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Abstract

DMM is a Fortran program for Bayesian analysis of dynamic mixture models which

produces posterior samples of the unobserved state vector, of the discrete latent variables,

and of model parameters together with the marginal likelihood of the data set. Besides com-

putational efficiency, DMM has several attractive features: the endogenous series can be

univariate or multivariate, stationary or non-stationary, with some possibly missing obser-

vations, and they may be linked to some exogenous variables. We describe the methodology

implemented and we show how to use the program with some examples.
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1 Introduction

DMM is a Fortran program for Bayesian analysis of dynamic mixture models. This framework

includes linear specifications such as the structural time series models (Harvey, 1989), the dy-

namic linear models (West and Harrison, 1997), as well as non-linear specifications with outliers,

structural changes, and parameters changes of random magnitude and timing (see for instance

Giordani, Kohn, and van Dijk, 2007). Such a generality makes dynamic mixture models well

suited to the analysis of a wide range of problems, and a large number of applications can be

found in a variety of disciplines (see Kim and Nelson, 1999, Scott, 2002, and Fruhwirth-Schnatter,

2006).

Dynamic mixture models typically include a continuous unobserved state vector, some dis-

crete latent variables that control discontinuities or change-points, plus the model parameters.

DMM delivers posterior samples of each of these quantities using a Gibbs strategy. Up-to-date

techniques are used to limit the computational burden to O(T) operations, T denoting the sample

size. In short, the state vector is sampled using the simulation smoother developed by Durbin and

Koopman (2002), the discrete latent variables are drawn using a block extension of the Gerlach,

Carter, and Kohn (2000) sampler proposed by Fiorentini, Planas and Rossi (2012), and the pa-

rameters are sampled using the slice sampler devised by Neal (2003). The program also produces

predictive densities as well as the data marginal likelihood which can be used for model dis-

crimination and model averaging. Besides computational efficiency, DMM has several attractive

features: the endogenous series can be univariate or multivariate, stationary or non-stationary,

they can be linked to some exogenous variables, and some observations may be missing. The

program can also generate observations from the model specified by the user. DMM can be

freely downloaded at eemc.jrc.ec.europa.eu/Software-DMM.htm.

To run the program, two inputs files are needed: the first contains the general information

about the model, the prior distributions, and the data in human-readable format; the second

is a dynamic link library (DLL) which returns the matrices of the state space representation

given model parameters. This architecture gives a great flexibility: any parameterization can be

chosen and any specification within the class of conditionally Gaussian models can be analyzed.

In addition, the Fortran low-level language guarantees computational speed, which is a very

important feature when resorting to Markov Chain Monte Carlo (MCMC) techniques. We give

instructions to easily create such a DLL from a Fortran source code using the free GNU Fortran

compiler for Microsoft Windows.

The program description is organized as follows. Section 2 presents the general model. Section

3 reviews the prior assumptions and the MCMC methodology. Section 4 details the input files,

explains how to build the DLL, and describes the program output. Section 5 illustrates the

program capabilities using the Nile riverflow and the US business cycle examples. Some remarks
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are collected in Section 6. Section 7 concludes.

2 Model and assumptions

2.1 State space framework

DMM handles models that admit the general state space representation:

yt = ctzt +Htxt +Gtut

xt = at + Ftxt−1 +Rtut (2.1)

where t = 1, · · · , T, yt is the ny × 1 vector of endogenous variables, zt is the nz × 1 vector

of exogenous series, xt is the nx × 1 state vector, and ut is the nu × 1 vector of shocks. The

possibly time-varying vectors and matrices ct, Ht, Gt, at, Ft, and Rt are determined by the

model parameters θ and by a vector of discrete latent variables St = (S1t, · · · , Sℓt, · · · ) with

associated transition probabilities π = (π1, · · · ,πℓ, · · · ). The following assumptions must be

satisfied:

A1. Shocks are Gaussian: ut
iid∼ N(0, I).

A2. Each variable Sℓt takes nsℓ values following independent Markov processes with transi-

tion probabilities πℓ ij ≡ Pr(Sℓt = i|Sℓt−1 = j), i, j = 1, · · · , nsℓ, that are collected into the

vector πℓ.

A3. The system matrices ct, Ht, Gt, at, Ft, and Rt are known function of the model

parameters θ and of the contemporaneous variable St only.

A4. Given St, the matrices ct, Ht, Gt, at, Ft, and Rt, do not depend on the transition

probabilities π = (π1, · · · ,πℓ, · · · ).

A5. The eigenvalues of the transition matrix Ft are either less than or equal to one in

modulus.

As underlined in A1, DMM focuses on conditionally Gaussian state space models. Assumption

A2 restricts the dynamics of the discrete latent variables to Markov processes. This includes as a

special case independent random variables with Bernoulli or categorical distribution. Assumptions

A3 and A4 are standard hypothesis that help simplifying the MCMC simulations, as will be seen

in Section 3. Finally, Assumption A5 excludes the case of regimes with explosive roots.

Without loss of generality, we impose that two variables Sit and Sjt do not impact the same

matrix, so the maximum number of discrete latent variables ns is equal to six. This is not
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restrictive since any two discrete variables with finite number of states can always be merged

into a new variable defined by the cartesian product Sit × Sjt. Hence the number of values

that each matrix can take is equal to the number of states of the related discrete variable: for

instance if Ft depends on Sjt then Ft ∈ {F1,F2, · · · ,Fnsj}. We shall denote Zt the Cartesian

product of all discrete variables, i.e. Zt = (S1t × · · ·Sℓt × · · · ); for instance if the model includes

two discrete variables S1t and S2t taking values in {1, 2}, then Zt ∈ {1, 2, 3, 4} corresponding to

(S1t, S2t) ∈ {(1, 1), (1, 2), (2, 1), (2, 2)}.

We illustrate how to cast dynamic mixture models into the state space format (2.1) with two

examples.

2.2 Example 1: Nile riverflow

The Nile riverflow series is a popular case study in the statistical literature (Cobb, 1978). The

data are measurements of the annual flow volume at Aswan from 1871 to 1970. Mendelssohn

(2011) fits a local level model with intervention variables that capture a level shift in 1899 and an

additive outlier in 1913. He attributes these irregularities to the building of the Aswan dam and

to a year of exceptionally low rainfalls. Rather than specifying the intervention dates, DMM

performs outlier detection through some discrete latent variables that control the occurrence of

irregularities as in:

yt = µt + et

et = [(S1t − 1)δ1/2 + (2− S1t)]V
1/2
e ϵet

µt = µt−1 + (S2t − 1)V 1/2
µ ϵµt (2.2)

where ϵet and ϵµt are Gaussian errors with unit variance, and S1t and S2t are independent Bernoulli

variables taking values in {1, 2} with probability Pr(Sℓt = 1) = πℓ 1, ℓ = 1, 2. The irregular

component et has variance Ve if S1t = 1 and δVe otherwise. The restriction δ > 1 implies that

S1t = 2 corresponds to periods of shocks with larger variance. The level µt remains constant as

long as S2t = 1 and jumps to a new state when S2t = 2.

Model (2.2) can be put into the state space format (2.1) by setting xt = µt, ut = (ϵet, ϵµt)
′,

Ht = 1, Gt = ([(S1t − 1)δ1/2 + (2−S1t)]V
1/2
e , 0), Ft = 1, Rt = (0, (S2t − 1)V

1/2
µ ), and at = ct = 0.
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2.3 Example 2: US business cycle

Hamilton (1989) analysed the US business cycle using the Markov switching model:

yt − µt =

p∑
j=1

ϕj(yt−j − µt−j) + et

µt = α1(2− S1t) + α2(S1t − 1) (2.3)

where yt is the US real GNP growth rate and S1t takes values in {1, 2} according to a Markov

process with transition probability π1 ij, i, j = 1, 2. The GNP growth switches between α1 when

S1t = 1 and α2 when S1t = 2, where the restriction α2 > α1 identifies S1t = 2 with periods

of expansion. Hamilton used data up to 1984 but later studies have pointed out a subsequent

decline in the series volatility, also known as the Great Moderation (see Kim and Nelson, 1999, and

McConnell and Perez-Quiros, 2000). McConnell and Perez-Quiros introduce heteroskedasticity

by assuming that the variance of the measurement shock takes two values according to a further

Markov latent variable S2t = {1, 2} as in:

et = [(S2t − 1)δ1/2 + (2− S2t)] V
1/2
e ϵet (2.4)

where ϵet is a standard normal variate. The transition probabilities for S2t are denoted π2 ij,

i, j = 1, 2. The restriction 0 < δ < 1 associates S2t = 2 to the low volatility regime.

Model (2.3)-(2.4) can be put into the format (2.1) by setting xt = (µt, yt − µt, yt−1 − µt−1, · · · ,
yt−p+1 − µt−p+1)

′, ut = et, Ht = (1, 1, 0, · · · , 0), at = (α1(2− S1t) + α2(S1t − 1), 0, · · · , 0)′,

Ft =



0 0 · · · 0 0

0 ϕ1 ϕ2 · · · ϕp−1 ϕp

0 1 0 · · · 0 0
...

0 0 · · · 0 1 0


and Rt = V

1/2
e (0, (S2t−1)δ1/2 + 2−S2t, 0, · · · , 0)′. The remaining quantities Gt and ct are equal

to zero.

3 Bayesian inference

3.1 Prior distributions

We further assume:
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A6. All parameters in θ are a priori independent, and θ is a priori independent from π.

For the elements of θ, three possible prior distributions are available: normal (NT), beta (BE),

and inverse gamma (IG). These three distributions are flexible enough to characterize most beliefs.

The normal distribution is characterized in terms of mean and variance. The IG distribution is

typically used for scale parameters; it is parameterized as in Bauwens et al. (1999, p.292), i.e. θi ∼
IG(s, ν) implies E(θi) = s/(ν − 2) and V (θi) = 2s2/{(ν − 4)(ν − 2)2}. Each parameter is defined

over a finite support (a, b) that must be specified together with the distribution hyperparameters.

Hence the beta-distributed variables are not restricted to the (0, 1) interval. For infinite supports,

it will suffice to set the bounds to very large values.

The transition probabilities π are assumed to be Dirichlet distributed. For each sequence

Sℓ = (Sℓ1, · · · , SℓT) with transition probability πℓ, the number of independent Dirichlet distribu-

tions that must be elicited on πℓ depends on the process considered for Sℓ. For instance, if Sℓ is a

sequence of independent categorical variables, then πℓ = (πℓ1, · · · , πℓnsℓ) follows a Dirichlet distri-

bution. If Sℓ follows instead a Markov process, then πℓ has ns
2
ℓ elements (see Assumption A2), and

nsℓ independent Dirichlet distributions must be elicited on each subset πℓj = (πℓ1j, · · · , πℓnsℓj),

j = 1, · · · , nsℓ. Examples of prior elicitation are given in Section 5.

3.2 Posterior inference

DMM produces samples from the joint posterior distribution f(θ,π,S,x|y), where for conve-

nience we have omitted the exogenous variables z from the information set. For any variable wt

let w denote the vector w = (w1, · · · ,wT). We use the factorization:

f(θ,π,S,x|y) = f(x|θ,π,S,y)f(θ,π,S|y)

Posterior samples of the state vector x are drawn off-line using the simulation smoother proposed

by Durbin and Koopman (2002). Samples from f(θ,π,S|y) are obtained with the following Gibbs

scheme:

f(θ|S,π,y), Pr(S |θ,π,y), f(π|θ,S,y)

Assumptions A4 and A6 imply that the first full conditional verifies:

f(θ|S,π,y) ∝ f(y|S,θ) f(θ)

The conditionally Gaussian hypothesis A1 makes possible the evaluation of the augmented like-

lihood f(y|S,θ) by Kalman filtering (see Kalman, 1960). For non-stationary state variables,

diffuse initial conditions are handled as in Koopman (1997). For stationary state variables say

x∗
t , the recursions are initialized using the unconditional mean and covariance matrix E(x∗

1|θ,S)
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and V (x∗
1|θ,S). The unconditional covariance matrix of the stationary elements of the state vec-

tor is calculated as in Kitagawa (1977). Program DMM draws θ one parameter at a time from

f(θi|θ−i,S,y) using the stepping out slice sampler proposed by Neal (2003).

The S-sequence is drawn with either the single-move algorithm devised by Gerlach et al.

(GCK, 2000), or the multi-move adaptive MH sampler given in Fiorentini, Planas and Rossi

(2012). The CGK sampler draws one variable at a time from the full conditional distribution

Pr(St|S−t, θ,π,y). When the discrete latent variables are conditionally dependent it is more

efficient to sample them in blocks: given a block length h, the multi-move sampler draws from

Pr(St,St+1, · · · ,St+h−1|S−t,··· ,t+h−1,θ,π,y) . Both algorithms yield the full S sequence marginally

to x in O(T) operations.

It remains to describe the sampler of π given S, θ, and y. Assumptions A4 and A6 imply that

given S, π does not depend on θ and y: f(π|θ,S,y) ∝ f(S|π)f(π). We first consider the case

of a sequence Sℓ of independent variables with Pr(Sℓt = k) = πℓk for k = 1, · · · , nsℓ. Under the

assumption πℓ = (πℓ1, · · · , πℓnsℓ) ∼ Dirichlet(αℓ 1, · · · , αℓ nsℓ), the full conditional f(πℓ|Sℓ) is a

Dirichlet distribution with hyperparameters (α∗
ℓ 1, · · · , α∗

ℓ nsℓ
) such that:

α∗
ℓ j = αℓ j +

T∑
t=1

1(Sℓt = j), j = 1, · · · , nsℓ

where 1(·) is the indicator function.

When Sℓ is a Markov sequence with Pr(Sℓt = k|Sℓt−1 = j) = πℓkj for k, j = 1, · · · , nsℓ,
then a set of transition probabilities πℓj = (πℓ1j, · · · , πℓnsℓj) is attached to each state j. Since

j = 1, · · · , nsℓ, the Markov process Sℓ is characterized by ns2ℓ transition probabilities that are put

together into the vector πℓ = (πℓ1, · · · ,πℓnsℓ). The full conditional distribution of πℓ is such as:

f(πℓ1, · · · ,πℓnsℓ|Sℓ) ∝ Pr(Sℓ|πℓ1, · · · ,πℓnsℓ)

nsℓ∏
k=1

f(πℓk)

∝ Pr(Sℓ1|πℓ1, · · · ,πℓnsℓ)
T∏

t=2

Pr(Sℓt|Sℓt−1,πℓ1, · · · ,πℓnsℓ)

nsℓ∏
k=1

f(πℓk)

∝ Pr(Sℓ1|πℓ1, · · · ,πℓnsℓ)

nsℓ∏
k=1

T∏
t∈Ik

Pr(Sℓt|Sℓt−1 = k,πℓk)f(πℓk)

where Ik = {t ≥ 2 : Sℓt−1 = k}. The term
∏nsℓ

k=1

∏T

t∈Ik Pr(Sℓt|Sℓt−1 = k,πℓk)f(πℓk) is proportional

to the product of nsℓ independent Dirichlet distributions. To remove dependence on the initial

condition Sℓ1, this product is taken as proposal in a MH step with acceptance probability given

by min{1,Pr(Sℓ1|π∗
ℓ)/Pr(Sℓ1|πℓ)}, where π∗

ℓ is the candidate vector and πℓ is the previously

sampled value.

DMM produces forecasts if requested. For instance, one-step-ahead forecasts are obtained by
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sampling ST+1 from Pr(ST+1|ST,π), xT+1 from f(xT+1|ST+1,xT,θ), and yT+1 from f(yT+1|xT+1,ST+1,θ),

where (xT,ST,θ,π) have been drawn from the joint distribution f(xT,ST,θ,π|y). Iterating for-

ward this data augmentation scheme yields forecasts of St, xt, and yt until any desired horizon.

DMM simulates the missing observations if any. Under A1, the measurement equation (2.1)

implies:

f(yt|xt,θ,St) = N(ctzt +Htxt,GtG
′
t)

This density is used to simulate the missing observations given posterior draws of xt,θ,St.

Other sampling strategies are of course possible. A first alternative would be to introduce

the state vector x within the Gibbs loop and to sample θ from f(θ|x,S,y) by taking benefit of

conjugate priors as in Planas, Fiorentini, and Rossi (2008). Model dependence makes however

this strategy inadequate for general scope programs. Another possibility is to sample the discrete

latent variable S given the state vector x as in Chib (1996). This possibility is not always feasible:

for instance in Example 2, the distribution of S1t given µt, α0, and α1 is degenerate.

3.3 Marginal likelihood estimators

DMM calculates two estimators for the data marginal likelihood: reciprocal importance sampling

and bridge sampling. The first estimator proposed by Gelfand and Dey (1996) is based on:

f(y) =

{∫
q(θ,π,S)

f(y|θ,π,S)f(θ,π,S)
dF (θ,π,S|y)

}−1

where F (θ,π,S|y) refers to the cumulative posterior distribution. The importance function

q(θ,π,S) stabilizes the estimator by excluding points with low likelihood values; otherwise the

estimator has infinite variance (see Geweke, 1999, p.47). We use q(θ,π,S) = q1(θ)q2(π)q3(S),

where q1(θ) is a normal distribution with mean and covariance matrix estimated from the poste-

rior samples and truncated at level 0%, 5%, 15%, · · · , 95%, q2(π) is a Dirichlet with parameters

estimated from the posterior samples of π, and q3(S) is a non-homogenous Markov chain as

discussed in Fiorentini, Planas, and Rossi (2012).

The bridge sampling estimator devised by Meng and Wong (1996) re-weights both the impor-

tance function and the posterior density with a bridge function. Let I and Iq denote the support

of the parameter posterior distribution and of the importance density q(θ,π,S), respectively.

The bridge function, say h(θ,π,S), is assumed to be defined over I
∩
Iq. Let Q(θ,π,S) be the
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cumulative distribution associated with q(θ,π,S). The estimator is obtained from the identity:

f(y) =

∫
Iq

h(θ,π,S)
q(θ,π,S)

dQ(θ,π,S)∫
I

h(θ,π,S)
f(y|θ,π,S)f(θ,π,S)

dF (θ,π,S|y)

The bridge sampling formula generalizes importance sampling methods: for instance setting

h(θ,π,S) = q(θ,π,S) yields the reciprocal importance sampling estimator. As optimal choice

Meng and Wong propose a recursive procedure based on:

h(θ,π,S) ∝ q(θ,πS)f(θ,πS|y)
nqq(θ,π,S) + nyf(θ,π,S|y)

where the constants nq and ny refer to the number of draws from the importance function and

from the posterior density, respectively. The recursions enter through the term f(θ,π,S|y)
that involves a preliminary marginal likelihood estimate. DMM uses one estimate returned by

reciprocal importance sampling. Marginal likelihood estimates are reported in logs, with standard

deviations that are obtained with the delta-method.

3.4 Data simulation

Alternatively, DMM can be used to generate a set of observations together with the associated

unobserved variables for given model parameters. No posterior analysis is performed when this

option is activated.

4 Running DMM

To run DMM, two inputs files are needed: the first, say example.nml, contains the model

settings, the prior distributions, and the data; the second, say design.dll, is a very simple DLL

that defines the system matrices of the state space representation (2.1). The program is called

from the MS-DOS prompt typing:

DMM example.nml

The path must be added if example.nml does not belong to the same directory as the DMM

executable file. We detail below the contents of the two input files. The program output is

described in Section 4.3.
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4.1 The example.nml file

Inputs are organized in namelists. Each namelist appears after the ampersand ’&’ and closes with

’&end’, as in ’&namelist1 arg1= ... arg2=... &end’. The name of the namelists is case-sensitive,

but the order of the namelists and of the arguments they contain is irrelevant.

The namelists are described in Table 1. Four are compulsory: ssm, prior, mcmc, and dataset.

To give an overview, the first, ssm, sets the system dimensions, the number of discrete latent

variables nv, and specifies the name of the DLL file. It also includes a facility for verifying that

the system matrices are correctly coded that can be activated by setting check = Y. The second,

prior, states the number of model parameters, their prior densities, and the prior hyperparam-

eters. The third, mcmc, controls the MCMC simulations and computes the marginal likelihood

when marglik = Y. The fourth, dataset, contains the number of endogenous series ny, the num-

ber of exogenous series nz, the number of forecasts requested nf, the number of observations T,

and the data. If datasim = Y the program simulates the data.

The dataset is loaded as a matrix of total dimension (T + nf) × (ny + nz), where columns

are separated by spaces. The missing observations on the endogenous series must be coded as

’-99999’; no missing values in the first d(1) observations are allowed, where d(1) represents the

model order of integration. Users must take care of inserting a column of ones as exogenous

series if the measurement equation (2.1) includes a constant. If nf forecasts are required, then

the exogenous series must also cover the forecasting period while the endogenous series must

be completed from T+1 to T+nf with any arbitrary value; for instance one may use ’-99999’.

If datasim = Y, then the observations are generated given the exogenous variables and some

parameter values.

The namelists that describe the discrete latent processes are labeled S1, S2, · · · , S6. Each car-

ries information about the process dynamic (I=independent, M=Markov), the number of states,

the Dirichlet hyperparameters, and the system matrices that switch according to the variable.

Only nv namelists for the discrete latent processes must be specified.

The default values are nv = 0,check = N, seed = 0, thin = 1, burnin = 1000, simulrec =

5000, hbl = 1, marglik = N, nf = 0, and datasim = N. Two examples of input files are given

in Section 5.
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Table 1 DMM input namelists

Name Function Argument Value

ssm system nx: dimension of xt integer

dimensions d(1): maximum order of integration of xt 0, 1, 2

d(2): # of non-stationary elements in xt 0, 1, · · · ,nx
nu: # of shocks integer

nv: # of discrete latent variables 0, 1, · · · , 6
dllname: path and name of the dll file design.dll

check: print the system matrices c,H,G,a,F,R Y, N

prior θ prior nt: dimension of θ integer

pdftheta(1): prior distribution for θ1 NT, BE, IG

hyptheta(1,1): prior hyperparameters for θ1 four real numbers

· · · · · ·
pdftheta(nt): prior distribution for θnt NT, BE, IG

hyptheta(1,nt): prior hyperparameters for θnt four real numbers

mcmc MCMC seed: initialise the random number generator from 0 to 999

options thin: record every j iterations integer

burnin: # of burn-in iterations integer

simulrec: # of simulations to record integer

hbl: block length for sampling S 1, 2, · · · ,T
marglik: marginal likelihood Y, N

dataset data T: # of observations integer

ny: # of endogenous series integer

nz: # of exogenous series integer

nf: # of forecasts integer

datasim: simulate data Y, N

obs: a matrix of dimension (T+ nf)× (ny+ nx) real numbers

S1 S1 process dynS1: S1 independent/Markov dynamics I, M

ns1: # of states for S1 2, 3, · · ·
hypS1: Dirichlet hyperparameters see examples

matS1: matrices impacted by S1 c,H,G,a,F, or R

· · · · · · · · · · · ·

S6 S6 process dynS6: S6 dynamics I, M

ns6: # of states for S6 2, 3, · · ·
hypS6: Dirichlet hyperparameters see examples

matS6: matrices impacted by S6 c,H,G,a,F, or R
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4.2 The design.dll file

The design.dll file receives θ (theta) as input and returns the system matrices of the state

space representation (2.1). To create the DLL users have to write a Fortran source code with

following declarations:

SUBROUTINE DESIGN(ny,nz,nx,nu,ns,nt,theta,c,H,G,a,F,R)

!DEC$ ATTRIBUTES DLLEXPORT, ALIAS : ’design ’ :: DESIGN

INTEGER ny,nz,nx,nu,ns(6),nt

DOUBLE PRECISION theta(nt)

DOUBLE PRECISION c(ny,max(1,nz),ns(1)),H(ny,nx,ns(2)),G(ny,nu,ns(3))

DOUBLE PRECISION a(nx,ns(4)),F(nx,nx,ns(5)),R(nx,nu,ns(6))

Body text: matrix specification

RETURN

END

The first line is the classic subroutine declaration in Fortran. The second line defines the DLL

interface to be called by DMM. We underline that the name, structure, inputs and outputs of

the subroutine are fixed whereas, beside the file extension, the name of the file is free. The input

parameters ny,nz,nx,nu,ns,nt take the values specified in the example.nml, while the vector

of parameters theta is updated automatically by DMM. The users only need to fill the vector

and matrices c,H,G, a,F,R as a function of theta(1),theta(2),..., theta(nt). The last two

lines end the subroutine.

DMM requires that the state vector xt contains first the non-stationary elements. For instance,

if the order of integration of the model is one but there are two non-stationary elements, i.e.

d(1)=1 and d(2)=2 in the namelist ssm, then the vector xt must begin with the two elements

that are non-stationary. This requisite arises because stationary and non-stationary elements of

the state are treated differently in the Kalman filter initialization as explained in Section 3.

To create design.dll from design.for, use can be made of the GNU Fortran compiler for

Windows which is freely donwloadable at gcc.gnu.org/wiki/GFortran. Once installed, the compiler

can be called at the command prompt with the following command-line arguments:

gfortran -shared -o design.dll design.for

Examples of design.for files are given in Section 5.
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The instruction Check = Y in the namelist ssm enables users to visualize the system matrices

returned by the routine for some given values of the model parameters.

4.3 The output

DMM produces up to ten ASCII files. The filenames have in common the root of the example.nml.

The files that contain simulated quantities also have the seed number appended. This makes

possible comparing chains with different starting point as a simple convergence check. Assuming

seed = 0, the output files are identified by the file extension according to:

• example.pri: reports the prior distributions with their hyperparameters.

• example0.par: the simulrec × (nt + dim(π)) matrix of posterior samples of θ and π.

If datasim = Y, then simulrec=1 and the file contains only the parameter values used for

generating the endogenous series; θ is printed first and π follows.

• example0.unb: the simulrec × (nx × T) matrix of posterior samples of the state vector.

Each row contains the first state element from t = 1 to T, then the second state element

from t = 1 to T, and so on until the nx-th state element. If datasim = Y, the file contains

the simulated state elements in a T × nx matrix.

• example0.inn: the simulrec × (ny × T) matrix of innovations, i.e. yt−E(yt|y1, · · · ,yt−1).

Each row contains the innovations on the first series from t = 1 to T, then the innovations

on the second series, and so on. Zeros are reported in case of missing observations.

• example0.mis: the simulrec × nmis matrix of estimated missing observations, where nmis

is the total number of missing observations. Each row contains the missing observation(s)

in chronological order.

• example0.dis: the simulrec × T matrix of posterior sample of Z, where Z = (S1 ×
S2 × · · · × Snv). The following mapping is used: if the model includes two discrete vari-

ables S1t and S2t taking values in {1, 2}, then Zt ∈ {1, 2, 3, 4} corresponds to (S1t, S2t) ∈
{(1, 1), (1, 2), (2, 1), (2, 2)}. If datasim = Y, the file contains the simulated discrete variable

Z in one row.

• example0.fst: the simulrec × (nf(nx+ ny+ 1)) matrix of forecasts of the state, of the

observations, and of the Zt variable. Each row contains the first state element from T + 1

to T+ nf, then the second state element from T+1 to T+nf, and so on until the nx-th state

element. Then the series forecasts are written with the same order for series 1 to ny. Each

row ends with the nf forecasts of Zt.
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• example0.dat: the T× ny matrix of simulated series. It is produced only if simulation =

Y.

• example0.ml: the log-marginal likelihood estimates with associated standard errors. It is

produced only if Marglik = Y. The reciprocal importance sampling estimates are reported

in logs for truncation level at 0%, 5%,· · · , and 95%. Two bridge sampling estimates are

displayed: the first one is obtained without iterating and the second one after ten iterations.

All estimates are given with a standard error.

• example.chk: the file shows the system matrices associated to a given value of theta

simulated from the prior distribution. It is produced only if Check = Y.

These ASCII files can be imported for further analysis in any common statistical package such as

R or MatLab. A MatLab code that produces main summary statistics and plots of the posterior

distributions is available upon request to the authors.
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5 Examples

5.1 Nile riverflow

The model specification (2.2) is completed with the following priors on θ = (Ve, Vµ, δ) and

π = (π1 1, π2 1): Vj ∼ IG(6 × 104, 6) × I(0, 5×104), j = e, ϵ, δ ∼ BE(2, 4) × I(1, 20), and πj 1 ∼
Dirichlet(16, 2), j = 1, 2. The nile.nml file contains the following namelists:

&ssm

nx=1 nu=2 d=1 1 nv=2 dllname=nile.dll

&end

&prior

nt = 3

pdftheta(1) = IG hyptheta(1,1) = 60000 6 0 50000

pdftheta(2) = IG hyptheta(1,2) = 60000 6 0 50000

pdftheta(3) = BE hyptheta(1,3) = 2 4 1 20

&end

&S1

dynS1=I nS1=2 hypS1(1,1)=16 2 matS1=G

&end

&S2

dynS2=I nS2=2 hypS2(1,1)=16 2 matS2=R

&end

&mcmc

seed=0 thin=1 burnin=1000 simulrec=5000

&end

&dataset

T=100 ny=1 nz=0 nf=10 obs =

1120

1160

...

740

&end

The namelist prior sets the prior distributions and hyperparameters for theta. For instance,

pdftheta(1) = IG states that theta(1) is IG-distributed with scale, degree of freedom, and

support that are specified via the instruction hyptheta(1,1). Notice that the first dimension of
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hyptheta is fixed to one, while the second dimension corresponds to the position of the parameter

in the vector theta.

The namelist S1 contains four entries: dynS1=I declares that S1 is a sequence of independent

variables with nS1 = 2 states that impact the matrix matS1 = G. The parameters of the

categorical distribution Pr(S1t = i), i = 1, 2, are Dirichlet distributed with hyperparameters

(16, 2) as entered via the argument hypS1(1,1). The namelist S2 is filled similarly.

The design subroutine written in the Nile.for file is reported below.

The state space format discussed in Section 2.2 is implemented in the Nile.for file as shown

below.

SUBROUTINE DESIGN(ny,nz,nx,nu,ns,nt,theta,c,H,G,a,F,R)

!DEC$ ATTRIBUTES DLLEXPORT, ALIAS : ’design ’ :: DESIGN

INTEGER ny,nz,nx,nu,ns(6),nt

DOUBLE PRECISION theta(nt)

DOUBLE PRECISION c(ny,max(1,nz),ns(1)),H(ny,nx,ns(2)),G(ny,nu,ns(3))

DOUBLE PRECISION a(nx,ns(4)),F(nx,nx,ns(5)),R(nx,nu,ns(6))

c(1,1,1) = 0.D0

H(1,1,1) = 1.D0

G(1,1,1) = DSQRT(theta(1))

G(1,1,2) = DSQRT(theta(1)*theta(3))

G(1,2,1:2) = 0.D0

a(1,1) = 0.D0

F(1,1,1) = 1.D0

R(1,1:2,1) = 0.D0

R(1,1,2) = 0.D0

R(1,2,2) = DSQRT(theta(2))

RETURN

END

In agreement with the namelists dynS1 and dynS2, the matrix G takes two values, G(:, :, 1) and

G(:, :, 2), depending on S1t. Similarly, R switches between R(:, :, 1) and R(:, :, 2) depending on

S2t. The model parameters are ordered as theta(1) = Ve, theta(2) = Vµ, and theta(3) = δ.

The DSQRT instruction is the Fortran square root double precision function; other Fortran intrinsic

functions that may turn useful are DEXP, DLOG, DCOS, DSIN - for more details, see the GNU Fortran

reference manual at http://gcc.gnu.org/onlinedocs/gcc-4.6.0/gfortran/. To built the DLL from the

Fortran file use can be made of the GNU Fortran compiler typing at the MS-DOS prompt:

gfortran -shared -o Nile.dll Nile.for
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Assuming DMM.exe, Nile.dll and Nile.nml are located in the same directory, the program is

executed with the command:

DMM Nile.nml

To show some results, Figure 1 top panel displays the observed series in dashed, plus the

trend posterior mean and forecasts together with the 5% and 95% percentiles. The middle and

bottom panels report the posterior probability of an outlier on the irregular component, i.e.

Pr(S1t = 2|y), and of a level shift, i.e. Pr(S2t = 2|y). As can be seen, the dating agrees with the

results in Mendelssohn (2011).

Figure 1 Latent variables in Nile example
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Notes: top panel: observed series (dashed), trend posterior mean and forecasts with 5th and 95th percentiles;
middle panel: posterior probability of an additive outlier Pr(S1t = 2|y); bottom panel: posterior probability of a
level shift Pr(S2t = 2|y).

Table 2 below shows the posterior mode of the parameters together with the 90% highest

posterior density region (HPD). It may be noticed that, while the posterior mode of the trend

shock variance Vϵ is larger than that reported in Bell (2011), our trend estimates is smoother than

that in Bell. This is due to the properties of the trend process in (2.2) which is by construction

smoother than a random walk where shocks occur at every period.

Table 2 Parameter posterior mode with 90% HPD for Nile example

Ve (×104) Vϵ (×104) δ π1 1 π2 1

Mode 1.27 0.91 3.77 0.94 0.95

90% HPD (0.47, 1.67) (0.30,2.62) (1.18,10.12) (0.58,0.97) (0.58,0.97)
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5.2 US business cycle

We fit the model (2.3)-(2.4) to the quarterly real GDP data for the period 1953:II to 1999:II.

We choose the autoregressive order p = 1 and set the following prior distributions on θ =

(α1, α2, ϕ1, δ, Ve): α1 ∼ N(−.5, .2) × I(−1,0), α2 ∼ N(1, .2) × I(0,2), ϕ1 ∼ N(0, .1) × I(−.9,.9), δ ∼
BE(2, 4)× I(0,1), and Ve ∼ IG(5, 6)× I(0,5). The Markov transition probabilities are distributed as:

(πℓ 11, πℓ 21) ∼ Dirichlet(6, 2), and (πℓ 12, πℓ 22) ∼ Dirichlet(2, 18), ℓ = 1, 2. The mswitch.nml file

enters the data and the model information as shown below.

&ssm

nx=2 nu=1 d=0 0 nv=2 dllname=mswitch.dll

&end

&prior

nt = 5

pdftheta(1) = NT hyptheta(1,1) = -.5 .2 -1 0

pdftheta(2) = NT hyptheta(1,2) = 1 .2 0 2

pdftheta(3) = NT hyptheta(1,3) = 0 .1 -.9 .9

pdftheta(4) = BE hyptheta(1,4) = 2 4 0 1

pdftheta(5) = IG hyptheta(1,5) = 5 6 0 5

&end

&S1

dynS1=M nS1=2 hypS1(1,1)=6 2 hypS1(1,2)=2 18 matS1=a

&end

&S2

dynS2=M nS2=2 hypS2(1,1)=6 2 hypS2(1,2)=2 18 matS2=R

&end

&mcmc

seed=0 thin=1 burnin=1000 simulrec=5000

&end

&dataset

T=185 ny=1 nz=0 nf=10 obs =

0.7559

-0.6071

· · ·
0.8242

&end
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In this example, dynS1=M states that the dynamics of S1 is Markov. Since nS1=2, the transition

matrix involves four parameters, (π1 11, π1 21) and (π1 12, π1 22), for which two independent Dirichlet

distributions are specified with hyperparameters (6,2) and (2,18) as specified in the arguments

hypS1(1,1) and hypS1(1,2). The namelist S2 is filled similarly. Notice that, as for the entry

hyptheta(1,·), the first index in hypS1(1,·) is fixed to one while the second index takes values

from 1 to nS1 since nS1 Dirichlet distributions need to be specified. The state space model

described in Section 2.3 is implemented in the mswitch.for file as shown below.

SUBROUTINE DESIGN(ny,nz,nx,nu,ns,nt,theta,c,H,G,a,F,R)

!DEC$ ATTRIBUTES DLLEXPORT, ALIAS : ’design ’ :: DESIGN

INTEGER ny,nz,nx,nu,ns(6),nt

DOUBLE PRECISION theta(nt)

DOUBLE PRECISION c(ny,max(1,nz),ns(1)),H(ny,nx,ns(2)),G(ny,nu,ns(3))

DOUBLE PRECISION a(nx,ns(4)),F(nx,nx,ns(5)),R(nx,nu,ns(6))

c(1,1,1) = 0.D0

H(1,1:2,1) = 1.D0

G(1,1,1) = 0.D0

a(1,1) = theta(1)

a(1,2) = theta(2)

a(2,1:2) = 0.D0

F(1:2,1:2,1) = 0.D0

F(2,2,1) = theta(3)

R(1,1,1:2) = 0.D0

R(2,1,1) = DSQRT(theta(5))

R(2,1,2) = DSQRT(theta(4)*theta(5))

RETURN

END

Both at and Rt have one additional dimension as they are the arrays that are switching according

to the discrete latent variables. The DLL is created via the command gfortran -shared -o

mswitch.dll mswitch.for. Running DMM mswitch.nml yields the posterior samples. Figure 2

below displays the posterior mean of the discrete and continuous latent variables together with

the data in dashed. In the last two decades, the model detects a low growth in 1981 and in 1991,

in agreement with the NBER official business cycle dating. The evidence of a volatility break in

1984 is remarkably strong.

Table 3 below shows the posterior mode of the model parameters together with the 90% HPD.

These results are in broad agreement with those in McConnell and Perez-Quiros (2000) in spite

of a different estimation technique and a slightly different modelling.
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Figure 2 Latent variables in US GDP example
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Notes: top panel: observed series (dashed), trend posterior mean and forecasts with 5th and 95th percentiles;

middle panel: posterior probability of a recession Pr(S1t = 1|y); bottom panel: posterior probability of a low

variance regime Pr(S2t = 2|y).

Table 3 Parameter posterior mode and 90% HPD for US GDP

α1 α2 ϕ1 δ Ve

Mode -0.30 0.89 0.22 0.16 0.97

90% HPD (-0.99,-0.07) (0.59,0.99) (-0.11,0.34) (0.07,0.24) (0.64,1.25)

π1 11 π1 12 π2 11 π2 12

Mode 0.74 0.03 0.98 0.02

90% HPD (0.16,0.83) (0.00,0.07) (0.84,0.99) (0.00,0.08)

6 Remarks

Sometimes it is useful to set parameters to constant values. One simple way to do so is to equalize

the lower and upper bounds in the hyptheta argument of the prior namelist, for instance the

instruction hyptheta(1,1) = 0 1 .2 .2 fixes the parameter to .2. This also serves at setting

parameter values when the data are to be generated by the program.

Parameterization is one important aspect of the prior elicitation. For instance complex roots

in the AR(2) polynomial ϕ(L) = 1 − ϕ1L − ϕ2L
2 may be imposed by writing ϕ1 = 2A cos 2π/τ

and ϕ2 = −A2, where A and τ represent the cycle amplitude and period (see Planas et al., 2008).

Also, stationarity of AR(p) processes may be imposed by expressing the AR coefficients in terms

of partial correlations (see Barnett, Kohn, and Sheather, 1996). One important advantage of
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writing a model-specific design.for file is that any parameterization of interest can be easily

implemented.

Users may wish to elicitate a non-informative prior on a scale parameter V à la Jeffreys (1961);

this can be approximately achieved by setting ψ = log V in the design subroutine and specifying

a uniform distribution as ψ ∼ BE(1, 1) over a large set.

Several packages offer estimation of state space models; see the Journal of Statistical Software

special issue ‘Statistical Software for State Space Models’ edited by Commandeur, Koopman,

and Ooms (2011). Up to our knowledge only S+FinMetrics by Zivot and Wang (2006) considers

classical analysis of Markov switching state space models. Estimation is performed by maximizing

the approximated likelihood devised in Kim (1994).

7 Conclusion

DMM is a program for Bayesian analysis of dynamic mixture models. It handles multivariate

series that may be non-stationary, with missing observations, and linked to some exogenous

variables. The program implements up-to-date techniques for sampling the discrete latent variable

in O(T) operations (GCK, 2000, Fiorentini et al., 2012), for exact initialization of the Kalman

recursions (Koopman, 1997), for drawing model parameters efficiently via a slice sampler (Neal,

2003), and for computing the marginal likelihood. The prior distributions do not need to be

conjugate.

Besides an ASCII file that contains the system dimensions, the prior information, and the

data set, users are asked to write an extremely simple Fortran program that gives the state space

representation. Although this may be seen an extra cost, such an architecture makes possible

fitting any model that belongs to the wide class of conditionally Gaussian state space systems.

It also gives complete freedom for the model parameterization. The program benefits from the

computational speed advantage of low-level languages, which is particularly relevant when MCMC

algorithms are employed.
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