Symbolic Bisimulation for Timed Processes™

ichele boreale

niversita di Roma a daplenza

Ahbhstract

Basing on symbolic transition systems, we propose a novel approach to the
semantics of timed processes. A process algebra in which actions may occur
within specified time intervals is introduced, together with a notion of bisimu-
lation equivalence, based on standard transition systems.

The language is also equipped with a new, symbolic operational semantics.
The latter, contrary to standard operational semantics, gives rise to transition
systems which are finitely branching and, for a large class of processes, finite.
On top of the symbolic operational semantics, we introduce a notion of symbolic
bisimulation, for which a tractable proof technique exists. We then prove that
symbolic and standard bisimulations coincide for our processes. A proof system
to reason about bisimilarity is also presented. The soundness and completeness
proofs for the system take great advantage of the symbolic characterization of
bisimilarity.

1 Introduction

The treatment of timing aspects is often a delicate issue in concurrent systems, partic-
ularly if they must react in real-time to stimuli from the external environment. When
describing a system that controls a dangerous industrial process, we should be able
to specify that, after the detection of some error, a certain recovery action must take
place within a given time interval. Several attempts have been made to incorporating
timing aspects in classical process algebras, such as CCS and CSP: among the many,
[8, 3, 2]. Here, we focus on a specific approach, taken e.g. in [3, 2]: it is based on
attaching time-stamps to standard actions, to record their time of occurrence. For
example, in the notation of [3], the expression

./tem a(t). P (1)

represents a non-deterministic process that may engage action a at any real time
between 0 and 5, and that then behaves like P.

A central goal of a theory of timed systems should be that of providing feasible
reasoning techniques, perhaps amenable to mechanization. In this respect, a first,

*Work done while the author was at Tstituto per Elaborazione dell’Informazione - CNR,, Pisa.
The work has been partially supported by EEC, HCM Project Express and by ONR within
the project “Specifica ad Alto Tivello e Verifica di Sistemi Digitali”. Author’s e-mail address:
michele@®dsi.uniromal.it.

obvious difficulty is encountered if trying (as in [3]) to model time by means of real

numbers, which cannot have a finite representation. A reasonable solution to this

s restricting to rational numbers, which, for all applicative purposes, are the best

possible approximation of reals. FEven so, formulating a tractable theory remains

problematic. The standard way of modelling the operational behaviour of (1) is to

use a transition system having a transition labelled by a(r) for each value r allowed

in the interval [0,5] (see e.g. [3]). In other words, the temporal parameter ¢ is

instantiated in all possible manners. This Teads typically to transition systems which

are infinite-branching (infinitary), even in very simple cases like (1). Usual behavioural

relations, like bisimilarity [7], can be defined in a familiar way over such structures,

but reasoning with them is generally quite difficult. Tn particular, the fact that the
considered transition systems are infinitary prevents us from applying usual reasoning
techniques of process algebras: the existence of complete proof systems, for example,
is problematic in this setting, or relies on very ad-hoc techniques [5]. For similar
reasons, there seems to be no obvious way of extending known automatic verification
methods to this setting.

In the present paper, we try to address some of the above issues, focusing on a
specific behavioural equivalence, bisimilarity, written ~. We introduce a language of
rational-timed processes, equipped with a notion of bisimilarity based on a standard
infinitary transition system. The language we consider is quite expressive (more than,
e.g., Wang’s timed CCS [8]). For example, our language naturally permits describing
time-outs or specifying that one action must take place within a certain time interval
after another (relative delays). In this timed setting, we then develop a theory of
symbolic bisimulation, in the style of Hennessy’s and I.in’s theory for value-passing
processes [6]. Our theory yields an alternative, finitary representation of processes
behaviours and a more tractable characterization of bisimilarity. For the latter, in
particular, “exhibiting symbolic bisimulation relations” turns out to be a feasible
reasoning technique. We also propose a sound and complete proof system for reasoning
about ~. A more detailed account of our work is as follows.

Our approach can be explained in two steps. First, besides the standard infinitary
one, a new symbolic operational semantics is introduced. There, the infinitely many
standard transitions raised by expressions like (1) are reduced to a single, symbolic
transition. In the latter, no instantiation of the temporal parameter ¢ is performed;
rather, the temporal constraints on ¢ are recorded via a logical formula. Thanks
to this fact, the resulting symbolic transition system is finite-branching, and, for a
large class of timed processes (including all those without recursion), is even finite.
To clarify these points, let us write expression (1) in the more conventional form
a(t,0 < t < 5).P. According to our approach, the latter gives rise to the single

symbolic transition:
a(t), (0<t<5)

a(t,0 <t <5).P - P.
In general, our logical formulae are built, via the usual boolean connectives, from
temporal variables, rational values, operator + and predicates < and =. As a second
step, on top of the symbolic transition system, a new, symbolic equivalence is defined.
Intuitively, two timed processes P and () are symbolically equivalent if for every

a(t) &
—

symbolic move P P’ of P, we can find a decomposition in sub-cases of the

formula ¢, such that each subcase “entails”, in a logical sense, a matching transition

for @) (and vice-versa for (), P). As a simple example, consider the processes:

2
fy|

e

P = a(t,0<t<10).F and

e

Q = at,0<t<5).P' +a(t,5<1<10).P

2
fy|

where + 1s the operator of non-deterministic choice. Proving the equivalence of P and

@ by relying on the definition of ~ would imply exhibiting an infinite binary relation

of processes, due to the necessity of instantiating the parameter £. On the contrary,
the symbolic equivalence of P and () is readily established by noting that the formula

(0 <t <10), attached to the only symbolic transition of P, can be decomposed into
the set of subcases {(0 <1 <5),(5 <t < 10)}, each of which implies a formula in a
symbolic transition of @ (the vice-versa for @), P is obvious). It is worth noting that

the decompositions can always be taken finite.

Our main theorem shows that the symbolic equivalence, ~, can be used to es-
tablish the standard one, ~. More precisely, we prove that standard and symbolic
bisimilarities coincide on processes not containing free temporal parameters. This
makes “exhibiting symbolic bisimulation relations” a feasible proof technique for ~
and lays the basis for the development of automatic verification tools. For the latter,
in particular, it should be possible to adapt to our setting Hennessy’s and Tin’s algo-
rithms for checking value-passing symbolic equivalence [6]: but this point remains to
be fully worked out.

For processes without recursion, we also prove decidability of timed bisimilarity
and put forward a sound and complete proof system. The corresponding proofs take
great advantage of the symbolic characterization of ~ and are themselves examples
of application of the proposed techniques.

A few words about the “local-time vs. global-time” issue are in order. Like in [2],
we adopt for our language the local-time point of view. However, we will argue that
this choice is not critical for the development of our theory.

The rest of the paper is organized as follows. Section 2 describes the language of
timed processes and standard bisimulation over it. Symbolic transitional semantics
and symbolic bisimulation are introduced and discussed in Section 3. In Section
4, after having established some technical properties, the main theorems, stating the
correspondence between symbolic and standard bisimulation, are discussed. The proof
system is described in Section 5. Finally, Section 6 contains comparison with related
work and a few conclusive remarks.

2 The Language

2.1 Syntax

To manipulate temporal constraints in processes, we use a simple language of boolean
formulae, BF. We introduce BF below, and then describe the syntax and the stan-
dard semantics of timed processes.

2.1.1 Expressions and boolean formulae

We assume a countable set Var of variables ranged over by ¢,#',.... The letters r,r’ ...
range over the non-negative rationals, Q2" . Letters p,p’,... range over Var U Q2" .

FExpressions e are given by e := p | p-+r. The set of rational values and the set of

variables occurring in e are denoted, respectively, by val(e) and var(e). The language

of boolean formulae BF, ranged over by ¢,, ..., 1s given by the following grammar:
o:=true | p<e | p=e | o6ANG | —¢.

In the sequel, standard abbreviations such as false for =true, ¢ Vi for =(=¢ A =),

p<efor(p<e)V(p=e)andsoon, will be freely used. We denote by var(¢) (resp.

val($)) the set variables (resp. rational values) occurring in @.

Fnvironments, ranged over by a, p, ..., are finite partial maps from Var to Q=" ;

[ri/ti,....r.[t.], n > 0, denotes the environment mapping #; to r;, for T < i < n,

and undefined elsewhere. For a given o, o[7/t] denotes the environment which maps ¢

to r and behaves like o elsewhere. The domain of ¢ is denoted by dom(c). For any
expression or formula h, ha denotes the result of substituting each = € var(h)Ndom(o)
by o(x).

An expression or a formula is ground if it does not contain variables. Given a
ground expression e, its evaluation [e] is the non-negative rational value obtained by
evaluating e in the expected way (once the operator symbol + is interpreted as the
standard summation over Q2%). Given a ground formula ¢, the evaluation of ¢ into
the set {true, false}, [¢], is inductively defined in the expected way, once we set that:
Ttrue] = true, [r < e] = true iff r < [e] and [r = €] = true iff r = Je]. Some basic
(somewhat standard) notions on environments and formulae are summarized below.

e 0 | ¢ (0 satisfies ¢), holds if dom(o) D var(¢) and [¢o] = true. A formula ¢

is satisfiable if there exists o s.t. 0 &= ¢.

o ¢ |= 1 (¢ logically implies) holds if for every o s.t. dom(a) D var(¢)Uvar(y),
o | ¢implieso | 1. Wesay that ¢ and ¢ are equivalent if ¢ |= o and) | ¢.

o VD, where D ={¢y,...,d,} Ctin BF, n >0, is the boolean formula ¢; V...V
&n. A similar notation will be used for A D. Furthermore, we let \/ denote
false and A0 denote true.

2.1.2 Timed processes

As in CCS, we assume a countable set A of actions and a bijection - : A — A,
giving the complementary action for each action a, with the property that a = a;
Act is AU A and is ranged over by a,b,.... Fach action in A is assigned positive
duration, given by a function A : A — Q% ; the latter is extended to Act by
letting A(a) = A(a). A family of labels T = {75]§ € Q* } disjoint from Act, to
be used for internal actions of processes, is also assumed. Letters ¢,c’,... range over
ActUT. A countable set of agent identifiers, ranged over by A, B, ... and each having
a non-negative arity, is presupposed. The language of agent terms, P, ranged over
by P, (), ..., 1is built from the operators of inaction, action prefix, summation, boolean
quard, parallel composition, restriction and agent identifier:
P:=0 | aP | P+P | ¢P | P|P | P\a | Aler,...ep)

where k is the arity of the identifier A and o := waits | a(t,¢), with § € Q* and
¢ =t < e, for some expression e not containing ¢. The prefix a(t, ¢). is intented to be
a binder for t in a(t,¢).P, thus the notions of free variables fvar(.), bound variables
bvar(.) and a-equivalence over agent terms are the expected ones. We shall consider
agent terms up to a-equivalence: thus terms differing only in the choice of the bound

names will be identified. We will sometimes use a(e). P as a shorthand for a(t, = €).P,
whenever ¢ ¢ foar(P,e). We sometimes abbreviate a(t, ¢).0 simply as a(f, ¢). We
assume an arbitrarily fixed finite set D of guarded identifiers definitions, each having
the form A(ty,...,t,) < P, with the #;’s distinct and foar(P) C {ty,...,t,}. A
process is a closed agent term, i.e. a P such that foar(P) = 0. The set of processes

is denoted by P,.

Some intuitive explanation on the operators of our Tanguage 1s in order. Tnaction,

summation, parallel composition and restriction have essentially the same meaning

as in CCS. The meaning of the other constructs is as follows. Tn a(?, ¢).P, action a

can be engaged starting at a certain time ¢ and then last for a time A(a); the time

t must satisfy a certain temporal constraint, expressed by the formula ¢. F.g., the
action a in a(t,h <t < 8).P can start at any time between 5 and 8. Note that we
require that ¢ determine some upper-bound to the value of ¢: for example, a(t, true).
is a forbidden action prefix. In other words, actions cannot delay arbitrarily long.
This assumption can be fulfilled in many practical situations and greatly simplifies
the theory of symbolic bisimulation, as we shall see in later sections. The action
waits represents an internal activity that takes time 6. Process ¢ P behaves like P if
¢ is true and like 0 otherwise. Finally, agent identifiers allow us to specify recursive
behaviours, using a set of temporal parameters. The following example shows that
the language P, is indeed quite expressive.

Example 2.1 let us describe a simple communication protocol supporting time-out.
Starting at time ¢g, a communication com occurs, after which an acknowledgment ack
is awaited for a time T'; if this time elapses without receiving any ack, a recovery
procedure Tecov is invokated (we assume for simplicity that the duration of actions
com, ack and Tecov is 1):

A(to) <= com(te).(ack(t,t < to+ T).A(t+ 1) + recon(t, 1! = to+ T). A(t + 1))

2.1.3 Configurations

In order to describe standard operational semantics, we follow [2] and use configura-
tions to keep track of the time of occurrence of actions. The idea is that of associating
with each process P a “clock”, e e, recording the current time, thus obtaining a con-
figuration P ee. A process P is then viewed as a configuration starting at time 0,
P « (). The syntax of configurations C, ranged over by S, R, ..., is as follows:

S:=0 | Pee | 65 | S+5 | S|S | S\a.

Following [2], we will consider configurations in canonical form with respect to the

clock e ¢, which is assumed to be distributive over all operators different from o. and
identifiers. Formally, let = be defined as the least congruence generated by the axioms
below:

e) (pP)ee = ¢(Pae)
Qee) (P\a)ee = (Pee)\a

€

(P+Q)ec = (cc)+(Q

> = (Pee)|(
0
Applying these axioms as left-to-right rewriting rules, it is easy to see that each

configuration S is reducible to a =-congruent canonical configuration generated by
the grammar:

Act) , 7 > [e] and [o[TH]] = true
(a(t,¢).P) e e — (P['/]) o (r+ A(a))

Wait

TM

(waits.P) e e "Pa (Te] + &)

[[[
Sum—————— Guard——, [¢] = true Res——— a,anot in
S1+ S, 9 ¢S & S\a = S§'\a

S, g g gg, g
Par Com S

S8y = Si S Si 8y LTSSy

(P{e]/f]7...7€n/fn}).€ L S/
Ide if A(ty,...,t,) < PisinD

Aler, ... en) @ e 5 &

Table 1: Concrete operational semantics over closed configurations C.,.

S:=0 | (a.P)ee | Aler,...,ex)ee | ¢S | S+S5 | S\a | SI|8S.

In the rest of the paper, we will always consider configurations in canonical form

w.r.t. =. The notions of free and bound variables extend to configurations in the
expected way. When giving the standard, “concrete” operational semantics, we will
be interested in closed configurations, i.e. the set of those S s.t. fvar(S) =0, which
is referred to by C..

2.2 Standard operational semantics

We are now set to introduce the standard “concrete” operational semantics over closed
configurations, C.. In the sequel, for H an agent term or a configuration, we let Ho
denote the result of substituting each @ € fvar(H) N dom(o) by o(x). Furthermore,
the notation P{ei/t1,...,e,/t,} is used to indicate the simultaneous substitution of
the variables ¢,’s with the expressions ¢;’s (this may involve renaming of bound names
in P); in order to keep the result of this operation within our syntax, we assume

that formulae are suitably normalized. (F.g., (a(tjt <t + 5).0>{t’ +4/t} = a(t,t <
1'4+9).0). Operational semantics of C. is presented in Table 1. There, the symmetrical
rules of Sum and Par have been omitted, e is confined to ground expressions and pu
ranges over transition labels.

Some comments on the operational semantics are in order. Our rules are related to
the operational semantics of [2]. Tn the latter, all actions are assumed to be “eager”,
in the sense that they occur as soon as they are allowed. This assumption permits
modelling processes behaviour by means of finitary transition systems. Our rule Act
is the obvious adaption of the corresponding rule in [2] to a more general setting,
where actions may also delay. The meaning of Guard should be obvious. The other
rules of Table 1 are formally identical to rules in [2]. In particular, rule Par says that,

in a configuration P ec|(Q) e €/, e and € are the local clocks at. P and (). These clocks

never interact, except when a sinchronization between P and @) takes place (rule Com);

this also causes clocks to be synchronized (this view is adopted, for example, in certain

communication protocols, in which agents use Tocal clocks to time-stamp messages,

but periodically synchronize clocks).

On top of closed configurations operational semantics, we define bisimilarity in the

standard way.

Definition 2.2 (Bisimilarity) A symmetric binary relation R over C. is a bisim-
ulation iff whenever SRR and S - S, there exists R such that B - R' and
SR R'. We say that S is bisimilar to R, and write S ~ R iff there exists a bisim-
ulation R such that SR R. Given two processes P and (), we say that P and () are
bisimilar, and write P ~ Q, iff P e () ~ () « 0.

It is easy to show that the relation ~ . over P., is preserved by all operators
different from a(t, ¢). The binding nature of latter operator raises a little problem: if
we want to deduce that a(t,¢).P ~ a(t, ¢).Q from the equivalence of P and @, which
are in general open terms (as may contain free occurrences of), we have to extend
the relation ~ over such terms. This can be done by “closing” ~ under all possible
environments. The congruence properties of ~ will be further discussed in Section 5.

From now on, we will freeely use such abbreviations as fvar(P,S,¢,1) to mean

foar(P)U fvar(S)Uwvar(é)U {t}. Furthermore, v(-) stands for val(-)U foar(-).

3 Symbolic Semantics

First symbolic operational semantics and then symbolic bisimulation will be intro-
duced over the set of configurations (either closed or open), C.

e(t), ¢

The rules for operational symbolic semantics over configurations, +— . are re-

ported in Table 2. Rules symmetrical to S — Sum and S — Par have been omitted to

. o (1), o
save space. In any symbolic transition S itk S’, the formula ¢ collects all conditions,

on the values and the free variables of S and on the time ¢ itself, necessary for the
action ¢ to take place at time . Note that each symbolic rule is the counter-part of a
concrete one. In S — Act and S — Guard, the side-conditions of the corresponding con-
crete rules have been, so to speak, moved on the transitions. Here, the side-conditions
on the variable t are of syntactic nature, they just ensure that ¢ is taken “fresh”, i.e.
different from any other free variable in the configuration.

Note that, since we are working up to a-equivalence, a-equivalent configurations
are deemed to have the same transitions. Thus, the symbolic transition system is
actually finite-branching up to a-equivalence, while the concrete one has an infinite
branching factor.

We are now ready to introduce symbolic bisimulation. In a value-passing setting,
this notion was first introduced by Hennessy and T.in [6]. Tt is convenient to define
a family of symbolic equivalences ~?, each depending on a formula ¢ (equivalence
under ¢), instead of a single relation. The intuitive idea is as follows: S and R are
symbolically equivalent under ¢, S ~® R. if for every symbolic transition of 9, say

S jildhe S’, one can find a decomposition of the formula ¢ A b into a finite set of

S — Act N , 1 & var(e)
(a(t,8).P) e e 2D b g (1 L Aa))

S — Wait = , 1 & fuar(P)Uuwar(e)
(waits.P) e e I b (t+46)
s 2 g s Y s Wy
S — Sum S—Guard—— 1 € var(¢) S —Res , cFaa
S+ 9, W g 45 U o S\a L gr\g
s ¢ g s W g s, Y g
S — Par , t ¢ fvar(Ss) S — Com -
Sy 18 T g s, Sy 1S, WY oo
(Pler/ti, ... enftn}) @e RIS
S — Ide - , Ay, .. t,) <= PisinD
A(€]7. . '7677) CM ‘g/

Table 2: Symbolic operational semantics over configurations C.

sub-conditions, each of which “entails” (in a logical sense) a matching transition for
R. We will now give the formal definitions and shortly after that explain the necessity

of this decomposition.

Definition 3.1 (¢-decomposition) Given ¢ and a finite set of formulae D =
{d1,..., 0.}, we say that D is a ¢-decomposition if ¢ is equivalent to \/ D.

Definition 3.2 (Symbolic bisimulation)

o A family F = {R?|¢ € BF} of symmetric binary relations over configura-
tions, indexed over the set BE of boolean formulae, is a family of symbolic

bisimulations (FSB) iff for each ¢ and (S, R) € R?, whenever S kg S’ with
t ¢ foar(S,R,¢) then:

there exists a ¢ A -decomposition D, such that for all

(€ D, there is a transition R Hox R with { = v and

(SlvR’) € RC'
o S ~% R iff there exists a FSB {RY | € BF} such that (S, R) € R®.

To check symbolic equivalence, it is not necessary to consider all the cases corre-
sponding to the (infinitely many) instantiations of the parameter ¢ in prefixes a(t, ¢).
Rather, it is sufficient to consider the single symbolic transition which a(t, @). gives rise
to. The infinitary “case-analysis” on the value of the time-stamp, implicitly present
in the standard definition of bisimilarity, is here embodied in the decomposition D,
which can be always taken finite. Furthermore, by choosing D appropriately, the
number of cases to deal with can often be kept small. A simple example will help to

clarify these points.

Example 3.3 Consider the processes

e

2
fy|

P = a(t,t <10).b(t + Aa)) and
Q = a(t,t<10).P where:
PrE (< 5t 4 Ala)) + (1> B)b(E+ Aa)) + (1 = 3)b(3 + Ala).

It should he immediate to establish that P and () are equivalent, in that both of
them can engage action a at any time ¢ € [0, 10], after which action b is immediately
executed. We show that P e () ~"" () e (), by exhibiting an appropriate family of
relations. Consider the family of relations {R°U(R?)~" [¢ € BF'}, where the relations
R? are defined as follows:

Rtv’ue — {(P . 07Q L 0)}

RUS) = {(P' o (14 A(a)), b(t+ Ala) o (1 + A(a)))}
RE>5) — RU<) _— RE=3) _— R<H)
R? = {(0,0)} for any other different ¢.

This corresponds to decomposing the condition (¢ < 10), present in the symbolic tran-
sition of P, into the set {(t < 5), (t > 5), (t = 3)}. Indeed, each of these conditions
is sufficient to establish that P’ e (t + A(a)) is equivalent to b(t + A(a)) e (t + A(a)).

Note that if want to establish the equivalence of P and () using the concrete equiv-
alence ~, then we have to exhibit the infinite relation SUS™', where S is:

{(Pe0,Qe0)} U{(PIA o (r+ Ala)), b(r + Aa)) s (r+ Aa))) |7 € [0,10]} U
{(0,0)}.

In [6], Hennessy and Lin present an algorithm that, taken two generic finite sym-
bolic transition systems 7" and 7", produces a formula v, which is the weakest formula
under which T and 7" are symbolically equivalent. Thus, checking the symbolic equiv-
alence under ¢ of T and T" reduces to the problem of checking whether ¢ |= 1. Now,
modulo the different language, our definition of symbolic bisimulation is formally the
same as the one given by Hennessy and Lin [6]. Thus, it should not be too difficult to
adapt their algorithm for checking symbolic equivalence to our setting. We want also
point out that, as we shall see, the relation = is decidable for our language. This
could lay the basis for automatic verification of timed systems. For processes not,
containing recursion (agent identifiers), a direct proof of the decidability of symbolic
bisimulation can be given, by relying on the existence of a “canonical” decomposition.

4 Consistency and Adequacy of Symbolic Bisim-
ulation

In order to establish the correspondence between symbolic and standard semantics,
we have to develop a few technical properties.

4.1 Fundamental properties

In what follows, the symbol V will range over finite subsets of Var U Q2% | unless
otherwise stated. Furthermore, we say that p is an environment on V if dom(p) D

N Var.
A central role in our theory is played by the concept of complete formula. Tn

the standard sense, a formula ¢ is complete if for every formula ¢ either ¢ =) or

¢ = —b. This notion is however too strong for our purposes. Intuitively, we will

always deal with some fixed, finite set of variables and non-negative rational values

(those occurring in the two configurations being compared). Therefore we are only

interested in completeness relatively to those formulae whose variables and values are

in this set. For technical reasons, also the “closure” of the given sef of values, under

the arithmetical operations + and —, must be considered. These considerations Tead

to the following definitions.

Definition 4.1 (Closure under + and —) For any W C;,, Q2° the closure of W
is the set X(W) C Q2" defined as
{r>0]r = ewony(gr *1') for some integers g, with v € W U {1} }.

Note that, given any r € Q2" | the set X(W) N[0, 7] is finite'. We denote by %(V)
the set 2(V NQ2" YU V.

Definition 4.2 (Completeness for formulae) A formula ¢ is complete over V if

for each p with v(xp) C X(V), either ¢ = 1 or ¢ &=).

The next result ensures that, under certain conditions, a formula can be decom-
posed into a finite set of formulae, each of which is complete, in the sense of Definition
4.2. In the sequel, given a set 7 Cy,, Var, we say that a formula ¢ is bounding for 7
if there exists a rational r such that ¢ = Azt < r. By slight abuse of notation, we
sometimes say that ¢ is bounding for V', meaning that ¢ is bounding for VN Var.

Lemma 4.3 (Existence of finite decomposition) Suppose that ¢ is bounding for
V. Then there exists a finite set 1) of formulae s.1.

1. D is a ¢-decomposition;

2. each (€ D is satisfiable, complete over V' and bounding for V.

The next lemma is important as far as decidability of symbolic bisimulation is
concerned.

Lemma 4.4 The relation =C BF x BF is decidable.

We now come to some important properties of operational semantics. The follow-
ing proposition is crucial, since it relates symbolic and standard operational semantics.
It can be easily shown by transition induction.

Proposition 4.5 (Operational correspondence) Let p be an environment on

foar(9).

1. Given any t ¢ foar(S), Sp A7), Sy implies S LY for some ¢ and S’ s.1.

pl"M | ¢ and Sy = S'p["].

Tt can be shown that this property would not hold in general if W contained non-rational real
numbers.

C(‘/‘,)’(b
—

2.8 S" and p|"/t] = ¢ imply Sp), Sy, with Sy = S'p["/t].

The following definition introduce the concept of “closing” bisimilarity under a

family of environments. This nofion i1s useful for stating the next theorem and the

theorem of correspondence hetween symbolic and standard hisimulation.

Definition 4.6 (Closure of ~ under ¢) Given any boolean formula ¢, the rela-
tion ~° is defined as: Sy ~% Sy iff for each environment p on fvar(S;, S, @) s.t.
p E ¢, it holds that Syp ~ Sayp.

~T¢ ig the same as ~.

Note, over closed configurations (hence over processes),
In general, when checking S ~% R, one has to check bisimilarity of S and R un-
der all the (possibly infinitely many) environments satisfying ¢. The next theorem
states that considering just one such environment is sufficient when ¢ is complete
over fvar(S, R). This is crucial for proving the correspondence between symbolic and

standard bisimulation.

Theorem 4.7 Consider S, R and (s.t. (is complete over v(S, R). Suppose that for
some p on fvar(S,R,() it holds that p = (and Sp ~ Rp. Then S ~¢ R.

4.2 Main results

In order to prove that standard, “concrete” bisimulation ~ coincides with ~"* over

closed configurations, and hence over processes, it is convenient to show a more general
correspondence on open configurations. The proof of the latter can be naturally split
into two parts, consistency and adequacy.

Theorem 4.8 (Consistency of symbolic bisimulation) let S and R be configu-
rations. Then S ~® R implies S ~¢ R.

PROOF: (Sketch). The relation

R ={(So,Ra)|ois on fvar(S,R) and there exists ¢ with ¢ = ¢ and S ~? R}
is a bisimulation. The thesis is a consequence of this fact, which can be shown by
exploiting Proposition 4.5. O

Theorem 4.9 (Adequacy of symbolic bisimulation) et ¢ be bounding for
fvar(S, R) and suppose that S ~® R. Then S ~ R.

PrOOF: We prove that the family of relations given by
R? ={(S,R)|S ~? R and ¢ is bounding for fvar(S,R) }
for each ¢ € BF', is a family of symbolic bisimulations. This fact implies the thesis.

Suppose that SR? R and assume that S .y S’, for some fresh . We have

to show that there exists a ¢ A 1h-decomposition D s.t. for each (€ D there is a
e(t)x

transition B = R’ such that (= y and S"RCR’. Tet V = v(S, R).

Since every action prefix imposes a bound to its variable, it holds that ¢» = ¢ <e
for some e with var(e) C V. Since ¢ is bounding for V', it easily follows that ¢ A 1 is
bounding for V U {t}. Therefore, by Lemma 4.3, there exists a ¢ A 1)-decomposition
D such that each (€ D is satisfiable and is complete and bounding for V U {¢}. Fix

now a generic (€ D and let p be any environment on var(¢) UV U {t} such that

p E (. Since p E VD, it must be p = ¢ A, hence p = 1. From this, applying

Proposition 4.5.2 to the transition S Y o we get Sp), S’p, where r = p(1).

Since it also holds that p = ¢ and S ~? R, it follows that Sp ~ Rp, hence for some
R+1 we have

Rp O Ry ~ S'p. (2)

Applying Proposition 4.5.1 to the above transition, we get a symbolic transition

R HOES R, where Ry = R'p and p |= x . 3

We now show that (a) ¢ = y, and that (b) S"R¢R’, which will conclude the proof.
As to (a), first note that v(y) C (V) U {t}; since (is complete for V U {t} and p
satisfies both ¢ and x (from (3)), it follows that (= x. As to (b), from (2) and (3),
we deduce that S’p ~ R'p; hence, noting that (is complete over v(S’, R') (indeed it is
v(S", R') Cpin B(VI)U{t}), and that p = (, we can apply Theorem 4.7 and deduce that
S' ~C R'. Finally, by hypothesis ¢ is bounding for fvar(S’, R') C fvar(S,R) U {t}.
These facts imply that S’ R¢ R'. O

Putting together the two preceding theorems, we obtain the result we are most
interested in, the symbolic characterization of ~:

Corollary 4.10 (Symbolic characterization of ~) Given two closed configura-

tion S and R, S ~ R if and only if S ~"™* R.

As a corollary of consistency and adequacy and of Theorem 4.7, it is not hard to
prove decidability of ~ over finite configurations.

Corollary 4.11 Let S and R be closed configurations without agent identifiers. Then
it is decidable whether S ~ R.

We want to argue that the obtained symbolic characterization of ~? is indepen-
dent of any specific syntax and local/global-clock assumption for timed processes.
The proofs of Theorems 4.8 and 4.9 depend only on the logic BF and the properties
of the operational semantics stated in Proposition 4.5 and Theorem 4.7. The proof
of the latter theorem depends, in turn, only on BF and Proposition 4.5. Therefore,
Theorems 4.8 and 4.9 would still hold for any pair of (bounded-delay) rational-timed
and symbolic transition systems, 7 and ST, for which the statement of Proposition
4.5 is true (this of course implies that 7 and ST are equipped with reasonable notions
of free variables and environments).

5 A Proof System

We present a proof system for reasoning about ~% on finite (not containing agent
identifiers) configurations. The system is based on a syntax of extended configurations,
EC, which may involve an new kind of action prefix, (¢, ¢) :, with ¢ € Act U {756 €
Q" } and ¢ |= 1 < e for some e not containing t. The latter prefix is used to express

Axioms

Summation Laws Restriction Laws

(ST) S+0 = S (RT) (S+R)\a = S\a+R\a

(52) S+5 = 8§ (R2) (c(t,¢): P)\a = ¢(t,¢):(P\a), ifa#ec
(53) S+R = R+S (R3) (a(t,¢): P)\a = 0

(54) S+R+T) = (S+R)+T

(C1) (a(t,¢).P)ee = a(t,pANt>e): (P e (t+ Ala))), iTt & var(e)

(C2) (waits.P)ee = 15, t=¢):(P o (1 +4)), fort fresh

ootean (ruara 1A

(@) ge(t,): S

(16 NG): 5, 11 ¢ var(®)

Frpansion Law

Let S =57 i o Si, R=3",c;v.Rj and, for each 4, j, bvar(p,;) = bvar(v;) =1 fresh:

(E)STR =3 erti (Sl RY+3ev5 t (STR) + 3y catron), vimatrwy) Ta(@) (@i Ay) 1 (Si | By)

Table 3: Axioms of the proof system on finite extended configurations.

a convenient form of expansion theorem. The operational, concrete and symbolic,
rules for the new prefix are, respectively:

Pre , [6[]] = true and S — Pre :
ot ¢): S s ot,6): § " g

All notions and definitions that hold for C, including standard and symbolic bisim-
ulation, conservatively extend to £C in the expected manner. The consistency and
adequacy theorems of symbolic bisimulation of Section 4 are still valid in the new
more general setting. In a different timed setting, configurations similar to ours were
considered in [2].

In the sequel, R, S, ... will range over finite extended configurations. The proof
system consists of a set of axioms and inference rules, presented in Table 3 and 4
(standard rules for reflexivity, symmetry and transitivity of = omitted to save space).
The statements derivable within the proof system are of the form ¢ - S = R, to be
read as: under ¢, S equals R. The notation ¢ : S is used to denote the configuration
c(t,t =0): S, whenever t ¢ foar(S) (the specific value 0 is not actually relevant). We
will also use = to denote syntactical equality, as opposed to proof-theoretic equality

Correctness and completeness of the system are proven by exploiting the consis-
tency and adequacy theorems (Th. 4.8 and 4.9). The proofs are not too different
from the corresponding proofs for the value-passing case in [6]. However, additional
complications are introduced here by the fact that the instantiation of the parameter
tin a prefix a(t,) is constrained by ¢, whereas in a value-passing setting the instan-
tiation is not constrained (prefixes are of the form a(?)). We omit our proofs due to
lack of space.

Theorem 5.1 (Correctness and completeness of the proof system) let ¢ be

a bounding formula for fvar(S,R). Then ¢ = S = R if and only if S ~% R.

nrerence a1les

() ¢FS=R where S = R’ stands for either of: ¢: S =¢: R, ¥S = YR,
ongr ot —p STT=R+T.SIT=RIT S\a=R\a.
(Pre) OAE<T0)F D icrdic:5i =2 e %50 Ry if t ¢ var(¢) and for each i and j:
/ A @; i< nd ¢ A, i<
ok Zieﬂf(f,dh:) 15 = Zje] et)« Ry NG |t <roand A = 1<

GANYFS=R, ¢ N—YFR=0 -

(Guard) (False) ———

ok yYS =R false - S =R

pES=R¢FS=R _

(Cut) if¢ &= é1 Vg (Awiom) ————— for each axiom S = R

oFS=R truek- S=R

Table 4: Inference rules of the proof system on finite extended configurations.

6 Conclusions an Related Work

We have proposed a theory of symbolic bisimulation for an algebra of timed processes,
that vields a more tractable characterization of bisimilarity. For future work, we
regard as very promising the development of verification algorithms for timed symbolic
bisimulation, in the style of the algorithms for value-passing of [6].

Our work is mainly related to [6] and [2]. Tn [6], a theory of symbolic bisimulation
has been developed in a setting where values on transitions represent input/output
data, rather than time-stamps. Technically, the basic difference between our work and
[6], is as follows. Hennessy and Lin work within a general framework, with no specific
language for formulae and values. However, in order to find a suitable decomposition
when proving their adequacy theorem, they assume the existence of a very powerful
logic. Here, we had to deal with a specific and non-trivial logic (BF'), which lacks
the property required in [6]. As a consequence, a substantially different development
has to be undertaken to prove, e.g., that a suitable decomposition always exists.
Additional care (such as restricting to rationales and to bounded-delay actions) is
needed to ensure that the decomposition can always be chosen finite.

In [2], Aceto and Murphy put forward a timed process algebra with “eager” actions,
which must occur as soon as possible. As a consequence, finitary transition systems are
obtained; this makes it possible to re-use familiar techniques and devise, for instance,
complete axiomatizations of equivalences.

Our work is also related to a series of papers (mainly [3, 5, 8, 4]), where the notion
of occurrence of an action within a time interval is considered. In [3], Baeten and
Bergstra introduces a timed version of ACP that incorporates real-time actions, a
global-clock assumption and also relative delays. Bisimilarity over this language has
been given an effective axiomatization by Fokkink and Klusener [5]. The problem of
devising a finitary representation of process behaviours is not tackled though, and the
proof relies therefore on rather ad-hoc techniques. One of the first timed versions of

CCOS has been proposed in [8]. Conditional axiomatizations of bisimilarity for (variants

of) Wang’s Tanguage have been obtained by Chen [4]. The languages by considered by

Chen are less expressive than ours: for example, relative delays are not expressible.

ATur and Dill have proposed timed automata [1], whose transitions are equipped

with time constraints on “clock variables”. Their setting is quite different from ours,

in that automata are compared on the basis of the (timed) traces they accept, and

fairness requirements are imposed on the accepted fraces.

Acknowledgments

I would like to thank Flavio Corradini for discussions on the topics of the paper
and Giuseppe Melfi and Luca Trevisan for technical suggestions. Rocco De Nicola
read a preliminary draft, suggesting several improvements. Two anonymous referees
provided valuable comments.

References

[11 R. Alur and D.T. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183-235, 1994.

[2] T. Aceto and D. Murphy. On the ill-timed — but well-caused. Tn E. Best, editor,
Proceedings of CONCUR 93, LNCS 715. Springer-Verlag, Berlin, 1993. Full version

to appear in Acta Informatica.

[3] J.C.M. Baeten and A. Bergstra. Real time process algebra. Formal Aspects of Com-
puting, 3:142-188, 1991.

[4] T. Chen. Axiomatizing real-timed processes. In S. Brooks, M. Main, A. Melton,
M. Mislove, and D. Schmidt, editors, Proceedings of MFPS°93, LNCS 802, pages 215
229. Springer-Verlag, Berlin, 1993.

[5] W.J. Fokkink and S. Klusener. An effective axiomatization for real time ACP. Tech-
nical Report CS-R9542, CWI, Computer Science, 1995. To appear in Information and
Computation.

[6] M. Hennessy and H. Lin. Symbolic bisimulations. Theoretical Computer Science,

138:353-389, 1995.
[7] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[8] Y. Wang. Real time behaviour of asynchronous agents. In J.C.M. Baeten and J.W.
Klop, editors, Proc. 1st Conference on Concurrency Theory (CONCUR’90), LNCS
458. Springer-Verlag, Berlin, 1990.

