|n(�)|n(�)0V

� &t
N
� 1
���#;��

= V [nt(#;�)j#;�]�
N

2

�
|n(�)|0n(0) + |n(�)|0n(0)

�
+

�
N

2
+
N(N + 2)�

4

�
|n(�)|n(�)0

where we have used the fact that

V
� &t
N

�
=
(N + 2)�

N
+
2

N
;

which follows from the de�nition of � in (2). �

Proposition 7

In view of Proposition 6, we can easily de�ne adjusted moments that are invariant to the

sampling uncertainty surrounding ~�T . Speci�cally, for m � 1 we get

`�mt(�;�) = `mt(�;�)�
covf`mt(�;�); �[&t(�);�]&t(�)=N � 1g
covfp1t[&t(�)]; �[&t(�);�]&t(�)=N � 1gp1t[&t(�)];

p�mt[&t(�);�] = pmt[&t(�);�]�
covfpmt[&t(�);�]; �[&t(�);�]&t(�)=N � 1g
covfp1t[&t(�)]; �[&t(�);�]&t(�)=N � 1g p1t[&t(�)];

which are such that

`�1t(�) = p�1t[&t(�)] = 0:

The bilinearity of the covariance operator applied to (B3) implies that

p�mt[&t(�);�] = `�mt(�;�)�
m�1X
j=1

covf`mt(�;�); pjt[&t(�);�]g
V fpjt[&t(�);�]g

p�jt[&t(�);�]:

As a result, we can write fp�2t[&t(�);�]; :::; p�Mt[&t(�);�]g as a full-rank linear transformation of

[`�2t(�;�); :::; `
�
Mt(�;�)], which con�rms the asymptotic equivalence in the case of two-step GMM

procedures, and the numerical equivalence for single-step ones.

As a way of example,

p�2t[&t(�);�] = `�2t(�;�)�
covf`2t(�;�); p1t[&t(�)]g

V fp1t[&t(�)]g
p�1t[&t(�)] = `�2t(�;�)

and

p�3t[&t(�);�]=`
�
3t(�;�)-

covf`3t(�;�); p2t[&t(�);�]g
V fp2t[&t(�);�]g

p�2t[&t(�);�]-
covf`3t(�;�); p1t[&t(�)]g

V fp1t[&t(�)]g
p�1t[&t(�)]

=`�3t(�;�)-
covf`3t(�;�); p2t[&t(�);�]g

V fp2t[&t(�);�]g]
`�2t(�;�):
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In addition, the expression for V fpmt[&t(�);�]j�g follows directly from the expression for the

polynomials.

Similarly, it follows from the orthogonality of polynomials that

|p(0) = Covfpmt[&t(�);�];&t(�)=N j�g = 0:

Finally, in order to derive the expression for Covfpmt[&t(�);�];�[&t(�);�]&t(�)=N j�g it is

convenient to note that Lemma 1 in Fiorentini and Sentana (2010) implies that

�(&t;�)
&t
N
� 1 = � 2

N

�
1 + &t �

@ lnh (&t;�)

@&

�
;

which in turn implies that

E
n
nt(�;�)

h
�(&t;�)

&t
N
� 1
i����;�o

= � 2
N
E

�
nt(�;�)

�
1 + &t �

@ lnh (&t;�)

@&

������;��
= � 2

N
E

�
nt(�;�) � &t �

@ lnh (&t;�)

@&

�����;��
=

2

N
E

�
@[nt(�;�) � &t]

@&

�����;�� = 2

N
E

�
@nt(�;�)

@&
� &t
�����;�� :

This expression yields

|p(�) =
mX
h=1

hah(�)[1 + �h(�)]
2h+1

N

hY
j=1

(N=2 + j � 1)

in the case of orthogonal polynomials. �

Proposition 8

The �rst thing to note is that

cov[s�t(�;�)� I 0��(�0)I�1�� (�0)s�t(�;�); s�t(�;�)] = 0;

which means that

E

�
@s�j�t(�;�)

@�

�
= 0

by virtue of the generalised information equality, which in turn implies that the asymptotic

distribution of the sample average of s�j�t(�;�) will be invariant to parameter uncertainty in �

(see Bontemps and Meddahi (2011) for further discussion of this point).

Following Newey and Powell (1998), if s�j�t(�;�) is e¢ cient then it will satisfy

V
�
s�j�t(�;�)

�
= �E

�
s�j�t(�;�)

@�

�
:
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But

V
�
s�t(�;�)� I 0��(�0)I�1�� (�0)s�t(�;�)

�
= I��(�0)� I 0��(�0)I�1�� (�0)I

0
��(�0);

which coincides with

�E
�
s�j�t(�;�)

@�

�
= cov

�
s�t(�;�); s�t(�;�)� I 0��(�0)I�1�� (�0)s�t(�;�)

�
:

In the case in which parametrisation (1) holds, the same steps used in the proof of Proposition

6 yield expression (17). �

Proposition 9

The linearised in�uence functions corresponding to ��T and ��T are

`2t(�0; �)�N 0
`(�0)A�1(�0)s�t(�0; 0);

and

p2t[&(�0); �]�N 0
p(�0)A�1(�0)s�t(�0; 0);

respectively, whence we can directly obtain the formulae for E`(�0) and Ep(�0). Therefore,

the only remaining task is to obtain closed-form expressions for the required moments. In this

respect, we can use the law of iterated expectations to show that

cov[s�t(�0; 0); `2t(�0; �0)j�0] = Zd(�0) � EfE[edt(�0; 0) � `2t(�0; �0)j&t;�0]j�0g

= Ws(�0)E
h� &t
N
� 1
�
`2t(�0; �0)

����0i
and

cov[s�t(�0; �0); n�t(�0; �0)j�0] = Zd(�0) � EfE[edt(�0; �0) � n�t(�0; �0)j&t;�0]j�0g

=Ws(�0)E

��
N + �0

�0 � 2 + &t
&t
N
� 1
�
n�t(�0; �0)

�����0� :
Then, we can use the properties of the beta distribution to show that

E

"�
&2t

N(N + 2)
� �0 � 2
�0 � 4

�2#
=

(�0 � 2)2
(�0 � 4)2

�
(N + 6)(N + 4)

N(N + 2)

(�0 � 2)(�0 � 4)
(�0 � 6)(�0 � 8)

� 1
�
;

E

�� &t
N
� 1
�� &2t

N(N + 2)
� �0 � 2
�0 � 4

��
=

4(�0 � 2)(N + �0 � 2)
N(�0 � 4)(�0 � 6)

;

and

E

��
N + �0

�0 � 2 + &t
&t
N
� 1
��

&2t
N(N + 2)

� �0 � 2
�0 � 4

��
=
4(�0 � 2)
N(�0 � 4)

:
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On the other hand, since p2t[&(�0); �0] is the residual from the least squares projection of

`2t(�0; �0) on &t=N � 1, we can obtain the relevant expressions for p2t[&(�0); �0] from those of

`2t(�0; �0) by using the fact that

E

�� &t
N
� 1
�2�

=
2(N + �0 � 2)
N(�0 � 4)

and

E

��
N + �0

�0 � 2 + &t
&t
N
� 1
�� &t

N
� 1
��
=
2

N
:

�

Proposition 10

To prove that F(�0) � Ep(�0)=H2(�0) it is convenient to note that both sides of this

inequality can be decomposed into a component that re�ects the asymptotic variance of the

estimators of � if �0 were known, plus a second component that re�ects the sample variability

in the PML estimator ~�T . With respect to the �rst component, it is clear that I�1�� (�0) �

Gp(�0)=H2(�0). As for the second component, we must compare

I 0��(�0)C(�0)I��(�0)=I2��(�0) =
�

2 (N + 2) �2

(� � 2) (N + �) (N + � + 2) I��(�0)

�2
W0

s(�0)C(�0)Ws(�0)

with

N 0
p(�0)C(�0)Np(�0)=H2(�0) =

�
4(� � 2) (� � 4)
N�2 (� � 6)

�2
W0

s(�0)C(�0)Ws(�0):

The second expression will be larger than the �rst one if and only if

I��(�0)�
(N + 2)N�4 (� � 6)

2 (� � 2)2 (� � 4) (N + �) (N + � + 2)
� 0:

We can then show that this inequality will be true for N + 2 if it is true for N by using the

recursion  0(�=2) �  0(1 + �=2) = �4�2 (see Abramowitz and Stegun (1964)), which reduces

the problem to proving the inequality for N = 1 and N = 2. The proof for N = 2 immediately

follows from the same recursion. The proof for N = 1 is more tedious, as it involves the

asymptotic expressions for  0(:) in Abramowitz and Stegun (1964).

To prove the second statement, it is also convenient to decompose the asymptotic variance

of ��T into two components, namely:

E`(�0) = [G`(�0)�D0`(�0)B�1(�0)D`(�0)]

+f[N`(�0)�D0`(�0)B�1(�0)A(�0)]0C(�0)[N`(�0)�D0`(�0)B�1(�0)A(�0)]g:
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In this set up, it is straightforward to prove that

[N`(�0)�D0`(�0)B�1(�0)A(�0)] = Np(�0)

if condition (19) holds. As for the �rst component, since Gp(�0) is the residual variance in the

regression of `2t(�0; �0) on &t=N�1, while G`(�0)�D0`(�0)B�1(�0)D`(�0) is the residual variance

in the regression of `2t(�0; �0) on s�t(�0; 0), and the Gaussian pseudo-score can be written as

Ws(�0)(&t=N � 1) plus an extra term that is orthogonal to &t, it is clear that

Gp(�0) � G`(�0)�D0`(�0)B�1(�0)D`(�0);

with equality if and only if (&t=N�1) can be written as an exact linear combination of s�t(�0; 0),

as in (20). �

Proposition 11

To obtain the variance of the elliptically symmetric score of � under misspeci�cation, we can

follow exactly the same steps as in the proof of Proposition 10 in Fiorentini and Sentana (2010)

by exploiting that E[ ert(�)j'0] = 0 holds at the pseudo-true parameter values �1 = (#0;�
0
1)

0.

Speci�cally, under standard regularity conditions
p
T

T

XT

t=1
ert(~�T ;�1) =

p
T

T

XT

t=1
ert(�0;�1) +

1

T

XT

t=1

@ert(�0;�1)

@�0

p
T

T
(~�T � �0) + op(1);

where

Osr(�1;'0) = lim
T!1

1

T

XT

t=1
E

�
�@ert(�0;�1)

@�0

����'0� ;
which under reparametrisation (1) reduces to

Osr(�1;'0) =
N

2#2
mOsr(#0;�1;'0);

where

mOsr(�;') = E

��
�[&t(#);�] �

�
&t(#)

N
� 1
��

ert(�)

����'� :
The remaining elements of the usual sandwich formula are

Orr(�1;'0) =MO
rr(#0;�1;'0); MO

rr(�;') = V [ert(�)j'] :

and

Hrr(�1;'0) =MH
rr(#0;�1;'0); MH

rr(�;') = �E
�
@ert(�)

@�0

����'� :
Finally, the same steps used in the proof of Proposition 6 yield the expression for Er(�1;'0).�
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B Orthogonal polynomials

The mth orthogonal polynomial associated to a spherical distribution for "�t is given by

psmt[&t(�);�] =

mX
h=0

ash(�)&
h
t (�);

where &t(�) = "�0t (�)"
�
t (�) and � are the shape parameters. The �rst two non-normalised

polynomials are always p0t[&t(�)] = 1 and

p1t[&t(�)] =
&t(�)

N
� 1;

which do not depend on �. Subsequent polynomials can be obtained by recursively regressing

`mt(�;�) in (15) on pjt[&t(�);�] for j = 0; 1; : : : ;m� 1. Speci�cally,

pmt[&t(�);�] = `mt(�;�)�
m�1X
j=1

covf`mt(�;�); pjt[&t(�);�]g
V fpjt[&t(�);�]g

pjt[&t(�);�]: (B3)

As a result, the polynomials have zero mean and are orthogonal to each other by construction,

although not orthonormal unless we standardise them by their respective standard deviations.

Next, we present the coe¢ cients for the second and third orthogonal polynomials of the

distributions we use in Sections 3, 4 and 5 to illustrate our results.

B.1 Orthogonal polynomials for the standardised Student t distribution

In this case the coe¢ cients of the second order polynomial are

at0(�) =
N (N + 2) (� � 2)3

4 (� � 4) (� � 6) ;

at1(�) = �
(N + 2) (� � 2)
2 (� � 6)

and

at2(�) =
1

4
;

while the third order polynomial coe¢ cients become

at0(�) = �
N (N + 2) (N + 4) (� � 2)2

8 (� � 6) (� � 8) (� � 10) ;

at1(�) =
(N + 2) (N + 4) (� � 2)
8 (� � 8) (� � 10) ;

at2(�) = �
(N + 4) (� � 2)
8 (� � 10) ;

and

at3(�) =
1

24
:
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B.2 Orthogonal polynomials for the standardised Kotz distribution

The coe¢ cients of the second order polynomial are

ak0(�) =
N fN + [(N + 2)�+ 2]g

2 [(N + 2)�+ 2]
;

ak1(�) = �
N + (N + 2)�+ 2

(N + 2)�+ 2
;

and

ak2(�) =
1

2 [(N + 2)�+ 2]
:

In turn, the coe¢ cients of the third order one are

ak0(�) =
N fN + [(N + 2)�+ 2]g fN + 2 [(N + 2)�+ 2]g

6 [(N + 2)�+ 2]2
;

ak1(�) = �
[N + (N + 2)�+ 2] fN + 2 [(N + 2)�+ 2]g

2 [(N + 2)�+ 2]2
;

ak2(�) =
N + 2 [(N + 2)�+ 2]

2 [(N + 2)�+ 2]2
;

and

ak3(�) = �
1

6 [(N + 2)�+ 2]2
:

B.3 Orthogonal polynomials for the standardised DSMN distribution

In this case the coe¢ cients of the second order polynomial are

ads0 (�;{) =
N(N + 2)

8

1

[�(1� {) + {]4
�
2(1� �){4 + (N + 4)(1� �)�{3

�2(N + 2)(1� �)�{2 + (N + 4)(1� �)�{ + 2�2
	
;

ads1 (�;{) = �N + 2

8

1

[�(1� {) + {]3
�
2(1� �)(4 +N�){3

�N(1� �)�{2 �N(1� �)�{ + � [N(1� �) + 4]
	
;

and

ads2 (�;{) =
1

8

1

[�(1� {) + {]2
�
(1� �)(2 +N�){2 � 2N(1� �)�{ + [2 +N(1� �)]�

	
:
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Similarly, the coe¢ cients of the third order polynomial are

ads0 (�;{) = �
N(N + 2)(N + 4)

192

1

[(�(1� {) + {]6

�
�
8(1� �)3{9 + (N + 4)(N + 6)(1� �)2�{8

�4(N + 2)(N + 6)(1� �)2�{7 + 6(N + 4)2(1� �)2�{6

+(N + 6)(1� �)� [(5N + 24)�� 4(N + 4)]{5

�(N + 6)(1� �)� [24�+N(5�� 1)� 8]{4

+6(N + 4)2(1� �)�2{3 � 4(N + 2)(N + 6)(1� �)�2{2

+(N + 4)(N + 6)(1� �)�2{ + 8�3
	
;

ads1 (�;{) =
(N + 2)(N + 4)

192

1

[(�(1� {) + {]5

�
�
(1� �)2 [N(N + 10)�+ 24]{8 � 2N(N + 6)(1� �)2�{7

�2N(N + 8)(1� �)2�{6

+2(1� �)� [4N(N + 7)�N(3N + 14)�+ 48]{5

�(N + 6)(7N + 24)(1� �)�{4

+2(1� �)� [N(3�N +N + 14(�+ 1)) + 48]{3

�2N(N + 8)(1� �)�2{2 � 2N(N + 6)(1� �)�2{

+ [24�N(N + 10)(�� 1)]�2
	
;

ads2 (�;{) = �N + 4

192

1

[(�(1� {) + {]4

�
�
2(1� �)2 [N(N + 8)�+ 12]{7 �N(7N + 38)(1� �)2�{6

+(1� �)� [8(N + 2)(N + 3)�N(7N + 26)�]{5

�2(N + 2)(N + 6)(1� �)�{4 � 2(N + 2)(N + 6)(1� �)�{3

+(1� �)� [N(7�N +N + 26�+ 14) + 48]{2

�N(7N + 38)(1� �)�2{ + 2 [12 +N(N + 8)(1� �)]�2
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and

ads3 (�;{) =
1

192

1

[(�(1� {) + {]3

�
�
(1=�)2 [N(N + 6)�+ 8]{6 � 4N(N + 4)(1� �)2�{5

+(1� �)�
�
6(N + 2)2 �N(5N + 14)�

�
{4

�4(N + 2)(N + 4)(1� �)�{3

+(1� �)� [N(5�N +N + 14�+ 10) + 24]{2

�4N(N + 4)(1� �)�2{ + [8�N(N + 6)(�� 1)]�2
	
:

B.4 Orthogonal polynomials for the standardised 3rd-order PE distribution

The coe¢ cients of the second order polynomial are

ape0 (c2; c3) =
1

4

�
�8c22 + 2N(N + 8)c2 +N (N(N + 2)� 12c3)

�
;

ape1 (c2; c3) = �
1

2
[N(N + 2) + (N + 6)c2 � 3c3] ;

and

ape2 (c2; c3) =
1

4
(N + 2c2) :

In turn, the coe¢ cients of the third order one are

ape0 (c2; c3) = �
1

24

�
(N + 2)2(N + 4)N3 � 4

�
N3 + 32N + 192

�
c32

+6c22 [N(N + 4)(N(N + 2) + 48) + 4((N � 4)N + 48)c3]

�12c3
�
(N + 2)(7N + 48)N2 + 3(N(N + 6) + 24)c3N � 72c23

�
�6c2N2(N + 2)(N + 4)(N + 12)

+24c2c3 [N(N(N + 14) + 120) + 6(N � 12)c3]g ;

ape1 (c2; c3) =
1

8

�
N2(N + 4)(N + 2)2 � 12 [3(N(N + 10) + 32) + 4c2] c

2
3

+2(N + 4)c2 [N(N + 2)(3N + 32) + c2 (N(3N + 14)� 2Nc2 + 96)]

�8 [3N(N + 2)(3N + 20) + 2c2 (N(N + 14)�Nc2 + 96)] c3g ;

ape2 (c2; c3) =
1

8

�
(N + 2)(N + 4)N2 � 36(N + 8)c23

+2(N + 4)c2 [N(3N + 26) + (3N � 2c2 + 8) c2]

�4 [15N(N + 6) + 2 (N � c2 + 12) c2] c3g ;
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and

ape3 (c2; c3) =
1

24

�
N2(N + 2)� 4c32 + 6Nc22 + 6N(N + 6)c2 � 12c3 (4N + 3c3)

�
:

C Auxiliary results

C.1 Positivity of Laguerre expansions

To identify the region in the parameter space for which PJ(&) = 1 +
PJ
j=2 cj � pj(&;N) � 0

it is convenient to reparametrise PJ(&) as �PJ(c2; c3; t), with t =(&; c4; :::; cJ). For each value of

t 2RJ�2, the equation �PJ(c2; c3; t) = 0 de�nes a straight line in the t-hyperplane. To determine

the set of ��s as a function of t such that �PJ(c2; c3; t) remains zero for small variations of t,

we should also impose @�PJ(c2; c3; t)=@t = 0. Finally, once this bound is found, we need to

determine the subregion in which PJ(&) � 0 for & � 0.

C.1.1 Second order expansion

In this simple case the positivity region corresponds to those values of c2 for which the

polynomial 1 + c2 � p2(t;N) is positive. Since the vertex of this quadratic function occurs at

t = N + 2 > 0, positivity requires that its roots are either complex or double, which holds for

0 � c2 � N .

C.1.2 Third order expansion

For a given &, the 3rd order polynomial frontier that guarantees positivity must satisfy the

following two equations in two unknowns�
1 + c2 � p2(t;N) + c3 � p3(t;N) = 0

c2 � @p2(t;N)=@t� c3 � @p3(t;N)=@t = 0

whose solution is

c2(t) =
8 + 6N +N2 � 8t� 2Nt+ t2

8A(N; t)
and c3(t) =

N + 2� t
2A(N; t)

with

A(N; t) =
N3t+Nt3 � 5N2

24
+
t3 �N3

12
� N4 + t4

96

+
Nt� 2N

3
+
N2t�Nt2 � t2

4
� N2t2

16
:

The solid (dashed) black line in Figure 1 represents the frontier de�ned by positive (negative)

values of &. Notice that if we imposed the above conditions for all & 2 R, then c3 = 0 and
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0 � c2 � N . Such a frontier, however, is overly restrictive because it does not take into account

the non-negativity of &. In this sense, the red line represents the tangent of P3(&) at & = 0

while the blue line is the tangent of P3(&) when & ! +1. The grey area, therefore, de�nes the

admissible set in the (c2; c3) space. Focusing on & 2 R+ only allows for a larger range of (c2; c3)

with c3 < 0, which is given by the di¤erence between the dashed black line and the blue one.

C.2 Higher order moments

The higher order moment parameter of spherical random variables de�ned in (3) for the

four distributions that we use to illustrate our results are:

(a) Student t distribution with � = 1=� degrees of freedom:

1 + � tm(�) = (1� 2�)m�1
mY
j=2

1

(1� 2j�) when � < (2m)�1:

(b) Kotz distribution with excess kurtosis �:

1 + �km(�;N) =

�
(N + 2)�+ 2

2

�m mY
j=1

N=[(N + 2)�+ 2] + j � 1
N=2 + j � 1 :

(c) Discrete scale mixture of normals distribution with mixing probability � and variance

ratio {:

1 + �dsm (�;{) =
�+ (1� �){m
[�+ (1� �){]m :

(d) 3rd-order polynomial expansion distribution with parameters c2 and c3:

1 + �pem(�;{) = 1 +
2m(m� 1)
N(N + 2)

c2 �
4m [2 +m(m� 3)]
N(N + 2)(N + 4)

c3:

Derivation of the results:

(a) If �t is a chi-square random variable with N degrees of freedom, and �t is a Gamma

variate with mean � and variance 2�, with �t and �t mutually independent, then the uncentred

moments of integer order r of (�=N)� (�t=�t) are given by

E

��
�t=N

�t=�

�r�
=
� �
N

�r r � 1 +N=2
�1 + �=2

r � 2 +N=2
�2 + �=2 � � � � � 1 +N=2

�(r � 1) + �=2
N=2

�r + �=2

(Mood, Graybill and Boes, 1974). Given that &t = (� � 2)�t=�t, it is straightforward to see that

E

��
(� � 2)�t

�t

�m�
=
N

2

�
2(� � 2)

�

�m�1 mY
j=2

(N=2 + j � 1)�
� � 2j

from where the result follows directly.
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(b) We can exploit the fact that if "�t is distributed as a standardised Kotz, then &t is a gamma

random variable with mean N and variance N [(N + 2)�+ 2], whose higher order moments can

be obtained from Lemma 1 in Amengual and Sentana (2011) with b = 0.

(c) When "�t is distributed as a DSMN, &t is a two-component scale mixture of �
20
Ns, so that

conditioning on the mixing variate s,

E[&mt js = 1] =
�

1

�+ (1� �){

�m
E(�mt ) and E[&

m
t js = 0] =

�
{

�+ (1� �){

�m
E(�mt )

where �t is a �
2
N variate. Then, the required expression follows directly from the law of iterated

expectations.

(d) Since E[&mt pN=2�1;j(&t)j0] = 0 form < j, we only need to compute E[&mt pN=2�1;j(&t)j0] for

m � j, which can be written in terms of the higher order moments of the Gaussian distribution.

For the 2nd-order Laguerre polynomial we have

E[&mt pN=2�1;2(&t)j0] =
1

2
E[&mt j0]�

1

N
E[&m+1t j0] + 1

2N (N + 2)
E[&m+2t j0]

=

�
1

2
� 2(N=2 +m+ 1)

N
+
4(N=2 +m+ 1)(N=2 +m+ 2)

2N (N + 2)

�
E[&mt j0]

=
2m(m� 1)
N(N + 2)

E[&mt j0]:

The same procedure applied to the 3rd-order Laguerre polynomial yields the required result.

C.3 Moment generating functions

Not surprisingly, the moment generating function of a spherical random variable "�t depends

only on &. Although it cannot be de�ned for the Student t distribution, it takes the following

forms for the remaining distributions that we consider:

(a) Kotz distribution with excess kurtosis �:

�k(tj�) � E[et& j�] = f1� [(N + 2)�+ 2] tg�N=[(N+2)�+2] :

(b) Discrete scale mixture of normals distribution with mixing probability � and variance

ratio {:

�ds(tj�;{) � E[et&t j(�;{)0] = �

�
1� 2t

�+ (1� �){

��N=2
+ (1� �)

�
1� 2{t

�+ (1� �){

��N=2
:

(c) 3rd-order polynomial expansion with parameters c2 and c3:

�J=3pe (tjc2; c3) � E[et&t j(c2; c3)0] = (1� 2t)�N=2
�
1 +

2t2

(1� 2t)2 c2 �
4t3

(1� 2t)3 c3
�
:
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Derivation of the results:

(a) The result follows directly from the moment generating function of the Gamma distrib-

ution.

(b) Since &t is a two-component scale mixture of �20Ns, we can compute E[e
t&t j�;{; s] for

s = 1 and s = 0 by exploiting the fact that the relevant conditional distribution are Gamma

with shape parameter N=2 and scale parameters

2

�+ (1� �){ and
2{

�+ (1� �){

respectively. Finally, the law of iterated expectation yields the desired result.

(c) The moment generating function of the polynomial expansion distribution can be easily

obtained by applying Lemma 1 in Amengual and Sentana (2011). For the 2nd-order Laguerre

polynomial we have

E[et&tpN=2�1;2(&t)j0] =
1

2
E[et&t j0]� 1

N
E[&te

t&t j0] + 1

2N (N + 2)
E[&2t e

t&t j0]

=
1

2

�
1

1� 2t

�N=2
�
�

1

1� 2t

�N=2+1
+
1

2

�
1

1� 2t

�N=2+2
= (1� 2t)�N=2

�
(1� 2t)2 � 2(1� 2t) + 1

2(1� 2t)2

�
= (1� 2t)�N=2 2t2

(1� 2t)2 :

The same procedure applied to the 3rd-order Laguerre polynomial yields the required result.

C.4 Marginal and conditional distributions required for VaR and CoVaR
calculations

Theorem 2.6 in Fang, Kotz and Ng (1990) characterises the marginal distribution of a

partition of "�t into n components. In particular, if we split "
�
t into its �rst n elements, "

�
1t, and

the remaining N � n ones, "�2t say, this theorem implies that�
"�1t
"�2t

�
=

�
etdtu1t

et(1� dt)u2t

�
;

where et is the generating variate, dt � Beta[n=2; (N�n)=2] and u1t and u2t are two independent

vectors which are uniformly distributed on the unit sphere surface in Rn and RN�n, respectively.
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C.4.1 Marginal densities and CDFs of z1t = ["�1t(�)]
2

In the particular case of univariate marginals, it is easy to obtain the marginal probability

density function of "�2it (see Mood, Graybill, and Boes, 1974) by computing

hs1(z;�) =

p
��(N=2� 1=2)
�(N=2)

Z 1

0
hs
�
z

y
;�; N

�
� (1� y)

N
2
� 3
2

p
y

dy:

From here, we can easily obtain fs1 (";�) using the change of variable formula as h
s
1("

2;�) � jzj.

Student t For the N -variate standardised Student t distribution with � = 1=� degrees of

freedom, the univariate marginal probability density function of z = "2 is

ht1(z; �) =
�[1=2(1 + ��1)]p

��[(2�)�1]

1p
z(z + ��1 � 2)

�
1� 2�

1� 2� + �z

� 1
2�

;

while its cumulative distribution function is

Ht
1(z; �) =

�[1=2(1 + ��1)]p
��[(2�)�1]

� i �Beta
�
� �z

1� 2� ;
1

2
;
� � 1
2�

�
;

where i =
p
�1 and Beta(z; a; b) is the incomplete beta function, de�ned by

Beta (z; a; b) =

Z z

0
ua�1(1� u)b�1du:

Discrete scale mixture of normals For the N -variate standardised DSMN distribution with

mixing probability � and variance ratio {:

hds1 (z; �;{) =
1

p
z
p
2�

(
�

r
1

$
exp

�
� 1

2$
z

�
+

�
1� �
{

�r
1

${
exp

�
� 1

2${
z

�)
;

where $ = [�+ (1� �){]�1, while its cumulative distribution function is

Hds
1 (z; �;{) = (1� �) erf

� p
zp

2${

�
+ � erf

� p
zp
2$

�
;

where erf (x) is the standard �error function�de�ned by erf (x) = 2p
�

R x
0 exp(�t

2)dt:

3rd-order polynomial expansion For the N -variate standardised 3rd-order PE with para-

meters c2 and c3

hpe1 (z; c2; c3) =

�
1 +

[z(z � 6) + 3]
2N(N + 2)

c2 �
[z(45 + z(z � 15))� 15]
2N(N + 2)(N + 4)

c3

�
1

p
z
p
2�
exp

�
�z
2

�
;

while its cumulative distribution function is

Hpe
1 (z; c2; c3) =

[15 + (z � 10)z] c3 � (N + 4)(z � 3)c2
N(N + 2)(N + 4)

p
2�

p
z exp

�
�z
2

�
+ erf

�p
zp
2

�
:
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C.4.2 Cumulative density functions of conditionals ("�1t(�)j"�2t(�))

Using again Theorem 2.6 in Fang, Kotz and Ng (1990) we can obtain the marginal bivariate

distribution fs1;2("1; "2;�), which together with f
s
1 (";�) = hs1("

2;�) � jzj, allow us to obtain the

conditional pdfs. In this way,

Student t

F t1j2("1; "2; �) =
1

2

�
1 +

�[1 + (2�)�1]p
��[(1 + �)(2�)�1]

Beta

�
� �"21
1 + ("22 � 2)�

;
1

2
;� 1

2�

��
:

Discrete scale mixture of normals

F ds1j2("1; "2; �;{) =

(
(1� �) exp

�
2�+ {
2

"22

�r
1

${
+ � exp

�
�+ { + �{2

2{
"22

�r
1

$

)�1
1

2
p
${

(
(1� �) exp

�
2�+ {
2

"22

�"
1 + erf

 r
1

2${
"1

!#

+ � exp

�
�+ { + �{2

2{
"22

�p
{

"
1 + erf

 r
1

2$
"1

!#)
;

where $ = [�+ (1� �){]�1:

3rd-order polynomial expansion

F pe1j2("1; "2; c2; c3; N) =
1

2
+

1

2
p
�

�
2 +

"42 � 6"22 + 3
N(N + 2)

c2 �
"62 � 15"42 + 45"22 � 15
N(N + 2)(N + 4)

c3

��1
� exp

�
�"

2
1

2

��
exp

�
�"

2
1

2

�p
� erf

�
"1p
2

�
�
�
2 +

"42 � 6"22 + 3
N(N + 2)

c2 �
"66 � 15"42 + 45"22 � 15
N(N + 2)(N + 4)

c3

�
+
p
2"1

 �
"41 � 13"21 + 3"42 + 3

�
"21 � 9

�
"22 + 33

�
N(N + 2)(N + 4)

c3 �
"21 + 2"

2
2 � 5

N(N + 2)
c2

!)
:

C.5 Standard errors for parametric VaR and CoVaR

Given that q1 (�;�) satis�es

� = F [q1 (�;�) ;�] =

Z q1(�;�)

0
f1 ("

�
1t;�) d"

�
1t;

if we di¤erentiate this expression with respect to � we obtain

0 = f1 [q1 (�;�) ;�]
@q1 (�;�)

@�
+

Z q1(�;�)

0

@f1 ("
�
1t;�)

@�
d"�1t;
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whence
@q1 (�;�)

@�
= � 1

f1 [q1 (�;�) ;�]

Z q1(�;�)

0

@f1 ("
�
1t;�)

@�
d"�1t:

To relate this expression to the asymptotic variances of the non-parametric quantile estimators,

it is convenient to writeZ q1(�;�)

0

@f1 ("
�
1t;�)

@�
d"�1t =

Z q1(�;�)

0

@ ln f1 ("
�
1t;�)

@�
f1 ("

�
1t;�) d"

�
1t

= Pr ["�1t � q1 (�;�)]E [s�t(�) j"�1t � q1 (�;�) ] ;

where, importantly, the distribution used to compute the foregoing expectation is the same as

the distribution used for estimation purposes. Hence, we will have that

V [q1(�; �̂T )] =
�2

f21 [q1 (�;�) ;�0]
E [s�t(�) j"�1t � q1 (�;�) ;�0 ]V [�̂ j�0 ]E

�
s0�t(�) j"�1t � q1 (�;�) ;�0

�
:

Further, given that

0 = E [s�t(�) j�0 ] = �E [s�t(�) j"�1t � q1 (�;�) ;�0 ] + (1� �)E
�
s0�t(�) j"�1t � q1 (�;�) ;�0

�
;

we can �nally write

V [q1(�; �̂T )] =
�(1� �)

f2 [q1 (�;�) ;�0]
E [s�t(�) j"�1t � q1 (�;�) ;�0 ]V [�̂ j�0 ]E

�
s0�t(�) j"�1t � q1 (�;�) ;�0

�
:

Let f1;2 denote the joint bivariate distribution of "�1t and "
�
2t. By de�nition, we know that

q2j1 (�2; �1;�) satis�es

�2j1 =

Z q1(�1;�)

�1
f1("

�
1t;�)

 Z q2j1(�2;�1;�)

�1
f2j1("

�
2t; "

�
1t;�)d"

�
2t

!
d"�1t

=

Z q1(�1;�)

�1

Z q2j1(�2;�1;�)

�1
f1;2("

�
1t; "

�
2t;�)d"

�
2td"

�
1t

=

Z 0

�1

Z 0

�1
f1;2("

�
1t + q1(�1;�); "

�
2t + q2j1 (�2; �1;�) ;�)d"

�
2td"

�
1t;

where we have achieved constant limits of integration in the last expression by means of the

change of variable

u("�1t; "
�
2t) = "�1t + q1(�1;�), and v("

�
1t; "

�
2t) = "�2t + q2j1 (�2; �1;�) ;

whose Jacobian is 1. Di¤erentiating the previous expression with respect to � yields

0 =

Z 0

�1

Z 0

�1

f1;2("
�
1t + q1(�1;�); "

�
2t + q2j1 (�2; �1;�) ;�)

@�
d"�2td"

�
1t

+
@q1(�1;�)

@�

Z 0

�1

Z 0

�1

@f1;2("
�
1t + q1(�1;�); "

�
2t + q2j1 (�2; �1;�) ;�)

@"�1t
d"�2td"

�
1t

+
@q2j1 (�2; �1;�)

@�

Z 0

�1

Z 0

�1

@f1;2("
�
1t + q1(�1;�); "

�
2t + q2j1 (�2; �1;�) ;�)

@"�2t
d"�2td"

�
1t:
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Finally, undoing the change of variable we obtain

@q2j1(�2; �1;�)

@�
= �

 Z q1(�1;�)

�1

Z q2j1(�2;�1;�)

�1

@f1;2("
�
1t; "

�
2t;�)

@"�2t
d"�2td"

�
1t

!�1

�
(Z q1(�1;�)

�1

Z q2j1(�2;�1;�)

�1

@f1;2("
�
1t; "

�
2t;�)

@"�1t
d"�2td"

�
1t

� 1

f1 [q1(�1;�);�]

Z q1(�1;�)

�1

@f1("
�
1t;�)

@�
d"�1t

�
Z q1(�1;�)

�1

Z q2j1(�2;�1;�)

�1

f1;2("
�
1t; "

�
2t;�)

@�
d"�2td"

�
1t

)
:

D Computational details

D.1 Scores and �rst order conditions

The damping factor (7) reduces to

�t[&t(�); �] = (N� + 1)=[1� 2� + �&t(�)]

for the Student t;

�k[&t(�); �] = [N(N + 2)�&�1t (�) + 2]=[(N + 2)�+ 2]

for the Kotz,

�ds[&t(�); �;{] = [�+ (1� �){] �
�+ (1� �){�(N=2+1) exp

h
� [�+(1��){](1�{)

2{ &t(�)
i

�+ (1� �){�N=2 exp
h
� [�+(1��){](1�{)

2{ &t(�)
i

for the DSMN, and

�pe[&t(�); c2; c3] = 1�
PJ
j=1 cjpN=2;j [&t(�)]

1 +
PJ
j=1 cjpN=2�1;j [&t(�)]

for the PE.

As for ert(�;�), Fiorentini Sentana and Calzolari (2003) show that in the multivariate Stu-

dent t case it becomes

st�t(�; �) =
N

2�(1� 2�) �
1

2�2

�
 

�
N� + 1

2�

�
�  

�
1

2�

��
� N� + 1

2�(1� 2�)
&t(�)

1� 2� + �&t(�)
+

1

2�2
ln

�
1 +

�

1� 2� &t(�)
�
:

In addition, Amengual and Sentana (2011) show that

sk�(�; �) =
N(N + 2)

b2(�)

��
&t(�)

N
� 1
�
�
�
ln &t(�)�  

�
N

b(�)

�
� ln b(�)

��
;
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in the case of the Kotz. For the multivariate discrete scale mixture of normals, we can use (4)

to write the score with respect to the mixing parameter � as

sds� (�; �;{) =
N

2

1� {
[�+ {(1� �)] +

@g[&t(�);�]

@�
;

where

@g[&t(�);�]

@�
=

1

exp (g[&t(�);�])

�
exp

�
� 1

2$
&t(�)

�
� {�N=2 exp

�
� 1

2${
&t(�)

��
� 1

exp (g[&t(�);�])

1� {
[�+ {(1� �)]2

1

2$2
&t(�)

�� exp
�
� 1

2$
&t(�)

�
+ (1� �){�N=2�1 exp

�
� 1

2${
&t(�)

�
;

and the score with respect to the relative scale parameter { as

sds{ (�; �;{) =
N

2

1� �
[�+ {(1� �)] +

@g[&t(�);�]

@{
;

where

@g[&t(�);�]

@{
=

1

exp (g[&t(�);�])

�
�N
2
(1� �){�N=2�1 exp

�
� 1

2${
&t(�)

�
�&t(�)

1� �
2

� exp

�
� 1

2$
&t(�)

�
+(1� �)�&t(�)

2{2
{�N=2 exp

�
� 1

2${
&t(�)

��
:

Finally, the scores of the 3rd order PE distribution with respect to c2 and c3 will be

spec2t(�;c2; c3) =
pN=2;2[&t(~�T )]

1 +
PJ
j=1 cjpN=2�1;j [&t(

~�T )]

and

spec3t(
~�T ;c2; c3) =

pN=2;3[&t(~�T )]

1 +
PJ
j=1 cjpN=2�1;j [&t(

~�T )]
:

We can then use ~�T to obtain a sequential ML estimator of � as ~�T = argmax� LT (~�T ;�),

possibly subject to some inequality constraints on �. For example, in the Student t case ~�T will

be characterised by the �rst-order Kuhn-Tucker (KT) conditions

�s�T (~�T ; ~�T ) + ~�T = 0; ~�T � 0; ~�T � 0; ~�T � ~�T = 0;

where �s�T (�; �) is the sample mean of s�t(�; �), and ~�T the KT multiplier associated to the

constraint � � 0.
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Fiorentini, Sentana and Calzolari (2003) show that in the multivariate Student t case s�t(�; 0)

is proportional to the second generalised Laguerre polynomial. Similarly, Amengual and Sentana

(2011) show that this is also the case for the score of the scale parameter of a DSMN. Therefore,

st�t(�; 0) = sds{t(�; 0) = pgN=2�1;2[&t(�)]:

Amengual and Sentana (2011) also provide the corresponding expressions for the �-component

of eDSMN
rt (�; 0) in the case of �outliers�, which is given by

lim
�!0+

sds�t(�;�;{) = {N=2 exp
�
1� {
2

&t(�)

�
� 1� 1� {

2{
(&t(�)�N):

In contrast, in the case of �inliers�it will be given by

lim
�!1�

sds�t(�;�;{) = 1� {�N=2 exp
�
{ � 1
2{

&t(�)

�
� 1� {

2
(&t(�)�N):

As for the polynomial expansion, we saw in Appendix C.1 that the shape parameters are

also inequality constrained. Not surprisingly, Amengual and Sentana (2011) also show that

epert (�;0) = fp
g
N=2�1;2[&t(�)]; p

g
N=2�1;3[&t(�)]g

0.

In contrast, the shape parameter � in the Kotz distribution is unrestricted, and so the �rst

order condition is standard.

D.2 Numerical issues

D.2.1 Random number generation

We sample Student t and DSMN exploiting the decomposition presented in section 2.1.

Speci�cally, we simulate standardised versions of all these distributions by appropriately mixing

a N -dimensional spherical normal vector with a univariate gamma random variable, and, in the

case of DSMN, a draw from a scalar uniform, which we obtain from the NAG Fortran 77 Mark

19 library routines G05DDF, G05FFF and G05CAF, respectively (see Numerical Algorithm

Group (2001) for details). To draw innovations from a PE, we use a modi�cation of the inversion

method. Speci�cally, we �rst compute the square Euclidean norm of the N -dimensional spherical

normal vector, � say, which is distributed as a �2 with N degrees of freedom. We then use the

G05NCF routine to �nd the solution to the equation F (&; c2; c3; N) = F�2N
(�), where

F (&; c2; c3; N) = 1� �(N=2; &=2)
�(N=2)

� c2 �
&N=2e�&=2

2N=2+2�(N=2 + 2)
(& � 2�N)

+c3 �
&N=2e�&=2

2N=2+3�(N=2 + 3)

�
&2 � 2d(N + 4) + (N + 2)(N + 4)

�
;
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with & = � as starting value. In this way, we make sure that the three distributions that we

simulate share the random draws from the underlying N � 1 uniform vector, which minimises

Monte Carlo variability.

D.2.2 Estimation strategy

Our estimation procedure employs the following numerical strategy. First, we estimate

the conditional mean and variance parameters � under normality with a scoring algorithm that

combines the E04LBF routine with the analytical expressions for the score and the A(�0) matrix

in Proposition 2. Then, we compute consistent estimators of � using the expressions in Appendix

D.2.3, which we use as initial values for the optimisation procedure that obtains the sequential

ML estimator ~�T with the E04JYF routine. This estimator is then used as initial value for

the e¢ cient sequential MM estimator, which is obtained with the C05NCF routine. Since our

model admits reparametrisation (1), we use expression (17) with mss and msr computed either

analytically, or by Monte Carlo integration or quadrature. Finally, we use again ~�T as initial

value for the sequential GMM estimators based on orthogonal polynomials using the E04JYF

routine.

D.2.3 Initial consistent estimators of shape parameters

Student t The initial value of � is the moment estimator proposed by Fiorentini, Sentana and

Calzolari (2003):

�init = max

�
�̂ t2

(4�̂ t2 + 2)
; 0

�
where �̂ t2 =

1
T

PT
t=1 &

2
t (~�T )

(N + 2)N
� 1:

Discrete scale mixture of normals The initial values for � and { are obtained by running

a standard EM algorithm that does not impose E
h
&t(~�T )

i
= N .

3rd-order polynomial expansion The initial values for c2 and c3 are moment estimators

obtained as

c2:init =

PT
t=1 &

2
t (~�T )

4T
� N(N + 2)

4

and

c3:init =
N + 4

2
c2:init +

N(N + 2)(N + 4)

24
�
PT
t=1 &

3
t (~�T )

24T
:
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Table 1: Finite sample properties of sequential estimators of the shape parameters

ESMM SML SMM
True value Mean (Std.Dev) Mean (Std.Dev) Mean (Std.Dev)

Student t
� 0:1 0.099 (0.007) 0.099 (0.007) 0.098 (0.011)

DSMN
� 0:05 0.051 (0.009) 0.051 (0.010) 0.055 (0.014)
{ 0:246 0.251 (0.023) 0.251 (0.023) 0.256 (0.030)

PE
c2 2:916 2.895 (0.128) 2.895 (0.128) 2.887 (0.171)
c3 �1 -0.984 (0.186) -0.984 (0.185) -0.967 (0.399)

Notes: 1,600 replications, T = 2; 500, N = 5. ESMM and SML refer to the e¢ cient sequential
MM and sequential ML estimators, respectively. The orthogonal polynomial MM estimator is
labeled SMM. For Student t innovations with � degrees of freedom, � = 1=�. For DSMN
innovations, � denotes the mixing probability and { is the variance ratio of the two components;
In turn, c2 and c3 denote the coe¢ cients associated to the 2nd and 3rd Laguerre polynomials
with parameter N=2� 1 in the case of PE innovations. See Section 5.1 and Appendix D.2 for a
detailed description of the Monte Carlo study.



Figure 1: Positivity region of a 3rd-order PE
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Notes: The solid (dashed) black line represents the frontier defined by positive (neg-
ative) values of ς. Notice that if we imposed the above conditions for all ς ∈ R, then
c3 = 0 and 0 < c2 < N . Such a frontier, however, is overly restrictive because it does
not take into account the non-negativity of ς. In this sense, the red line represents the
tangent of P3(ς) at ς = 0 while the blue line is the tangent of P3(ς) when ς → +∞. The
grey area, therefore, defines the admissible set in the (c2, c3) space. Focusing on ς ∈ R+
only allows for a larger range of (c2, c3) with c3 < 0, which is given by the difference
between the dashed black line and the blue one.



Figure 2a: Standardised bivariate normal Figure 2b: Contours of a standardised
density bivariate normal density
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Figure 2c: Standardised bivariate Student t Figure 2d: Contours of a standardised
density with 8 degrees of freedom bivariate Student t density with 8 degrees
(η = 0.125) of freedom (η = 0.125)
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Figure 2e: Standardised bivariate Kotz Figure 2f: Contours of a standardised
density with multivariate excess kurtosis bivariate Kotz density with multivariate
κ = −0.15 excess kurtosis κ = −0.15
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Figure 2g: Standardised bivariate DSMN Figure 2h: Contours of a standardised
density with multivariate excess kurtosis bivariate DSMN density with multivariate
κ = 0.125 (α = 0.5) excess kurtosis κ = 0.125 (α = 0.5)

−3 −2 −1 0 1 2 3

−2

0

2

0

0.05

0.1

0.15

0.2

ε
2
*

ε
1
*

0.
01

0.01
0.01

0.01

0.
01

0.01

0.01

0.01

0.
01

0.05

0.05

0.05

0.1

0.1

0.15
0.15

ε
1
*

ε 2*

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Figure 2i: Standardised bivariate 3rd-order Figure 2j: Contours of a standardised
PE with parameters c2 = 0 and c3 = −0.2 3rd-order PE with parameters c2 = 0 and

c3 = −0.2
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Figure 3: Exceedance correlation
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Notes: The exceedance correlation between two variables ε∗1 and ε∗2 is defined as
corr(ε∗1, ε

∗
2|ε∗1 > , ε∗2 > ) for positive and corr(ε∗1, ε

∗
2|ε∗1 > , ε∗2 > ) for negative

(see Longin and Solnik, 2001). Horizontal axis in standard deviation units. Because all
the distributions we consider are elliptical, we only report results for < 0. Student t
distribution with 10 degrees of freedom, Kotz distribution with the same kurtosis, DSMN
with parameters α = 0.05 and the same kurtosis and 3rd-order PE with the same kurtosis
and c3 = −1.



Figure 4: Asymptotic efficiency of Student t estimators

Asymptotic standard errors of η estimators
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Notes: N = 5. For Student t innovations with ν degrees of freedom, η = 1/ν.
Expressions for the asymptotic variances of the different estimators are given in Section
3.



Figure 5a: Asymptotic efficiency of DSMN estimators (κ = 0.5)

Asymptotic standard errors of α estimators
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Notes: N = 5 and κ = 0.5. For DSMN innovations, α denotes the mixing probability
and κ is the variance ratio of the two components. Expressions for the asymptotic
variances of the different estimators are given in Section 3.



Figure 5b: Asymptotic efficiency of DSMN estimators (κ = 0.5)
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Notes: N = 5 and κ = 0.5. For DSMN innovations, α denotes the mixing probability
and κ is the variance ratio of the two components. Expressions for the asymptotic
variances of the different estimators are given in Section 3.



Figure 5c: Asymptotic efficiency of DSMN estimators (α = 0.05)
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Notes: N = 5 and α = 0.05. For DSMN innovations, α denotes the mixing probability
and κ is the variance ratio of the two components. Expressions for the asymptotic
variances of the different estimators are given in Section 3.



Figure 5d: Asymptotic efficiency of DSMN estimators (α = 0.05)
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Notes: N = 5 and α = 0.05. For DSMN innovations, α denotes the mixing probability
and κ is the variance ratio of the two components. Expressions for the asymptotic
variances of the different estimators are given in Section 3.



Figure 6a: Asymptotic efficiency of PE estimators (c2 = 0)

Asymptotic standard errors of c2 estimators
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Notes: N = 5 and c2 = 0. For PE innovations, c2 and c3 denote the coefficients
associated to the 2nd and 3rd Laguerre polynomials with parameter N/2−1, respectively.
Expressions for the asymptotic variances of the different estimators are given in Section
3.



Figure 6b: Asymptotic efficiency of PE estimators (c2 = 0)

Asymptotic standard errors of c3 estimators
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Notes: N = 5 and c2 = 0. For PE innovations, c2 and c3 denote the coefficients
associated to the 2nd and 3rd Laguerre polynomials with parameter N/2−1, respectively.
Expressions for the asymptotic variances of the different estimators are given in Section
3.



Figure 6c: Asymptotic efficiency of PE estimators (c3 = 0)
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Notes: N = 5 and c3 = 0. For PE innovations, c2 and c3 denote the coefficients
associated to the 2nd and 3rd Laguerre polynomials with parameter N/2−1, respectively.
Expressions for the asymptotic variances of the different estimators are given in Section
3.



Figure 6d: Asymptotic efficiency of PE estimators (c3 = 0)
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Notes: N = 5 and c3 = 0. For PE innovations, c2 and c3 denote the coefficients
associated to the 2nd and 3rd Laguerre polynomials with parameter N/2−1, respectively.
Expressions for the asymptotic variances of the different estimators are given in Section
3.



Figure 7a: VaR, CoVaR and their 95% confidence intervals

99% VaR and CoVaR, Student t innovations
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Notes: For Student t innovations with ν degrees of freedom, η = 1/ν. Dotted lines
represent the 95% confidence intervals based on the asymptotic variance of the sequential
ML estimator for a hypothetical sample size of T = 1, 000 and N = 5. The horizontal
line represents the Gaussian VaR and CoVaR, which have zero standard errors.



Figure 7b: VaR, CoVaR and their 95% confidence intervals

99% VaR and CoVaR, DSMN innovations
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Notes: κ = 0.25. For DSMN innovations, α denotes the mixing probability and
κ is the variance ratio of the two components. Dotted lines represent the 95% confi-
dence intervals based on the asymptotic variance of the sequential ML estimator for a
hypothetical sample size of T = 1, 000 and N = 5. The horizontal line represents the
Gaussian VaR and CoVaR, which have zero standard errors.



Figure 7c: VaR, CoVaR and their 95% confidence intervals

99% VaR and CoVaR, PE innovations

0 0.5 1 1.5 2 2.5 3 3.5 4
2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

c
2

 

 

Gaussian VaR & CoVaR
PE VaR
PE CoVaR

95% VaR and CoVaR, PE innovations

0 0.5 1 1.5 2 2.5 3 3.5 4
1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

c
2

Notes: c3 = −c2/3. For PE innovations, c2 and c3 denote the coefficients associated
to the 2nd and 3rd Laguerre polynomials with parameter N/2− 1. Dotted lines represent
the 95% confidence intervals based on the asymptotic variance of the sequential ML
estimator for a hypothetical sample size of T = 1, 000 and N = 5. The horizontal line
represents the Gaussian VaR and CoVaR, which have zero standard errors.



Figure 8a: 99% VaR estimators, Student t innovations
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Notes: For Student t innovations with ν degrees of freedom, η = 1/ν. Confidence
intervals are computed using robust standard errors for a hypothetical sample size of
T = 1, 000 andN = 5. SML refers to sequential ML, NP refers to the fully nonparametric
procedure based on the λth empirical quantile of the standardised return distribution,
while SNP denotes the nonparametric procedure that imposes symmetry of the return
distribution (see Section 4.3 for details). The blue solid line is the true VaR.



Figure 8b: 99% VaR estimators, DSMN innovations

True and pseudo-true values of VaR
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Notes: κ = 0.25. For DSMN innovations, α denotes the mixing probability and κ
is the variance ratio of the two components. Confidence intervals are computed using
robust standard errors for a hypothetical sample size of T = 1, 000 and N = 5. SML
refers to sequential ML, NP refers to the fully nonparametric procedure based on the
λth empirical quantile of the standardised return distribution, while SNP denotes the
nonparametric procedure that imposes symmetry of the return distribution (see Section
4.3 for details). The red solid line is the true VaR.



Figure 8c: 99% VaR estimators, PE innovations
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Notes: c3 = −c2/3. For PE innovations, c2 and c3 denote the coefficients associated to
the 2nd and 3rd Laguerre polynomials with parameter N/2− 1. Confidence intervals are
computed using robust standard errors for a hypothetical sample size of T = 1, 000 and
N = 5. SML refers to sequential ML, NP refers to the fully nonparametric procedure
based on the λth empirical quantile of the standardised return distribution, while SNP
denotes the nonparametric procedure that imposes symmetry of the return distribution
(see Section 4.3 for details). The green solid line is the true VaR.



Figure 9a: Monte Carlo distributions of 99% VaR estimators
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Notes: 1,600 replications, T = 2, 500, N = 5. The central boxes describe the 1st and
3rd quartiles of the sampling distributions, and their median. The maximum length of
the whiskers is one interquartile range. ML (PML) means (pseudo) maximum likelihood
estimator, NP nonparametric estimator. Vertical lines represent the true values. See
Section 5.1 and Appendix D.2 for a detailed description of the Monte Carlo study.



Figure 9b: Monte Carlo distributions of 95% CoVaR estimators
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Notes: 1,600 replications, T = 2, 500, N = 5. The central boxes describe the 1st and
3rd quartiles of the sampling distributions, and their median. The maximum length of
the whiskers is one interquartile range. ML (PML) means (pseudo) maximum likelihood
estimator, NP nonparametric estimator. Vertical lines represent the true values. See
Section 5.1 and Appendix D.2 for a detailed description of the Monte Carlo study.
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