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Abstract. We put forward a general model intended for assessment of system
security against passive eavesdroppers, both quantitatively (how much informa-
tion is leaked) and qualitatively (what properties are leaked). To this purpose, we
extend information hiding systems (ihs), a model where the secret-observable re-
lation is represented as a noisy channel, with views: basically, partitions of the
state-space. Given a view W and n independent observations of the system, one is
interested in the probability that a Bayesian adversary wrongly predicts the class
of W the underlying secret belongs to. We offer results that allow one to easily
characterise the behaviour of this error probability as a function of the number of
observations, in terms of the channel matrices defining the ihs and the view W.
In particular, we provide expressions for the limit value as n→ ∞, show by tight
bounds that convergence is exponential, and also characterise the rate of conver-
gence to predefined error thresholds. We then show a few instances of statistical
attacks that can be assessed by a direct application of our model: attacks against
modular exponentiation that exploit timing leaks, against anonymity in mix-nets
and against privacy in sparse datasets.

Keywords: quantitative information flow, statistical attacks, anonymity, privacy,
information theory.

1 Introduction

Statistical attacks against secrecy, anonymity, privacy and other confidentiality proper-
ties in systems that handle sensitive data abound in the literature. In these attacks, the
adversary gets to know a sample of observations of a target system – such as timing or
power consumption traces of a smart-card [14], attribute values in a dataset [19], etc.
– and, exploiting some form of correlation existing between the secret and the observ-
ables, tries to infer the secret – the private key, the identity of an individual, etc. Many of
these attacks seem to exploit very specific features of the target system. This fact makes
assessing the security of a system against this form of threat a difficult task in general.
A major motivation of the present paper is to put forward a general Bayesian model
where this kind of assessment can be conducted rigorously. One of our objectives is to
characterise the information leakage of a system, both quantitatively and qualitatively,
as the number of observations of the attacker increases.

It has been recently argued [8] that, for the purpose of quantifying the amount of
sensitive information that is leaked by a system, it is useful to model the system itself as
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a channel in the sense of Information Theory: inputs to the channel represent the secret
information, outputs represent the observable information, and the two sets are related
by a conditional probability matrix. We collectively designate systems amenable to this
kind of analysis as information hiding systems (ihs). Initial works on ihs’s concentrated
on Shannon entropy and capacity as measures of information leakage [8,9]. More re-
cently, it has been argued [21] that min-entropy based metrics, taking into account the
success probability of an optimal attacker, provide a more operational and sensible for-
malization of leakage. Analysis of ihs’s in the case of min-entropy and repeated inde-
pendent observations, which encompasses several forms of statistical attacks, has been
carried out in our previous paper [5].

A drawback of the ihs approach so far is that it focuses exclusively on the quanti-
tative aspect of the analysis (how much is leaked), while ignoring the qualitative aspect
(what is leaked) at all. In [5] it is shown that, when a uniform distribution on the se-
crets is assumed, the asymptotic information leakage of a system corresponds to the
log of the number of indistinguishability classes in the system – where two states are
indistinguishable if they induce the same probability distribution on the observables.
For instance, an anonymity protocol in which users are grouped into a small number of
classes is considered as globally secure. However, it might well be the case that, while
the vast majority of users belong indeed to large classes, few individual users belong
to a singleton classes, hence being totally exposed to eavesdropping. To make another,
extreme example, consider the two small imperative procedures P1 and P2 below. Both
of them receive as an argument a confidential variable h that can take on a value in the
set S = {0, ..., 15}, possibly corresponding to user identifiers or other sensitive informa-
tion. Part of the information about h is disclosed by the procedures through the public
variable l.

P1(h): l=-1; if (h==0) then l=0; P2(h): l=h mod 4;

In the case of P1, there are two possible observables, -1 and 0, hence S is partitioned
into two indistinguishability classes: thus, assuming h is uniformly distributed, P1 leaks
1 bit of information about h. In the case of P2 there are four classes, hence P2 leaks two
bits. From a global point of view, P1 is therefore more secure than P2. Needless to say,
though, from the point of view of user 0, P2 is preferable over P1. One would like to
conduct the analysis both at a quantitative and at a qualitative level, revealing not only
how much is leaked, but also what. This is particularly relevant in relation to the privacy
of individuals or groups.

In this paper, we propose a framework to deal with this issue by extending the ihs’s
considered in [5] and elsewhere with views. A view is, in short, a partition of the states,
representing perhaps a subdivision in "buckets" of a large population (in fact, we are
more general and also admit probabilistic partitions). In the example above, the view of
interest to user 0 is the partition of S into ({0},S\{0}). Given a view W, one is interested
in the adversary’s probability of wrongly predicting the class of W the secret belongs
to, after observing n independent executions of the system, throughout which the secret
state is kept fixed: call this quantity PW

e (n). In the example above, the involved systems
are deterministic, hence a single observation is all the attacker needs. One easily finds
that PW

e (1) equals 0 in the case of P1, and 1
16 in the case of P2. In the general case

of probabilistic systems, computation of the limit value of PW
e (n) is not as obvious.
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Nevertheless, we offer results that allow one to easily characterise the behaviour of
PW

e (n) from the channel matrices defining the ihs and the view W. In particular, we
show how to determine the limit value of PW

e (n) and its rate. In fact, the security of
a system (w.r.t. W) depends not only on the limit in question, but also on the shape
of PW

e (n) as a function of n. We show that the convergence is exponential, and provide
bounds for the rate of convergence. More generally, we give bounds on the rate at which
a chosen probability threshold can be reached1.

We then give a few examples of statistical attacks that can be assessed as a direct
application of our results: timing attacks against exponentiation with blinding [14,17],
attacks against anonymity in mix-nets [13] and attacks against privacy in sparse datasets
[19]. In the last case, we show that the condition of (ε, δ)-sparsity directly translates into
a rate − log ε for the threshold δ in our framework. In all cases, we highlight the role
played by views.

In summary, we offer a unifying model for assessing a variety of statistical attacks,
both at the global level and at the level of specific partitions of the secrets. We believe
that this model can gain us a qualitative insight about the security of ihs’s. Whenever
the system is found to be insecure, an attack can be explicitly described, usually with
little effort, as an instantiation of the Bayesian attacker underlying our framework. We
are not claiming, of course, that our bounds always match the performance of existing
attacks, tailored against specific, real-world systems.

The rest of the paper is organized as follows. In Section 2 some terminology and
notation are introduced. Section 3 introduces the formal set up. Section 4 discusses the
main results on asymptotic error probability. Section 5 presents an application to mix-
nets, while Section 6 discusses sparse datasets. Some concluding remarks and discus-
sion of related work are found in Section 7. Some technical material has been confined
to a separate Appendix.

2 Notations and preliminary notions

LetA be a finite nonempty set. A probability distribution on aA is a function p : A →
[0, 1] such that

∑
a∈A p(a) = 1. We let supp(p) denote {a ∈ A : p(a) > 0}. For any

A ⊆ A we let p(A) denote
∑

a∈A p(a). Given n ≥ 0, we let pn : An → [0, 1] be the
n-th extension of p, defined as pn(a1, . . . , an) 4= Πn

i=1 p(ai); this is in turn a probability
distribution onAn. For n = 0, we set p0(ε) = 1, where ε denotes here the empty string.
Given A ⊆ An, we will often write pn(A) as just p(A), if n is clear from the context.

Given two distributions p and q on A, the Kullback-Leibler (KL) divergence of p
and q is defined as (all the log’s are taken with base 2)

D(p||q) 4=
∑
a∈A

p(a) · log
p(a)
q(a)

1 Indeed, it may well be the case that, even if the asymptotic rate of convergence to the limit
value is extremely slow, convergence to the chosen threshold is very fast, leading to consider
the system insecure.
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with the proviso that 0 · log 0
q(a) = 0 and that p(a) · log p(a)

0 = +∞ if p(a) > 0. It can
be shown that D(p||q) ≥ 0, with equality if and only if p = q (Gibbs inequality). KL-
divergence can be thought of as a sort of distance between p and q, although strictly
speaking it is not – it is not symmetric, nor satisfies the triangle inequality.

Pr(·) will generally denote a probability measure. Given a random variable X taking
values in A, we write X ∼ p if X is distributed according to p, that is for each a ∈ A,
Pr(X = a) = p(a).

3 Formal set up

3.1 Basic definitions

We recall from [5] that an information hiding system (ihs for short) is a quadruple
H = (S,O, p(·), p(·|·)), composed by a finite set of states S = {s1, ..., sm} representing
the secret information, a finite set of observables O = {o1, ..., ol}, an a priori probability
distribution on S, p(·), and a conditional probability matrix, p(·|·) ∈ [0, 1]S×O, where
each row sums up to 1. The entry of row s and column o of this matrix will be written
as p(o|s), and represents the probability of observing o given that s is the (secret) input
of the system. For each s, the s-th row of the matrix is identified with the probability
distribution o 7→ p(o|s) on O, denoted by p(·|s).

Definition 1 (views). Let H = (S,O, p(·), p(·|·)) be a ihs. A view of H is a pair
(W, q(·|·)), where W is a finite alphabet and q(·|·) ∈ [0, 1]S×W is a matrix where all
rows sum to 1.

Informally, q(w|s) is the probability that the property w holds when in state s.
The probability distribution p on S and the conditional probability matrices p(o|s)
and q(w|s) induce a probability distribution r on W × S × O, defined as r(w, s, o) 4=
p(s) · p(o|s) · q(w|s). This distribution induce a triple of discrete random variables
(W, S ,O) ∼ r, taking values in W × S × O. We shall denote the marginal probabil-
ity distributions of this triple for S , W and O by pS , pW and pO, respectively. Of course,
pS (·) coincides with the prior p(·) given in the ihs, while the marginal distributions pW

and pO can be computed from the given data, p(·), p(·|·) and q(·|·).
Let us now discuss the observation scenario. Given any n ≥ 0, we assume the

adversary is a passive eavesdropper that gets to know the observations corresponding to
n independent executions of the system, on = (o1, ..., on) ∈ On, throughout which both
the secret state s and the corresponding view w are kept fixed. Formally, the adversary
knows a random vector of observations On = (O1, ...,On) such that, for each i = 1, ..., n,
Oi is distributed like O. Moreover, the individual Oi and the view W are conditionally
independent given S . This means that the following equality holds true for each on ∈ On,
w ∈ W and s ∈ S s.t. p(s) > 0

Pr
(
On = (o1, . . . , on), W = w | S = s

)
= Πn

i=1Pr(Oi = oi|S = s) Pr(W = w|S = s) .
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Note that the right-hand side of the above equality can be equivalently written as
Πn

i=1 p(oi|s)q(w|s). Concerning the goals of the attacker, there are two cases, which we
examine in the following subsections.

Notation: We shall drop the subscripts from the above defined (conditional) prob-
ability distributions when no ambiguity can arise. We will often abbreviate Πn

i=1 p(oi|s)
as p(on|s). Moreover, by slightly abusing notation, we will freely identify a view
(W, q(·|·)) ofH with the induced random variable W.

3.2 Attacker targets S

We first discuss the case when the attacker targets the states, like in [5]. In this case,
his strategy, for any fixed length n of observations, is modeled by a guessing function
g : On → S, which represents the single guess the attacker is allowed to make about
the secret state s, after observing on. In this case, one is interested in the probability of
error after n observations (relative to g), given by

P(g)
e (n) 4= Pr(g(On) , S ) .

It is well-known (see e.g. [12]) that the optimal strategy for the adversary, that is the
one that minimizes the error probability, is the Maximum A Posteriori (map) rule. A
function g : On → S satisfies the Maximum A Posteriori (map) criterion2 if for each
on ∈ On and s ∈ S

g(on) = s implies p(on|s)p(s) ≥ p(on|s′)p(s′) for each s′ ∈ S .

In the above definition, for the case n = 0 it is convenient to stipulate that p(ε|s) = 1:
that is, with no observations at all, it is selected some s maximizing the prior distribu-
tion. With this choice, P(g)

e (0) denotes 1 −maxs p(s). Once n and p(s) are fixed, P(g)
e (n)

does not depend on the specific map function g that is chosen. Unless otherwise stated,
throughout the paper we assume the underlying guessing function is map and shall nor-
mally omit the superscript (g).

In [5], it is proven that Pe(n) converges exponentially fast to a quantity that depends
on an indistinguishability relation on states. This relation is defined as follows: s ≡ s′

if p(·|s) = p(·|s′). Concretely, two states are indistinguishable if the corresponding rows
in the conditional probability matrix p(·|·) are equal. This intuitively says that there is
no way for the adversary to tell s and s′ apart, no matter how many observations he
performs. Let us stress that this definition does not depend on the prior distribution on
states, nor on the number n of observations. Assume ≡ partitions S into K equivalence
classes C1, ...,CK . For each i, let s∗i ∈ Ci be a state that pS (s∗i ) = maxs∈Ci pS (s). Let

πi
4
= pS (s∗i ) and pi(·)

4
= p(·|s∗i ) . (1)

2 Another widely used criterion for guessing functions is Maximum Likelihood (ml), which re-
quires no knowledge of the prior distribution. Our main results can be extended to the ml rule,
although we will not discuss this issue in the present paper. See [5, Remark 2].
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We can assume w.l.o.g. that πi > 0 for each i. In [5], it is shown that as n → ∞, then
exponentially fast

Pe(n)→ 1 −
K∑

i=1

πi . (2)

Note that the case |S| = 2 with a nontrivial indistinguishability corresponds to the
Bayesian version of the classical binary Hypothesis Testing; in this case, the Chernoff

information is known to be the optimal exponent (see [12, Ch.11] and Section 4).

3.3 Attacker targets W

We discuss now the case when the attacker targets a property of states represented
by a view W. Similarly to the previous case, the attacker’s strategy corresponds to a
guessing function, which this time is of the form g : On →W. The corresponding error
probability (after n observations, relative to g) is

Pg,W
e (n) 4= Pr

(
g(On) , W

)
. (3)

A function g minimizes this quantity if it is W-map, that is if satisfies the following
condition. For each on ∈ On and w ∈ W

g(on) = w implies p(on|w)p(w) ≥ p(on|w′)p(w′), for each w′ ∈ W.

Unless otherwise stated, given a view of H , we shall assume an underlying guessing
function that is W-map. Consequently, we shall normally omit the indication of g from
Pg,W

e (n).
In many systems, the practically important views are those that partition the state-

space into equivalence classes. A view W is called a partition ofH if W is a function of
S , that is W = f (S ) for some function f : S →W. Equivalently, the matrix q(·|·) has a
single entry ’1’ for each row. LetW = {w1, ...,wL}, and let Ei

4
= f −1(wi) for 1 ≤ i ≤ L.

Of course E1, ..., EL forms a partition of S, in the set-theoretic sense.

3.4 Information leakage

Information leakage aims at measuring, typically in bits, the information leaked by a
system, by comparing the prior to the posterior (to the observations) adversary’s success
probability. Below, we follow Smith [21] and define information leakage as the differ-
ence between the min-entropies of the prior and posterior probability distributions. In
what follows, we pose Psucc(n) 4= 1−Pe(n); similarly for PW

succ. The intuition underlying
this definition is that gaining 1 bit of information corresponds to doubling the success
probability.

Definition 2 (Information leakage [21]). The information leakage ofH after n obser-
vations is defined as

L(n) 4
= log

( Psucc(n)
maxs pS (s)

)
.

Similarly, information leakage after n observations relative to a view W is defined as
LW (n) 4= log

( PW
succ(n)

maxw pW (w)
)

.
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4 Asymptotic error probability

Throughout the sectionH denotes a generic ihs (S,O, p(·), p(·|·)). We begin with a few
preliminary definitions concerning the rate of convergence. Then prove a result giving
strong bounds for Pe(n) and its rate of convergence, Theorem 1. This result greatly
improves on the bounds in [5] and is the key to the results for PW

e (n).

Definition 3 (rate). Let f : N → R+ be a nonnegative, monotonically non-increasing
function. Let γ = limn→∞ f (n). The rate of f is defined as the nonnegative quantity

ρ( f ) 4= − lim
n→∞

1
n

log( f (n) − γ) . (4)

We further say that f reaches δ at rate ε if there is a nonnegative, monotonically non-
increasing function h s.t. limn→∞ h(n) ≤ δ, ρ(h) ≥ ε and f (n) ≤ h(n) for each n large
enough.

Note that we admit rates of 0, as well as of +∞.

Example 1. Consider f (n) = α + β2−nλ1 + γ2−nλ2 ,
for some nonnegative α, β and γ, and 0 < λ1 < λ2.
Then f (n)→ α and ρ( f ) = λ1. On the other hand,
since f (n) ≤ h(n) = α + β + γ2−nλ2 , one has that
f reaches α + β at a rate of λ2. The picture on
the right displays a plot of three functions, charac-
terised by identical values of α = 0.1, γ = 0.01,
λ1 = 0.01, and λ2 = 2, and by three different val-
ues of β: β = 0.1 (top curve), 0.01 (middle curve)
and 0.001 (bottom curve).
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One can see that although the convergence to the limit value, 0.1 for all of them,
is extremely slow, convergence to the value 0.11, which is only slightly higher, in the
third case is very fast. A system with an error probability function of this shape would
not be considered as secure.

Recall from [12] that given two probability distributions p and q on O, the Chernoff

Information between p and q is the nonnegative quantity

C(p, q) 4= − min
0≤λ≤1

log
∑

o∈supp(p)∩supp(q)

pλ(o)q1−λ(o) (5)

with the convention that C(p, q) = +∞ if supp(p) ∩ supp(q) = ∅. Recall that, in our
notation, p1(·), ..., pK(·) are the representative probability distributions ofH , defined in
(1). By adapting the proof for the case |S| = 2 that is given in [12] (see also [18]), it is
not difficult to prove the following result, which gives the exact rate of convergence for
Pe(n), in the case where the distributions p1(·), ..., pK(·) all have the same support3.

3 In the case where the distributions have different supports, the argument of [12] does not apply.
The ultimate reason is that that D(p||q) is not continuous in the first argument if q has not full
support; see also [2] for a discussion on this issue.
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Proposition 1. Suppose that supp(p1) = · · · = supp(pK). Then ρ(Pe) =

mini, j C(pi, p j).

The next result provides tight bounds on the error probability Pe(n) and its rate
in the general case, although in general not the exact rate. More generally, the result
below provides a means to tradeoff bounds on error probability with bounds on the rate
of convergence. We make use of the following notations. For all i, j = 1, ...,K, define

ci j
4
= C(pi, p j) .

We also stipulate that 2−∞ = 0. The next theorem has the following interpretation. The
attacker focuses on a subset of the representative states, {s∗i |i ∈ I}, and tries to identify
one of them as S . This strategy can fail for two reasons: either S is not in the target
subset (first term in the error expression), or it is, but the attacker mistakes one state
in the subset for another (second term in the error expression). The latter probability
decreases exponentially fast with n, at a rate that is at least as big as the minimum
"distance" ρI between the distributions pi(·), for i ∈ I. The proof can be found in the
Appendix.

Theorem 1. Let I be a nonempty subset of {1, ...,K}. Let ρI
4
= mini, j∈I,i, j ci j. Let πmax =

maxi∈I πi. Then, for all n ≥ 1

Pe(n) ≤ (1 −
∑
i∈I

πi) +
|I|2

2
πmax2−nρI . (6)

As a consequence, Pe(n) reaches (1 −
∑

i∈I πi) at a rate of ρI . In particular, by taking
I = {1, ...,K}, we obtain that ρ(Pe) ≥ ρI .

Remark 1. (a) In the practically important case where the prior pS on S is uniform, the
term |I|2

2 πmax2−nρI is bounded above by K
2 2−nρI .

(b) Computation of the Chernoff Information (5) is an optimization problem that
may be difficult to solve exactly. In practice, setting λ = 1

2 in the argument of the min
often yields a good lower bound of C(p, q), known as Bhattacharyya distance. Another
lower bound that we will find useful in the case of distributions with sparse support (see
Section 6), is obtained by taking the min limited to the cases λ = 0 and λ = 1. Letting
σ = supp(p) ∩ supp(q), this quantity amounts to −min{log p(σ) , log q(σ)}.

We analyse now the case of PW
e , where W is a generic view of an ihsH . We follow

the notation and terminology established in the previous section. It would be tempting
to proceed as follows: build a new ihs, sayHW , where the states areW and the channel
matrix is pO|W . The error probability function forHW would then coincide with PW

e (n).
It would then be enough to apply Theorem 1 toHW . This approach however is doomed
to failure. In fact, the assumption that the observations Oi are conditionally independent
given W is in general false:

p(o1 · · · on|w) , p(o1|w) · · · p(on|w) .

As a consequence, the ihsHW is meaningless for what concerns our purposes. However,
conditional independence of the Oi’s given W is guaranteed, and the approach outlined
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above does work, in the special case where W is a partition finer than ≡. This intuition
leads us to develop to the method illustrated below for PW

e in the general case.
Some more notation first. For notational simplicity, assumeW is a set of integers

{1, ..., |W|}. Let q(·|·) be the matrix defining the view W. We denote by ∼W the equiva-
lence relation on S induced by q(·|·), that is

s ∼W s′ iff for each o ∈ O : q(o|s) = q(o|s′) . (7)

In other words, two states are ∼W -equivalent if the corresponding rows of q(·|·) are
equal. LetS/∼W be {E1, ..., EL}, the equivalence classes of ∼W . The intersection ≡ ∩ ∼W

is still an equivalence relation on S, that is finer than both ≡ and ∼W . Recall that S/≡ is
{C1, ...,CK}. For 1 ≤ i ≤ K and 1 ≤ j ≤ L, we let the equivalence classes of ≡ ∩ ∼W be
denoted as

Fi j
4
= Ci ∩ E j (8)

and furthermore

F∗i
4
= max

j
pS (Fi j) and q∗j

4
= max

w
q(w|s), for an arbitrary s ∈ E j . (9)

The next theorem has the following interpretation. The attacker focuses on a subset
of the representative states, {s∗i |i ∈ I}. He tries to identify first the class Ci of S , then
guesses the class Fi j – this is given by the j that maximizes pS (Fi j). Finally he guesses
the view w that is most likely in E j. This strategy can fail for two reasons: either w is
wrong (first term in the expression), or Fi j is wrong (second + third term). We report a
proof of this result in the Appendix.

Theorem 2. Let I and ρI be chosen as in Theorem 1. Let W be a view ofH . Let Πmax =

maxi∈I F∗i . Then

PW
e (n) ≤

L∑
j=1

(1 − q∗j) + (1 −
∑
i∈I

F∗i ) +
|I|2

2
Πmax2−nρI . (10)

Note that the determination of the upper-bound in (10) is computationally practical:
the partitions induced by ≡ ∩ ∼W can be directly computed by inspection of the matri-
ces p(·|·) and q(·|·). Their intersection (8), and the probability mass of the corresponding
classes pS (Fi j), are then straightforward to compute. Theorem 2 only provides an (ex-
ponential) upper bound to PW

e (n). The following theorem provides the exact limit of
PW

e (n) in the special, but important case when W is a partition.
We introduce quickly a few concepts of the method of types from Information The-

ory [12, Ch11] that will be used in the proof. Fix n ≥ 1. Given a sequence on ∈ On

and o ∈ O, denote by n(o, on) the number of occurrences of o inside on. The empir-
ical distribution or type of on is the distribution on O defined as ton (o) 4= n(o, on)/n,
for each o ∈ O. The "balls" of center pi(·) and radius ε > 0 in On are defined as
Un

i (ε) 4= {on : D(ton ||pi) ≤ ε}. It is a result from the method of types that, as n → +∞,
pi(Un

i (ε)) → 1, while, for any p , pi there is ε > 0 small enough s.t. p(Un
i (ε)) → 0.

Moreover, the convergence is exponential in both cases.
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Theorem 3. Let W be a partition of H . Then PW
e (n) converges exponentially fast to

1 −
∑K

i=1 F∗i . More precisely, with the same notation of Theorem 2, for each n ≥ 1,
1 −

∑K
i=1 F∗i ≤ PW

e (n) ≤ (1 −
∑K

i=1 F∗i ) + K2

2 Πmax2−nρI , where I = {1, ...,K}.

Proof. (Outline) First, note that for W a partition, the first term in (10) vanishes, as each
q∗j equals 1. The upper bound is then a consequence of Theorem 2 with I = {1, ...,K}.
We now seek for a lower bound of PW

e (n). We equivalently focus on an upper bound
of PW

succ(n). Assume without loss of generality that W = {1, ..., L}. For any n ≥ 1, let
g : On → {1, ..., L} be a W-map guessing function, and let A j = g−1( j), for j ∈ {1, ..., L},
be the acceptance region in On for j. It is a routine task to check that

PW
succ(n) =

K∑
i=1

L∑
j=1

pi(A j)pS (Fi j) . (11)

Now, fix any i ∈ {1, ...,K}, and let ji = argmax j=1,...,L pS (Fi j), that is pS (Fi ji ) = F∗i . We
claim that pi(A ji ) → 1 as n → +∞. In fact, fixed ε > 0 small enough, for any n large
enough A ji contains the "ball" Un

i (ε) of center pi(·) and radius ε in On. To see that this
is true, note that a sufficient condition for on ∈ A ji is that for each j , ji

pOn |W (on| ji)pW ( ji) =

K∑
l=1

pl(on)pS (Fl ji ) >

K∑
l=1

pl(on)pS (Fl j) = pOn |W (on| j)pW ( j) .

(12)
Now from results of the method of types it follows that, for on ∈ Un

i (ε), we have that
all the pl(on) with l , i go exponentially fast to 0 as n grows. Thus the condition (12)
reduces, for n large enough, to F∗i = pS (Fi ji ) > pS (Fi j): this is satisfied by definition
of ji4. Now A ji ⊇ Un

i (ε) implies that pi(A ji ) goes to 1 exponentially fast as n grows; for
the same reason, pi(A j) goes to 0 for each j , ji as n grows (recall that the A j’s form a
partition of On). This way, and taking (11) into account, we have proved that

lim
n→∞

PW
succ(n) =

K∑
i=1

F∗i .

Since PW
succ(n) is monotonically non-decreasing, we have proved that PW

succ(n) ≤∑K
i=1 F∗i holds true for each n ≥ 1. This implies in turn the wanted statement.

Example 2 (modular exponentiation). We consider timing attacks against implementa-
tions of the modular exponentiation algorithm with blinding, used in public-key cryp-
tography – see e.g. [14,16,17,5] and references therein. A typical implementation of
modular exponentiation works as follows. The bits of the secret exponent are scanned
from right to left, or vice-versa. When the ith bit is considered (0 ≤ i < N), either one
or two modular multiplications are performed, depending on whether the i-th bit is 0

4 If there is more than one index j maximizing pi(Fi j), then the choice of ji gets more involved:
among those j’s that maximize pS (Fi j), one chooses the one that maximizes pS (Fi′ j), where
pi′ (·) is the distribution closest to pi(·) in terms of KL-distance, if this j is unique; otherwise
one must look at the second closest distribution pi′′ (·), and so on. We omit the details here.
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or 1. In timing attacks, the attacker tries to reconstruct the secret key by sampling the
duration of several independent executions of the algorithm. To an implementation as
described above there corresponds an ihswhere: S = {0, 1}N is the set of secret keys, i.e.
the possible exponents of the algorithm, over which we assume a uniform distribution
can be assumed; O = {t1, t2, ...} is the finite set of possible execution times; p(t|s) is the
probability that, depending on the deciphered message, the execution of the algorithm
takes times t given that the secret key is k. As argued in [5], it is sensible to assume that
any two keys having the same Hamming weights are indistinguishable inH . Therefore,
we have N + 1 indistinguishability classes. From each of them we choose a representa-
tive s∗i of probability πi = 1

2N . Applying Theorem 1, we find Pe(n) → 1 − N+1
2N , which

for realistic values of N, is very close to 1. E.g., for N = 1024, the attacker gets on the
limit log(1025) ≈ 10.01 bits of information leakage out of 1024.

One would then like to prove that this small leakage is not concentrated in few
individual bits of the exponent, which would make them potentially vulnerable. For
instance, let us examine the error probability of guessing the least two significant bits
of the exponent. Let W be the partition of S s.t. s ∼W s′ iff s mod 4 = s′ mod 4. We
apply Theorem 3 to PW

e . We have four ∼W -classes E0, ..., E3, that intersect with the N+1
classes Ci to form 4(N + 1) classes Fi j. Assume N even. For all i = 0, ..., N−2

2 , the class
Fi j that has more elements, hence determines the probability F∗i , is Fi0; by symmetry,
for i = N−2

2 + 1, ...,N the class with more elements is Fi3. For i = N
2 , instead, we can

choose between Fi1 and Fi2. According to Theorem 3 then

PW
succ →

N∑
i=0

F∗i ≈
1

2N

( N−2∑
i=0

(
N − 2

i

) )
=

1
4
.

Thus, asymptotically the observations do not increase the prior probability of success,
which is already 1

4 . In terms of information leakage, one gets LW (n) →≈ 0. One can
generalize this reasoning to the case where W represent the least m significant bits, and
arrive at similar conclusions.

5 Example 1: unlinkability in threshold mix-nets

Statistical attacks against anonymity protocols may take advantage of sender-receiver
relationships that remain fixed through repeated rounds of the protocol. In this section,
we consider the case of a mix network, a concept due to Chaum [10]. In a mix-network,
messages are relayed through a sequence of trusted intermediary nodes, called mixes, in
order to hide sender-receiver relationships (unlinkability). In the scenario we consider, a
single mix is used by a number of senders and receivers. The threshold of the mix is b+

1: at each round, the mix waits for b + 1 messages from the senders and then distributes
the messages to the corresponding receivers. We consider the situation where one of the
senders is always Alice, with her receiver being always a node Bob, initially unknown
to the attacker. The recipients of the remaining b messages are assumed be chosen at
random in a set of nodes R1, ...,RN . A similar scenario is at the basis of the statistical
disclosure attack by Danezis [13]. We analyse the situation of a local eavesdropper
that observes one fixed receiver, say R j, and after each round is able to tell whether at
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least one message has reached R j. More sophisticated forms of eavesdropping could
be easily accommodated (e.g. attacker observing all the nodes), but would not change
significantly the outcome of the analysis. The task of the attacker is to discover which
node is Bob; or at least, to tell if Bob is or not the observed node, R j.

We can model the scenario described above by an ihs H where: the set of states
is given by all possible nodes (potential receivers of Alice’s messages), that is S =

{R1, . . . ,RN}, with pS (Ri) = 1
N for each i = 1, ...,N; the set of observations is O = {0, 1},

where o = 1 iff R j has received at least one message at the end of the round.
The conditional probability matrix p(·|·) is then given by the following equalities:

p(0|R j) = 0 p(1|R j) = 1

p(0|Ri) = (1 − 1
N )b p(1|Ri) = 1 − (1 − 1

N )b for all i , j.

Here, the first row means that, if Bob=R j, then the attacker will observe at least one
message with certainty. The second row means that, in case Bob is any node differ-
ent from R j, then the attacker will observe 0 messages only if all the b messages –
other than the one sent to Bob – are not sent to R j (Alice surely does not send to
R j). In other words, except for a permutation of the rows, we have the matrix below.



(1 − 1
N )b 1 − (1 − 1

N )b

...
...

(1 − 1
N )b 1 − (1 − 1

N )b

0 1



Here the last row refers to R j. This means that there are
only two classes of indistinguishability: S/≡ is {C1,C2},
with C1 = {R j} and C2 = S \ {R j}.

We first apply apply Theorem 1 to H , which will tell
us what is the error probability in case the attacker wishes
to know exactly who is Bob. We can set I = {i, j}, for any
i , j, and get the following bound:

Pe(n) ≤
(
1 −

2
N

)
+

2
N

1 − (
1 −

1
N

)bn

.

As expected, the limit value 1 − 2
N is > 0, and the security of the system increases as N

increases. The corresponding asymptotic information leakage is log(N · 2
N ) = 1, that is,

the attacker gains 1 bit of min-entropy on the limit about the identity of Bob.
To see qualitatively what the single bit gained by the attacker corresponds to, we

analyse the error probability with respect to the view W ∈ {0, 1} given by:

W = 1 iff S = R j .

That is, W yields 1 iff Bob is R j. The partition induced on S by W coincides with ≡,
hence its classes are C1,C2. Concerning the sets Fi j, we note that: F11 = {R j}, F12 =

F21 = ∅ and F22 = S \ {R j}. Since the distribution on the states is uniform, we have:
F∗1 = 1

N and F∗2 = 1 − 1
N . Take I = {i, j} as defined as above. According to Theorem 2,

the limit of PW
e (n) vanishes, moreover

PW
e (n) ≤

2
N

1 − (
1 −

1
N

)bn

.
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The attacker’s success probability of guessing whether R j =Bob or not approaches very

fast 1. It is also interesting to study the behaviour of the rate ρI = − log
(
1 − (1 − 1

N )b
)

depending on b and N. It is easy to see that as b increases, ρI decreases; on the contrary,
as N increases and b is kept fixed, ρI increases. The shape of PW

e (n) is illustrated quali-
tatively by the plots in the figures below: very few rounds of the protocols (n < 10) are
sufficient to achieve PW

e ≈ 0.
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As mentioned above, it is easy to repeat this kind of analysis with more sophisticated
observations on the part of the attacker: we do not do so here for lack of space. On
the other hand, note that just repeating this simple attacks for each of the potential
Alice’s receivers (that is, setting R j = R1,R2, ...,RN−1 in turn), would lead the attacker
to uncover the identity of Bob after a low number of rounds. This is sufficient to show
that the single threshold mix system is totally insecure.

6 Example 2: privacy in sparse datasets

We consider datasets collecting micro-data – preferences, recommendations, transac-
tion records, health histories and so on – about a large number of individuals. Datasets
of this kind are sometimes published for commercial or research purposes. Making
micro-data public poses serious threats to the privacy of individuals, even when the
data are released in anonymized form – that is with personal identifiers, such as ssn’s,
removed. The risk is that an attacker, using a little of background information about
a given individual and cross-correlation of attributes, might re-identify the individual
within the dataset, leading to the disclosure of the whole set of her/his attributes. An
example of this technique is the spectacular de-anonymization attack of Narayanan and
Shmatikov against the Netflix Prize dataset [19]5.

5 The Netflix Prize dataset collects anonymous movie ratings of 500,000 subscribers. Using
background information publicly available from the Internet Movie Database, Narayanan and
Shmatikov successfully re-identified known users within the Netflix dataset.
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In this section, we show that (sparse) datasets naturally arise as instances of ihs,
and that assessment of statistical attacks against dataset privacy is easily accomplished
using the general results of Section 4.

We view a dataset as a tableD, with rows and columns corresponding to individuals
(or more generally, records) and attributes, respectively. Formally, D ∈ VR×A, where
V, R and A are finite nonempty sets of values, records and attributes, respectively. One
can view any dataset D as an ihsHD, as follows. Records are equiprobable states, that
is we set S = R and let pS (·) be the uniform distribution on R. Concerning observables,
there is a variety of sensible choices, depending on the observation power one wishes
to grant the attacker with. For instance, a sensible choice is O 4= A×V. Another choice,
if V is a totally ordered, is to observe attributes and ranges of values. The last choice
is more robust than the former in case the dataset is published in a perturbed form. In
fact, even setting O 4= A is sensible, as just knowledge of non-null attributes of a record
provides a great deal of information6. In any case, the technical development presented
below does not depend on the specific choice of O. Finally, the conditional probability
matrix models the process of acquiring background information about the individuals
in the dataset. Depending on its exact nature, this information might come from various
sources, e.g. personal blogs, Google searches, or even a water-cooler conversation with
a colleague (see [19]). For example, if O = A, then it is sensible to assume that the
background knowledge consists of randomly chosen attributes and set, for each record
r and attribute a

p(a|r) 4=


1
nr

if a is a non-null attribute of r

0 otherwise

where nr is the number of non-null attributes in the row of the dataset corresponding to
r. Of course, non-uniform distributions can be equally accommodated, e.g. if it is felt
that certain attributes are more likely to be publicly released than others.

Having shown how to model a dataset as a ihs, we have to point out that, in the
formal development below, there is no need to restrict to ihs’s of the formHD. To work
in full generality, we will just assume a dataset is simply an ihs.

In a sparse dataset, most of the entries in the table are null. Specifically, we consider
a dataset sparse if, except possibly for a small fraction of records, for no record there
is another "similar" record in the dataset. To make the notion of sparsity precise, we
have first to make precise the notion of similarity between records. We will work with
a similarity function Sim : S × S → [0, 1]. The intuition underlying the following
definition, which is different from that proposed in [19], is that the similarity of s′ to
s is related to the fraction of non-null attributes they share. More precisely, it is the
fraction of non-null attributes that can be inferred on any of the two by looking at the
other.

Definition 4 (similarity). Given an ihs H , for any s, s′ ∈ S, let σss′ = supp(p(·|s)) ∩
supp(p(·|s′)). We set

Sim(s, s′) 4= min
{

p(σss′ | s) , p(σss′ | s′)
}
.

6 See [19] for further considerations on the structure of sparse datasets.
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Note that Sim(s, s′) = 1 iff supp(p(·|s)) = supp(p(·|s′)). The following notion of
sparsity is not related to - not weaker nor stronger than - the one considered in [19]. It
seems to be satisfied by typical sparse datasets, like the Neflix Prize [19,20]. In fact,
our results extend, although in a different form, to the notion of sparsity of [19], but we
shall not give any detail here for lack of space.

Definition 5 (sparsity). Let H be a ihs with pS (·) the uniform distribution. Let ε > 0
and δ > 0. We sayH is (ε, δ)-sparse if

Pr
(

max
s:s,S

Sim(S , s) ≥ ε
)
< δ . (13)

Our results apply to a situation where the attacker gets to know an entire copy of
the dataset.We begin with a result on error probability.

Theorem 4. LetH be (ε, δ)-sparse, with |S| = N. Then Pe(n) reaches δ at a rate − log ε.
More precisely, Pe(n) ≤ δ + 1

2 [(1 − δ)2N + 2(1 − δ) + 1
N ]εn.

Proof. By definition of sparsity, it is possible to find a subset of the records, say R =

{s∗i |i ∈ I}, s.t. for each s ∈ R, there is no other record in S which is ε-similar to s, and
such that pS (R) ≥ 1 − δ. Moreover, by uniform distribution of the probability mass
on records, we can choose the size of I satisfying |I|−1

N < (1 − δ) ≤ |I|
N , which means

(1 − δ)N ≤ |I| < (1 − δ)N + 1. Next note that, with the notation introduced in Section
4 and by virtue of Remark 1(b), for any i, j ∈ I with i , j, the Chernoff information ci j

satisfies: ci j ≥ − log Sim(s∗i , s
∗
j) ≥ − log ε. Applying Theorem 1 we get the thesis.

In some cases, all the adversary needs to determine about a record its "similarity
class". In fact, knowledge of this class already provides him with almost all the infor-
mation about the record. If this class is disclosed then a privacy breach has occurred.
The next definition formalizes this intuition. Recall from (7) that ∼W is the equivalence
relation induced on S by W.

Definition 6 ((ε, δ, ρ)-breach). Let H be a ihs. Consider a partition W of H such that
whenever s ∼W s′ then Sim(s, s′) ≥ ε. We say W is an (ε, δ, ρ)-breach if PW

e (n) reaches
δ at rate ρ.

The following result establishes strong upper bounds on the resistance to privacy
breaches in sparse datasets (the proof is reported in the Appendix).

Theorem 5. Any (ε, δ)-sparse ihs has an (ε, δ,− log ε)-breach W. In particular, to
PW

e (n) the same bound applies as given for Pe(n) in Theorem 4.

Example 3. Real-world datasets tend to be extremely sparse. For instance, (0.15, 0.2)-
sparsity in a dataset containing N = 5× 105 records should not be considered as excep-
tional (cf. [19, Fig.1], referring to the Netflix Prize dataset). Applying the bound of The-
orem 4 to these figures, we see that already after coming across n = 10 randomly chosen
attribute values of a target individual, the probability of uncorrect re-identification in the
dataset is < 0.201. This may still seem quite high in absolute terms. Consider, however,
that the success probability prior to the observations was 1

5×105 . In terms of information
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leakage, this means that the attacker has obtained L(10) ≈ 18.6 bits of min-entropy,
out of log N ≈ 18.9. The privacy breach is therefore absolutely relevant. Note that at-
tacks against real-world datasets can exploit specific features of the target and get more
impressive success probabilities [19].

7 Conclusion

We have put forward a model to analyse a variety of statistical attacks in a uniform
fashion. This permits the assessment of systems security against passive eavesdroppers
both at the global level and at the level of specific partitions of the secrets. In particular,
we give precise bounds for the probability of misclassification on the part of the attacker,
characterising both the limit value and the rate of convergence of the error probability
as a function of the number independent observations.

The last few years have seen a flourishing of research on quantitative models of
information leakage. In the context of language-based security, Clark et al. [11] first
motivated the use of mutual information to quantify information leakage in a setting of
imperative programs. Boreale [4] extended this study to the setting of process calculi,
and introduced a notion of rate of leakage, albeit with a different technical meaning than
that considered in the present paper. Chatzikokolakis, Palamidessi and their collabora-
tors have studied ihs’s from the point of view of both capacity and error probability, but
mainly confining to the case of a single observation [8,9,6,7]. The min-entropy based
information leakage has been proposed by Smith [21], originally in the case of a single
observation.

Backes and Köpf in [1] too consider a scenario of repeated independent observa-
tions, but from the point of view of Shannon entropy, rather than of error probability.
An application of their setting to the modular exponentiation algorithm is the subject
of [16], where the effect of bucketing on security of rsa is examined. This study has
recently been extended to the case of min-entropy by Köpf and Smith in [17]. Earlier,
Köpf and Basin had considered a scenario of adaptive chosen-message attacks [15].
Our previous paper [5] studies the asymptotic behaviour of information leakage. The
bounds obtained there for the asymptotic rates are much looser than those we obtain
here, though. Moreover, considerations on views are absent.

Our work is also related, at least conceptually, to the notion of probabilistic opacity
as studied by Bérard, Mullins and Sassolas [3]. Indeed, although their setting is different
– they work with finite-state machines – our partitions could be viewed as a generaliza-
tion of the binary predicates they consider. Note however that [3] is based on Shannon
entropy, and considers observations consisting of a single run of the system, rather
than repeated observations, hence not statistical attacks. The Bayesian traffic analysis
framework of Troncoso and Danezis [22] is tailored to the analysis of mix-networks,
but mostly focuses on simulation rather than on formal models and analytical results.

As for future work, it would be natural to generalize the present scenario to the
case where the attacker is given k tries for guessing the secret, with k ≥ 2, rather than
just one. Finally, the application to sparse datasets prompts a connection to databases
privacy issues that deserves further attention.
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A Appendix

Unless otherwise stated, we use the notation and conventions introduced in Section 4.

Theorem 6 (Theorem 1). Let I be a nonempty subset of {1, ...,K}. Let ρI
4
=

mini, j∈I,i, j ci j. Let πmax = maxi∈I πi. Then, for all n ≥ 1

Pe(n) ≤ (1 −
∑
i∈I

πi) +
|I|2

2
πmax2−nρI . (14)

As a consequence, Pe(n) reaches (1 −
∑

i∈I πi) at a rate of ρI . In particular, by taking
I = {1, ...,K}, we obtain that ρ(Pe) ≥ ρI .

Proof. Fix n ≥ 1. Let R = {s∗i |i ∈ I} and g : On → R be a function satisfying: g(on) = s∗i
implies p(on|s∗i )πi ≥ p(on|s∗j)π j for each j ∈ I. Note that g need not be map for H , and
that g−1(s) = ∅ for s < R. For each i ∈ I, let Ai = g−1(s∗i ) be the acceptance region for
s∗i . Then we have (the sums below run over s’s s.t. pS (s) > 0)

Pg
e(n) =

∑
s∈S

Pr(g(On) , s|S = s)pS (s)

=
∑
s<R

Pr(g(On) , s|S = s)pS (s) +
∑
i∈I

Pr(g(On) , s∗i |S = s∗i )πi

= (1 −
∑
i∈I

πi) +
∑
i∈I

pi(Ac
i )πi

≤ (1 −
∑
i∈I

πi) +
∑
i∈I

∑
j∈I, j,i

pi(A j)πi

= (1 −
∑
i∈I

πi) +
∑
i∈I

∑
j∈I, j>i

pi(A j)πi + p j(Ai)π j (15)

where the inequality follows from Ac
i = ∪ j∈I\{i}A j and a simple union bound, while

the last equality is simply a rearrangement of summands. Now, we evaluate pi(A j)πi +

p j(Ai)π j for each i, j ∈ I and i , j.
Essentially by the same derivation given in [12, eqn.(11.239)–(11.251)], one finds

that pi(A j)πi + p j(Ai)π j ≤ πλi π
1−λ
j 2−nci j , for a suitable λ ∈ [0, 1]. Since πλi π

1−λ
j ≤

πλmaxπ
1−λ
max = πmax and ci j ≥ ρI , we obtain

pi(A j)πi + p j(Ai)π j ≤ πmax2−nρI (16)

Now, if we plug the bound (16) in (15), and then factor out πmax2−nρI and reorder
the summands, we get

Pg
e(n) ≤ (1 −

∑
i∈I

πi) +
(∑

i∈I

∑
j∈I, j>i

1
)
πmax2−nρI .

Now, use the fact that
(∑

i∈I
∑

j∈I, j>i 1
)

=
|I|(|I|−1)

2 ≤
|I|2

2 , which shows that the wanted
inequality holds for Pg

e(n). But, from optimality of map, Pe(n) ≤ Pg
e(n), which completes

the proof.

18



Theorem 7 (Theorem 2). Let I and ρI be chosen as in Theorem 1. Let W be a view of
H . Let Πmax = maxi∈I F∗i . Then

PW
e (n) ≤

L∑
j=1

(1 − q∗j) + (1 −
∑
i∈I

F∗i ) +
|I|2

2
Πmax2−nρI . (17)

Proof. Denote a pair of indices (i, j) ∈ {1, ...,K} × {1, ..., L} as i j. For each s ∈ S, define
ind(s) = i j iff s ∈ Fi j. Fix n ≥ 1 and any function g′ : On → {1, ...,K} × {1, ..., L}, and
let S ucc′ be the event (g′(On) = ind(S )). That is, S ucc′ is the event that g′ correctly
classifies the index (of the equivalence class Fi j) of S . Now define a guessing function
for H , g : On → W, as g(on) 4= w, where g′(on) = i j and w = argmaxwq(w|s) for any
s ∈ E j (note that the information about i provided by g′ is ignored by g). Let Err be the
event (g(On) , W). We have

PW
e (n) = Pr(Err, S ucc′) + Pr(Err|¬S ucc′) Pr(¬S ucc′) (18)

≤ Pr(Err, S ucc′) + Pr(¬S ucc′) . (19)

Let us estimate Pr(Err, S ucc′) and Pr(¬S ucc′) separately. It is an easy matter to prove
that

Pr(Err, S ucc′) =

L∑
j=1

(1 − q∗j) Pr(S ∈ E j, S ucc′)

≤

L∑
j=1

(1 − q∗j) . (20)

We now estimate Pr(¬S ucc′). Consider the new ihs H ′
4
= ({1, ...,K} ×

{1, ..., L},O, p′(·), p′(·|·) ), where p′(i j) 4= pS (Fi j) and p′(o|i j) 4= pi(o). Note that i j ≡ i′ j′

iff i = i′. Hence we have K distinct classes in this system, whose representatives are el-
ements s′1 = 1 j1, ..., s′K = K jK such that ji = argmax j pS (Fi j), hence p′(s′i) = F∗i , for
i = 1, ...,K. The corresponding representative distributions (rows of the matrix p′(·|·))
are p′1(·) = p1(·), ..., p′K(·) = pK(·).

Now take the function g′ above to be a map guessing function for H ′. Call P′e(n)
the error probability of H ′: clearly, Pr(¬S ucc′) = P′e(n). Take I ⊆ {1, ...,K} and apply
Theorem 1 toH ′ and I to get

Pr(¬S ucc′) ≤ 1 −
∑
i∈I

F∗i +
|I|2

2
Πmax2−nρI . (21)

When we plug the bounds (20) and (21) into (19), we get the wanted result.

Theorem 8 (Theorem 5). Any (ε, δ)-sparse ihs has an (ε, δ,− log ε)-breach W. In par-
ticular, to PW

e the same bound applies as given for Pe in Theorem 4.

Proof. The proof is similar to that of Theorem 4. Consider the set R = {s∗i | i ∈ I}. Build
the partition W as follows: take as blocks the singletons {s∗i }, for i ∈ I, plus the blocks
obtained by breaking S \ R in such a way that any two records in the same block are
ε-similar. Then apply Theorem 2 with W and I, taking into account the bounds for |I|
given in the proof of Theorem 4.
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