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Abstract

In the field of security protocol analysis, a class of automated methods relies upon the use of symbolic techniques.
We illustrate this approach by focusing on one such method. We outline the underlying protocol model, the concept
of symbolic execution and the resulting verification method. We then discuss the benefits of the symbolic approach
when contrasted with traditional methods baded on finite-state model-checking.

1 Introduction

Security protocols are by now an essential ingredient of communication infrastructures. When executed in a hostile
environment, these protocols are subject to a variety of attacks, that can compromise the security of the data being
exchanged over the communication network. As a result of an attack, an attacker might typically learn a piece of
information which is supposed to remain secret, or it might fool an agent into accepting a compromised key as
authentic. Proving a protocol resistant to such attacks is notoriously a difficult task. In the last decade, a lot of
research effort has been directed towards automatic analysis of crypto-protocols.

The existing automatic methods all stem from a conceptual model due to Dolev and Yao [10]. In this model, the
communcation network is under control of a powerfuladversary. As explained in the next section, in order to fool
the honest participants the adversary can inject traffic on the network at its will. This feature makes the operational
model of the system infinite-state, even if restricted to a limited number of protocol sessions. This can be regarded as
a state explosion problem specific to crypto-protocols.

Finite-state verification methods ([15, 17]) deals with approximate, finite models, for which a well established
model-checking technology is at hand. Recently, infinite-state approaches, based on a variety of symbolic techniques
([2, 4, 9, 13, 18]), have emerged. These methods seem to be very promising in two respects. First, at least if the
number of protocol sessions is bounded, they can accomplish a complete exploration of the state space: thus they
provideproofs or disproofsof correctness - under the Dolev-Yao assumptions. Second, symbolic data representation
allows for compact models, thus improving on time and memory efficiency of verification.

The approach outlined here,symbolic trace analysis[4], belongs to the class of infinite-state methods. Specifi-
cally, this approach is based on: (a) representing protocols as a concurrent processes, described using a dialect of the
spi-calculus [1], and (b) analysing the execution traces generated by the resulting system. Central to the method is a
concept ofsymbolic executionbased on unification, which makes it possible to get round the state-explosion problem.

Symbolic trace analysis has been implemented as part of a prototype verification tool, STA (Symbolic Trace
Analyzer), which is available from the author’s web page [5].

In the rest of the paper, we will first discuss the model underlying the verification method (Section 2), then touch
upon the problem of state-explosion and introduce symbolic execution (Section 3). Based on the latter, we explain
the verification method (Section 4). We then discuss the benefits of symbolic methods when compared to traditional
model checking (Section 5). We conclude with a few remarks and comparison with related work (Section 6).

∗This work has been partially supported by EU within the FET - Global Computing initiative, project MIKADO IST-2001-32222 and by MIUR
project NAPOLI. The funding bodies are not responsible for any use that might be made of the results presented here.
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2 Overview of the model

The model underlying trace analysis can be traced back to Dolev and Yao [10]. As hinted in the Introduction, agents
executing the protocol communicate through a public network that is under the control of an adversary. The adversary
records all messages that transit over the network, and can generate messages by either replaying old ones, or by
combining the latters (e.g. by pairing, encryption and decryption), and/or by generating fresh quantities. Sending a
message on the network amounts to handing the message to the adversary. Conversely, receiving a message from the
network amounts to non-deterministically accepting any message among those the adversary can generate.

Formally, a state of the system is a pairs . P , calledconfiguration: s is a string of I/O actions, and represents the
current adversary’s knowledge;P is (essentially) a spi-term [1], describing the intended behavior of honest partici-
pants. For the sake of presentation, we concentrate here on a language supporting shared-key encryption only. We
write {M}k the ciphertext obtained by encrypting the cleartextM with the keyk: only knowing this key it is possible
to decrypt{M}k and retrieve the cleartextM . Thus the set of messages is:

M, N ::= x | a | 〈M,N〉 | {M}k

wherex, y, . . . range over a set of variables, anda, . . . k, . . . range over an set of names (both sets are assumed to be
countable). The syntax of processes is given below:

P, Q ::=
0 (null)

| a(x). P (input prefix)
| a〈M〉. P (output prefix)
| [M = N ]P (match)
| case M of {y}k in P (decryption)
| pair M of 〈x, y〉 in P (splitting)
| (ν b)P (restriction)
| P |Q (parallel composition).

Since we seek for automatic methods we have omitted replication, which would make the problem undecidable (see
e.g. [11]). Also, note that labelsa, b, . . . are just tags attached to I/O action for ease of reference (as mentioned, the
model assumes one public network). The set of all configurations is denoted byC. The dynamics of configurations
is given by a transition relation−→⊆ C×C, that describes elementary steps of computations. Below, we report the
rules defining this transition relation (we omit a few details concerning substitutions, which are not essential here).

(INP) s . a(x ). P −→ s · a〈M〉 . P [M/x]
wheres ` M

(OUT) s . a〈M〉. P −→ s · a〈M〉 . P

(CASE) s . case {M}k of {y}k inP −→ s . P [M/y]

(SPLIT) s . pair 〈M,N〉 of 〈x, y〉 in P −→ s . P [M/x, N/y]

(MATCH) s . [M = M ]P −→ s . P

(RES) s . (ν a)P −→ s[a′/a] . P [a′/a]
wherea′ is fresh fors, P

(PAR)
s . P −→ s′ . P ′

s . P |Q −→ s′ . P ′ |Q

plussymmetric version of (PAR).
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Some comments are in order. Rules(INP) and(OUT) concern sending and receiving messages, respectively. Since
sending a message just means handing the message to the adversary, any output actiona〈M〉 fired by a process is
recorded in the adversary’s current knowledges (rule (OUT)). Conversely, receiving a message just means accepting
any message among those the adversary can produce. Therefore, in rule(INP) the variablex can be replaced by any
messageM non-deterministically chosen among those the adversary can synthesize from its current knowledges.
The synthesis of a messageM from a set of known messagesS is formalized by a deduction relatioǹ . Here is a
sample of the deduction rules defining̀(see [4]):

M ∈ S

S ` M

S ` M S ` k

S ` {M}k

S ` {M}k S ` k

S ` M
.

The remaining operational rules govern how a process decrypts a message (case M of {y}k inA), splits a pair
(pair 〈M,N〉 of 〈x, y〉 in A), compares two messages for equality ([M = N ]A), handles a new name ((ν a)P ) and
interleaves execution of parallel threads (A |B).

It is worthwhile to point out that, in this formalization, there is no need for an explicit description of the adversary’s
behavior, as the latter is wholly determined by its current knowledge – thes in s . P – and by the deduction relation
` . This is somehow in contrast with other proposals [15, 17], where the adversary must be explicitly described.

3 Symbolic execution

When synthesizing a message, the adversary can apply operations like pairing, encryption and generation of fresh
names repeatdly. Thus, at any time, the set of messages the adversary can synthesize is actually infinite. Any such
message can be non-deterministically sent to a participant willing to receive it; therefore every model based on Dolev
and Yao’s is in principle infinite, more precisely infinite-branching. Our basic model makes no exception: in rule
(INP) the set ofM ’s s.t. s ` M is always infinite, and this makes the model infinitely-branching. In other words,
message exchange induces a form of state explosion.

To overcome this problem, the STA tool implements a verification method based on a notion of symbolic execu-
tion. A new transition relation (written−→

S
, below) is introduced in order to condense the infinitely many transitions

that arise from an input action (rule (INP) of operational semantics) into a single,symbolictransition. The received
message is now represented simply by a free variable. The set of values this variable may take on is constrained as
the execution proceeds. Technically, a constraint takes the form ofmost general unifier(mgu), i.e., a most general
substitution that makes two expressions equal. The set of traces generated using the symbolic transition relation con-
stitutes thesymbolic modelof the protocol. It is worth noting that, differently from the standard model given by−→ ,
the symbolic model is finite, because each input action just gives rise to one symbolic transition, and agents cannot
loop.

For a flavor of how symbolic execution works, let us consider the following example. Suppose that agentP , after
receiving a message, tries decrypting this message using keyk; if decryption succeeds andy is the result, the agent
checks whethery equalsb and, if so, proceeds likeP ′. This is written as

P
def= a(x ). case x of {y}k in [y = b]P ′.

Let us explain how the symbolic execution proceeds, starting from the initial configurationσ.P , whereσ = lost〈b, k〉
(i.e. the adversary has somehow got to know namesb and k). After the first input step, in the second step the
decryptioncase x of {y}k in · · · is resolved by unifyingx and{y}k: this results in the unifier (substitution)[{y}k/x],
which is propagated globally. In the third step, the equality test[y = b] is in turn resolved by unifyingy andb, that
results in[b/y], again propagated globally. Formally,

σ . P −→
S

σ · a〈x〉 . case x of {y}k in [y = b]P ′

−→
S

σ · a〈{y}k〉 . [y = b]P ′[{y}k/x]
−→

S
σ · a〈{b}k〉 . P ′[{y}k/x][b/y].

An important point is that symbolic execution actuallyignoresthe deduction relatioǹ , and thus there is not an exact
correspondence between concrete and symbolic traces. In fact, every concrete traceis an instance of some symbolic
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trace, but the converse is not true in general. There may be ‘inconsistent’ symbolic traces, that do not correspond to
any concrete trace. For example, consider again the processP above, but this time let us start with theemptytrace
ε. In other words, let us considerε . P . The tracea〈{b}k〉, which is symbolically generated by this configuration,
is not consistent. To see why, consider that the adversary simply cannot generate the message{b}k out of an empty
knowledge (the traceε): i.e. ε 6 ` {b}k.

The good news is that inconsistent symbolic traces can be detected (and discarded). We have a procedure that,
when given a symbolic trace as input, ‘refines’ it until a form is reached by which consistency can be checked
syntactically. The refinement procedure is further discussed in the next section.

4 Property verification

Given a configurations . P and a traces′, we say thats . P generatess′ if s . P −→∗ s′ . P ′ for someP ′ (−→∗

is the reflexive and transitive closure of−→ , i.e. zero or more steps of−→ ). We express properties of the protocol
in terms of the traces it generates. In particular, we focus on correspondence assertions of the kind

for every generated trace, if actionβ occurs in the trace, then actionα must have occurred at some
previous point in the trace

that is concisely written asα ←↩ β. More accurately, we allowα andβ to contain free variables, that may
be instantiated to ground values. Thusα ←↩ β actually means thatevery instanceof β must be preceded by the
corresponding instance ofα, for every generated trace. We writes.P |= α←↩ β if the configurations.P satisfies this
requirement. This kind of assertions is flexible enough to express interesting secrecy and authentication properties.
As an example, the final step of many key-establishment protocols consists inA’s sending a message of the form
{N}k to B, whereN is some authentication information, andk the newly established key. A typical property one
wants to verify is that any message encrypted withk that is accepted byB at the final step should actually originate
from A (this ensuresB he is really talking toA, and thatk is authentic). If we callfinalA andfinalB the labels attached
to A’s andB’s final action, respectively, then the property might be expressed byfinalA〈{x}k〉 ←↩ finalB〈{x}k〉, for x
a variable. The scheme also permits expressing secrecy as a reachability property (in the style of [2, 12]): to this end,
it is convenient to fix an ‘absurd’ action⊥ which is supposed to be never executed and consider the property⊥ ←↩ β,
that is “no instance of actionβ is ever executed”. It is possible to let actionβ correspond to the adversary’s getting a
secret. Thus⊥ ←↩ β precisely says that the adversary will never get this secret.

Let α ←↩ β be a property andC a configuration. Denote byModC the symbolic model generated starting from
C. The verification methodM(C, α←↩ β), presented in Table 1, checks whetherC satisfiesα←↩ β or not. Moreover,
if the property is not satisfied,M(C, α←↩ β) computes a trace violating the property, that is, an attack onC. The
method relies on the refinement procedureRefinement(·), that takes any symbolic traceσ and yields the most
general instances ofσ that are syntactically consistent, if any (details on how to compute this set can be found in
[4, 5]).

The functioning of the method is best explained in the caseα = ⊥. This means verifying that in theconcrete
semantics, no instance of actionβ is ever executed starting fromC. By a correspondence theorem between symbolic
and concrete semantics, this amounts to checking that for each symbolic traceσ in the symbolic model, no ground
instance ofσ contains an instance of actionβ. To check this, the method proceeds as follows. First, , for every action
γ in σ, it checks whether there is a mguθ of γ andβ. If no suchσ, γ andθ exist, then clearly no instance ofβ is ever
executed, thus the property holds true. If they exist, butσθ is not consistent (i.e. the check∃σ′ ∈ Refinement(σθ)
at step 5 fails), then again the property holds true. Otherwise there is a consitent symbolic trace containing an instance
of β, thus the property does not hold true: the traceσ′ violating the property is reported.

The verification method based on symbolic execution is sound and complete w.r.t. the standard model, in the
sense that every consistent attack detected in the symbolic model (relation−→

S
) corresponds to some attack in the

standard model (relation−→ ), and vice-versa (see [4, 5]). In other words, the symbolic model captures all and only
the attacks of the standard model.

5 Discussion

We summarize what we think are the main benefits of the symbolic approach when compared to traditional finite-state
methods. The discussion takes two aspects into account, model’s accuracy and efficiency.
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M(C, α←↩ β)
1. computeModC from the symbolic operational semantics;
2. foreach σ ∈ModC do
3. foreach actionγ in σ do
4. if ∃ θ = mgu(β, γ) and
5. ∃ σ′ ∈ Refinement(σθ) where σ′ = σθθ′ and
6. αθθ′ does not occur prior toβθθ′ in σ′

7. then return(No, σ′);
8. return (Yes);

Table 1: The verification method

Accuracy of the model In finite-state methods (e.g. [15, 17]), analysis of security protocols is carried out by
modelling both honest participantsand the adversary as communicating processes, and then putting them in parallel.
An operational model for the resulting system is then explicitly generated and model-checked. In order to keep the
model finite and rely on standard model checking, a bound on the number of possible messages the intruder can
generate is fixed. In order to control state-explosion, and given the combinatorics of message-generation, the chosen
bound must necessarily be low (no more than, say, one dozen). This is sometimes achieved by imposing restrictions
on the type of messages the adversary can generate at any stage.

Differently from finite-state model checking, the symbolic approach makes no assumption on the type and number
of messages the adversary can generate: STA performs a complete exploration of the whole infinite-state model. For
instance, the method detects “type-dependent” attacks. In this kind of attacks, the adversary cheats on the type of
some messages, e.g. by inserting a nonce where a key is expected according to the protocol description. Type-
dependent attacks usually escape finite-state analysis (see e.g. [16]). Under certain circumstances, it may be sensible
to assume that the attacker obey a given type discipline (e.g. because non well-typed message can be easily detected
and discarded), but in general, an appropriate typing cannot be established automatically: it seems that some (fairly
accurate) knowledge is required of how the protocol works is required. This makes the whole analysis process
potentially error-prone.

Efficiency Symbolic trace analysis does not suffer from any state explosion problem depending on message ex-
change: any input action in the protocol gives rise toa singletransition in the symbolic model. In finite-state model
checkers, clever assumptions may reduce the state space to explore, but input actions give rise to a branching factor
greater than one: then, as the number of participants, and/or of possible data values, increases, the size of the model is
expected to increase dramatically. In view of these considerations, symbolic methods seem to have some advantage
over finite-state model checkers. For example, this is true for those instances of Needham-Schroeder and Kerberos
analyzed with STA in [6] and with Murϕ in [17]. Memory occupation can be very well controlled in tools based on
symbolic methods, because they naturally lend themselves to a depth first search strategy.

Note that the word ‘efficiency’ should be taken here in a practical sense, not in the formal sense of ‘worst-case
complexity’. In fact, the problem of protocol analysis is NP-hard even in its simplest forms (see e.g. [20]).

6 Conclusions and related work

We have illustrated a unification-based method for the analysis of security protocols. In contrast with finite-state
model checking, the method can analyze the whole infinite state space generated by a limited number of sessions.
The method is efficient in practice, because the symbolic model is compact, and the refinement procedure at its heart
is only invoked on demand and on single symbolic traces.

Early work on infinite-state analysis is due to Huima. In [13], the execution of a protocol generates a set of
equational constraints. Only an informal description is provided of the kind of equational rewriting needed to solve
these constraints. Roughly contemporary to ours is the approach of Amadioet al. [2, 3]. Unlike our approach,
symbolic execution and consistency check are not kept separate, and this may have a relevant impact on the size of
the computed symbolic model. Another point worth noting is that, in [2, 3], a brute-force method is used to resolve
variables in key position: all possible instantiations for these variables are in fact considered. The decision technique
in [9] is based on a reduction to a set constraint problem which is in turn reduced to an automata-theoretic problem.
Cycling processes are allowed, but completeness is proven by assuming rather severe restrictions on protocol syntax.
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The technique in [18] focuses on reachability properties and is based on constraint solving. Symbolic reduction and
knowledge analysis are kept separate; the latter is performed by a constraints solving procedure.

A very recent trend focuses on the detection of attacks that also exploit features of low-level operations, such
as modular exponentiation. The ‘perfect encryption’ assumption of Dolev and Yao is thus partially relaxed, but the
resulting models are in general less amenable to automatic analysis. A step in this direction is [6], which introduces
a framework for ‘generic’ crypto-primitives (subject to certain conditions). An application of this framework to the
case of Diffie-Hellman key exchange is in [7]. There, an automated method is given, under the assumption that the
adversary can only use a limited set of capabilities. Diffie-Hellman exponentiation is also the subject of a few very
recent papers [8, 14, 19], mostly based on re-write techniques, that present (un)decidability results for several flavours
of the problem.
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