
A fully abstract semantics for

causality in the π-calculus∗

Michele Boreale Davide Sangiorgi

Dipartimento di Scienze dell’Informazione Department of Computer Science

Università di Roma “La Sapienza” INRIA Sophia-Antipolis

Abstract

We examine the meaning of causality in calculi for mobile processes like the

π-calculus, and we investigate the relationship between interleaving and causal se-

mantics for such calculi.

We separate two forms of causal dependencies on actions of π-calculus processes,

called subject and object dependencies: The former originate from the nesting of

prefixes and are propagated through interactions among processes (they are the only

form of causal dependencies present in CCS-like languages); the latter originate from

the binding mechanisms on names. We propose a notion of causal bisimulation which

distinguishes processes which differ for the subject or for the object dependencies.

We show that this causal equivalence can be reconducted to, or implemented into,

the ordinary interleaving observation equivalence. We prove that our encoding is

fully abstract w.r.t. the two behavioural equivalences. This allows us to exploit the

simpler theory of the interleaving semantics to reason about the causal one.

In [San94b] a similar programme is carried out for location bisimulation [BCHK91],

a non-interleaving spatial-sensitive (as opposed to causal-sensitive) behavioural equiv-

alence. The comparison between the encodings of causal bisimulation in this paper,

and of location bisimulation in [San94b], evidences the similarities and the differ-

ences between these two equivalences.

∗Appeared in acta informatica, 35(5): 353-400 (1998)

1

1 Introduction

In the field of semantics for process algebras, a major division is between interleaving

semantics and non-interleaving semantics. In the former case, only the temporal de-

pendencies of action executions are observed; in the latter case also either the causal

dependencies among actions (causal semantics) or the spatial distribution of systems (lo-

cation semantics) are considered. Non-interleaving semantics give a better account of the

concurrency and of the dependencies among the activities of a system. But the easier

mathematics of interleaving semantics has permitted the development, for instance, of

simpler algebraic characterisations and modal logics.

Lately, there has been a growth of interest for name-passing process algebras, in which

the possibility of communicating names (a synonymous for ‘channels’) permits the mod-

eling of systems with dynamic linkage reconfigurations. The best known of these calculi

is the π-calculus [MPW92]. Most theoretical research on the π-calculus has dealt with

interleaving semantics [MPW92, BD92, PS93, San92, Wal95]; a major concern has been

investigation of its expressiveness. The non-interleaving side remains largely unexplored;

only very recently, the analysis of a location semantics has appeared [San94b].

The main goal of this paper is to investigate the the relationship between interleav-

ing and causal semantics for the π-calculus. We focus on the interleaving observation

equivalence (also called weak bisimulation), written ≈ [Mil89, MPW92], and on the non-

interleaving causal bisimulation, written ≈c [DDM88, DD89, Kie91]; these are among the

most studied behavioural equivalences in the respective groups. W.r.t. observation equiv-

alence, causal bisimulation makes additional distinctions on processes on the basis of the

causal dependencies for their actions. Our major result shows that causal bisimulation

can be reconducted to, or implemented into, observation equivalence. This allows us to

use the simpler theory of the interleaving semantics to reason about the causal one; the

result also evidences the expressive power of the π-calculus.

Causal bisimulation represents quite a stable relation. Several approaches to causality

have independently led to it. Examples include Degano, De Nicola and Montanari’ history

preserving bisimulation [DDM88], Darondeau and Degano’ causal-tree bisimulation [DD89]

and Kiehn’s global-cause bisimulation [Kie91]. (Comparisons of causal bisimulation with

other interleaving and non-interleaving equivalences can be found in [Ace92b, Ace92a,

DDM93].) Known descriptions of causal bisimulation over CCS-like languages are based

2

on operational transition rules more complex than the standard interleaving ones [Mil89],

because they carry information about causal dependencies, in form of pointer-like objects

among actions. This extra structure also has to be lifted at the syntactic level, forcing an

extension of the basic language; existing algebraic theories and proof systems of causal

bisimulation [DD89, Kie93] heavily rely on the added causal operators. A motivation

for trying to implement causal bisimulation at the interleaving level is to seek ways for

avoiding the introduction of this extra structure.

Another goal of this paper is to investigate the meaning of causality in calculi for mobile

processes. We have individuated two forms of dependencies between actions, which we

have called subject and object dependencies. Subject dependencies originate from the

nesting of prefixes and are propagated through internal communications of processes. For

example, the processes a.b.0+ b.a.0 can perform actions a and b in either order. In either

case, there is a dependency between the two actions — the firing of the first enables

the firing of the second. The propagation of subject dependencies through interactions

is shown in ν c (a.c.0 | c.b.0) (we use the π-calculus notation ν a P for the restriction of

name a in process P). In this process, the interaction at c creates a dependency of b

from a; indeed, it holds that ν c (a.c.0 | c.b.0) is causally equivalent with a.b.0. In CCS-

like languages, i.e., languages in which actions represent pure synchronisation, subject

dependencies are the only form of causal dependencies. Subject dependencies cannot be

detected at the interleaving level. For example, one cannot detect the dependency between

the actions a and b of the process a.b.0 + b.a.0. Hence, in an interleaving semantics this

process is equated to the process a.0 | b.0; this equality is rejected in a causal semantics

because in a.0 | b.0 actions a and b are independent.

The other form of dependencies, namely the object dependencies, are determined by

π-calculus binding mechanisms on actions; therefore they do not exist in CCS. Approxi-

mately, an action λ is object dependent from a previous action µ if µ acts as binder for

some name of λ; as such, µ can be thought of as supplying some names to λ. There

are two binding actions in the π-calculus, namely input and bound output — the latter

denoting the output of a restricted, i.e., private, name.

By contrast with subject dependencies, the possible object dependencies in a process

can be detected at the interleaving level, simply revealed by the occurrences of names

in actions. For instance, consider the bound output transition P1
(ν b)a〈b〉−→ P2, which

says that P1 can perform the output at a of the private name b and become P2 in doing

3

so; the object dependencies from the action (ν b)a〈b〉 are given by those actions in the

successive behaviour of P2 in which b occurs free. A similar consideration can be made

for input transitions P1
a〈b〉−→ P2 — which says that P1 can perform the input at a of b

so becoming P2 — if name b is not already present in P1. In other words, observationally

equivalent processes show the same object dependencies (see Proposition 4.3 in Section

4). In most of the cases, an object dependency is also a subject dependency (for instance,

this is always the case for the object dependencies arising from input actions). There are,

however, exceptions. For instance, the process P
def
= ν b (a〈b〉.0 | b〈y〉.0) can perform the

output at a of the restricted name b and then an output at b; the former action enables

the latter, because it “opens” the restriction at b. There is an object dependency of the

action at b from the action at a, but no subject dependency.

Various ways of observing subject and object dependencies are possible. Intuitively, in

any reasonable bisimulation-like equivalence, object dependencies are automatically taken

into account, since they are detectable within the standard transition system. In other

words, observing object dependencies alone leads to the standard observation equivalence.

For the same reason, observing separately subject and object dependencies reduces to

observing subject dependencies alone. A different choice would be to take the union and

not to distinguish between the two forms of dependencies.

We have chosen to keep subject dependencies separate from object dependencies. The

reason is that they represent logically different forms of causality. Indeed, subject depen-

dencies are responsible for important properties of causal processes, that would not hold

for object dependencies alone. For example, in [BS97] we prove that, with our choice,

causal bisimulation is a congruence for the language considered in this paper. By contrast,

this property fails to hold for observation equivalence, where only object dependencies are

considered. This fact is further discussed in the concluding section.

Therefore in this paper we distinguish processes which differ for the subject or for the

object dependencies. For instance, we shall discriminate between the process P above

and the process Q
def
= ν b (a〈b〉. b〈y〉.0). Both processes can perform an action at a and

then an action at b. However, in Q there is a double causal dependency between the

two actions: One given by a prefix-nesting (i.e., a subject dependency), and the other

given by a name-binding (i.e., an object dependency). By contrast, in P there is a single

dependency between the two actions, given by name-binding.

To define a causal bisimulation which reflects these discriminations on processes, we

4

enrich the standard (i.e., interleaving) transition system of the π-calculus with information

about the subject dependencies. Our enriched system is defined following Kiehn’s system

[Kie91], which describes causal bisimulation in CCS (as noted above, in CCS all causal

dependencies are subject dependencies). This implies adding explicit causes to π-calculus

syntax and operational semantics. Causal bisimulation is defined on top of the enriched

system using familiar bisimulation techniques.

We then show that the sophisticated observational machinery of causal bisimulation

(≈c) can be represented from within the interleaving observation equivalence (≈). We

define a compositional encoding [[.]] from the enriched calculus to the basic one, and we

prove that it is fully abstract w.r.t. ≈c and ≈; i.e., for each pair of terms A and B in the

enriched calculus we have:

A ≈c B if and only if [[A]] ≈ [[B]] .

Through various examples, we show how this result and the algebraic theory of ≈ can be

used to prove properties about ≈c. When restricted to the sublanguage with no object

dependencies, that is CCS, our encoding yields a characterisation of the classic causal

bisimulation of [DD89, Kie91] in terms of the observation equivalence of the monadic

π-calculus.

In the definition of encoding, we exploit an important feature of the π-calculus: The

calculus naturally permits the description of data structures which can be created and

combined at run time. These data structures are modeled as standard processes accessible

via private names, which can be passed around and used to form more complex structures.

We use data structures called wires to encode the observability of the explicit causes used

in the definition of causal bisimulation. A wire receives names at an entrance-point and

retransmit them at a bunch of end-points. Several wires can be connected together,

connection representing union of causes. Reachability among wires, i.e. if an end-point

of a wire can be reached from the entrance-point of another wire, encodes the subject

dependencies between actions. When a target process [[A]] performs a visible action µ,

a wire is generated and a pointer to the wire — under the form of a fresh name —

is emitted. This pointer can be used to ‘explore’ the wire and determine the subject

dependencies for µ. Transmission of causes across a parallel composition, a distinguishing

feature of causal bisimulation, is rendered as an exchange of a private name, by which

two previously separated wires get connected. The proof of our full abstraction theorem

5

exploits a few properties of concatenation of wires that permit symbolic manipulations of

these structures.

The paper mainly relates to [San94b]. There, a programme similar to that of the

present paper is carried out for location bisimulation [BCHK91], one of the most con-

vincing spatial-sensitive semantics. An encoding from an enriched π-calculus of located

processes to the standard π-calculus is given and proved to be fully abstract w.r.t. loca-

tion bisimulation and observation equivalence. The treatment of causes in communica-

tions is what distinguishes causal bisimulation from location bisimulation: In the former,

the causes of the interacting actions must be appropriately merged, whereas in the latter

they remain separate. This explains the difference between the data structures (the wires)

used in the encoding of the two equivalences, here and in [San94b]. In the case of causal

bisimulation, the connections among wires, established as the computation proceeds, may

create branching chains; by contrast, in the case of location bisimulation connections

among wires may only create linear chains. The difference also shows up in the proofs:

Although the overall structure of the proofs of full abstraction is similar in the two papers,

the technical details are quite different, sometimes strikingly so. A thorough comparison

between causal and location bisimulation via their encodings into observation equivalence

presented here and in [San94b] is in Section 10. The outcomes of this comparison are cer-

tainly not new. Careful studies of the relationship between causal- and spatial-sensitive

equivalences can be found in the literature [Ace92b, CD93, MY92, Kie91, Kie93, DP92].

The use of the encodings gives us a refreshing perspective on the issue. (By the time

of the review of this paper, various works have continued to investigate the meaning of

causality in the π-calculus. Causal semantics different from ours have been proposed, an

overview of which can be found in [Pri96].) A study of the congruence properties of the

causal equivalence presented in this paper is in [BS97].

The remainder of the paper is organised as follows. In Section 2, we review the syntax

of the standard polyadic π-calculus and the definition of observation equivalence. In

Section 3 we present the proof techniques (mainly various forms of “bisimulation up-to”)

that will be extensively used in later sections. In Section 4 we introduce the enriched

language of causal terms, and we define causal bisimulation. In Section 5 we present the

encoding [[.]]. Its full abstraction is proved in Sections 6 through 8, which are organised

as follows. In Section 6, some important properties of wire processes are shown. These

properties are used in Section 7, to establish the operational correspondence between

6

transitions of causal terms and transitions of encoded processes, and in Section 8, to derive

the main theorems. In Section 9 we show some examples of applications of the encoding.

In Section 10 causal bisimulation and location bisimulation are compared using their

encodings into observation equivalence presented here and in [San94b]. The concluding

section mentions directions for possible future research.

2 The polyadic π-calculus

We start by reviewing the standard syntax and the interleaving semantics of the polyadic

π-calculus, as in [Mil91].

2.1 Syntax of standard processes

Definition 2.1 (Standard processes) Consider an infinite countable set N of names

s.t. N ∩ {τ} = ∅ . The class of the polyadic standard processes over names N , written

P(N), is built from the operators of inaction, input prefix, output prefix, silent prefix,

sum, parallel composition, restriction, and replication:

P := 0 | a(̃b). P | a〈̃b〉. P | τ. P | P1 + P2 | P1 | P2 | ν a P | !P .

In the sequel, a, b, . . . , x, y, . . . range over names, and P, Q, R over standard processes.

A tilde denotes a tuple. When the tilde is empty, the surrounding brackets () and 〈〉
will be omitted. 0 is the inactive process. An input-prefixed process a(̃b). P , where b̃

has pairwise distinct components, waits for a tuple of names c̃ to be sent along a and

then behaves like P{c̃/̃b}, where {c̃/̃b} is the simultaneous substitution of names b̃ with

names c̃. An output-prefixed process a〈̃b〉. P sends b̃ along a and then continues like P . A

silent prefix τ.P denotes a process which may evolve to P without interactions with the

environment. Sum and parallel composition are used, as in CCS, to express a choice and

to run two processes in parallel. The restriction ν a P makes name a local, or private, to

P . A replication ! P stands for a countable infinite number of copies of P in parallel. We

write Πi∈IPi as an abbreviation for Pi1 | . . . | Pin , I = {i1, . . . , in}. Symbol I will range

over finite indexing sets. We assign parallel composition and sum the lowest precedence

among the operators.

In prefixes a(̃b) and a〈̃b〉, we call a the subject and b̃ the object. We use α to range

over prefixes and often abbreviate α.0 as α. The operators a(̃b).P and ν b P bind all free

7

occurrences of names b̃ and b in P . These binders give rise in the expected way to the

definition of free names of a term. The definitions of name substitution and alpha con-

version are standard too, with renaming possibly involved to avoid capture of free names.

We identify processes or actions which only differ on the choice of the bound names; this

will avoid some tedious side conditions, especially in the definitions of bisimulations. The

symbol = will mean “syntactic identity modulo alpha conversion”. Sometimes, we use
def
=

as abbreviation mechanism, to assign a name to an expression to which we want to refer

later. In an assertion, we say that a name is fresh to mean that it it is different from any

other name which is nominated in the assertion or which occurs in a process nominated

in the assertion.

Remark 2.2 The above grammar does not have the operator of matching (often consid-

ered in the π-calculus), and uses replication rather than recursive definitions of agents.

We have omitted matching not because of difficulties in its treatment, but because

causal bisimulation has interesting congruence properties in the calculus without matching

[BS97]. A discussion on this is deferred to the concluding section. We adopted replication

because it suffices to code up recursion (the encoding showed by Milner [Mil91, section

3.1] for the ordinary interleaving bisimilarity also works well for causal bisimulation) and

is easier to handle algebraically. 2

2.2 Sorting

Virtually all π-calculus processes described in the literature obey some discipline in the

use of names. The introduction of sorts and sortings into the π-calculus [Mil91] intends

to make this name discipline explicit. In the polyadic π-calculus, sorts are also essential

to avoid disagreement in the arities of tuples carried by a given name, or applied to a

given constant. Below, we review the definition of sorting and of well-sorted process.

Names are partitioned into a collection of subject sorts, each of which contains an

infinite number of names. We write a : s to mean that name a belongs to the subject sort

s; this notation is extended to tuples componentwise. Then object sorts, are just tuples

of subject sorts, such as (s1, . . . , sn) or (s). Finally, a sorting is a function Ob mapping

each subject sort onto an object sort. We write s 7→ (s̃) ∈ Ob, if Ob assigns the object

sort (s̃) to s. By assigning the object sort (s1, s2) to the subject sort s, one forces the

tuples carried by any name in s to be a pair whose first component is a name of s1 and

8

whose second component is a name of s2. Thus, a prefix a(̃b). P or a〈̃b〉. P is well-sorted

for a sorting Ob if a : s and s 7→ (s̃) ∈ Ob imply b̃ : s̃. A process P is well-sorted for

Ob if all input and output prefixes in P are well-sorted. The sorting system also affects

substitutions, which are only defined between names of the same sort. In the remainder

of the paper, all processes are supposed to be well-sorted for some sorting Ob.

2.3 The standard transition system and observation equivalence

We now come to the definition of observation equivalence. In an interleaving semantics, a

π-calculus process has three possible forms of action. A silent action P
τ−→ P ′ represents

interaction, i.e. an internal activity in P . Input and output actions are, respectively, of

the form

P
a〈eb〉−→ P ′ and P

(ν eb′)a〈eb〉−→ P ′ .

In both cases, the action occurs at a. In the input action, b̃ is the tuple of names which

are received. In the output action, b̃ is the tuple of names which are emitted, and b̃′ ⊆ b̃

are private names which are carried out from their current scope. The angled brackets

in the input action are to stress that names b̃ represent the values communicated —

similarly to their role in an output action a〈̃b〉 — as opposed to binders, which are found

in an input prefix a(̃b). P .

We use µ to represent the label of a generic action (not to be confused with α, which

represents prefixes). All names in an input action are free. In an output action (ν b̃′)a〈̃b〉,
names b̃′ are bound, the remaining ones free. Bound and free names of an action µ,

respectively written bn(µ) and fn(µ), are defined accordingly. The names of µ, briefly

n(µ), are bn(µ)∪ fn(µ). Table 1 shows the standard transition system of the π-calculus.1

We have omitted the symmetric versions of rules S-sum, S-par and S-com. We work up

to alpha conversion on processes also in transition systems, for which alpha convertible

agents are deemed to have the same transitions. We often abbreviate P
τ−→ Q with

P −→ Q, and write P
bµ−→ Q to mean P

µ−→ Q, if µ 6= τ , and P = Q or P
τ−→ Q, if

1In the transition system of Table 1 the bound names of an input are instantiated as soon as possible,

in the input rule; therefore it is an early transition system [San92], as opposed to a late transition system

[MPW92, Mil91] in which the instantiation is done later, in the communication rule. The adoption of an

early transition system naturally leads to the adoption of an early bisimulation. See [PS93, San93], for

instance, for discussions about different forms of transition system and bisimulation for the π-calculus.

In this paper we only consider the early system.

9

S-inp: a(c̃). P
a〈eb〉−→ P{b̃/̃c} S-out: a〈̃b〉. P a〈eb〉−→ P

S-tau: τ. P
τ−→ P S-par:

P
µ−→ P ′

P |Q µ−→ P ′ |Q
bn(µ) ∩ fn(Q) = ∅

S-com:
P

(ν eb′)a〈eb〉−→ P ′ Q
a〈eb〉−→ Q′

P |Q τ−→ ν b̃′ (P ′ |Q′)
b̃′ ∩ fn(Q) = ∅

S-res:
P

µ−→ P ′

ν c P
µ−→ ν c P ′

c 6∈ n(µ) S-open:
P

(ν eb′)a〈eb〉−→ P ′

ν c P
(ν eb′c)a〈eb〉−→ P ′

c 6= a, c ∈ b̃− b̃′

S-sum:
P

µ−→ P ′

P + Q
µ−→ P ′

S-rep:
P | ! P

µ−→ P ′

! P
µ−→ P ′

Table 1: SOS for the standard processes

µ = τ . We write the composition of two relations R and R′ as RR′.

Definition 2.3 (strong bisimilarity) A symmetric relation R ⊆ P(N) × P(N) is a

strong bisimulation if P RQ and P
µ−→ P ′ imply that2 there exists Q′ s.t. Q

µ−→ Q′

and P ′RQ′. Two processes P and Q are strongly bisimilar written P ∼ Q, if P RQ, for

some strong bisimulation R .

Relation∼ is preserved by all π-calculus operators but input prefix, for which, however,

a special inference rule is valid:

if, for each c̃, P{c̃/̃b} ∼ Q{c̃/̃b} then a(̃b). P ∼ a(̃b). Q.

We sometimes also use the largest congruence contained in ∼, denoted by ∼c, and defined

as follows:

P ∼c Q if and only if, for each name substitution σ, Pσ ∼ Qσ.

Table 2 lists a few simple algebraic laws which are valid for ∼c (and hence for the

relations coarser than it, such as ∼). For ∼, an expansion law similar to that used in

CCS [Mil89] is valid; details can be found in [MPW92] and [PS93].

2We omit the requirement bn(µ) ∩ fn(Q) = ∅ , since we work up-to alpha conversion.

10

Abelian monoid laws for + : P1 + P2 ∼c P2 + P1

P1 + (P2 + P3) ∼c (P1 + P2) + P3

P + 0 ∼c P

Abelian monoid laws for | : P1 | P2 ∼c P2 | P1

P1 | (P2 | P3) ∼c (P1 | P2) | P3

P | 0 ∼c P

Restriction: ν a0 ∼c 0

ν a ν b P ∼c ν b ν a P

if a 6∈ fn(P2), then (ν a P1) | P2 ∼c ν a (P1 | P2)

Replication: ! P ∼c P | ! P

Table 2: A few laws for strong bisimulation congruence (∼c)

Remark 2.4 The third law for restriction in Table 2 allows us to extrude the scope of

a restriction across a parallel composition, provided that the restricted name is fresh.

Since we work up-to alpha conversion, we shall apply the law without recalling this side

condition. 2

As usual, the ‘weak’ arrow =⇒ is the reflexive and transitive closure of −→, that is

=⇒=
⋃

n≥0 −→n; then
µ

=⇒ stands for =⇒ µ−→=⇒. If P =⇒ Q then we say that Q is a

τ -derivative of P . Finally, similarly to P
bµ−→ Q, we use P

bµ
=⇒ Q to mean: P

µ
=⇒ Q,

if µ 6= τ , and P =⇒ Q, if µ = τ .

On the weak arrows we define observation equivalence, sometimes called weak bisim-

ulation. This is the interleaving behavioural equivalence we are most interested in.

Definition 2.5 (observation equivalence) A symmetric relation R ⊆ P(N)×P(N)

is a weak bisimulation (or a ≈-bisimulation) if P RQ and P
µ

=⇒ P ′ imply that there ex-

ists Q′ s.t. Q
bµ

=⇒ Q′ and P ′RQ′. Two processes P and Q are observationally equivalent,

(or weakly bisimilar), written P ≈ Q, if P RQ, for some weak bisimulation R .

Observation equivalence is preserved by all operators except input prefix and sum; for

input prefix, a congruence rule similar to that stated for ∼ is valid.

11

3 Proof techniques

For the proof of the results in this paper, we appeal to the expansion relation and to

various “up-to” techniques.

3.1 The expansion relation

The expansion relation <∼ [AKH92, SM92] is an asymmetric variant of ≈ which allows

us to count the number of τ -actions performed by the processes. Thus, P <∼ Q holds if

P ≈ Q but also Q has at least as many τ -moves as P . The expansion relation provides

us with better ‘control’ on τ -moves than the ordinary ≈.

Definition 3.1 (expansion) A relation R is an expansion if P RQ implies:

1. Whenever P
µ−→ P ′, there exists Q′ s.t. Q

µ
=⇒ Q′ and P ′RQ′;

2. whenever Q
µ−→ Q′, there exists P ′ s.t. P

bµ−→ P ′ and P ′RQ′.

We say that Q expands P , written P <∼ Q, if P RQ, for some expansion R .

Note that, in contrast with the other relations considered in the paper, <∼ is not

symmetric. For instance, P <∼ τ. P , but τ. P 6<∼ P since τ. P has to perform more τ -actions

than P in order to mimic its actions. Relation <∼ , which is indeed a preorder, enjoys

the same congruence properties as ≈. The following proposition sums up the relationship

among the behavioural relations considered in the paper.

Proposition 3.2 The following is a chain of strict inclusions: ∼c ⊂ ∼ ⊂ <∼ ⊂ ≈. 2

3.2 The “up-to” techniques

The “up-to” techniques allow us to reduce the size of a relation R to exhibit for proving

bisimilarities [Mil89, SM92, San94a]. The up-to techniques which we use in the paper

allow us to manipulate the derivatives of a pair of processes in two ways: First, we can

replace such derivatives with behaviourally-equivalent processes; secondly, we can cut

common contexts of the derivaitves. The contexts we cut are of the form ν c̃ (R | [·]); they

are called static contexts.

12

Definition 3.3 (≈-bisimulation up-to context and up-to >∼) A symmetric relation

R is a ≈-bisimulation up-to context and up-to >∼ if P RQ and P
µ

=⇒ P ′′ imply that

there are a static context C[·] and processes P ′ and Q′ s.t. P ′′ >∼ C[P ′], Q
bµ

=⇒ >∼ C[Q′]

and P ′RQ′.

Proposition 3.4 If R is a ≈-bisimulation up-to context and up-to >∼ , then R ⊆≈.

Proof: By showing that

R ′ = {(P, Q) : for some static context C[·] and processes P ′, Q′

it holds that P >∼ C[P ′], Q >∼ C[Q′] and P ′RQ′ }

is a ≈-bisimulation. This proves the thesis because R ⊆ R ′. Details of the proof can

be found in [San94b]. 2

We do not know whether the above soundness theorem holds if Definition 3.3 is weak-

ened by replacing all occurrences of <∼ with ≈.

The next up-to technique is new; it is the corresponding for expansion of Definition

3.3. Note the occurrence of ∼ in clause (1) of Definition 3.5: We do not know whether

the replacement of ∼ with <∼ preserves the soundness of the technique.

Definition 3.5 (expansion up-to context and up-to >∼) A relation R is an ex-

pansion up-to context and up-to >∼ if P RQ implies:

1. Whenever P
µ−→ P ′′, there are a static context C[·] and processes P ′ and Q′ s.t.

P ′′ ∼ C[P ′], Q
µ

=⇒ >∼ C[Q′] and P ′RQ′;

2. whenever Q
µ−→ Q′′, there are a static context C[·] and processes P ′ and Q′ s.t.

Q′′ >∼ C[Q′], P
bµ−→ <∼ C[P ′] and P ′RQ′.

Proposition 3.6 If R is an expansion up-to context and up-to >∼ , then R ⊆ <∼ .

Proof: By showing that

{(P, Q) : for some static context C[·] and processes P ′, Q′

it holds that P <∼ C[P ′], Q >∼ C[Q′] and P ′RQ′ }

is an expansion relation. The proof is similar to the proof of Proposition 3.4. 2

13

4 Causal bisimulation

The section begins with a discussion on the way object and subject dependencies in

processes can be detected. Whereas the former are detectable with the standard transition

system, the latter require a richer system, with explicit causes. We show a few properties

of the richer system and define causal bisimulation on top of it.

Object dependencies are the dependencies determined by the binding mechanisms on

names. To know the object dependencies in a process, we look at its runs. A run of a

process is a sequence of transitions starting from that process.

Definition 4.1 A run P1
µ1−→ P2 . . . Pn

µn−→ Pn+1, n ≥ 1, is fresh when for all 1 ≤ i ≤ n

if µi = ν b̃ a〈c̃〉 or µi = a〈̃b〉, then b̃ ∩ fn(Pi) = ∅ and for all j < i, b̃ ∩ n(µj) = ∅ ; in this

case, we say that names b̃ are introduced in µi.

In a fresh run, names exported in an output or imported in an input are all fresh.

Fresh runs reveal all possible name dependencies in processes in a simple way.

Definition 4.2 Given a fresh run P1
µ1−→ P2 . . . Pn

µn−→ Pn+1, we say that µi is object

dependent on µj, 1 ≤ j < i ≤ n, if there is a name introduced in µj which is among the

free names of µi.

For instance, in the run ν b (b | a(x). x〈b〉) a〈c〉−→ ν b c〈b〉−→ b−→ 0 | 0, the second action is

object dependent on the first and the third is object dependent on the second. Object

dependencies can already be observed at the interleaving level, since they are shown by

the occurrences of names in actions: Names themselves act as pointers among actions.

Thus, observationally equivalent processes exhibit the same object dependencies.

Proposition 4.3 If P1 ≈ Q1 and P1 has a fresh run P1
µ1−→ P2 . . . Pn

µn−→ Pn+1 where

µi is object dependent on µj, then also Q1 has a fresh run Q1
µ1−→ Q2 . . . Qn

µn−→ Qn+1

where µi is object dependent on µj. 2

The other form of dependencies among actions, namely the subject dependencies, are

determined by the nesting of prefixes. By contrast with the object dependencies, the

subject dependencies are not detected in an interleaving semantics (see discussion in

Section 1). To capture them, we add explicit causal information to the standard syntax

and operational semantics of the calculus. For this, we follow Kiehn’s system [Kie91],

14

which describes the causal dependencies for CCS processes, and transport it onto the

π-calculus.

For the extra causal information, we use an auxiliary set K of causes. In the enriched

system, visible transitions are of the form A
µ
−→
K; k

A′. The visible action µ is associated

with a unique cause k ∈ K. The set of actions from which µ is causally related is revealed

by means of the set K ⊆fin K of their associated causes. We call K the cause-set for µ.

If a successive action µ′ is caused by µ, then µ′ will have k (i.e., the cause associated with

µ) in its cause-set. In the term syntax, the explicit use of causes is accompanied by the

introduction of a causal prefix K :: A, for K ⊆fin K, which says that the cause-set of any

action of the process A must contain K.

By contrast, silent actions are not observable and do not exhibit causes. However,

causes do play an important role in the communication rule, for the causes of two inter-

acting actions must be appropriately merged. Consider the sequence of transitions

ν b (a. b. c.0 | d. b.0)
a
−→
∅ ; k1

ν b ({k1} :: b. c.0 | d. b.0)
d
−→
∅ ; k2

ν b ({k1} :: b. c.0 | {k2} :: b.0)
τ−→ ν b ({k1, k2} :: c.0 | {k1, k2} :: 0)

c
−→

{k1, k2}; k3
ν b ({k1, k2} :: {k3} :: 0 | {k1, k2} :: 0) .

They show that the actions at a and d have no cause; and that the action at c is causally

dependent on a and d. The latter makes sense: c could fire only because both a and d

fired. Note that in the τ -transition, the cause-sets {k1} and {k2} of the consumed actions

are merged.

4.1 Syntax and transitional semantics of causal terms

The notations and conventions introduced on standard processes — including the identifi-

cation of alpha equivalent processes — extend to the enriched language of causal processes

below, and will not be repeated.

We let k and h range over causes (i.e., elements of K), K and H over finite subsets

of K, and A and B over causal processes. We denote by K(A) the set of causes which

appear in the causal process A. To improve readability, in the syntax of our terms and

of our operational rules we abbreviate a union of sets of causes K ∪K ′ as K, K ′ and we

write a singleton set {k} simply as k. Thus, A
µ
−→

K, K′; k
A′ stands for A

µ
−→

K ∪K′; k
A′, and

k :: A stands for {k} :: A. 1

1The prefix k :: A is taken as a primitive operator in [Kie91].

15

Definition 4.4 (causal processes) Consider an infinite countable set N of names, and

an infinite countable set K of causes with K, N and {τ} pairwise disjoint. The language

of polyadic causal processes over causes K and names N , written Pc(N ,K), is given by

the following grammar:

A := K :: A | A | A | ν a A | P

where P is a P(N) term (i.e., a standard term) and K ⊆fin K.

We do not allow the presence of causes underneath dynamic operators (prefixes, sums and

replications), because we are only interested in derivatives of standard processes, for which

these cases may never arise. This is clear from the transition rules for causal terms, in

Table 3. The rules for the prefixes and for communication express the essence of the whole

semantics: Inp and Out, for input and output prefixes, introduce causes into processes;

Cau, for the causal prefix K :: A, makes any action performed by A dependent upon K.

Rule Com implements the cause exchange discussed at the beginning of this section. In

the rule, the notation A[k ; K] indicates the replacement of k with the elements of K, in

any set of causes in A. For instance, ({k1, k2} :: α.0)[k2 ; {k3, k4}] is {k1, k3, k4} :: α.0.

The rules for the remaining operators are formally identical to the standard rules of Table

1.

Our rules, when restricted to the sublanguage of finite 0-adic (i.e. CCS) causal terms,

coincide with Kiehn’s rules [Kie91]. The only variation is in rule Com: In our case, processes

A1 and A2 use the same fresh cause k, whereas the obvious π-calculus’s adaptation of

Kiehn’s rule, called Com′ below, uses two distinct causes:

Com′ :
A1

(ν eb′)a〈eb〉
−→

K1; k1
A′

1 A2

a〈eb〉
−→

K2; k2
A′

2

A1 | A2
τ−→ ν b̃′ (A′

1[k1 ; K2] | A′
2[k2 ; K1])

k1 /∈ K(A1), k2 /∈ K(A2), b̃′∩fn(A2) = ∅ .

Anyhow, the two rules Com and Com′ are interderivable, as can be proved using Lemma

4.5 below to rename causes.

Weak causal transitions are defined in the usual manner, therefore A
µ

=⇒
K; k

A′ is

A =⇒
µ
−→
K; k

=⇒ A′. The definition of well-sortedness for causal terms is given as for

standard processes (all input and output prefixes in a term must respect the discipline

imposed by the chosen sorting). All causal terms considered in the paper are supposed

to be well-sorted.

16

Rules for visible transitions:

Out : a〈̃b〉. A
a〈eb〉
−→
∅ ; k

k :: A Inp : a(̃b). A
a〈ec〉
−→
∅ ; k

k :: A{c̃/̃b}

Cau :
A

µ
−→
K; k

A′

K ′ :: A
µ
−→

K, K′; k
K ′ :: A′

Par :
A1

µ
−→
K; k

A′
1

A1 | A2

µ
−→
K; k

A′
1 | A2

bn(µ) ∩ fn(A2) = ∅

Res :
A

µ
−→
K; k

A′

ν c A
µ
−→
K; k

ν c A′
, c /∈ n(µ) Open :

A
(ν eb′)a〈eb〉
−→
K; k

A′

ν c A
(ν eb′c)a〈eb〉

−→
K; k

A′

, c 6= a, c ∈ b̃− b̃′

Sum :
A1

µ
−→
K; k

A′
1

A1 + A2

µ
−→
K; k

A′
1

Rep :
A | ! A

µ
−→
K; k

A′

! A
µ
−→
K; k

A′

. .

Rules for silent transitions:

T-pre : τ.A
τ−→ A T-sum :

A1
τ−→ A′

1

A1 + A2
τ−→ A′

1

T-par :
A1

τ−→ A′
1

A1 | A2
τ−→ A′

1 | A2

T-res :
A

τ−→ A′

ν c A
τ−→ ν c A′

Com :
A1

(ν eb′)a〈eb〉
−→

K1; k
A′

1 A2

a〈eb〉
−→

K2; k
A′

2

A1 | A2
τ−→ ν b̃′ (A′

1[k ; K2] | A′
2[k ; K1])

b̃′ ∩ fn(A2) = ∅ , k /∈ K(A1, A2)

T-cau :
A

τ−→ A′

K :: A
τ−→ K :: A′

T-rep :
A | ! A

τ−→ A′

! A
τ−→ A′

Table 3: SOS of causal terms

17

4.2 Basic Properties of the Transitional Semantics of Causal

Terms

A cause substitution ρ is a function from K to K. We write kρ = k′ if ρ maps cause k

onto k′; and Kρ for the set of causes {kρ : k ∈ K}. Also, Aρ is the process obtained

from A by replacing each of its causes k with kρ. The cause substitution that maps k onto

k0 and is the identity elsewhere, will be sometimes written as a replacement [k ; k0].

Lemma 4.5 allows us to rename the cause k of a transitions A
µ
−→
K; k

A′. Later, Lemma

4.8 will extend this result to weak transitions. Lemmata 4.6 and 4.7 relate the actions of

causal terms A and Aρ.

Lemma 4.5 Let k, k0 ∈ K, with k0 6∈ K(A).

1. If A
µ
−→
K; k

A′, then A
µ
−→

K; k0
A′′ and A′′[k0 ; k] = A′.

2. If A
µ
−→

K; k0
A′, then A

µ
−→
K; k

A′′ and A′[k0 ; k] = A′′.

Proof: Easy transition inductions. 2

Lemma 4.6 Let ρ be a cause substitution. Then

1. A
µ
−→
K; k

A′ implies Aρ
µ
−→

Kρ; kρ
A′ρ.

2. A
τ−→ A′ implies Aρ

τ−→ A′ρ.

3. A =⇒ A′ implies Aρ =⇒ A′ρ.

4. A
µ

=⇒
K; k

A′ implies Aρ
µ

=⇒
Kρ; kρ

A′ρ.

Proof: (1) is proved by transition induction; (2) is also proved by transition induction,

but in the case when Com is the last rule applied, we also need part (1) of this lemma and

Lemma 4.5. Assertion (3) is proven by iterating (2) and finally (4) is a consequence of

(1) and (3). 2

Lemma 4.7 Let ρ be a cause substitution. Then

1. If Aρ
µ
−→
K; k

A′ then there are K ′, k′ and A′′ s.t. A
µ
−→

K′; k′
A′′ with K ′ρ = K, k′ρ = k

and A′′ρ = A′.

2. If Aρ
τ−→ A′ then there is A′′ s.t. A

τ−→ A′′ with A′′ρ = A′.

18

3. If Aρ =⇒ A′ then there is A′′ s.t. A =⇒ A′′ with A′′ρ = A′.

4. If Aρ
µ

=⇒
K; k

A′ then there are K ′, k′ and A′′ s.t. A
µ

=⇒
K′; k′

A′′ with K ′ρ = K, k′ρ = k

and A′′ρ = A′.

Proof: Similar to that of Lemma 4.6. 2

By combining Lemmata 4.5, 4.6(3) and 4.7(3), we obtain the analogue of Lemma 4.5

for weak transitions:

Lemma 4.8 Let k, k0 ∈ K, with k0 6∈ K(A).

1. If A
µ

=⇒
K; k

A′, then A
µ

=⇒
K; k0

A′′ and A′′[k0 ; k] = A′.

2. If A
µ

=⇒
K; k0

A′, then A
µ

=⇒
K; k

A′′ and A′[k0 ; k] = A′′. 2

4.3 Causal bisimulation

Weak causal bisimulation is defined on top of weak causal transitions by means of familiar

bisimulation techniques. We shall omit the adjective “weak” and simply call it causal

bisimulation.

Definition 4.9 (causal bisimulation) A symmetric relation R ⊆ Pc(N ,K)×Pc(N ,K)

is a causal bisimulation (or ≈c-bisimulation) if ARB implies:

1. whenever A =⇒ A′ there exists B s.t. B =⇒ B′ and A′ R B′;

2. whenever A
µ

=⇒
K; k

A′ with k /∈ K(A, B), there exists B′ s.t. B
µ

=⇒
K; k

B′ and A′ R B′.

Two causal terms A, B are causally bisimilar, written A ≈c B, if ARB for some causal

bisimulation R . 2

Lemma 4.10 For any cause substitution ρ, if A ≈c B then Aρ ≈c Bρ.

Proof: We show that

R = {(Aρ, Bρ) : ρ is a cause substitution and A ≈c B}

is a ≈c-bisimulation. Suppose A ≈c B, and consider clause (2) of Definition 4.9. If

Aρ
µ

=⇒
K; k

A′ with k /∈ K(Aρ) (1)

19

then from Lemma 4.7, for some K ′, k′ and A′′, we have

A
µ

=⇒
K′; k′

A′′ with A′′ρ = A′, K ′ρ = K and k′ρ = k. (2)

Let k0 /∈ K(A, B); by Lemma 4.8,

A
µ

=⇒
K′; k0

A′′′ with A′′′[k0 ; k′] = A′′

and, since A ≈c B, also

B
µ

=⇒
K′; k0

B′′′ with A′′′ ≈c B′′′ .

Reversing, the steps, we get

B
µ

=⇒
K′; k′

B′′ with B′′′[k0 ; k′] = B′′

and

Bρ
µ

=⇒
K′′; k′′

B′ with K ′′ = K ′ρ, k′′ = k′ρ and B′ = B′′ρ . (3)

The action in (3) matches the one in (1): The conditions in (2) and (3) imply K = K ′′ and

k′′ = k; moreover, it holds that B′ = B′′′[k0 ; k′]ρ, A′ = A′′′[k0 ; k′]ρ and A′′′ ≈c B′′′.

We conclude that (A′, B′) ∈ R .

The other clause of the definition of ≈c can be dealt with similarly. 2

The following is a characterisation of causal bisimulation which will be exploited in

the proof of completeness for the encoding. The difference from Definition 4.9 is that the

requirement k 6∈ K(A, B) in clause (2), input case, is dropped.

Definition 4.11 A symmetric relation R ⊆ Pc(N ,K) × Pc(N ,K) is a loose causal

bisimulation (or ≈′
c-bisimulation) if ARB implies:

1. whenever A =⇒ A′ there exists B s.t. B =⇒ B′ and (A′, B′) ∈ R;

2. whenever A
a〈eb〉
=⇒
K; k

A′ there exists B′ s.t. B
a〈eb〉
=⇒
K; k

B′ and (A′, B′) ∈ R;

3. whenever A
ν eb′ a〈eb〉

=⇒
K; k

A′ with k /∈ K(A, B), there exists B′ s.t. B
ν eb′ a〈eb〉

=⇒
K; k

B′ and (A′, B′) ∈
R.

Two causal terms A and B are loose cause bisimilar, written A ≈′
c B, if ARB, for some

loose causal bisimulation R .

Proposition 4.12 The relations ≈c and ≈′
c coincide.

20

Proof: We only have to show that ≈c⊆≈′
c; the converse follows immediately because

the defining clauses for ≈′
c are equal or stronger (in the input case) than those for ≈c.

We proof that ≈c is a ≈′
c-bisimulation. Let A ≈c B. We check clause (2) of Definition

4.11. Suppose A
a〈eb〉
=⇒
K; k

A′, and take a fresh cause k0. Then from Lemma 4.8, letting

µ = a〈̃b〉,
A

µ
=⇒

K; k0
A′′, with A′′[k0 ; k] = A′,

which implies, since A ≈c B,

B
µ

=⇒
K; k0

B′′, with A′′ ≈c B′′ .

Again, by Lemma 4.8, we get

B
µ

=⇒
K; k

B′, with B′′[k0 ; k] = B′ .

From Lemma 4.10, A′′ ≈c B′′ implies A′ = A′′[k0 ; k] ≈c B′′[k0 ; k] = B′, which

concludes the case. 2

5 The Encoding

In this section we present and discuss the encoding of causal bisimulation into observation

equivalence.

We use two new sorts C and T of names, ‘new’ meaning that these sorts do not occur

in the original sorting of causal terms. There will be a one-to-one correspondence between

causes — i.e. elements of the set K — in a causal process, and names of sort C in the

standard process enconding it. Hence, for notational convenience, we identify the sets C
and K (any ambiguity is resolved by the different classes of processes in which elements

of these sets occur as causes and as names, and by the different use of causes and names),

and call a name in C a cause, or also a cause name. Names in C carry names of sort T .

We sometimes call a name in T a token.

The intuition underlying the encoding is as follows. Causes in a causal term A are

encoded in the standard term [[A]] as standard processes called wires. A wire k�K takes

a token in input at the entrance point k and emits it, as an output, at each end-point

k′ ∈ K. Two wires are connected when an end-point of the first is the entrance-point

of the other; this connection represents union of causes. When [[A]] performs a visible

action, a name k is emitted and a wire with entrance-point k is created. Intuitively, k

21

represents the unique cause associated to that transition, whose cause-set is represented

by all end-points of all wires reachable from k. An observer that receives k can determine

this cause-set by sending a token at k and and observing where (i.e., at which end-points)

the token can be retrieved.

As an example, the encoding of the causal process K :: a.b.0 will have the following

transitions:

[[K :: a.b.0]]
a〈k〉−→ k � K | [[k :: b.0]]

b〈h〉−→ k � K | h � k | [[h :: 0]] .

(This shows how linear chains are generated.) A crucial point is the modeling of silent

transitions. The “merging of causes” discussed at the beginning of Section 4 is imple-

mented as an exchange of a bound name, by which the appropriate wires get connected.

As an example, we have:

[[K :: a.P |H :: a.Q]]
τ−→ ν k (k � K | k � H | [[k :: P | k :: Q]])

(This shows how branching chains arise.) After the communication, P and Q have a

common cause-set K ∪H, referred to by k. Indeed, the derivative of the above transition

will turn out to be observationally equivalent to [[K ∪H :: P |K ∪H :: Q]].

We come to the actual definition of wire processes. In the sequel, we use v to range

over T , and we abbreviate N ∪ C ∪ T as N+.

Definition 5.1 (Wire processes) The standard process k � K ∈ P(N+), called wire

process, is so defined:

k � K
def
= ! k(v). Πk′∈K ! k′〈v〉 .

Name k is the entrance point of the wire, and names in K are the end-points.

We explain the presence of the replication operators in wire processes. In general,

once a wire is created, an unbounded number of other wires may get connected to it,

both at its entrance point, and — due to the branching structure of causal chains —

at each of its end-points. The outermost replication in the definition of k � K is

to make the wire persistent, so that it can be used an arbitrary number of times. The

innermost replications in the definition of k�K make a token availability at an end-point

persistent. This ensures that a token which has reached an end-point can be transmitted

to all unboundedly many wires connected with it.

22

The encoding is presented in Table 4. It acts as a homomorphism, from Pc(N ,K) to

P(N+), everywhere but on prefixes. The encoding adds extra components (the wires) into

processes, thus increasing the number of their states. The problem, however, is strongly

alleviated by Lemmata 7.1 and 7.2 and the Cancelation Lemma 8.4, in Section 8, which

allow us to get rid of wires when they appear at the outermost level of processes.

The encoding has to be defined on sortings too, since an extra component (of sort

C) is added to the arities of names in the target processes. To ease the notation, we

abbreviate k� (K ∪H) as k� (K, H) , and k� ({k′}, K) as k� (k′, K) . Similarly, we

abbreviate [[A]](K ∪ K ′) as [[A]](K, K ′) and [[A]]({k}, K ′) as [[A]](k, K ′). Note that when

the source term are 0-adic terms (i.e., CCS terms), Table 4 gives us an encoding of the

classical causal bisimulation of CCS [DD89, Kie91] into the observation equivalence of

the monadic π-calculus. It is straightforward to see that there is agreement between the

definitions of the encoding on processes and on sortings:

Proposition 5.2 If A is well-sorted for Ob then [[A]] is well-sorted for [[Ob]]. 2

6 Fundamental Lemmata

All processes in this section are standard processes from P(N+).

6.1 Properties of the replication operator

We recall some basic properties of the replication operator, which will be used several

times in this and in the next section.

Lemma 6.1

1. ! P | ! P ∼c ! P .

2. ! α.P ∼c α.(! α.P | P), if bn(α) ∩ fn(α. P) = ∅ . 2

Lemma 6.2 asserts the distributivity of restricted replications over parallel composition

and replication. It generalises an original result by Milner [Mil91] to the case in which

there is a finite set of restricted replications — rather than one only.

Lemma 6.2 Suppose name k occurs free in the processes P1, P2, P and Ri (i ∈ I) only

in output subject position. Then

23

Encoding of the sorting:

[[Ob]]
def
= {s 7→ (s̃, C) : s 7→ (s̃) ∈ Ob}

⋃
{C 7→ (T), T 7→ ()}

where C and T are new sorts, i.e. sorts which do not appear in Ob.

. .

Encoding of causal processes:

We assume k : C, K ⊆fin C and v : T ; we set [[A]]
def
= [[A]]∅ , where [[A]]K is defined by

induction on the structure of A as follows:

[[a(̃b). A]]K
def
= a(̃bk). (k � K | [[A]]{k}), k ∈ K −K

[[a〈̃b〉. A]]K
def
= ν k a〈̃bk〉. (k � K | [[A]]{k}), k ∈ K −K

[[K ′ :: A]]K
def
= [[A]](K ′, K) [[τ.A]]K

def
= τ.[[A]]K

[[A1 | A2]]K
def
= [[A1]]K | [[A2]]K [[A1 + A2]]K

def
= [[A1]]K + [[A2]]K

[[ν a A]]K
def
= ν a [[A]]K [[0]]K

def
= 0

[[! A]]K
def
= ![[A]]K

Table 4: The encoding of causal terms

24

1. ν k (P1 | P2 | Πi∈I ! k(v). Ri) ∼c ν k (P1 | Πi∈I ! k(v). Ri) | ν k (P2 | Πi∈I ! k(v). Ri).

2. ν k (! P | Πi∈I ! k(v). Ri) ∼c ! ν k (P | Πi∈I ! k(v). Ri).

Proof: Analogous to the proofs of Milner’s distributivity laws in [Mil91]: One has to

define strong bisimulations that are preserved by name substitutions. Some simplification

can be achieved by working “up-to static contexts”, as shown in [San94a]. 2

Lemma 6.3

1. ν k (! α.P | Πi∈I !k(v).Ri) ∼ ! α. (ν k (P | Πi∈I ! k(v). Ri)),

if k 6∈ n(α), bn(α) ∩ fn(Πi∈I ! k(v). Ri) = ∅ , and k occurs free in P and Ri (i ∈ I)

only in output subject position;

2. ν k (Πi∈I !k(v).Πk′∈Ki
! k′〈v〉 | ! k〈v〉) >∼ Πk′∈∪i∈IKi

! k′〈v〉, if k 6∈ ∪i∈IKi.

Proof: (1) is proved by first using Lemma 6.2(2), to distribute the restricted replications

Πi∈I !k(v).Ri over the replication ! α.P , and then using expansion and restriction laws

(Table 2), in the order; (2) is proved by exhibiting the appropriate expansion relation. 2

6.2 Properties of wire-processes

Wire processes k � K are the core of our implementation of causal bisimulation. To

prove the correctness of the implementation, we first need to establish a few properties of

compositions of such wires (Lemmata 6.4 and 6.6). To begin with, two wires k′� (k,K ′)

and k � K , in which the entrance point of the second is among the end-points of the

first, are, so to speak, ‘connected’: Hence the end-points K of the second can be added

to the end-points K ′ of the first. This is, roughly, the content of Lemma 6.4.

If in addition to the above hypothesis, we assume that the common extreme k of the

two wires is inaccessible, then their composition yields a single wire k′ � (K, K ′) , whose

end-points include all end-points of the given wires, except the inaccessible k. This is,

roughly, the content of Lemma 6.6 (the lemma is slightly more general, in that it allows a

product Πi∈I k�Ki of wires in place of the single wire k�K .) The content of Lemmata

6.4 and 6.6 is depicted in Figure 1.

Lemma 6.4 k′ � (k,K ′) | k � K >∼ k′ � (k, K ′, K) | k � K .

25

kn

h ...

k1

J
J

J
J

J
JJ

-

-

-

The wire process h � K , with K = {k1, . . . , kn}.

-

H
HHH -

@
@

@
@ �

�
�

�

-

-

-

@
@

@
@

-

...

...

h1

hn

k1

km

h

h′ �
�

�
�

>∼ -
@

@
@

@ -

J
J

J
J

J
JJ �

�
�

�

-

-

-

@
@

@
@

-
...

...

h1

hn

k1

km

h

h′

-

...

k1

��
�� -km

The wire equation h′ � (H, h) | h � K >∼ h′ � (K, H, h) | h � K , with H = {h1, . . . , hn}
and K = {k1, . . . , km}.

-

HHHH -
@

@
@

@ �
�

�
�

-

-

-

@
@

@
@

-

...

...

h1

hn

k1

km

(ν h)

h′ �
�

�
�

>∼

...

hn

h′

...

k1

km

h1

���
�

J
J

J
J

J
JJ

H
HHH

-

-

-

-

-

The wire equation (ν h)(h′ � (H, h) | h � K) >∼ h′ � (K, H) , with H = {h1, . . . , hn},
K = {k1, . . . , km} and h /∈ K ∪K.

Figure 1: Graphical representations of wire processes.

26

Proof: Fixed K, K ′, k and k′, let

P
def
= k � K | k′ � (k, K ′, K)

Q
def
= k � K | k′ � (k, K ′) .

We prove that the singleton {(P, Q)} is an expansion up to context and up to ∼ (This

technique is just a particular case of the expansion up to context and up to >∼ (Definition

3.5), since ∼ ⊂ >∼). We show how the moves of P are matched by Q; the converse is

similar. The only non-trivial case is when the move of P originates from k′ � (k,K ′, K) ,

as follows:

P
k′〈w〉−→ ∼ Πk′′∈{k}∪K′∪K ! k′′〈w〉 | P .

This can be matched by Q thus:

Q
k′〈w〉−→ ∼ k � K | Πk′′∈{k}∪K′ ! k′′〈w〉 | k′ � (k,K ′)

τ−→∼ Πk′′∈K ! k′′〈w〉 | Πk′′∈{k}∪K′ ! k′′〈w〉 |Q
∼ Πk′′∈{k}∪K′∪K ! k′′〈w〉 |Q

where the last step, in the case when K ∩ ({k} ∪K ′) 6= ∅ , Lemma 6.1 is needed. This is

enough because {(P, Q)} is an expansion up-to context and up-to ∼. 2

To prove Lemma 6.6, we use the following lemma:

Lemma 6.5

1. ν k (! α.P |Πi∈I k � Ki) ∼ ! α.(ν k (P |Πi∈I k � Ki)), if k 6∈ n(α) and k can occur

free in P only in output subject position;

2. ν k (Πi∈I k � Ki | !k〈v〉) >∼ Πk′∈∪i∈IKi
! k′〈v〉, if k 6∈ ∪i∈IKi.

Proof: The clauses of this lemma are instances of clauses (1) and (2), respectively, of

Lemma 6.3. 2

Lemma 6.6 If k /∈ ({k′} ∪K ′ ∪ (∪i∈IKi)), then

ν k (k′ � (K ′, k) | Πi∈I k � Ki) >∼ k′ � (K ′,∪i∈IKi) .

27

Proof: Let Q
def
= ν k (k′ � (K ′, k) | Πi∈I k � Ki), P

def
= k′ � (K ′,∪i∈IKi) and

R
def
= Πk′′∈K′ ! k′′〈v〉 | ! k〈v〉. Then, recalling that k′ � (K ′, k) = ! k′(v).R, we have:

Q ∼ ! k′(v).ν k (R | Πi∈I k � Ki) Lemma 6.5 (1)

∼ ! k′(v).(Πk′′∈K′ ! k′′〈v〉 | ν k (! k〈v〉 | Πi∈I k � Ki)) laws for restrictions in Table 2

>∼ ! k′(v).(Πk′′∈K′ ! k′′〈v〉 | Πk′′∈∪i∈IKi
!k′′〈v〉)) Lemma 6.5 (2)

∼ P

where in the last step, in the case when K ′ ∩ (∪i∈IKi) 6= ∅ , Lemma 6.1 is needed. 2

7 Operational Correspondences

This section is devoted to showing the close operational correspondence between the ac-

tions of a causal process A and those of the encoding standard process [[A]]. In subsection

7.1 we study the operational correspondence on strong visible transitions (Proposition

7.8), and on strong silent transitions (Proposition 7.9). These results are used in subsec-

tion 7.2 to establish the correspondences on weak transitions.

7.1 Operational Correspondence on Strong Transitions

In the proof of the operational correspondence between A and [[A]] on strong transitions,

we use Lemma 7.1 and Corollary 7.6. To prove the latter result, we rely on Lemmata

7.2 through 7.5. Lemma 7.1 and Lemma 7.2 are consequences of Lemma 6.4 and Lemma

6.6, dealing with compositions of wires. To see the relationship between Lemma 7.1

and Lemma 6.4, and between Lemma 7.2 and Lemma 6.6, remember that the parameter

(K0, k) is used in [[A]](K0, k) to define wires of the form k � K ′ , for some K ′. Lemmata

7.1 and 7.2 are also useful when reasoning about processes returned by the encoding,

in that they avoid us having to ‘unfold’ the definition of wire processes. The proofs of

Lemmata 7.1 and 7.2 are reported in Appendix A.

Lemma 7.1 [[A]](K0, k) | k � K >∼ [[A]](k,K0, K) | k � K 2

Lemma 7.2 If k /∈ K0 ∪ (∪i∈I Ki), then

ν k ([[A]](K0, k) | Πi∈I k � Ki) >∼ [[A]](K0,∪iKi) 2

28

The next three lemmata are used to prove Corollary 7.6. We have decomposed the

corollary in this way to help understanding its meaning. (The corollary can also be proved

directly, using Lemma 7.2 and transition induction; all cases of the induction would be

fairly simple.) Lemma 7.3 is a variation of Lemma 7.2. The intuition of Lemma 7.4 is the

following: Any cause in [[A]]K0 depends on K0 (in the sense that there is a wire-connection

from this cause to the causes in K0); therefore, in the process ν k ([[A]]K0 | Πi∈I k �

(Ki, K0)), the dependency of k on K0, expressed in the wires k�(K0, Ki) , is superfluous.

In Lemma 7.5, the transition A
µ
−→
K; k

A′ shows that k depends on K in A′: Therefore, the

wire k�K can be safely removed. The first two lemmata are easily proved by exhibiting

appropriate expansion relations, in the same style as Lemma 7.2. Lemma 7.5 is proved

by transition induction on A
µ
−→
K; k

A′.

Lemma 7.3 If k 6∈ K ∪K0, then ν k ([[A]]K0 | k � K) >∼ [[A[k ; K]]]K0. 2

Lemma 7.4 If k 6∈ (∪i∈IKi) ∪K0, then

ν k ([[A]]K0 | Πi∈I k � (Ki, K0)) >∼ ν k ([[A]]K0 | Πi∈I k � Ki) . 2

Lemma 7.5 If A
µ
−→
K; k

A′ with k /∈ K(A), and k /∈ K0 ∪K ′, then

ν k ([[A′]]K0 | k � K | k � K ′) >∼ ν k ([[A′]]K0 | k � K ′) . 2

Corollary 7.6 If A
µ
−→
K; k

A′ with k /∈ K(A), and k /∈ K0 ∪K ′, then

ν k ([[A′]]K0 | k � (K0, K) | k � (K0, K
′)) >∼ [[A′[k ; K ′]]]K0 .

Proof: Using Lemmata 7.4, 7.5 and 7.3, in the order. 2

Propositions 7.8 and 7.9 below are slightly stronger than we shall need. They relate

the transitions of a causal process A with those of a standard process [[A]]K, for a generic

parameter K, while we shall only need the results for K = ∅ . These more general

statements are easier to handle in the inductive proofs (especially when dealing with rule

Cau). First, an elementary property of the encoding:

Lemma 7.7 For any A, K and σ, [[A]]Kσ = [[Aσ]]K.

Proposition 7.8 (correspondence on strong visible transitions)

29

1. (a) If A
a〈eb〉
−→
H; k

A′ then [[A]]K
a〈ebk〉−→ >∼ k � (H, K) | [[A′]]K.

(b) If k /∈ K(A)∪K and A
ν eb′ a〈eb〉
−→
H; k

A′ then [[A]]K
(ν eb′k)a〈ebk〉−→ >∼ k�(H, K) | [[A′]]K.

2. The converse of (1), on the actions from [[A]]K:

(a) If [[A]]K
a〈ebk〉−→ P then there exist A′, H s.t. A

a〈eb〉
−→
H; k

A′ and

P >∼ k � (H, K) | [[A′]]K.

(b) If [[A]]K
(ν eb′k)a〈ebk〉−→ P then there exist A′, H s.t. A

ν eb′ a〈eb〉
−→
H; k

A′

and P >∼ k � (H, K) | [[A′]]K.

Proof: The proof exploits Lemma 7.1. We only deal with case (1.a), since the others

are similar or easier. We proceed by induction on the derivation of A
a〈eb〉
−→
H; k

A′.

Case 1: Inp rule.

(This is the base case.) Then we have A = a(c̃). P
a〈eb〉
−→
∅ ; k

k :: P{b̃/̃c}. Therefore,

exploiting Lemma 7.7:

[[A]]K = a(c̃k). (k � K | [[P]]{k}) a〈ebk〉−→ k � K | [[P{b̃/̃c}]]{k}
>∼ k � K | [[P{b̃/̃c}]](k,K) = k � K | [[k :: P{b̃/̃c}]]K

where the use of >∼ is due to Lemma 7.1.

Case 2: Par rule.

Then A = A1 | A2 and, supposing that the move originates from A1, the last rule

applied is of the form

Par :
A1

a〈eb〉
−→
H; k

A′
1

A1 | A2

a〈eb〉
−→
H; k

A′
1 | A2

.

From the inductive hypothesis, we know that for all K there is P s.t.

[[A1]]K
a〈ebk〉−→ P >∼ k � (H, K) | [[A′

1]]K .

From this, using rule S-par, we get

[[A1 | A2]]K
a〈ebk〉−→ P | [[A2]]K >∼ k � (H, K) | [[A′

1 | A2]]K

which is the thesis.

30

Case 3: Cau rule.

Then A = K0 :: A′. The last rule applied in deriving the transition from A is of the

form

Cau :
A′

a〈eb〉
−→
H′; k

A′′

A = K0 :: A′ a〈eb〉
−→
H; k

K0 :: A′′

where H = K0 ∪H ′. From the inductive hypothesis, for each K ′ there exists some

P such that

[[A′]]K ′ a〈ebk〉−→ P >∼ k � (H ′, K ′) | [[A′′]]K ′ .

Recalling that [[A]]K = [[A′]](K0, K) and letting K ′ = K0∪K in the above transition,

the thesis follows.

Case 4: Out, Sum, Res, Open or Repl.

These cases easily follow from the inductive assumption. 2

Proposition 7.9 (correspondence on strong silent transitions)

1. If A
τ−→ A′, then [[A]]K

τ−→ >∼ [[A′]]K.

2. If [[A]]K
τ−→ P , then there exists A′ such that A

τ−→ A′ and P >∼ [[A′]]K.

Proof: We only deal with (1), since (2) is similar. The proof is an induction on the

derivation of A
τ−→ A′ and exploits the previous proposition (7.8), Lemma 6.2 and

Corollary 7.6. The most difficult case is when Com is the last rule applied:

Com :
A1

a〈eb〉
−→

H1; k
A′

1, A2

(ν ec)a〈eb〉
−→

H2; k
A′

2

A = A1 | A2
τ−→ ν c̃ (A′

1[k ; H2] | A′
2[k ; H1])

def
= A′

(4)

where c̃ ⊆ b̃ and k /∈ K(A). By applying Lemma 4.5 to rename k, if needed, we can also

suppose k /∈ K. From Proposition 7.8(1), applied to the premises of (4) we get

[[A1]]K
a〈ebk〉−→ >∼ k � (H1, K) | [[A′

1]]K
def
= R1

[[A2]]K
(ν ck)a〈ebk〉−→ >∼ k � (H2, K) | [[A′

2]]K
def
= R2 .

31

From the above two transitions and rule S-com we infer

[[A]]K = [[A1]]K | [[A2]]K
τ−→ >∼ (ν c̃k)(R1 |R2)

∼ (ν c̃k)(k � (H1, K) | k � (H2, K) | [[A′
1]]K | [[A′

2]]K)
def
= P .

Now, k can occur free in [[A′
i]]K (i ∈ {1, 2}) only in output subject position; thus we can

apply Lemma 6.2 (1) to distribute the restricted replications k � (H1, K) | k � (H2, K)

over the parallel composition [[A′
1]]K | [[A′

2]]K in P , obtaining:

P ∼ ν c̃ Πi=1,2(ν k (k � (H1, K) | k � (H2, K) | [[A′
i]]K))

def
= ν c̃ (S1 | S2) .

Now, since Ai

µ
−→
Hi; k

A′
i and k /∈ K ∪Hi ∪ K(Ai), (i ∈ {1, 2}), we can apply Corollary 7.6

to Si, so to replace k with Hj inside [[A′
i]] and eliminate the wires, thus:

Si
>∼ [[A′

i[k ; Hj]]]K

where if i = 1 then j = 2, and if i = 2 then j = 1. Since parallel composition and

restriction preserve >∼ , ν c̃ (S1 | S2) >∼ ν c̃ ([[A′
1[k ; H2]]]K | [[A′

2[k ; H1]]]K) = [[A′]]K

olds. Summarising, we have obtained that [[A]]K
τ−→ >∼ P >∼ [[A′]]K. This concludes the

case. 2

7.2 Operational Correspondences on Weak Transitions

In this subsection we study the operational correspondence between encoded and encoding

processes on weak transitions.

Proposition 7.10 (correspondence on weak silent transitions)

1. If A =⇒ A′, then [[A]] =⇒ >∼ [[A′]].

2. If [[A]] =⇒ P , then there exists A′ such that A =⇒ A′ and P >∼ [[A′]].

Proof:

1. It must be A
τn

−→ A′, for some n ≥ 0. We proceed by induction on n. For

n = 0 the statement holds trivially. Suppose n > 0; then, for some A′′, we have

A
τn−1

−→ A′′ τ−→ A′. From the inductive hypothesis, for some Q,

[[A]] =⇒ Q >∼ [[A′′]] .

32

Now, from Proposition 7.9(1) and A′′ τ−→ A′ we have that, for some P ,

[[A′′]]
τ−→ P >∼ [[A′]] .

Since Q >∼ [[A′′]], from the above transition we get, for some Q′,

Q
τ

=⇒ Q′ >∼ P .

From this and P >∼ [[A′]], we get Q′ >∼ [[A′]]. To sum up, we have obtained:

[[A]] =⇒ Q
τ

=⇒ Q′ >∼ [[A′]]

which proves the thesis.

2. For some n ≥ 0 it holds that [[A]]
τn

−→ P . Again, we proceed by induction on n.

The case n = 0 is trivial. If n > 0, the for some Q, we have [[A]]
τn−1

−→ Q
τ−→ P . By

the inductive hypothesis, we have, for some A′′,

A =⇒ A′′ with Q >∼ [[A′′]] .

From this and Q
τ−→ P , we deduce that, for some R,

[[A′′]]
bτ−→ R with P >∼ R .

Now, by Proposition 7.9(2), there is A′ s.t.

A′′ bτ−→ A′ with R >∼ [[A′]].

Thus, we have found A′ s.t. A =⇒ A′ and P >∼ [[A′]], and proved the thesis. 2

Remark 7.11 In the proof of item (2) of the above proposition the use of the expansion

relation turns out to be necessary to close up the induction of the proof. Had we used ≈
in place of >∼ in the above proof, from Q ≈ [[A′′]] and Q

τ−→ P , we could have only

inferred [[A′′]] =⇒ R (in place of the stronger [[A′′]]
bτ−→ R); as a consequence, we could

not have applied Proposition 7.9 to close up the induction. 2

Proposition 7.12 (correspondence on weak visible transitions)

1. (a) If A
a〈eb〉
=⇒
K; k

A′, then [[A]]
a〈ebk〉
=⇒ >∼ k � K | [[A′]].

33

(b) If k /∈ K(A) and A
(ν eb′)a〈eb〉

=⇒
K; k

A′, then [[A]]
(ν eb′k)a〈ebk〉

=⇒ >∼ k � K | [[A′]].

2. The converse of (1), on the actions from [[A]]:

(a) If [[A]]
a〈ebk〉
=⇒ P , then there exist A′ and K s.t. A

a〈eb〉
=⇒
K; k

A′ and P >∼ k �K | [[A′]].

(b) If [[A]]
(ν eb′k)a〈ebk〉

=⇒ P , then there exist A′ and K s.t. A
ν eb′ a〈eb〉

=⇒
K; k

A′

and P >∼ k � K | [[A′]].

Proof: We only consider case (1.a); the remaining ones are similar. For some A′′ and

A′′′ we have

A =⇒ A′′ a〈eb〉
−→
K; k

A′′′ =⇒ A′ .

From Proposition 7.10, we have, for some P ′′,

[[A]] =⇒ P ′′ >∼ [[A′′]] .

Furthermore, from Proposition 7.8, for some Q,

[[A′′]]
a〈ebk〉−→ Q >∼ k � K | [[A′′′]] .

Therefore, since P ′′ >∼ [[A′′]], there exists P ′′′ such that:

P ′′ a〈ebk〉
=⇒ P ′′′ >∼ Q .

Since A′′′ =⇒ A′, by Proposition 7.10(1), [[A′′′]] =⇒ >∼ [[A′]]. Then, using rule S-par,

we get, for some Q′,

k � K | [[A′′′]] =⇒ Q′ >∼ k � K | [[A′]] (5)

We have proved that P ′′′ >∼ Q >∼ k � K | [[A′′′]]. From this and (5) we deduce that there

is P ′ s.t.

P ′′′ =⇒ P ′ >∼ Q′ >∼ k � K | [[A′]] .

To sum up, we have

[[A]] =⇒ P ′′ a〈ebk〉
=⇒ P ′′′ =⇒ P ′ >∼ k � K | [[A′]]

which concludes the case.

2

34

Remark 7.13

1. Suppose [[A]] =⇒ P ; then P cannot perform actions along a cause name k. This

is a consequence of Proposition 7.10 (2) and of the fact that the processes returned

by the encoding cannot immediately perform actions along a cause name (the latter

fact holds by the definition of the encoding).

2. Suppose [[A]]
µ

=⇒ P ; then P cannot perform output actions along a cause name k.

This is a consequence of Proposition 7.12(2) and of the item (1) of this remark. 2

8 Full Abstraction

In the first part of the section we prove two results about wires processes, the Cancelation

Lemma and the Saturation Lemma, that will be crucial in the second part to prove the

full abstraction theorem.

8.1 The Cancelation and the Saturation Lemmata

The main result of this section is the Cancelation Lemma. It is very useful when verifying

observation equivalence between processes returned by the encoding, to cancel wires which

appear at the outermost level. The Cancelation Lemma will be used in combination with

the Saturation Lemma in the proof of soundness for the encoding.

To state the two lemmata, we need two auxiliary notions: Cause-Sets of a process and

Saturation. The cause-sets of a process A contains all sets of causes which can appear in

transitions from A; that is, if A
µ
−→
K; k

A′, then K is in the cause-sets of A (this property

is formalised in Lemma B.3 (1), in Appendix B).

Definition 8.1 (Cause-Sets of a process) For a causal process A, the cause-sets of

A, written CS(A), is the set of sets of causes inductively defined as follows:

CS(P)
def
= {∅ }

CS(K :: A)
def
= {K ∪H |H ∈ CS(A)}

CS(ν a A)
def
= CS(A)

CS(A1 | A2)
def
= CS(A1) ∪ CS(A2) .

35

Note that in general not all sets in CS(A) need to appear in causal transition from A;

e.g., if A is ν a (K :: a.0), then K ∈ CS(A), but A cannot perform any transition.

Now, the definition of saturation. Intuitively, a causal process A is saturated for a

product of wires W if each set of causes H which appear in A is “closed” w.r.t. the

causality relation encoded by W ; i.e., if a wire in W has its entrance-point in H, then all

end-points of the wire are in H.

Definition 8.2 (Saturation) Let A be a causal process and let W
def
= Πi∈I ki �Ki . We

say that A is saturated for W if for each H ∈ CS(A) and i ∈ I, ki ∈ H implies Ki ⊆ H.

We can now state the Saturation and the Cancelation lemmata; their proofs are re-

ported in Appendix B.

Lemma 8.3 (Saturation Lemma) Let A be a causal process saturated for the product

of wires W
def
= Πi∈I ki � Ki .

1. If A
µ
−→
K; k

A′ with k fresh, then A′ is saturated for k � K |W .

2. If A
τ−→ A′, then A′ is saturated for W .

3. If A
µ

=⇒
K; k

A′ with k fresh, then A′ is saturated for k � K |W . 2

Lemma 8.4 (Cancelation Lemma) Let A be saturated for k �K and B be saturated

for k � K ′ . Then

k � K | [[A]] ≈ k � K ′ | [[B]] implies K = K ′ and [[A]] ≈ [[B]] . 2

8.2 Soundness and Completeness of the encoding

Theorem 8.5 (Soundness) [[A]] ≈ [[B]] implies A ≈c B.

Proof: We prove that the relation

R = {(A, B) : [[A]] ≈ [[B]]}

is a ≈c-bisimulation. Let (A, B) ∈ R . We only show how the moves of A are matched

by B, since the relation is symmetrical. We check clauses (1) and (2) of the definition of

≈c.

36

Clause (1)

A =⇒ A′ implies, from Proposition 7.10(1)

[[A]] =⇒ P , for some P with P ≈ [[A′]]. Since [[A]] ≈ [[B]]

[[B]] =⇒ Q , for some Q with P ≈ Q. From Proposition 7.10(2) we get

B =⇒ B′ , for some B′ with Q ≈ [[B′]] .

To sum up, we have [[A′]] ≈ P ≈ Q ≈ [[B′]]. Hence (A′, B′) ∈ R .

Clause (2) We only look at the input case; the output case is similar. We suppose that

k 6∈ K(A, B).

A
a〈eb〉
=⇒
K; k

A′ implies, from Proposition 7.12(1),

[[A]]
a〈ebk〉
=⇒ P , for some P with P ≈ k � K | [[A′]]. Since [[A]] ≈ [[B]], we get

[[B]]
a〈ebk〉
=⇒ Q , for some Q with Q ≈ P . From Proposition 7.12(2), we get

B
a〈eb〉
=⇒
K′; k

B′ , for some Q with Q ≈ k � K ′ | [[B′]].

We have obtained that k � K | [[A′]] ≈ k � K ′ | [[B′]]. From the Saturation

Lemma applied to above two weak causal transitions, it follows that A′ is saturated

for k � K and that B′ is saturated for k � K ′ . From the Cancelation Lemma, it

follows that K = K ′ and [[A′]] ≈ [[B′]]. Hence (A′, B′) ∈ R , and we are done. 2

Theorem 8.6 (Completeness) A ≈c B implies [[A]] ≈ [[B]].

Proof: We exploit the characterisation of causal bisimulation in terms of loose causal

bisimulation (≈′
c) in Proposition 4.12 (we need ≈′

c for the treatment of clause (2) below).

We prove that the relation

R = {([[A]], [[B]]) : A ≈′
c B }

is a weak bisimulation up to >∼ and up to context. Let ([[A]], [[B]]) ∈ R . We look at

clause (1) and (2) of the definition of observation equivalence, on the moves by [[A]].

Clause (1)

[[A]] =⇒ P implies, from Proposition 7.10(2)

A =⇒ A′ , for some A′ with P >∼ [[A′]]. Since A ≈′
c B

B =⇒ B′ , for some B′ with A′ ≈′
c B′. From Proposition 7.12(1)

[[B]] =⇒ Q >∼ [[B′]] , for some Q.

37

To sum up, we have [[A]] =⇒ P >∼ [[A′]], [[B]] =⇒ Q >∼ [[B′]], and A′ ≈′
c B′. Hence

([[A′]], [[B′]]) ∈ R , and we are done.

Clause (2) We check only the input case (the output case is similar, only note that in

that case, one can suppose w.l.o.g. k /∈ K(A, B)):

[[A]]
a〈ebk〉
=⇒ P implies, from Proposition 7.12(2),

A
a〈eb〉
=⇒
K; k

A′ , for some A′ with P >∼ k � K | [[A′]]. Since A ≈′
c B

B
a〈eb〉
=⇒
K; k

B′ , for some B′ with A′ ≈′
c B′. From Proposition 7.12(1)

[[B]]
a〈ebk〉
=⇒ Q for some Q with Q >∼ k � K | [[B′]] .

Processes k � K | [[A′]] and k � K | [[B′]] allow us to close the bisimulation R , up

to >∼ and up to the static context k � K | [.]. 2

Theorems 8.5 and 8.6 prove the full abstraction of the encoding. That is, (using also

Proposition 5.2) causal bisimulation on causal terms in Pc(N ,K) and which respect a

sorting Ob can be reconducted to the ordinary observation equivalence among standard

terms in P(N+) and which respect a sorting [[Ob]], where N+ is an appropriate extension

of the class of names N .

In particular, this result holds for the standard processes in Pc(N ,K), i.e., those

terms in Pc(N ,K) which do not contain the causal prefix K :: A. Formally, these are the

processes in the class P(N). The applicability of the encoding to standard processes was

the result we were most interested in.

Corollary 8.7 (Full abstraction of the encoding on standard processes) For all

P and Q ∈ P(N), we have [[P]], [[Q]] ∈ P(N+) and P ≈c Q iff [[P]] ≈ [[Q]]. 2

Remark 8.8 An interesting issue is how much of the expressive power of the π-calculus

is needed to get the full abstraction theorem. Indeed, the definition of wire processes does

not mention summation and only uses a limited form of output prefix, with an empty

continuation. Thus, the result as it stands is still meaningful, e.g., for the asyncronous

π-calculus [HT91, Bou92]. Also, it is not difficult to prove that, by slightly complicating

the definition of wire process, the output prefix can be replaced by a bound output. This

implies that the encoding still works when applied to πI, a fragment of the π-calculus

[San96] where only private names can be exchanged among processes.

38

9 Examples of applications

In this section we give some examples of how the encoding and the full abstraction theo-

rems can be used to reason about causal bisimulation.

Some simple laws for causal bisimulation follow directly from the definition of the

encoding; for example:

K :: (A |B) ≈c (K :: A) | (K :: B) ,

K :: H :: A ≈c K ∪H :: A ,

∅ :: A ≈c A .

As an easy corollary of the definition of our encoding and its full abstraction, we can derive

the congruence of ≈c w.r.t. the causal prefix K :: − and all operators which preserve ≈.

For instance, the following sequence of implications, that holds for any causal processes

A, B and C, provides the argument for parallel composition:

A ≈c B implies [[A]] ≈ [[B]]

which implies [[A | C]] = [[A]] | [[C]] ≈ [[B]] | [[C]] = [[B | C]] ,

which implies A | C ≈c B | C .

Similarly, we can use the encoding and the property that ≈ is not preserved by the sum

operator to check that also ≈c is not preserved by sum. We have

[[τ.a]] = τ.[[a]] ≈ [[a]]

and

[[τ.a + b]] = τ.[[a]] + [[b]] 6≈ [[a]] + [[b]] = [[a + b]] .

Hence τ.a ≈c a, but τ.a + b 6≈c a + b, which gives us a counterexample for the congruence

of ≈c w.r.t. sum. Thus, the only congruence property for ≈c remained is the one for the

input prefix operator a(̃b).−. The known counter-examples showing that a(̃b).− does

not preserve ≈ involve either the match operator [a = b] — not considered here — or

the expansion law. For example, a | b ≈ a.b + b.a, but c(a). (a | b) 6≈ c(a). (a.b + b.a),

since the process c(a). (a | b), after receiving b, can perform a communication, whereas

c(a). (a.b + b.a) cannot. The same kind of counter-example does not apply to ≈c, as the

expansion law a | b ≈ a.b + b.a does not hold for this equivalence. Indeed, as proved in

[BS97], ≈c is a congruence, but the proof for input prefix is non-trivial. A discussion on

this topic is also contained in the concluding section.

39

More complex laws can be proved by taking advantage of the well-understood algebraic

theory of ≈. Below, we show an example of this. Consider P
def
= ν b (a.b.c | b.d) and

Q
def
= ν b (a.b.d |b.c). Processes P and Q differ only because c and d are placed at different

locations. However, in both cases c and d have the same cause, namely a. Indeed, it holds

that P ≈c Q. We can prove this equality via algebraic manipulations, by showing that

[[P]] ≈ [[Q]]. If

R
def
= h � ∅ | [[d]]h (6)

then we have

[[P]] = ν b (a(k). (k � ∅ | [[b.c]]k) | ν h b〈h〉. R) . (7)

From (7), applying the expansion law and simple laws for restriction (Table 2) we obtain

[[P]] ∼ a(k). (k � ∅ | ν b ([[b.c]]k | ν h b〈h〉. R)) . (8)

Since, by definition,

[[b.c]]k = b(h). (h � k | [[c]]h) (9)

applying expansion and restriction laws we obtain

ν b ([[b.c]]k | ν h b〈h〉. R) ∼ (10)

τ.ν h (h � k | [[c]]h |R) =

τ.ν h (h � k | [[c]]h | h � ∅ | [[d]]h) def
= T .

Rearranging subterms, we can write

T ∼ τ.ν h (h � k | h � ∅ | [[c | d]]h) . (11)

Applying Lemma 7.2 to the right-hand side of (11):

T >∼ τ.[[c | d]]k . (12)

From (10) and (12), and since >∼ is preserved by parallel composition,

k � ∅ | ν b ([[b.c]]k | ν h b〈h〉. R) >∼ k � ∅ | τ.[[c | d]]k . (13)

Relation (13) holds or any cause k. From this, due to the congruence property of >∼ ,

and from (8), we get:

[[P]] >∼ a(k). (k � ∅ | τ.[[c | d]]k) . (14)

40

In a symmetric way — exchanging the roles of c and d — one proves that

[[Q]] >∼ a(k). (k � ∅ | τ.[[d | c]]k) . (15)

But by the definition of encoding and by the commutativity law for parallel composition

operator, we have

[[c | d]]k ∼ [[d | c]]k ,

for any k. Hence,

a(k). (k � ∅ | τ.[[c | d]]k) ∼ a(k). (k � ∅ | τ.[[d | c]]k) . (16)

Finally, we deduce the original claim [[P]] ≈ [[Q]] from (14), (15) and (16).

The above sequence of manipulations consists of applications of familiar algebraic

laws (expansion and restriction laws), plus an application of the absorption Lemma 7.2,

to manipulate wire processes. In particular, Lemma 7.2 avoided us having to unfold

the definition of wire processes and hence having explicitly to deal with the replication

operator. A proof of P ≈c Q is also possible utilising a proof system for ≈c on CCS,

like Kiehn’s [Kie93]. However, the laws for the interleaving ≈ are simpler than those for

the non-interleaving ≈c, and do not require the introduction of extra operators. Kiehn’s

system, besides the causal prefix K :: −, uses the left merge and the communication

merge operators, to express an appropriate form of expansion law for causal bisimulation.

Moreover, Kiehn’s system is not purely equational — it includes non-trivial inference

rules.

10 Comparing the encodings of location and causal

bisimulation

We have presented an encoding of the non-interleaving causal bisimulation into the inter-

leaving observation equivalence in the π-calculus. In a previous paper [San94b], the same

issue has been tackled for location bisimulation. Causal bisimulation and location bisimu-

lation aim, respectively, to capture the causal and the spatial dependencies on processes.

Location bisimulation can be described using a syntax and an operational semantics sim-

ilar to those for causal bisimulation in Definition 4.9 and Table 3. What distinguishes

location bisimulation is that an action µ causes a later action µ′ only if µ′ emanates from a

41

position (called location) syntactically underneath µ’s position. In this framework, a com-

munication between two subterms of a process has no causal effect whatsoever because

the spatial disposition of the process components is left unchanged.

The processes

P1
def
= a | c and P2

def
= ν b (a. b|b. c) + ν b (c. b|b. a)

are location bisimilar: Actions a and c are unrelated both in P1 and P2, because they

emanate from unrelated locations. However, P1 and P2 are not causally bisimilar: Only

in P2 the firing of either a or c is necessary to liberate the other action. On the other

hand, and for opposite reasons, processes

Q1
def
= ν b (a.b.c|b.d) and Q2

def
= ν b (a.b.d|b.c)

are causally bisimilar (see Section 9) but not location bisimilar. The contrasts between

the two equivalences are only imputable to the treatment of communications between

processes. Indeed, Aceto’s work [Ace92b] shows that they coincide in a calculus with

no such communications. Affinities and differences are evidenced in their encodings into

observation equivalence presented here and in [San94b]. If we limit ourselves to standard

processes, then the two encodings act as a homomorphism on all operators but input and

output prefixes. There is a basic schema in the two encodings of the prefixes:

[[a(̃b). P]]k
def
= a(̃bx). (>x, h h � k | [[P]]h) (17)

[[a〈̃b〉. P]]k
def
= (ν x)a〈̃bx〉. (< x, h h � k | [[P]]h) (18)

where h is a fresh name. Formally, >x, h and < x, h stand for unary operators on the

argument h�k | [[P]]h. But it is more enlightening — and this explains the way in which

they appear in (17) and (18) — to think of them as ‘missing parts’, still to be filled, of

the expressions (17) and (18). Indeed, >x, h and < x, h play the role of the access

key to the wire h � k , which holds the causality information. In the case of location

bisimulation, the access key is a restricted particle x〈h〉 in parallel with the wire, that is:

“ >x, h ” is “ν hx〈h〉 | ” and (19)

“ < x, h ” is “ν hx〈h〉 | ” .

If the prefix a(̃bx) or a〈̃bx〉 in (17-18) is consumed in a visible action, the external observer

can use the key x〈h〉 to access name h and, with it, the wire h�k . By contrast, if the two

42

complementary prefixes a(̃bx) and a〈̃bx〉 communicate with each other, the respective keys

remain deadlocked, because of the same output polarity. Consequently, the related wires

remain disconnected. This reflects the fact that in location bisimulation a communication

between processes has no effect on causes. A few simplifications on this schema lead to the

final encoding, reported in Table 10. (Note in particular the elimination of the innermost

replication of the wire: This is possible because, in the case of location bisimulation, only

‘linear’ causal chains may be generated, hence at most one wire may get connected to the

end-point of another wire.)

In the encoding of location bisimulation interactions between a process and the ex-

ternal observer and between processes are different — the key x〈h〉 is to be used only

by the external observer. The encoding of causal bisimulation is obtained by eliminating

this asymmetry. A key takes the same polarity as the related prefix. Writing “x(h). ” as

abbreviation for the bound output “ν hx〈h〉. ” to emphasise the symmetry, then

“ >x, h ” is “x(h). ” and (20)

“ < x, h ” is “x(h). ” .

Thus, if the prefix a(̃bx) or a〈̃bx〉 in (17-18) produces a visible action, the key x(h) or

x(h) can be used by the external observer, in the same way as for location bisimulation,

to access the wire h � k . But now, if the prefixes a(̃bx) and a〈̃bx〉 communicate with

each other, the respective keys coalesce, because of opposite polarities. Consequently,

the related wires get connected, which reflects the fact that in causal bisimulation a

communication involves a merge of cause sets (the fact that a key is not blocking also

justifies the sequentialisation between a key and the associated wire in (20), in place of

the parallel composition as in (19)). In this schema of encoding, a key x(h) or x〈h〉 only

delays the access to the wire h�k one step. The encoding used in this paper is obtained

by removing this level of indirection. To facilitate the comparison with the encoding

location bisimulation, the clauses for input and output prefixes have been rewritten in

Table 10.

11 Conclusions and future work

We have examined causality in the π-calculus and provided a fully abstract encoding

which reconducts the non-interleaving causal bisimulation to the interleaving observation

43

Encoding of Location Bisimulation; process h I k is ! h. k.

[[a(̃b). A]]k
def
= a(̃bx). ν h (x〈h〉 | h I k | [[A]]h)

[[a〈̃b〉. A]]k
def
= ν h a〈̃bx〉. ν h (x〈h〉 | h I k | [[A]]h)

. .

Encoding of Causal Bisimulation.

[[a(̃b). A]]k
def
= a(̃bh). (h � k | [[A]]h)

[[a〈̃b〉. A]]k
def
= ν h a〈̃bh〉. (h � k | [[A]]h)

Table 10

equivalence. This permits re-using all the easier mathematical theory of the latter to

reason about the former. As a particular case, CCS causal bisimulation is reconducted to

the observation equivalence of the monadic π-calculus.

Wire processes play a crucial role in modeling the pointer mechanism of causal bisimu-

lation. The proofs of our main theorems rely heavily on the ability of manipulating wires,

as provided by the lemmata of Section 6. The proofs of these lemmata, in turn, rely on

the “up-to techniques” of Section 3.

We believe that the full abstraction of our encoding extends to the congruence rela-

tions; i.e., if ≈c and ≈c
c are the congruences induced by observation equivalence and causal

bisimulation, respectively, then for all causal terms A and B, it holds that

A ≈c
c B iff [[A]] ≈c [[B]] .

It should be possible to prove this exploiting the full abstraction on the bisimilarity

relations. The result could then be used to examine whether a proof system for ≈c
c can

be obtained from one for ≈c plus, possibly, Lemmata 6.4, 6.6, 7.1 and 7.2 to manipulate

wires.

An interesting issue is the study of the congruence properties for the input-prefix op-

erator in causal-sensitive behavioural equivalences. Intuitively, a relation over π-calculus

processes is preserved by input prefix if it is preserved by name substitutions. This prop-

44

erty usually fails if the matching operator is present, as for the calculus in [MPW92].

A matching [a = b]P represents an if-then construct with guard “a = b”. Thus, if

a and b are different names, one might want to regard [a = b]a.0 and 0 as equivalent

since both are deadlocked, but ([a = b]a.0){a/b} and 0{a/b} as distinct since only the lat-

ter is deadlocked. Indeed, with the matching operator observation equivalence, location

bisimulation and causal bisimulation are all not preserved by substitutions. However, in

many situations matching can be avoided or simulated. Hence one might wish to con-

sider a matching-free calculus, as we did in the present paper. On such a language, the

congruence for substitutions still fails for observation equivalence and location bisimula-

tion [San94b]. The failure is essentially due to the fact that both equivalences may relate

processes with different degrees of parallelism (consider, for instance, the processes P1 and

P2 in Section 10); as a consequence, when a substitution applied to such two processes

identifies previously distinct channels, new communication possibilities may be created

in one process, but not in the other. However, it can be expected that the situation for

≈c is better, since ≈c does respect parallelism. Indeed, in [BS97] it is proved that in the

matching-free calculus ≈c is indeed preserved by substitutions and hence by input prefix.

This has interesting consequences: proving causal bisimulation equalities is easier; the

proliferation of different forms of bisimulation, like the early, late and open of interleaving

and location bisimilarities [PS93, San94a, San94b], is avoided in this causality framework.

We have individuated two forms of causal dependency between π-calculus actions,

which we called subject and object dependencies. The former originate from prefix-

nesting and are propagated through interactions within processes, the latter originate

from the name-binding mechanisms. Our formulation of causal bisimulation distinguishes

between processes which differ for the subject or for the object dependencies. Thus we

discriminate between P
def
= ν b (a〈b〉.0 | b〈y〉.0) and Q

def
= ν b (a〈b〉. b〈y〉.0), because in

P there is both a subject and an object dependency between the actions at a and at b,

whereas in Q there is only an object dependency. Our notion of causal bisimulation is

strictly finer than a notion in which subject and object dependencies are not separated,

where P and Q would be equated (see [Pri96] for comparisons among various forms of

causality in the π-calculus). In this paper we have presented a fully abstract encoding

of the former notion; it would be interesting to see whether there is also a fully abstract

effective encoding for the latter.

Acknowledgments. We are most grateful to Rocco De Nicola for comments and discus-

45

sions on the topic of the paper. Michele Boreale has been partially supported by the HCM

Network “EXPRESS”. Davide Sangiorgi’s research has been supported by the ESPRIT

BRA project 6454 “CONFER”.

References

[Ace92a] L. Aceto. History preserving, Causal and Mixed-Ordering Equivalence over Stable
Event Structure (Note). in Fundamentae Informaticae, 17(4):319-331, 1992.

[Ace92b] L. Aceto. Relating Distributed, Temporal and Causal Observations of Simple
Processes. in Fundamentae Informaticae, 17(4):369-397, 1992.

[AKH92] S. Arun-Kumar and M. Hennessy. An efficiency preorder for processes. Acta Infor-
matica, 29:737–760, 1992.

[Bou92] G. Boudol. Asynchrony and the π-calculus. Technical Report 1702, INRIA Sophia
Antipolis, 1992.

[BCHK91] G. Boudol, I. Castellani, M. Hennessy, and A. Kiehn. A theory of processes with
localities. TR 13/91, University of Sussex, 1991. To appear in Formal Aspects of
Computing.

[BD92] M. Boreale and R. De Nicola. Testing equivalence for mobile processes. Information
and Computation, 120: 279-303, 1995.

[BS97] M. Boreale and D. Sangiorgi. Some congruence properties for π-calculus bisimilari-
ties. Technical Report RR-2870, INRIA-Sophia Antipolis, 1996.

[CD93] F. Corradini and R. De Nicola. Locality and causality in distributed process algebras.
Report SI/R/R-93/05, Dipartimento di Scienze dell’Informazione, Università degli
studi di Roma “La Sapienza”, 1993.

[DDM88] P. Degano, R. De Nicola and U. Montanari. Partial Ordering Descriptions and Ob-
servations of Concurrent Processes. in Linear Time, Branching Time and Partial
Order in Logics and Models of Concurrency, volume 354 of Lecture Notes in Com-
puter Science, pages 438–466. Springer-Verlag, 1988.

[DDM93] P. Degano , R. De Nicola and U. Montanari. Observation Trees. in Proc. North
American Conference on Process Algebras (NAPAW) ’92, Springer-Verlag, 1993.

[DD89] P. Degano and P. Darondeau. Causal trees. In 15th ICALP, volume 372 of Lecture
Notes in Computer Science, pages 234–248. Springer Verlag, 1989.

46

[DP92] P. Degano and C. Priami. Proved trees. In W. Kuich, editor, Proc. ICALP 92,
volume 623 of Lecture Notes in Computer Science. Springer Verlag, 1992.

[HT91] K. Honda and M. Tokoro. On asynchronous communication semantics. In M. Tokoro,
O. Nierstrasz, P. Wegner, and A. Yonezawa, editors, ECOOP ’91 Workshop on
Object Based Concurrent Programming, Geneva, Switzerland, 1991 , volume 612 of
Lecture Notes in Computer Science, pages 21–51. Springer Verlag, 1992.

[Kie91] A. Kiehn. Comparing locality and causality based equivalences. Acta Informatica,
31:697–718, 1994. Revision of Local and global causes, report TUM–I9132, 1991.

[Kie93] A. Kiehn. Proof systems for cause based equivalences. In Proc. MFCS 93, volume
711 of Lecture Notes in Computer Science. Springer Verlag, 1993.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[Mil91] R. Milner. The polyadic π-calculus: a tutorial. Technical Report ECS–LFCS–91–180,
LFCS, Dept. of Comp. Sci., Edinburgh Univ., October 1991.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, (Parts I and
II). Information and Computation, 100:1–77, 1992.

[MY92] M. Montanari and D. Yankelevich. A parametric approach to localities. In W. Kuich,
editor, Proc. ICALP 92, volume 623 of Lecture Notes in Computer Science, pages
617–628. Springer Verlag, 1992.

[Par81] D.M. Park. Concurrency on automata and infinite sequences. In P. Deussen, editor,
Conf. on Theoretical Computer Science, volume 104 of Lecture Notes in Computer
Science. Springer Verlag, 1981.

[PS93] J. Parrow and D. Sangiorgi. Algebraic theories for name-passing calculi. Information
and Computation, 120(2):174–197, 1 August 1995.

[Pri96] C. Priami. Enhanced Operational Semantics for Concurrency. PhD thesis TD–8/96,
Department of Computer Science, University of Pisa, 1996.

[San92] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-Order
Paradigms. PhD thesis CST–99–93, Department of Computer Science, University of
Edinburgh, 1992.

[San93] D. Sangiorgi. A theory of bisimulation for the π-calculus. Acta Informatica, 33:69–97,
1996.

47

[San94a] D. Sangiorgi. On the bisimulation proof method. To appear in Journal of Mathe-
matical Structures in Computer Science. (A summary appeared in Proc. MFCS’95,
volume 969 of Lecture Notes in Computer Science, Springer Verlag.)

[San94b] D. Sangiorgi. Locality and non-interleaving semantics in calculi for mobile processes.
Theoretical Computer Science, 155:39–83, 1996.

[San96] D. Sangiorgi. π-calculus, internal mobility and agent-passing calculi Theoretical
Computer Science, 167(2):235–274, 1996.

[SM92] D. Sangiorgi and R. Milner. The problem of “Weak Bisimulation up to”. In W.R.
Cleveland, editor, Proceedings of CONCUR ’92, volume 630 of Lecture Notes in
Computer Science, pages 32–46. Springer Verlag, 1992.

[Wal95] D. Walker. Objects in the π-calculus. Information and Computation, 116(2):253–271,
1995.

48

Abelian monoid laws for + : P1 + P2 ≡ P2 + P1

P1 + (P2 + P3) ≡ (P1 + P2) + P3

P + 0 ≡ P

Abelian monoid laws for | : P1 | P2 ≡ P2 | P1

P1 | (P2 | P3) ≡ (P1 | P2) | P3

P | 0 ≡ P

Restriction: ν a0 ≡ 0

ν a ν b P ≡ ν b ν a P

if a 6∈ fn(P2), then (ν a P1) | P2 ≡ ν a (P1 | P2)

Replication: ! P ≡ P | ! P

Table 5: The rules of structural congruence (≡)

A Proofs of Lemmata 7.1 and 7.2.

To facilitate the proof of a few lemmata below, and to better capture the strength of

their assertions we use the structural congruence relation. Roughly, two processes are

structurally congruent if they may only differ syntactically with each other on the way

in which their respective subcomponents are assembled. Structural congruence [Mil91] is

written ≡ and is defined as the smallest congruence over processes which satisfies the rules

in Table 5. These are self-evident rules which must be valid in any reasonable behavioural

equivalence.

Lemma A.1 The relation ≡ is a strong bisimulation and is preserved by name substitu-

tion. 2

A.1 Proofs of Lemma 7.1 and of Lemma 7.2

The following lemma allows us to rename names in the object part of input transitions.

Lemma A.2 (Renaming Lemma) Suppose P
a〈eb〉−→ P ′. Then there are x̃ and P ′′ s.t.

P ′ = P ′′{b̃/̃x} and for all c̃, P
a〈ec〉−→ P ′′{c̃/̃x}.

49

Proof: Simple transition induction. 2

Corollary A.3

1. If P
a〈ebh〉−→ P ′, and k∩fn(P) = ∅, then also P

a〈ebk〉−→ P ′′, for some P ′′ with P ′′{h/k} = P ′.

2. If P
a〈ebk〉−→ P ′′ and k ∩ fn(P) = ∅ , then, for all h, also P

a〈ebh〉−→ P ′ = P ′′{h/k}. 2

The proofs of Lemmata 7.1 and 7.2 use Lemmata 6.4 and 6.6. We also rely on Lemma

A.5 below. This lemma, basically, says that the actions a process [[A]]K can perform do

not depend from the parameter K. That is, two processes [[A]]K and [[A]]K ′ can perform

the same actions and, in doing so, they evolve to derivatives which are the same up to

the choice of the parameter K or K ′. To express this fact, we have to accurately study

how the parameter K is used in a transition [[A]]K
µ−→ P . In the proof of Lemma A.5

we use the following fact:

Lemma A.4 If ! Q
µ−→ Q′ with µ 6= τ , then there exists Q′′ s.t. Q′ ≡ Q′′ | ! Q and

Q
µ−→ Q′′. 2

Lemma A.5 Let A be a causal term, K, K ′ ⊆fin K and suppose [[A]]K
µ−→ P . Then

1. If µ = a〈̃bh〉 or µ = (ν c̃h)a〈̃bh〉, for h /∈ K(A)∪K∪K ′, then there exist K0 ⊆ K(A),

d̃, A′ and R with h /∈ K(A′), s.t.

P ≡ h � (K, K0) | (ν d̃)([[A′]]K | [[h :: R]])

and moreover

[[A]]K ′ µ−→ ≡ h � (K ′, K0) | (ν d̃)([[A′]]K ′ | [[h :: R]]) .

2. If µ = τ , then either

• there exists A′ s.t. P ≡ [[A′]]K and also [[A]]K ′ τ−→ Q ≡ [[A′]]K ′, or

• there are Ki ⊆fin K(A) i ∈ {1, 2},d̃, A′, R, and some h /∈ (K(A′) ∪K ∪K ′) s.t.

P ≡ (ν h)(h � (K1, K) | h � (K2, K) | (ν d̃)([[A′]]K | [[h :: R]]))

and also

[[A]]K ′ τ−→≡ (ν h)(h � (K1, K
′) | h � (K2, K

′) | (ν d̃)([[A′]]K ′ | [[h :: R]])).

50

Proof: The proof of (1) is by induction on the structure of A. We consider the most

significant cases in detail, namely the cases in which the outermost operator of A is a

causal prefix or a replication.

Cause prefix A = H :: B.

Thus [[A]]K = [[B]](K, H) and [[A]]K ′ = [[B]](K ′, H). We have [[B]](K, H)
µ−→ P .

Hence, by the inductive assumption, there are K ′
0 ⊆ K(B), d̃, A′′ and R s.t.

P ≡ h � (K, H, K ′
0) | (ν d̃)([[A′′]](K,H) | [[h :: R]])

= h � (K, H, K ′
0) | (ν d̃)([[H :: A′′]]K | [[h :: R]])

and

[[B]](K ′, H)
µ−→≡ h � (K ′, H,K ′

0) | (ν d̃)([[A′′]](K ′, H) | [[h :: R]])

= h � (K ′, H,K ′
0) | (ν d̃)([[H :: A′′]]K ′ | [[h :: R]]) .

For K0
def
= H ∪K ′

0 and A′ def
= H :: A′′, this concludes the case.

Replication A = ! Q.

Thus [[A]]K = ! [[Q]]K
µ−→ P . By Lemma A.4, we have P ≡ P1 | ! [[Q]]K, for some

P1 s.t. [[Q]]K
µ−→ P1. Using the inductive assumption on [[Q]]K

µ−→ P1 we get

that for some processes R and S and name tuple d̃,

P1 ≡ h � K | (ν d̃)([[S]]K | [[h :: R]])

and also [[Q]]K ′ µ−→ P2 with

P2 ≡ h � K ′ | (ν d̃)([[S]]K ′ | [[h :: R]]) .

Now, from [[Q]]K ′ µ−→ P2 and rule S-par, we infer

[[Q]]K ′ | ! [[Q]]K ′ µ−→ P2 | ! [[Q]]K ′ def
= P ′

and hence, applying S-rep:

! [[Q]]K ′ = [[! Q]]K ′ µ−→ P ′ .

To sum up, extruding the scope of (ν d), we have:

P ≡ P1| ! [[Q]]K ≡ h�K |(ν d̃)([[S]]K|[[h :: R]])|[[! Q]]K ≡ h�K |(ν d̃)([[S| ! Q]]K|[[h :: R]])

51

and similarly

P ′ ≡ P2 | [[! Q]]K ′ ≡ h � K ′ | (ν d̃)([[S | ! Q]]K ′ | [[h :: R]]) .

For K0
def
= ∅ and A′ def

= S | ! Q, this proves our claim.

Now, the proof of assertion (2) of the lemma. The proof is again an induction on the

structure of A. The non-trivial cases are when the outermost operator in A is a parallel

composition or a replication. We only consider the former case. Thus suppose A = A1 |A2;

the last rule applied in deriving [[A]]K
τ−→ P must be either a S-par or a S-com; we

analyse the latter case; the former is easier. We have:

S-com :
[[A1]]K

a〈ebh〉−→ P1 [[A2]]K
(ν ech)a〈ebh〉−→ P2

[[A]]K = [[A1]]K | [[A2]]K
τ−→ (ν c̃h)(P1 | P2)

def
= P

.

For simplicity we suppose that h /∈ K ∪K ′ ∪ K(A); the case h ∈ K ∪K ′ ∪ K(A) can be

accommodated using Corollary A.3(1) to first rename h to a fresh name.

From part (1) of this lemma, we know that there are A′
i, Ki ⊆ K(Ai), d̃i and Ri with

h /∈ A′
i, for i = 1, 2, such that

Pi ≡ h � (Ki, K) | (ν d̃i)([[A
′
i]]K | [[h :: Ri]]) .

and also

[[A1]]K
′ a〈ebh〉−→ Q1 and [[A2]]K

′ (ν ech)a〈ebh〉−→ Q2 (21)

with

Qi ≡ h � (Ki, K
′) | (ν d̃i)([[A

′
i]]K

′ | [[h :: Ri]]), for i ∈ {1, 2}.

From the two transitions in (21) and rule S-com, we infer

[[A]]K ′ = [[A1]]K
′ | [[A2]]K

′ τ−→ (ν c̃h)(Q1 |Q2)
def
= Q .

Finally, defining A′ def
= A′

1 | A′
2, d̃

def
= c̃d̃1d̃2 and R

def
= R1 | R2, and using the equality

[[h :: R1]] | [[h :: R2]] = [[h :: (R1 |R2)]], we can write:

P ≡ (ν h)(h � (K1, K) | h � (K2, K) | (ν d̃)([[A′]]K | [[h :: R]]))

and, similarly,

Q ≡ (ν h)(h � (K1, K
′) | h � (K2, K

′) | (ν d̃)([[A′]]K ′ | [[h :: R]])) .

52

This concludes the case. 2

We are now ready to prove Lemma 7.1. We first recall its assertion:

h � K | [[A]](h,K0, K) <∼ h � K | [[A]](h,K0) .

Proof of Lemma 7.1. Let

H
def
= {h} ∪K0 ∪K and H ′ def

= {h} ∪K0 . (22)

We show that the relation

R = {(h � K | [[A]]H, h � K | [[A]]H ′) : A ∈ Pc(N ,K)}

is an expansion up to context and up to >∼ . Let (Q1, Q2) ∈ R , for Q1
def
= h�K | [[A]]H

and Q2
def
= h � K | [[A]]H ′. We show that the moves of Q1 can be matched by Q2. The

converse, on the actions from Q2, is proved by reversing the steps. If Q1 moves, then

the move originates either from h � K , or from [[A]]H (an interaction among these two

processes is impossible, see Remark 7.13). We only show the details of the second case,

since the first case is easier. Thus, we suppose that Q1
µ−→ h � K | P1

def
= Q′

1, for some

P1 s.t. [[A]]H
µ−→ P1. We have to find a static context C[·], and processes Q′

2, T1, and T2

s.t.

Q′
1 ∼ C[T1], Q2

µ
=⇒ Q′

2
>∼ C[T2] and (T1, T2) ∈ R . (23)

We distinguish the cases in which µ is an input, an output, or a silent action.

Case 1: µ is an input, say µ = a〈̃bh′〉.

Let h0 be a fresh name. From [[A]]H
a〈ebh′〉−→ P1 and Corollary A.3(1), we have

[[A]]H
a〈ebh0〉−→ P ′

1 with P ′
1{h

′
/h0} ≡ P1 .

From Lemma A.5(1), we know that there are H0 ⊆ K(A), d̃ and A′ with h0 /∈ K(A′)

and R, s.t.

P ′
1 ≡ h0 � (H0, H) | (ν d̃)([[A′]]H | [[h0 :: R]])

and moreover

[[A]]H ′ a〈ebh0〉−→ P ′
2 ≡ h0 � (H0, H

′) | (ν d̃)([[A′]]H ′ | [[h0 :: R]]) .

53

From the above transition and Corollary A.3(2), we obtain

[[A]]H ′ a〈ebh′〉−→ P2 with P2 ≡ P ′
2{h

′
/h0}.

Now, from this, using rule S-par, we get a transition for Q2:

Q2 = h � K | [[A]]H ′ a〈ebh′〉−→ h � K | P2
def
= Q′

2 .

Thus, we have found the process Q′
2 to use in (23); we have now to find C[·], T1 and

T2, and prove the requirements in (23). From the definitions of Q′
1, P1 and P ′

1, we

get

Q′
1 ≡ h � K | P ′

1{h
′
/h0} ≡ h � K | h′ � (H0, H) | (ν d̃)([[A′]]H | [[h′ :: R]]) (24)

and, similarly, from the definitions of Q′
2, P2 and P ′

2, we get

Q′
2 ≡ h � K | P ′

2{h
′
/h0} ≡ h � K | h′ � (H0, H

′) | (ν d̃)([[A′]]H ′ | [[h′ :: R]]) . (25)

From (24) and (25), extruding the scope of (ν d̃), and commuting the order of some

components, we get

Q′
1 ≡ (ν d̃)([[h′ :: R]] | h′ � (H0, H) | h � K | [[A′]]H) (26)

Q′
2 ≡ (ν d̃)([[h′ :: R]] | h′ � (H0, H

′) | h � K | [[A′]]H ′) . (27)

Recall by (22) that H = H ′ ∪K. Therefore, by Lemma 6.4, we deduce that

h′ � (H0, H
′) | h � K >∼ h′ � (H0, H) | h � K .

From this and (27) we get

Q′
2

>∼ (ν d̃)([[h′ :: R]] | h′ � (H0, H) | h � K | [[A′]]H ′). (28)

Finally, define C[·] def
= (ν d̃)([[h′ :: R]] | h′ � (H0, H) | [.]), T1

def
= h � K | [[A′]]H and

T2
def
= h � K | [[A′]]H ′. The results in (26) and (28) show that Q′

1 ≡ C[T1] and that

Q′
2

>∼ C[T2]; this suffices to prove (23), since ≡ implies ∼.

Case 2: µ is an output.

This case is similar to the previous one.

54

Case 3: µ = τ .

If [[A]]H
τ−→ P1, then, by Lemma A.5(2), one of the following holds:

(a) there is A′ s.t. P1 ≡ [[A′]]H and also [[A]]H ′ τ−→ P2 ≡ [[A′]]H ′, or

(b) there are d̃, A′, K0i ⊆ K(A) (i ∈ {1, 2}), R and h0 fresh s.t.

P1 ≡ (ν h0)(h0 � (K01, H) | h0 � (K02, H) | (ν d̃)([[A′]]H | [[h0 :: R]]))

and also

[[A]]H ′ τ−→ P2 ≡ (ν h0)(h0�(K01, H
′) | h0�(K02, H

′) |(ν d̃)([[A′]]H ′|[[h0 :: R]])) .

In either cases, using rule S-par, we get

Q2 = h � K | [[A]]H ′ τ−→ h � K | P2
def
= Q′

2 .

If (a) holds, then (23) is immediately validated, since the pair (Q′
1, Q

′
2) belongs to

R , up to ≡. Let us consider case (b). By definitions of Q′
1, Q

′
2, P1 and P2, we have:

Q′
1 = h � K | P1

= h � K | (ν h0)(h0 � (K01, H) | h0 � (K02, H) | (ν d̃)([[A′]]H | [[h0 :: R]]))
and

Q′
2 = h � K | P2

= h � K | (ν h0)(h0 � (K01, H
′) | h0 � (K02, H

′) | (ν d̃)([[A′]]H ′ | [[h0 :: R]]))

which, extruding the scope of ν d̃ and (ν h0), and commuting the order of some

components, gives:

Q′
1 ≡ (29)

(ν h0d̃)([[h0 :: R]] | h0 � (K01, H) | h0 � (K02, H) | h � K | [[A′]]H)

Q′
2 ≡ (30)

(ν h0d̃)([[h0 :: R]] | h0 � (K01, H
′) | h0 � (K02, H

′) | h � K | [[A′]]H ′) .

Since H = H ′ ∪K, by Lemma 6.4 (applied twice), we derive

h0 � (K01, H
′) | h0 � (K02, H

′) | h�K >∼ h0 � (K01, H) | h0 � (K02, H) | h�K .

55

From this and (30) we get

Q′
2

>∼ (ν h0d̃)([[h0 :: R]] | h0 � (K01, H) | h0 � (K02, H) | h � K | [[A′]]H ′) . (31)

Finally, define

C[·] def
= (ν h0d̃)([[h0 :: R]] | h0 � (K01, H) | h0 � (K02, H) | [.])

T1
def
= h � K | [[A′]]H

T2
def
= h � K | [[A′]]H ′ .

The results in (29) and (31) show that Q′
1 ≡ C[T1] and that Q′

2
>∼ C[T2], thus

proving (23).

2

Now Lemma 7.2, whose assertion is:

For any K0, Ki, i ∈ I, h /∈ K0 ∪ (∪i∈IKi), A:

B
def
= (ν h)(Πi∈I h � Ki | [[A]](K0, h)) >∼ [[A]](K0,∪iKi)

def
= A .

Proof of Lemma 7.2. The proof of this lemma only differ from that of Lemma 7.1

because it uses Lemma 6.6 in place of of Lemma 6.4. 2

B Proofs of the Saturation and Cancelation Lem-

mata

To ease the reading of this appendix, we recall the definitions of Cause-Sets and Satura-

tion.

Definition B.1 (Process cause-sets, Definition 8.1) If A is a causal process, then

CS(A) is the set of sets of causes inductively defined as follows:

CS(P)
def
= {∅ }

CS(K :: A)
def
= {K ∪H |H ∈ CS(A)}

CS(ν a A)
def
= CS(A)

CS(A1 | A2)
def
= CS(A1) ∪ CS(A2) .

56

Definition B.2 (Saturation, Definition 8.2) A causal process A is saturated for a

product of wires W
def
= Πi∈I ki � Ki if for each H ∈ CS(A) and i ∈ I, ki ∈ H implies

Ki ⊆ H.

To prove the Saturation Lemma, we use Lemma B.3 below on cause-sets of processes.

Item (1) says that all sets of causes that appear in causal transitions of a process are also

in the cause-sets of that process; item (2) and (3) relate the cause-sets of a process to

those of its derivatives; finally, item (4) represents a generalization of item (1) to weak

transitions.

Lemma B.3 Let A be a causal term.

1. If for some µ, k, A′, A
µ
−→
K; k

A′ then K ∈ CS(A).

2. If A
µ
−→
K; k

A′ with k 6∈ K(A), and H ∈ CS(A′), then:

(a) if k 6∈ H, then H ∈ CS(A);

(b) if k ∈ H, then H = K ∪ {k}.

3. Suppose A
τ−→ A′ and H ∈ CS(A′). Then either H ∈ CS(A) or H = H1∪H2, with

H1, H2 ∈ CS(A).

4. If for some µ, k, A′, A
µ

=⇒
K; k

A′ then K = H1 ∪ · · · ∪ Hn, for some n > 0 and

H1, . . . , Hn ∈ CS(A).

Proof:

1. A simple transition induction on A
µ
−→
K; k

A′.

2. By transition induction on A
µ
−→
K; k

A′; we only consider the non-trivial cases, namely

Par and Cau.

Case a: Par rule.

The last rule applied is of the form

Par :
A1

µ
−→
K; k

A′
1

A = A1 | A2

µ
−→
K; k

A′
1 | A2

def
= A′

.

57

If H ∈ CS(A′) = CS(A′
1) ∪ CS(A′

2) then, by definition, either H ∈ CS(A′
1)

or H ∈ CS(A2). If H ∈ CS(A2) then k 6∈ H and, since A2 is a component

of A, also H ∈ CS(A). Suppose H ∈ CS(A′
1). If k 6∈ H then, by inductive

hypothesis, H ∈ A1. Hence H ∈ CS(A) since A1 is a component of A. Suppose

now k ∈ H: By inductive hypothesis, H = K ∪ {k}, that proves the claim.

Case b: Cau rule.

The last rule applied is of the form

Cau :
A0

µ
−→

K0; k
A′

0

A = K ′ :: A0

µ
−→
K; k

K ′ :: A′
0

def
= A′

where K = K ′∪K0. If H ∈ CS(A′) then, by definition, H = K ′∪H ′, for some

H ′ ∈ CS(A′
0). If k /∈ H, then, by inductive hypothesis, H ′ ∈ CS(A0) and hence

also H ∈ CS(A). If k ∈ H, then it must be k ∈ H ′. By inductive hypothesis,

H ′ = K0∪{k}. To sum up, we have: H = K ′∪H ′ = K ′∪K0∪{k} = K ∪{k},
which is our claim.

3. The proof goes by transition induction. All cases are trivial, except the case when

Com is the last rule applied, where the last step of the derivation is of the form

Com :
A1

µ1
−→

K1; k
A′

1, A2

µ2
−→

K2; k
A′

2

A = A1 | A2
τ−→ (ν c̃)(A′

1[k ; K2] | A′
2[k ; K1])

def
= A′

with k /∈ K(A1, A2). Let H ∈ CS(A′
1[k ; K2]) (the case when H ∈ CS(A′

2[k ; K1])

is perfectly symmetrical). It must be H = H0[k ; K2], for some H0 ∈ CS(A′
1).

Now, there are two cases, namely k /∈ H0 and k ∈ H0. If k /∈ H0, then, from item

(2) of this lemma, H0 ∈ CS(A1) and furthermore H = H0, which proves our claim.

If k ∈ H0, then, from item (2) of this lemma, H0 = K1 ∪ {k}; since k /∈ K1, this

implies H = K1∪K2; but, from item (1) of this lemma, K1, K2 ∈ CS(A); this proves

the claim.

4. Using item (3) of this lemma, one can prove, by induction on m, that

if A
τm

−→ A′, m ≥ 0, and H ∈ CS(A′), then (32)

H = H1 ∪ · · · ∪Hn for some H1, . . . , Hn ∈ CS(A).

58

Now, suppose A
µ

=⇒
K; k

A′; this means that A
τm

−→ A′′ µ
−→
K; k

A′′′ =⇒ A′, for some m,

A′′ and A′′′. Now, the thesis follows using item (1) of this lemma and (32).

2

We now come to the proof of the Saturation Lemma; we first recall its assertion:

Let A be a causal process saturated for the product of wires Πi∈I ki � Ki . Then:

1. If A
µ
−→
K; k

A′ with k fresh, then A′ is saturated for k � K | Πi∈I ki � Ki .

2. If A
τ−→ A′, then A′ is saturated for Πi∈I ki � Ki .

3. If A
µ

=⇒
K; k

A′ with k fresh, then A′ is saturated for k � K | Πi∈I ki � Ki .

Proof of the Saturation Lemma.

1. Let H ∈ CS(A′) and h ∈ H∩ ({ki : i ∈ I}∪{k}). We have to show that K ⊆ H in

case h = k, and that Ki ⊆ H in case h = ki. This fact follows from Lemma B.3(1)

and (2) and from the fact that A is saturated for Πi∈I ki � Ki .

2. Follows from Lemma B.3(3) and from the definition of saturation.

3. It holds that A =⇒ A′′ µ
−→
K; k

A′′′ =⇒ A′, for some A′′ and A′′′; the thesis is obtained

by (repeatedly) using item (2) of this lemma on the transition A =⇒ A′′, then item

(1) on the transition A′′ µ
−→
K; k

A′′′, then item (2) again (repeatedly) on the transition

A′′′ =⇒ A′.

2

We are left with the proof of the Cancelation lemma. For this, we use the following

auxiliary technical result:

Lemma B.4 Let A, B be saturated for W
def
= Πi∈I ki � Ki . Suppose that for some µ

A
µ

=⇒
H′; k0

A′ and B
µ

=⇒
H′′; k0

B′

with k0 fresh and, furthermore, suppose that

W | k0 � H ′ | [[A′]] ≈ W | k0 � H ′′ | [[B′]] .

Then H ′ = H ′′.

59

Proof: We prove that H ′ ⊆ H ′′ (symmetrically, it will be H ′′ ⊆ H ′). Given k ∈ H ′, we

show that k ∈ H ′′ as well. Let

R
def
= W | k0 � H ′ | [[A′]]

and

S
def
= W | k0 � H ′′ | [[B′]].

Since k ∈ H ′, for all v there is R′ s.t.

R
k0〈v〉−→ k〈v〉−→ R′ .

Since R ≈ S, there is S ′ s.t.

S
k0〈v〉
=⇒ k〈v〉

=⇒ S ′ .

We now analyse the above sequence of transitions. For some S1,S2,S3,S4 and S5 we have

S =⇒ S1
k0〈v〉−→ S2 =⇒ S3

k〈v〉−→ S4 =⇒ S5 = S ′ .

We now argue on the form of S1, S2 and S3. From Remark 7.13, it follows that process

W | k0 � H ′′ does not contribute to the weak transition S =⇒ S1; in other words, there

exists P s.t. [[B′]] =⇒ P and

S1 = W | k0 � H ′′ | P .

From Remark 7.13 and from the fact that k0 /∈ {ki : i ∈ I}, we get that the transition

S1
k0〈v〉−→ S2 originates from k0 � H ′′ ; thus, letting Z

def
= W | k0 � H ′′ | Πk′′∈H′′ ! k′′〈v〉, it

holds that

S2 = Z | P .

Again by Remark 7.13 we know that processes Z and P , as well as any τ -derivative

of them, cannot interact with one another. Hence the transition S2 =⇒ S3 can be

decomposed into two independent sequences of transitions from Z and P ; formally, there

exist V and P ′ s.t. Z =⇒ V , P =⇒ P ′ and

S3 = V | P ′ .

Since [[B′]] =⇒ P ′, from Remark 7.13 it follows that the transition S3
k〈v〉−→ S4 originates

from V (i.e. V
k〈v〉−→ V ′, for some V ′). This and the fact that V is a τ -derivative of Z

60

imply that Z
k〈v〉
=⇒ V ′, and therefore, by definition of Z we get that: Either k ∈ H ′′, or

there is i ∈ I s.t. ki ∈ H ′′ and k ∈ Ki (so that the transition
k〈v〉−→ can occur after an

interaction of ! ki〈v〉 with ki � Ki). Now, if k ∈ H ′′ we have finished our proof. Assume

therefore that, for some i, ki ∈ H ′′ and k ∈ Ki; we show that also k ∈ H ′′ holds. From

Lemma B.3(4) and from B
µ

=⇒
H′′; k0

B′, it follows that H ′′ = H1∪ · · · ∪Hn, for some n, with

the Hj ∈ CS(B), 1 ≤ j ≤ n; hence for some j ∈ {1, . . . , n}, we have ki ∈ Hj; but, since

by hypothesis B is saturated for W , it holds that Ki ⊆ Hj; since k ∈ Ki and Hj ⊆ H ′′,

we conclude that k ∈ H ′′, which proves our claim. 2

We are now ready to prove the Cancelation Lemma. We first recall its assertion:

Let A be saturated for k � K and B be saturated for k � K ′ . Then

k � K | [[A]] ≈ k � K ′ | [[B]] implies K = K ′ and [[A]] ≈ [[B]] .

Proof of Cancelation Lemma 8.4. If k � K | [[A]] ≈ k � K ′ | [[B]], then it must

be K = K ′, otherwise the two processes would be distinguishable through interactions

at cause names (by Remark 7.13 processes [[A]], [[B]], and τ -derivatives of them, cannot

perform actions at a cause name).

The difficult part is to prove [[A]] ≈ [[B]]. For this, we show that

R = {([[Aρ]], [[Bρ]]) : ρ is a finite cause substitution

and for some I and ki, Ki (i ∈ I),

A and B are saturated for Πi∈I ki � Ki

and Πi∈I ki � Ki | [[A]] ≈ Πi∈I ki � Ki | [[B]] }

is a weak bisimulation up to >∼ and up to context. Thus the thesis will follow by letting

ρ equal to the empty cause substitution and letting Πi∈I ki � Ki equal to k � K in the

definition of R . In the rest of the proof, we abbreviate Πi∈I as Πi. We only show how

the moves of [[Aρ]] are matched by [[Bρ]], since R is symmetrical. We consider the case of

weak input transitions; the cases of output and invisible transitions are similar or easier.

Thus suppose:

[[Aρ]]
a〈ebk〉
=⇒ P (33)

We have to find processes Q, P ′ and Q′ and a static context C[.] s.t.

P >∼ C[P ′] , [[Bρ]]
a〈ebk〉
=⇒ Q >∼ C[Q′] and (P ′, Q′) ∈ R . (34)

61

From Proposition 7.12(2), we know that, for some H and A′,

P >∼ k � H | [[A′]] (35)

and

Aρ
a〈eb〉
=⇒
H; k

A′. (36)

Take a fresh k0 ∈ K; since k0 is fresh, it holds that k0 /∈ K(A, B)∪ (∪i∈IKi)∪{ki : i ∈ I}
and, moreover, k′ρ = k0 iff k′ = k0 (note that such a fresh k0 exists because the nominated

sets of causes are finite and ρ is a finite cause substitution).

By applying first Lemma 4.8 and then Lemma 4.7 to (36), we infer that

A
a〈eb〉
=⇒

H′; k0
A′′ (37)

with

H ′ρ = H and A′′ρ[k0 ; k] = A′. (38)

Applying again Proposition 7.12 to (37), we get

[[A]]
a〈ebk0〉
=⇒ P1

>∼ k0 � H ′ | [[A′′]] (39)

from which, using rule S-par, we infer

Πi ki � Ki | [[A]]
a〈ebk0〉
=⇒ Πi ki � Ki | P1

def
= R . (40)

Since, by hypothesis, Πi ki � Ki | [[A]] ≈ Πi ki � Ki | [[B]], there is S s.t.

Πi ki � Ki | [[B]]
a〈ebk0〉
=⇒ S ≈ R . (41)

Since Πi ki �Ki cannot perform an action at a and, moreover, Πi ki �Ki cannot interact

with any T such that [[B]] =⇒ T or [[B]]
a〈ebk0〉
=⇒ T (by Remark 7.13), the term Πi ki � Ki

does not contribute to the above weak transition. That is, there exists Q1 such that

[[B]]
a〈ebk0〉
=⇒ Q1 (42)

and

S = Πi ki � Ki |Q1 . (43)

From (42) and Proposition 7.12(2), we deduce that, for some B′′ and H ′′,

62

B
a〈eb〉
=⇒

H′′; k0
B′′ (44)

with

Q1
>∼ k0 � H ′′ | [[B′′]]. (45)

Now, since >∼ implies ≈ and parallel composition preserves ≈, we have:

Πi ki � Ki | k0 � H ′ | [[A′′]] ≈ Πi ki � Ki | P1 (from (39))

= R (from (40))

≈ S (from (41))

= Πi ki � Ki |Q1 (from (43))

≈ Πi ki � Ki | k0 � H ′′ | [[B′′]] (from (45)) .

(46)

Thus, from (37), (44) and (46), we have found that A
a〈eb〉
=⇒

H′; k0
A′′, that B

a〈eb〉
=⇒

H′′; k0
B′′ and

that Πi ki �Ki | k0 �H ′ | [[A′′]] ≈ Πi ki �Ki | k0 �H ′′ | [[B′′]]; moreover, by definition of

R , we know that A and B are saturated for Πi ki � Ki . From these facts, using Lemma

B.4 we deduce that H ′ = H ′′.

Having proved that H ′ = H ′′, we can now conclude the proof of this lemma. Applying

Lemma 4.8 and Lemma 4.6 to the transition in (44) we get

Bρ
a〈eb〉
=⇒

H′′ρ; k
B′

with B′ = B′′ρ[k0 ; k]. Since H ′ = H ′′ and H ′ρ = H (by 38), the above transition can

be rewritten as

Bρ
a〈eb〉
=⇒
H; k

B′ .

Moreover, by Proposition 7.12(1) we also have

[[Bρ]]
a〈ebk〉
=⇒ Q >∼ k � H | [[B′]] . (47)

We can now show that transition (47) matches the one by [[Aρ]] in (33). For this, we

have to exhibit two processes P ′, Q′ and a static context C[.] s.t. (34) is satisfied. We set

P ′ def
= [[A′]], Q′ def

= [[B′]] and C[.]
def
= k � H | [.]. We first show that (P ′, Q′) ∈ R . We

recall that A′ = A′′ρ[k0 ; k], that B′ = B′′ρ[k0 ; k] and that ρ[k0 ; k] is a finite cause

substitution. From the Saturation Lemma, applied to the transitions in (37) and (44),

and since H ′ = H ′′, we deduce that A′′ and B′′ are saturated for Πi ki � Ki | k0 � H ′ .

These facts and (46) demonstrate that (P ′, Q′) ∈ R . Finally, (35) and (47) demonstrate

that P >∼ C[P ′] and Q >∼ C[Q′]; hence (34) holds, which closes up the bisimulation. 2

63

