
A Framework for the Analysis

of Security Protocols�

Michele Boreale1 and Maria Grazia Buscemi2

1 Dipartimento di Sistemi e Informatica
Università di Firenze, Italy

2 Dipartimento di Matematica e Informatica
Università di Catania, Italy

boreale@dsi.unifi.it buscemi@dmi.unict.it

Abstract. Properties of security protocols such as authentication and
secrecy are often verified by explictly generating an operational model of
the protocol and then seeking for insecure states. However, message ex-
change between the intruder and the honest participants induces a form
of state explosion that makes the model infinite in principle. Building on
previous work on symbolic semantics, we propose a general framework
for automatic analysis of security protocols that make use of a variety of
crypto-functions. We start from a base language akin to the spi-calculus,
equipped with a set of generic cryptographic primitives. We propose a
symbolic operational semantics that relies on unification and provides
finite and effective protocol models. Next, we give a method to carry out
trace analysis directly on the symbolic model. Under certain conditions
on the given cryptographic primitives, our method is proven complete
for the considered class of properties.

1 Introduction

Automatic methods for verifying properties of security protocols are very often
based on explicit generation of the protocol model. The latter is then explored
in order to check whether any insecure state is reachable. In particular, most
methods based on finite state model-checking (see, e.g., [17,21,23,26]) follow
a Dolev-Yao intruder model [12], which implies that a (hostile) environment
has total control over the communication network. The assumption is that the
environment can store, duplicate, hide or replace any message traveling on the
network, and synthesize new messages by pairing, encryption and decryption of
those already known.

To make standard finite-state model checking applicable to protocol analysis,
two simplifying requirements are necessary: (a) there is a bound on the number
of protocol runs, and (b) there is a bound on the number of possible messages the
intruder can generate and send to honest participants at any moment. Discard-
ing one of these two requirements leads to infinite models. Also, these bounds
� This work has been partially supported by EU within the FET - Global Computing
initiative, projects MIKADO and PROFUNDIS and by MIUR project NAPOLI.

L. Brim et al. (Eds.): CONCUR 2002, LNCS 2421, pp. 483–498, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

484 Michele Boreale and Maria Grazia Buscemi

have to be chosen very carefully: due to the combinatorics of message generation,
the size of the model tends to explode as multiple principals and data values are
considered. It is known that discarding requirement (a) leads to undecidability
of protocol analysis, unless severe restrictions are imposed on the analyzed pro-
tocols (see e.g.[5,11,13]). Rather, it is less clear to what extent requirement (b)
can be relaxed, while preserving generality of protocol format, decidability and
effectiveness.

For the case of shared-key encryption, approaches alternative to finite-state
model checking have been pursued, based on notions of symbolic execution [4,7].
In this paper, we extend the symbolic semantics given in [7] to a general frame-
work for the treatment of generic cryptographic primitives. We then spell out
sufficient conditions on these primitives, under which verification can be per-
formed symbolically and, hence, effectively. As an application, we consider an
instance of this framework whose primitives correspond to the most common
cryptographic funtions (shared and public key, digital signature and hashing).

As a base language, we consider a dialect of the spi-calculus [3]. Unlike the
original spi-calculus and the languages in [4,7], where cryptographic functions
are modelled as process operators, we adopt a uniform process syntax, much
as that of [2], and consider a generic signature Σ of cryptographic functions.
The latter may include constructors and destructors for various cryptographic
operations, akin to [1]. The meaning of Σ-terms is provided by an evaluation
relation ↓ that maps terms to values (or messages). On top of the evaluation
relation, we introduce a deduction relation � that describes how the environment
synthesize new messages from known ones. Protocol properties are formalised
as correspondence assertions of the kind “every execution of action α must be
preceded by some execution of action β”, for given α and β.

The (“concrete”) operational semantics of this language is, as expected, in-
finitary, because each input action gives rise to infinitely many transitions. To
overcome this problem, we also define a symbolic operational semantics that is
finitely branching and yields finite models of protocols with a fixed number of
participants. Then, we give a method to carry out trace analysis directly on the
symbolic traces.

Next, we provide some reasonable conditions on the given cryptosystem under
which we can prove that the method is sound and complete with respect to
the concrete semantics. In other words, every attack detected in the symbolic
model corresponds to some attack in the concrete one, and vice-versa. Thus
our symbolic method makes no approximation with respect to the infinitary,
concrete model. For instance, type-dependent flaws (see e.g. [15]), which usually
escape finite-state analysis, with our approach naturally emerge when present.
The method is rather efficient in practice, because in the symbolic model there
is no state-explosion induced by message exchange: every input action gives rise
exactly to one symbolic transition. Experimentation with STA [27], a prototype
tool based on this method, has given encouraging results [8].

A summary of our paper follows. The general framework is introduced in
Section 2. Symbolic semantics, and its relationship to the concrete one, are the

A Framework for the Analysis of Security Protocols 485

subject of Section 3. The verification method is introduced and discussed in Sec-
tion 4 and applied to a specific protocol in Section 5. Throughout the paper,
we shall consider public-key cryptography as a running example; other com-
mon crypto-primitives are discussed in Section 6. A few concluding remarks and
directions for future work are in Section 7.

2 A General Framework

In this section, we present the main ingredients of our framework. We introduce
the concept of frame, i.e., a structure consisting of a signature Σ, a set of (legal)
messages and a function that evaluates terms to messages. Then, we generalize
the notions of traces, configurations and security property, introduced in [7].

2.1 Frames

We consider two countable disjoint sets of names m,n, . . . ∈ N and variables
x, y, . . . ∈ V . The set N is in turn partitioned into a countable set of local names
a, b, . . . ∈ LN and a countable set of environmental names a, b, . . . ∈ EN : these
two sets represent the basic data (keys, nonces,. . .) initially known to a process
and to the environment, respectively. The set N ∪ V is ranged over by letters
u, v, Given a signature Σ of function symbols f, g, . . ., each coming with
its arity (constants have arity 0), we denote by EΣ the algebra of terms (or
expressions) on N ∪ V ∪Σ, given by the grammar:

ζ, η ::= u | f(ζ̃)

where ζ̃ is a tuple of terms of the expected length. A term context C[·] is a term
with a hole that can be filled with any expression ζ, thus yielding an expression
C[ζ].

Definition 1 (frame). A frame F is a triple (Σ,M, ↓), where:

– Σ is a signature;
– M⊆ EΣ is a set of messages M,N, . . .;
– ↓⊆ EΣ ×M is an evaluation relation.

In the sequel, we write ζ ↓M for (ζ,M) ∈ ↓ and say that ζ evaluates to M . An
evaluation relation evaluates expressions to messages. In typical frame instances
the relation ↓ will be both a function and a congruence with respect to the
operations in Σ, but we need not to assume these facts in the general framework.

Below, we define a deduction relation which expresses how the environment
can generate new messages starting from an initial set of messages S. Unlike
other approaches, our definition of deduction relation is not given by a set of
deductive rules. Rather, we make use of the set H(S), which consists of all the
expressions inductively built by applying functions of Σ to elements of S and of
EN . We denote by Pf (X) the set of finite subsets of X .

486 Michele Boreale and Maria Grazia Buscemi

Definition 2 (deduction relation). For F = (Σ,M, ↓) a frame and S ⊆M,
the set HF (S) is inductively defined by the following rules:

H0
F(S)

�
= S ∪ EN

Hi+1
F (S)

�
= Hi

F(S) ∪ {f(ζ̃) : f ∈ Σ, ζ̃ ⊆ Hi
F (S) }

HF(S)
�
=

⋃
i≥0

Hi
F(S)

The deduction relation �F ⊆ Pf (M)×M is defined by:

S �F M
�⇔ ∃ ζ ∈ HF (S) : ζ ↓M

A message M is deducible from S if S �F M .

When no confusion arises, we simply write H(S) for HF(S) and � for �F .
Throughout the paper, we study the case of public key encryption, which

serves as a running example of application of our method.

Example: Public Key Encryption (1) Let us consider a system where primitives
for pairing and public key encryption of messages can be arbitrarily nested,
but non-atomic keys are forbidden. The frame Fpk = (Σ,M, ↓) is defined in Ta-
ble 1. The functions of Σ are: generation of public ((·)+) and private ((·)−) keys,
encryption with a public key ({[·]}(·)), decryption using a private key (decpk

(·)(·)),
pairing (〈·, ·〉) and selection (πi(·)). Public and private keys are represented by u+

and u−, respectively. Names and variables can be used to build compound mes-
sages via public-key encryption and pairing. In particular, {[M]}m+ represents
the message obtained by encrypting M under m+. The definition of evaluation
relation makes use of an auxiliary relation ❀, that models the mechanisms of
public key encryption under the perfect cryptography assumption. As an exam-
ple of deducible message in Fpk, if S = { {[〈a, b〉]}k+ , k− } then S � a, since
ζ = π1(decpk

k−({[〈a, b〉]}k+)) ∈ H(S) and ζ ↓ a. Note that, whatever S, the set of
messages deducible from S is infinite.

2.2 Processes

Syntax As a base language, we consider a variant of the spi-calculus [3], pa-
rametrized by an arbitrary frame F (for readability, in the notation we omit
explicit reference to F). The syntax of agent expressions, in A, is reported in
Table 2. We consider a set L of labels which is ranged over by a, b, The main
difference from the spi-calculus is that, here, input and output labels (a, b, . . .)
must not be regarded as channels – following the Dole-Yao model, we assume
just one public network – but, rather, as ‘tags’ attached to process actions for
ease of reference. Also, we have a single construct (let) for evaluating expressions
that replaces the ad-hoc constructs found in the spi-calculus for encryption, de-
cryption and other cryptographic operations. We do not consider restriction: it

A Framework for the Analysis of Security Protocols 487

Table 1. Fpk, a frame for public key encryption

Σ = {(·)+, (·)−, {[·]}(·) , 〈·, ·〉, πi(·) (i = 1, 2), decpk
(·)(·)}

Signature

M, N ::= u | u+ | u− | {[M]}u+ | 〈M, N〉 Messages

πi(〈M1, M2〉) ❀ Mi (i = 1, 2)

decpk

u−({[M]}u+) ❀ M

ζ ❀ ζ′

C[ζ] ❀ C[ζ′]
ζ ↓M

�⇔ ζ ❀∗M Evaluation

might be easily accommodated but it has little semantical significance, in the
absence of replication/recursion.

Given the presence of binders for variables, notions of free variables, v(A) ⊆
V , and alpha-equivalence arise as expected. We shall identify alpha-equivalent
agent expressions. For any M and u, [M/u] denotes the operation of substituting
the free occurrences of u by M . An agent expression A is said to be closed or
a process if v(A) = ∅ ; the set of processes P is ranged over by P,Q, Local
names and environmental names occurring in A are denoted by ln(A) and en(A),
respectively. A process P is initial if en(P) = ∅ .

Operational Semantics The semantics of the calculus is given in terms of a tran-
sition relation −→ , which we will sometimes refer to as ‘concrete’ (as opposed
to the ‘symbolic’ one we shall introduce later on). We model the state of the
system as a pair 〈s, P 〉, where s records the current environment’s knowledge
(i.e., the sequence of messages the environment has “seen” on the network up

Table 2. Syntax for agents

A, B ::= agents A
0 (null)

| a(x).A (input)
| a〈ζ〉. A (output)
| let y= ζ in A (evaluation)
| [ζ = η]A (matching)
| A || B (parallel composition)

The occurrences of variables x and y are bound.

488 Michele Boreale and Maria Grazia Buscemi

to a given moment) and P is a process term. An action is a term of the form
a〈M〉 (input action) or a〈M〉 (output action), for a a label and M a message.
The set of actions Act is ranged over by α, β, . . ., while the set Act∗ of strings of
actions is ranged over by s, s′, String concatenation is written ‘·’ . We denote
by act(s) and msg(s) the set of actions and messages, respectively, appearing
in s. A string s is closed if v(s) = ∅ and initial if en(s) = ∅ . In what follows, we
write ‘s � M ’ for msg(s) � M .

We, now, define traces, that is, sequences of actions that may result from
the interaction between a process and its environment. In traces, each message
received by a process (input message) can be synthesized from the knowledge the
environment has previously acquired. In configurations, the latter is explicitly
recorded.

Definition 3 (traces and configurations). A trace is a closed string s ∈ Act∗

such that for each s1, s2 and a〈M〉, if s = s1 · a〈M〉 · s2 then s1 � M .
A configuration, written as 〈s, P 〉, is a pair consisting of a trace s and a

process P . A configuration is initial if en(s, P) = ∅ . Configurations are ranged
over by C, C′,
The concrete transition relation on configurations is defined by the rules in Ta-
ble 3. Each action taken by the process is recorded in the configuration’s first
component. Rule (Inp) makes the transition relation infinitely-branching, as M
ranges over the infinite set {M : s � M, M closed }. In rule (Out), ζ is eval-
uated before the action takes place. By rule (Let), the evaluation of ζ replaces
any occurrence of y in P . No handshake communication is provided : all messages
go through the environment (rule (Par)).

2.3 Properties

We express security properties of a protocol in terms of the traces it generates. In
particular, we focus on correspondence assertions of the kind ‘for every generated

Table 3. Rules for the transition relation (−→)

(Inp) 〈s, a(x). P 〉 −→ 〈s · a〈M〉, P [M/x]〉 s � M, M closed

(Out) 〈s, a〈ζ〉. P 〉 −→ 〈s · a〈M〉, P 〉 ζ ↓M , M closed

(Let) 〈s, let y= ζ in P 〉 −→ 〈s, P [M/y]〉 ζ ↓M , M closed

(Match) 〈s, [ζ = η]P 〉 −→ 〈s, P 〉 ζ ↓M, η ↓ N, M = N

(Par)
〈s, P 〉 −→ 〈s′, P ′〉

〈s, P ||Q〉 −→ 〈s′, P ′ ||Q〉
plus symmetric version of (Par).

A Framework for the Analysis of Security Protocols 489

trace, whenever action β occurs in the trace, then action α must have occurred
at some previous point in the trace’. Given a configuration 〈s, P 〉 and a trace s′,
we say that 〈s, P 〉 generates s′, written 〈s, P 〉 ↘ s′, if 〈s, P 〉 −→∗ 〈s′, P ′〉
for some P ′. A substitution θ in a frame F is a finite partial map from V to the
set of messages M of frame F such that θ(x) �= x, for each variable x. For any
object t (i.e. variable, message, process, trace,. . .), we denote by tθ the result of
simultaneously replacing each x ∈ v(t) ∩ dom(θ) by θ(x). We let ρ range over
ground substitutions, i.e. substitutions that map variables to closed messages.

Definition 4 (satisfaction relation). Let α and β be actions and s be a trace.
We say that α occurs prior to β in s if whenever s = s′ · β · s′′ then α ∈ act(s′).
For v(α) ⊆ v(β), we write s |= α ←↩ β, and say s satisfies α ←↩ β, if for each
ground substitution ρ it holds that αρ occurs prior to βρ in s. We say that a
configuration C satisfies α←↩ β, and write C |= α←↩ β, if all traces generated by
C satisfy α←↩ β.

Assertions α ←↩ β can express interesting secrecy and authentication prop-
erties. As an example, in the final step of many key-establishment protocols, a
principal A sends a message of the form {N}k to a responder B, where {N}k

is obtained by encrypting some authentication information N under a newly
established shared-key k. Our scheme permits expressing that every message
encrypted with k that is accepted by B during the execution of the protocol
indeed originates from A, i.e. that B is really talking to A, and that k is au-
thentic. If we denote by finalA and finalB the labels attached to A’s and B’s final
action, respectively, then the above property might be formalized as an assertion
finalA〈{x}k〉 ←↩ finalB〈{x}k〉, for x a variable. An extended example is given in
Section 5. In practice, all forms of authentication in Lowe’s hierarchy [18] are
captured by this scheme, except the most demanding one that requires one-to-
one bijection between α’s and β’s. However, we expect our scheme can be easily
adjusted to include this stronger form, by requiring that each β is preceded by
exactly one occurrence of α.

Another property that can be set within our frame is secrecy in the style
of [6]. In this case, it is convenient to fix a conventional ‘absurd’ action ⊥ that
is nowhere used in agent expressions. Thus, the formula ⊥ ←↩ α means that
action α should never take place. Now, the fact that a protocol, say P , does not
leak a sensible datum, say d, can be expressed also by saying that the adversary
will never be capable of synthesizing d. This can be formalized by extending the
protocol to include a ‘guardian’ that at any time picks up one message from the
network, P || g(x).0, and then requiring that this guardian will never receive d,
that is, 〈ε, P || g(x).0〉 |= ⊥ ←↩ g〈d〉.

3 Symbolic Semantics

The symbolic semantics we present in this section is based on the notion of
symbolic frame. The latter is essentially a frame equipped with an additional
symbolic evaluation relation, which is in agreement with its concrete counterpart.

490 Michele Boreale and Maria Grazia Buscemi

Formally, let us denote by Subst the set of all substitutions in a given frame.
A substitution θ is a unifier of t1 and t2 if t1θ = t2θ. We denote by mgu(t1, t2)
a chosen most general unifier (mgu) of t1 and t2, that is, a unifier θ of t1 and t2
such that any other unifier is a composition of substitutions θ and θ′, written
θθ′, for some θ′. Also, for t1, t

′
1, t2, t

′
2 terms, mgu(t1 = t′1, t2 = t′2) stands for

mgu(t2θ, t′2θ), where θ = mgu(t1, t′1), if such mgu’s exist.

Definition 5 (symbolic frame). A symbolic frame is a pair Fs = (F , ↓s),
where F is a frame, and ↓s ⊆ EΣ × Subst × M is a symbolic evaluation
relation (we write ζ ↓θ M for (ζ, θ,M) ∈↓s) such that, for any expression ζ and
ground substitution ρ with v(ζ) ⊆ dom(ρ):

(a) If ζρ ↓M , then there exist N, θ, ρ0 such that ζ ↓θ N , ρ = θρ0 and M = Nρ0,
and

(b) If ζ ↓θ N , ρ = θρ0, for some ρ0, and Nρ0 ∈ M, then ζρ ↓ Nρ0.

Example: Public Key Encryption (2) The symbolic frame Fs
pk is defined as the

pair (Fpk, ↓s), where ↓s is the reflexive and transitive closure of the relation
(❀s), as given in Table 4. Fs

pk is indeed a symbolic frame: Conditions (a) and
(b) in Definition 5 are proven by straightforward induction on ζ.

We now come to symbolic counterparts of traces and configurations. Note
that Condition (b) below states that only the environment can introduce vari-
ables into symbolic traces.

Definition 6 (symbolic traces and configurations). A symbolic trace is a
string s ∈ Act∗ such that: (a) en(s) = ∅ , and (b) for each s1, s2, α and x,
if s = s1 · α · s2 and x ∈ v(α) − v(s1) then α is an input action. Symbolic
traces are ranged over by σ, σ′, A symbolic configuration, written 〈σ, A〉

S
, is

a pair composed by a symbolic trace σ and an agent A, such that en(A) = ∅ and
v(A) ⊆ v(σ).

Table 4. Symbolic Evaluation Relation (↓s) for Fs
pk

decpk
N(M)

θ
❀s x1 θ θ = mgu(M = {[x1]}x+

2
, N = x−

2)

πi(M)
θ

❀s xi θ (i = 1, 2) θ = mgu(M, 〈x1, x2〉)
{[M]}x θ

❀s {[Mθ]}x+ θ = [x
+
/x]

ζ
θ

❀s ζ′

C[ζ]
θ

❀s Cθ[ζ′]

ζ ↓θ M
�⇔ ζ

θ1
❀s · · · θn

❀s M and θ = θ1 · · · θn

Variables x1 and x2 are chosen fresh according to some arbitrary but fixed rule.

A Framework for the Analysis of Security Protocols 491

Note that, due to Condition (b) in the Definition 6, e.g. a〈x+〉 · a〈{[h]}x+〉
is not a symbolic trace, while a〈{[h]}x+〉 · a〈x+〉 is so. Once a symbolic frame
Fs is fixed, configurations can be equipped with a symbolic transition relation,
−→

S
, as defined by the rules in Table 5 (for the sake of readability we omit any

explicit reference to Fs). There, a function newV (·) is assumed such that, for
any given V ⊆fin V , newV (V) is a variable not in V . Note that, differently from
the concrete semantics, input variables are not instantiated immediately (rule
(Inp

S
)). Rather, constraints on these variables are added as soon as they are

needed, and recorded via mgu’s. This may occur due to rules (Out
S
), (Let

S
)

and (Match
S
). In the following example, after the first step, variable x gets

instantiated to name b by a (Match
S
)-reduction:

〈ε, a(x). [x = b]P 〉
S
−→

S
〈a〈x〉, [x = b]P 〉

S
−→

S
〈a〈b〉, P [b/x]〉

S

Whenever 〈σ, A〉
S
−→∗

S
〈σ′, A′〉

S
for some A′, we say that 〈σ, A〉

S
symbolically

generates σ′, and write 〈σ, A〉
S
↘

S
σ′. The relation −→

S
is finitely-branching if

so is ↓s (this is the case, e.g., for the public key frame Fs
pk). In this case, each con-

figuration generates a finite number of symbolic traces. It is important to stress
that many symbolic traces are in fact ‘garbage’ – jumbled sequences of actions
that cannot be instantiated to any concrete trace. For instance, consider process
P

�
= a(y). letx= decpk

k−(y) in a〈x〉.0. The initial configuration 〈ε, P 〉
S

symboli-
cally generates the trace a〈{[z]}k+〉 ·a〈z〉, which is inconsistent, because the envi-
ronment cannot provide k+. The problem of detecting these inconsistent traces,
that might give rise to ‘false positives’ when checking protocol properties, will
be faced in the next section.

We define below the notion of consistency. Based on it, we state a theo-
rem that lifts the concrete-symbolic correspondence given in Definition 5 to the
transition relations. Its proof is an easy transition induction on −→

S
and −→ .

Definition 7 (solutions of symbolic traces). Given a symbolic trace σ and
a ground substitution ρ, we say that ρ satisfies σ if σρ is a trace. If this is this
case, we also say that σρ is a solution of σ, and that σ is consistent.

Theorem 1 (concrete vs. symbolic semantics). Let Fs be a symbolic frame,
C an initial configuration and s a trace of F . Then C ↘ s if and only if there
is σ s.t. C ↘

S
σ and s is a solution of σ.

4 A Verification Method

In this section, we first define regular frames, i.e., frames for which it is possible
to determine a finite basis for the synthesis of messages. Next, we introduce
a refinement procedure that checks consistency of symbolic traces. Finally, we
present a verification method which is based on refinement and applies to regular
frames.

492 Michele Boreale and Maria Grazia Buscemi

Table 5. Rules for symbolic transition relation (−→
S
)

(InpS) 〈σ, a(x).A〉S −→S 〈σ · a〈x〉, A〉S

(OutS) 〈σ, a〈ζ〉. A〉S −→S 〈σθ · a〈M〉, Aθ〉S ζ ↓θ M

(LetS) 〈σ, let y= ζ in A〉S −→S 〈σθ, Aθ[M/y]〉S ζ ↓θ M

(MatchS) 〈σ, [ζ = η]A〉S −→S 〈σθ, Aθ〉S ζ ↓θ1 M, η θ1 ↓θ2 N,

θ3 = mgu(Mθ2, N),

Nθ3 ∈ M, θ = θ1θ2θ3

(ParS)
〈σ, A〉S −→S 〈σ′, A′〉S

〈σ, A || B〉S −→S 〈σ′, A′ || B′〉S

plus symmetric version of (ParS). In the above rules it is assumed that:
(i) x = newV (V) – where V is the set of free variables

in the source configuration,
(ii) y = newV (V ∪ {x}) and msg(σ)θ ⊆M,
(iii) in rule (ParS), B′ = Bθ where σ′ = σθ · α or σ′ = σθ.

Regular frames It is convenient to extend the syntax of messages with a new
class of variables to be used as placeholders for generic messages known to the
environment. Formally, we consider a new set V̂ of marked variables, in bijection
with V via a mapping ·̂; thus, variables x, y, z, . . . have marked counterparts
x̂, ŷ, ẑ, Marked messages (resp., traces) are messages (resp., traces) that may
also contain marked variables. Also, for S ⊆M, the set H(S) in Definition 2 is
extended to include marked variables, i.e., we re-define H0

F (S) as follows:

H0
F (S)

�
= S ∪ EN ∪ V̂ .

The deduction relation (S � M) remains formally unchanged. Note that in
case S and M do not contain marked variables, this definition conservatively
extends Definition 2. In practice, marked variables are treated as constants which
are known to the environment. The satisfaction relation is extended to marked
symbolic traces according to this intuition. For any x̂ and any trace σ, we denote
by σ\x̂ the longest prefix of σ not containing x̂.

Definition 8. Let σ be a marked symbolic trace and ρ be a ground substitution.
We say that ρ satisfies σ if σρ is a trace and, for each x̂ ∈ v(σ), it holds that
(σ\x̂)ρ � ρ(x̂). We also say that σρ is a solution of σ, and that σ is consistent.

The terminology introduced above agrees with Definition 7 when σ does not
contain marked variables. We give now the definition of solved form, that lifts
the concept of trace to the non-ground case (note that this definition is formally
the same as Definition 3).

A Framework for the Analysis of Security Protocols 493

Definition 9 (solved forms). Let σ be a marked symbolic trace. We say σ is
in solved form (sf) if for every σ1, a〈M〉 and σ2 s.t. σ = σ1 · a〈M〉 · σ2 it holds
that σ1 � M .

Regular frames enjoy a “finite-basis” property. Basically, this property states
the existence of a finite set containing the building blocks of all messages that
the attacker can synthesise out of a given σ. This requirement is stated by
Condition 1, below. Condition 2 is a technical requirement about substitutions.

Definition 10 (regular frames). A symbolic frame Fs is regular if there exists
a function b : Act∗ −→ Pf (M) such that, for each solved form σ of Fs and for
all ρ that satisfy σ:

1. σρ � M if and only if M ∈ H(b(σρ));
2. b(σρ) ⊆ b(σ)ρ.

For each σ, b(σ) is said a basis of σ.

Example: Public Key Encryption (3) Let us consider the frame Fs
pk defined in

the previous sections. A basis function for this frame is defined by

bpk (σ)
�
= {M |σ � M and either: M = u, or M = u+, or M = u−,

for u∈LN ∪ V , or M = {[N]}u+ for some N and u s.t. σ � � 〈N, u+〉}
Condition 1 and Condition 2 of Definition 10 are proven by induction on M and
σ, respectively. In practice, for a given σ, the set bpk (σ) can be effectively com-
puted by an iterative procedure, which repeatedly applies destructors (decpk

(·)(·)
and πi(·)) to messages in σ, until some fixed point is reached. This procedure
always terminates. We omit the details.

Refinement In the refinement procedure, input messages in a symbolic trace
are tentatively unified to messages that can be synthesized from the basis. By
iterating this procedure, one can check whether a given symbolic trace can even-
tually be instantiated to a trace in the concrete model. In particular, given any
symbolic trace σ, and a basis for it, we can compute the set of the most general
instances of σ that are in solved form, denoted by SF(σ).

Definition 11 (refinement and SF(σ)). We let refinement, written " , be
the least binary relation over marked symbolic traces of a regular frame given by
the following rules. In (Ref1), σ′ is the longest prefix of σ that is in solved form
and σ = σ′ · a〈M〉 · σ′′, for some σ′. Assume N,N ′ /∈ V ∪ V̂.

(Ref1)
M = C[N] N ′ ∈ b(σ′) θ = mgu(N, N ′)

σ � σθθ0

where θ �= ε, θ0
�
= { x/̂x | x̂ ∈ v(σ) and |(σθ)\x̂| < |σ\x̂| };

(Ref2)
x ∈ v(M)

σ � σ[x̂/x]

494 Michele Boreale and Maria Grazia Buscemi

For any symbolic trace σ, we let SF(σ)
�
= { σ′ |σ (")∗ σ′ and σ′ is in sf }.

Rule (Ref1) implements the basic step of refinement: the subcomponent N
of M gets instantiated, via θ, to an element of b(σ′). E.g., consider σ = c〈{[a]}k+〉·
c〈{[b]}k+〉 ·c〈{[x]}k+〉: its possible refinements are σ " σ[a/x] and σ " σ[b/x], and
the refined traces are in sf. By rule (Ref2) a variable can be marked: this amounts
to constraining its possible values to be messages known by the environment.
(For technical reasons, marked variables sometimes need to be ‘unmarked’ back
to plain variables, and this is achieved in (Ref1) via the renaming θ0.)

The proposition below states that solutions of a symbolic trace σ can be
completely characterized in terms of SF(σ).

Proposition 1. Let F be a regular frame, σ be a symbolic trace and s a trace.
Then s is a solution of σ if and only if s is a solution of some σ′ ∈ SF(σ).

Note that, since solved forms always have a solution (just map each variable
to any name in EN), the above proposition implies that σ is consistent if and
only if SF(σ) �= ∅ .

The verification method The method M(C, α←↩ β) described in Table 6 can be
used to verify if C |= α←↩ β or not. If the property is not satisfied, the method
computes a trace violating the property, that is, an attack on C. To understand
how the method works, it is better to consider the simple case α = ⊥, i.e.
verification of C |= ⊥ ←↩ β. This means verifying that, in the concrete semantics,
no instance of action β is ever executed starting from C. By the correspondence
between symbolic and concrete semantics (Theorem 1), this amounts to checking
that for each σ symbolically generated by C, no solution of σ contains an instance
of β. To verify this, the method proceeds as follows: for each such σ, and for each
action γ in σ, it is checked whether there is a mgu θ for γ and β. If, for each σ,
such a θ does not exist, or if it exists but σθ is not consistent (i.e. SF(σθ) = ∅, by
the considerations following Proposition 1), then the property is true, otherwise
it is not. The correctness of the method in the general case is stated in the
following theorem. Its proof relies on Theorem 1 and on Proposition 1, plus
routine calculations on unifiers.

Table 6. The verification method

M(C, α←↩ β)
1. compute ModC = {σ | C ↘S σ};
2. foreach σ ∈ModC do

foreach action γ in σ do
if ∃ θ = mgu(β, γ) and ∃ σ′ = (σθθ′) ∈ SF(σθ) s.t.

αθθ′ does not occur prior to βθθ′ in σ′

then return(No, σ′);
3. return(Yes);

A Framework for the Analysis of Security Protocols 495

Theorem 2 (correctness and completeness). Let Fs be a regular frame, C
be an initial configuration of Fs and α and β be actions such that v(α) ⊆ v(β)
and v(β) ∩ v(C) = ∅ .

– If M(C, α←↩ β) returns Yes then C |= α←↩ β.
– If M(C, α←↩ β) returns (No, σ) then C �|= α ←↩ β. In particular, for any

injective ground substitution ρ : v(σ) −→ EN , we have that C ↘ (σρ) and
that (σρ) �|= α←↩ β.

In practice, rather than generating the whole set of symbolic traces at once (step
1) and then checking the property, it is more convenient to work ‘on-the-fly’ and
comparing every last symbolic action γ taken by the configuration against action
β of the property α←↩ β; the refinement procedure SF(·) is invoked only when
β and γ are unifiable.

5 An Example: The Needham-Schroeder Protocol

In this section, we analyze the Needham-Schroeder protocol within our frame-
work. First, we give an informal description of the protocol (see, e.g., [17], for
further details). Here, A is the initiator and B is the responder.

1. A −→ B : {NA,A}kB+ (NA fresh nonce)
2. B −→ A : {NA,NB}kA+ (NB fresh nonce)
3. A −→ B : {NB}kB+

As reported in [17], there is a well-known attack on this protocol, in case A may
also run the protocol with a dishonest participant I. The following is a formaliza-
tion of the protocol according to our method. For readability, we adopt some ab-
breviations; for instance, we write ‘a({[M,N]}k+). A’ for ‘a(x). let y = decpk

k−(x) in
(let z =π1(y) in (letw =π2(y) in ([z = M][w = N]A))).

A
�
= a1〈{[NA, idA]}kB+〉. a2({[NA, xNB]}kA+). a3〈{[xNB]}kB+〉.0
|| a′1〈{[N ′A, idA]}kI+〉. a′2({[N ′A, xNI]}kA+). a′3〈{[xNI]}kI+〉.0

B
�
= b1({[yNA, idA]}kB+). b2〈{[yNA,NB]}kA+〉. b3({[NB]}kB+). 0

NS
�
= 〈disclose〈kI, kA+, kB+, idA, idB, idI〉, (A ||B)〉

AuthAtoB
�
= a3〈{[z]}k+〉 ←↩ b3〈{[z]}k+〉

Our verification method finds a symbolic trace that refines to the following con-
crete trace, which violates the property AuthAtoB:

disclose〈kI, kA+, kB+, idA, idB, idI〉 · a′1〈{[N ′A,A]}kI+〉 · b1〈{[N ′A,A]}kB+〉·
b2〈{[N ′A,NB]}kA+〉 · a′2〈{[N ′A,NB]}kA+〉 · a′3〈{[NB]}kI+〉·b3〈{[NB]}kB+〉.

When fed with the above example, our prototype STA detects this attack in
a fraction of second.

496 Michele Boreale and Maria Grazia Buscemi

6 Other Cryptographic Primitives

We consider extending the symbolic frame Fs
pk, that served as a running example

in the previous sections, to deal with some of the most common cryptographic
operations.

The set Σ is enriched by means of appropriate operators for shared-key
encryption {·}(·) and decryption decsk

(·)(·), digital signing [{·}](·) and verifying
decds

(·)(·) and hashing H(·). The syntax of messages is extended via the following
additional clauses:

M,N ::= ... as in Table 2

| {M}u | [{M}]u− | H(M) .

The symbolic and concrete evaluations are given in terms of an auxiliary
relation ❀, defined as expected. In particular, hashing has no rules, digital sig-
nature rules are just the same as for public key, but the roles of u+ and u− are
swapped. For shared key, the concrete and symbolic rules are given below:

decsk
u ({M}u) ❀ M decsk

v ({M}u) θ
❀s Mθ where θ = mgu(u, v) .

A finite basis for this frame can be given by including into the basis given for
public key also all messages of the form {M}u (resp. [{M}]u− , H(M)) s.t. σ � � u
(resp. σ � � 〈M,u−〉, σ � � M).

7 Conclusions

We have proposed a framework for the analysis of security protocols and pro-
vided some sufficient conditions under which verification can be performed via
a symbolic method. In contrast to finite-state model checking, our method can
analyze the whole infinite state space generated by a limited number of par-
ticipants. The method is efficient in practice, because the symbolic model is
compact, and the refinement procedure at its heart is only invoked on demand
and on single symbolic traces. However, claims on efficiency should generally be
taken with some care, given that the protocol analysis problem is NP-hard even
under very mild hypotheses (see e.g. [25]).

Early work on symbolic analysis is due to Huima. In [16], the execution of a
protocol generates a set of equational constraints. Only an informal description
is provided of the kind of equational rewriting needed to solve these constraints.
More recent approaches based on symbolic analysis are exploited in [5,14]. The
paper [5] extends the symbolic reachability analysis of [4] to hashing functions
and public key cryptography and establishes some results on the complexity of
the problem. Unlike our approach, symbolic execution and consistency check
are not kept separate, and this may have a relevant impact on the size of the
computed symbolic model. Another point worth noting is that, in [5], a brute-
force method is needed to resolve variables in key position: such variables have

A Framework for the Analysis of Security Protocols 497

to be instantiated to every possible name used by the participants; this fact
may lead to state explosion, too. In [14], a procedure is provided to analyze
the knowledge of the environment, based on a symbolic semantics akin to [7].
The approach applies to protocols with shared-key encryption and arbitrary
messages as keys, but, like ours, it is proven complete only for atomic keys.
Also, the method suffers from the same problem as [5] concerning brute-force
instantiation.

Other recent developments of the symbolic approach are presented in [11] and
[20]. Both of them do not rely on unification to build the symbolic model. The
decision technique in [11] is based on a reduction to a set constraint problem
which is in turn reduced to an automata-theoretic problem. Completeness is
proven by assuming rather severe restrictions on protocol syntax. The technique
in [20] focuses on reachability properties and is based on constraint solving. The
symbolic reduction and the knowledge analysis are separated and the latter is
performed by a procedure for solving a system of constraints.

In the future, we plan to focus on the verification of protocols that also
exploit low-level cryptographic operations, such as modular exponentiation. As
an example, we are confident that Diffie-Hellman key exchange can be smoothly
set within our framework.

Acknowledgements

We thank the anonymous referees for helpful comments.

References

1. M. Abadi, B. Blanchet. Analyzing Security Protocols with Secrecy Types and Logic
Programs. In Conf. Rec. of POPL’02, 2002. 484

2. M. Abadi, C. Fournet. Mobile Values, New Names, and Secure Communication. In
Conf. Rec. of POPL’01, 2001. 484

3. M. Abadi, A. D. Gordon. A calculus for cryptographic protocols: The spi calculus.
Information and Computation, 148(1):1-70, 1999. 484, 486

4. R. M. Amadio, S. Lugiez. On the reachability problem in cryptographic protocols.
In Proc. of Concur’00, LNCS 1877, 2000. Full version: RR 3915, INRIA Sophia
Antipolis. 484, 496

5. R. M. Amadio, S. Lugiez, V. Vanackère. On the symbolic reduction of processes
with cryptographic functions. RR 4147, INRIA Sophia Antipolis, March 2001. 484,
496, 497

6. R. Amadio, S. Prasad. The game of the name in cryptographic tables. In Proc. of
Asian’00, LNCS 1742, Springer-Verlag, 2000. RR 3733 INRIA Sophia Antipolis.
489

7. M. Boreale. Symbolic Trace Analysis of Cryptographic Protocols. In Proc. of
ICALP’01, LNCS 2076, Springer-Verlag, 2001. 484, 485, 497

8. M. Boreale, M. Buscemi. Experimenting with STA, a Tool for Automatic Analysis
of Security Protocols. In Proc. of SAC’02, ACM Press, 2002. 484

498 Michele Boreale and Maria Grazia Buscemi

9. M. Boreale, R. De Nicola, R. Pugliese. Proof Techniques for Cryptographic Pro-
cesses. In Proc. of LICS’99, IEEE Computer Society Press, 1999. Full version to
appear in SIAM Journal on Computing.

10. E. M. Clarke, S. Jha, W. Marrero. Using State Space Exploration and a Natural
Deduction Style Message Derivation Engine to Verify Security Protocols. In Proc.
of IFIP PROCOMET, 1998.

11. H. Comon, V. Cortier, J. Mitchell. Tree automata with one memory, set constraints
and ping-pong protocols. In Proc. of ICALP’01, LNCS 2076, Springer-Verlag, 2001.
484, 497

12. D. Dolev, A. Yao. On the security of public-key protocols. IEEE Transactions on
Information Theory, 2(29):198-208, 1983. 483

13. N. Durgin, P. Lincoln, J. Mitchell, A. Scedrov. Undecidability of bounded security
protocols. In Proc. of Workshop on Formal Methods and Security Protocols, 1999.
484

14. M. P. Fiore and M. Abadi. Computing Symbolic Models for Verifying Crypto-
graphic Protocols. In Proc. of 14th Computer Security Foundations Workshop,
IEEE Computer Society Press, 2001. 496, 497

15. J. Heather, G. Lowe, and S. Schneider. How to prevent type flaw attacks on secu-
rity protocols. In Proc. of 13th Computer Security Foundations Workshop, IEEE
Computer Society Press, 2000. 484

16. A. Huima. Efficient infinite-state analysis of security protocols. In Proc. of Work-
shop on Formal Methods and Security Protocols, Trento, 1999. 496

17. G. Lowe. Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using
FDR. In Proc. of TACAS’96, LNCS 1055, Springer-Verlag, 1996. 483, 495

18. G. Lowe. A Hierarchy of Authentication Specifications. In Proc. of 10th IEEE
Computer Security Foundations Workshop, IEEE Computer Society Press, 1997.
489

19. W. Marrero, E. M. Clarke, S. Jha. Model checking for security protocols. Technical
Report TR-CMU-CS-97-139, Carnegie Mellon University, 1997.

20. J. Millen, V. Shmatikov. Constraint solving for bounded-process cryptographic pro-
tocol analysis. In Proc. of 8th ACM Conference on Computer and Communication
Security, ACM Press, 2001. 497

21. J. C. Mitchell, M. Mitchell, U Stern. Automated Analysis of Cryptographic Proto-
cols Using Murϕ. In Proc. of Symp. Security and Privacy, IEEE Computer Society
Press, 1997. 483

22. L. C. Paulson. The inductive approach to verifying cryptographic protocols. Jour-
nal of Computer Security, 6:85–128, 1998.

23. A. W. Roscoe. Modelling and verifying key-exchange using CSP and FDR. In Proc.
of 8th Computer Security Foundations Workshop, IEEE Computer Society Press,
1995. 483

24. A. W. Roscoe. Proving security protocols with model checkers by data indepen-
dent techniques. In Proc. of 11th Computer Security Foundations Workshop, IEEE
Computer Society Press, 1998.

25. M. Rusinowitch, M Turuani. Protocol Insecurity with Finite Number of Sessions in
NP-Complete. In Proc. of 14th Computer Security Foundations Workshop, IEEE
Computer Society Press, 2001. 496

26. S. Schneider. Verifying Authentication Protocols in CSP. IEEE Transactions on
Software Engineering, 24(8):743-758, 1998. 483

27. STA: a tool for trace analysis of cryptographic protocols. ML object code and ex-
amples, 2001. Available at http://www.dsi.unifi.it/~boreale/tool.html. 484

	A Framework for the Analysis of Security Protocols
	Introduction
	A General Framework
	Frames
	Processes
	Properties

	Symbolic Semantics
	A Verification Method
	An Example: The Needham-Schroeder Protocol
	Other Cryptographic Primitives
	Conclusions

