A Symbolic Semantics for the w-calculus
- Extended Abstract -*

Michele Boreale and Rocco De Nicola

Dipartimento di Scienze dell’Informazione

Universita di Roma “T.a Sapienza

Fmail: micheleO@dsi.uniromal.it, denicola@vm.cnuce.cnr.it

Symbolic transition systems are used as a basis for giving
a new semantics of the m-calenlus. This semantics is more amenable to
automatic manipulation and sheds new light on the lagical differences
among different forms of bisimulation over dynamic process algebras.
Symbolic transitions have the form P M} P’, where, intuitively, ¢ is a
boolean constraint over names that has to hold for the transition to take
place, and «a is a m-calculus action; e.g., [z = y]o. P Tﬂ>(y P says that
action « can be performed under any interpretation of names satisfying
7 = y. A symbolic bisimulation is defined on top of the symbolic transi-
tion system and it is shown that it captures the standard ones. Finally,
a complete proof system is defined for symbalic bisimulation.

1 TIntroduction

The m-calculus [MPW92] is a widely studied process description language with
primitives for expressing the exchange of channels names (or simply names)
among processes. The exchanged names can also be tested for identity and this
can be exploited to control instructions flow. These features permit a natural
description of systems with dynamic linking.

Tike traditional static process algebras, the m-calculus has undergone se-
vere scrutiny and semantics for it have been proposed, relying on the standard
notions of bisimulation [MPW92, PS93] and testing [Hen91, BD92]. However,
theoretical studies to support equivalence checking have just begun; in [San93],
with efficiency motivations, a new form of m-calculus bisimulation, called open,
is proposed and studied.

In this paper, building on previous work by Hennessy and Lin on static value-
passing process algebras [H1.92, HT.93], we provide a framework that yields al-
ternative “efficient” characterization for varions m-calculus hisimulation-hased
equivalences and a complete proof system to reason about them. An additional
advantage of this framework is that it sheds light on the conceptual differences
among known different forms of m-calculus bisimulation. Qur attention will be
confined to strong bisimulations, but we do not see any serious obstacle in ex-
tending our results to the weak ones.

* Ta appear in Prc. Concur ’94.

The basic theory of bisimulation for the m-calculus has been introduced in
[MPW92]. The fundamental notion is that of ground bisimulation; it has the
same conceptual simplicity of the CCS one and suggests a natural strategy for

equivalence checking. However, due to name passing, the definition-based verifi-

cation technique runs into serious efficiency problems. On input actions, a case

analysis on the received names is needed to check that receiving equal names

leads to “equivalent” states. To see this, consider the processes P = a(y).P” and
Q = a(y).Q’; here the input prefix operator a(y).R is used to describe receipt of

aname at channel a and its substitution for the formal parameter y within R. To

check that P and () are ground bisimilar, following the definition we would have

to verify that P and Q" are bisimilar for all possible instantiations of y with a
name occurring free in P and @ or with a fresh name. Of course, performing
multiple checks for each input action may lead to exponential explosion.

Input prefix also introduces another problem: it does not preserve ground
bisimulation equivalence. This leads to considering the maximal induced congru-
ence as the closure under name-substitutions of the ground equivalence [MPW92].
Checking for congruence of two terms by relying on the original definition would
consist in performing several (one for each “relevant” substitution) ground equiv-
alence checks.

A simple example is sufficient to appreciate that, when verifying m-calculus
bisimulation with such straightforward techniques, many performed checks are
indeed useless.

Consider the two processes

P =a(y).P and Py = a(y).([y = z]P + [y # z]P)

where y and z are distinct and the 4 operator stands for external choice. Here,
both match [z = y|, and mismatch operators [z # y|, are used; [z = y] P stands
for a process that hehaves like P if z and y are syntactically equal and is blocked
otherwise, while [z # y] P has exactly the opposite meaning.

Tt should be immediate to establish that P; and P, are equivalent. But,
checking their equivalence by directly relying on the actual definition, requires
checking that P and [y = z]P+4[y # 2] P are bisimilar when vy is replaced by z or
by each of the free names of P. This could be very costly: it is however evident,
that, beside y, z 1s the only name that matters.

A significant gain in efficiency could be obtained by finding a systematic way
to prune non-essential cases when performing the case analysis. To this aim, the
idea pursued in this paper is that of setting up a framework where case analysis
can be performed symbolically. First, a new transition system for the m-calculus
is introduced, where the logical constraints that make a transition possible are
made explicit. Then, a new hisimulation, which we refer to as symbolic, is defined,
that performs the case-analysis directly on these logical constraints. Tt will be

proved that symbolic bisimulation can be used to establish the standard ones.

The symbolic transitions are of the form P M P’, where ¢ is a boolean

constraint over names that has to hold for the transition to take place, and a is a

standard m-calculus action. A typical symbolic transition is [z = y]a. P [mﬂ&a P,

saying that action o can be performed under any interpretation of names safis-

fying » = y. A boolean constraint is in general built from the basic constraints
[# = y] via the standard boolean connectives.

Symbolic bisimulation is defined on the top of the symbolic transition system,

in a way that is parametric over the Tanguage of boolean constraints. This Teads

to distinct symbolic equivalences ~%, depending on the boolean constraint ¢.
Tnformally, to verify P ~% @, it is required to find, for each symbolic move

P M P’ of P, a case-partition of the condition ¢ A v, such that each subcase

~true

entails a matching symbolic move for (). As an example, the equivalence Py

Py of the above mentioned processes is readily verified by partitioning condition
true as {[z = y], [z # y]}; this is sufficient because each of these two conditions
entails that [y = z]P + [y # z] P is equal to P. Actually, as we shall explain, the
appropriate case analysis can be determined automatically.

Symbolic bisimulation is related to the standard ones by the following com-
pleteness theorem:
P ~% @ if and only if
for each name-substitution o satisfying ¢, Po is ground equivalent to Qo
where a name-substitution o satisfies ¢ if the result of applying o to ¢ is a
tautology; here, Po denotes the result of applying o to P .

The above statement tells us that each symbolic equivalence ~¢ is the closure
of the ground equivalence under all name-substitutions satisfying ¢. Thus, for
example, the congruence (i.e. the closure w.r.t. all substitutions) will be recov-
ered as the symbolic bisimulation ~7%¢_Ground bisimulation equivalence of two
specific processes P and @ will be instead recovered as a symbolic bisimulation
P ~¢(P.Q)) where #(P, Q) is a constraint imposing that all free names in P
and Q be distinct.

In the paper, we also present a proof system to reason about symbolic bisim-
ulation. The statements derivable within the system are of the form ¢ > P = @Q
and the system is sound and complete in the sense that ¢ > P = (Q is derivable if
and only if P ~% Q. By taking advantage of the symbolic transitional semantics,
the proof of completeness is, by and large, a symbolic version of the classical
completeness proof for strong bisimulation over CCS [Mil89]. Additional com-
plications are however introduced by the fact that the boolean condition ¢ may
also constraint the communication capabilities of processes.

The symbolic characterization of the standard equivalences has also an addi-
tional advantage; it sheds new light on the conceptual difference between differ-
ent forms of bisimulations for the m-calculus. Actually, in [MPW92], two forms
of ground bisimulations (each inducing a different congruence) were introduced,
the early form and the late one. Intuitively, they correspond to two different
instantiation strategies for the formal parameter of input actions: in the first
strategy (early), the instantiation is performed at the moment of inferring the
input action, while in the other (late) it is performed later, when a commu-
nication is actually inferred. Tn open bisimulation [San93], the instantiation is
delayed as much as possible; this yields an equivalence much stronger than the
early and late ones. Our symbolic formulation indicates that each of the men-

tioned strategies corresponds to a different degree of generality in performing
case-analysis.

Besides [San93], our work mainly relates to three papers: [HT1.92], [HT.93]
and [PS93]. Tn [HT.92], the notion of symbolic bisimulation is introduced within
a syntax-free framework, where symbolic transition graphs are considered; a

polynomial-time verification algorithm is given and, for a version of CCS with

value-passing, a completeness result similar to ours i1s proved. For the same value-
passing language, a sound and complete proof system is presented in [HT.93].

In [PS33], for the same name-passing language considered here, late and early

ground bisimulation and the induced congruences are equipped with four distinct

algebraic proof systems; efficiency considerations are absent.

The present paper may be viewed as the extension of [H1.92] and [HT.93]
to a name-passing calculus, for which “efficient” characterizations of different
bisimulation-based equivalences are obtained. A more detailed comparison with
these and other papers is deferred to Section 5. Here we want only to stress the
main reason that makes this extension non-trivial. The blurring of values and
channel names, a distinctive feature of the m-calculus, allows names to appear
both in the actions, in the processes and in the constraints; this gives rise to a
subtle interplay between name-scoping and boolean constraining. This interplay
is best revealed in the symbolic SOS rules for one of the name-binders of the
m-calculus, the restriction operator (y). ITn (y) P, the name y is declared to he

new, i.e. different from any other name; therefore, when we have P g P’ as a
premise of an inference rule for (y) P, in the conclusion we have to discard from
¢ every assumption requiring y to be equal to other names, thus obtaining a new
constraint (y)¢, not containing y.

Throughout the paper, the early case will be treated in full detail, while the
necessary changes of definitions and arguments for the simpler late case will be
indicated time by time. The rest of the paper is organized as follows. In Section 2,
after introducing the m-calculus and the standard notions of bisimulation equiv-
alences, the symbolic transitional semantics and symbolic bisimulation are pre-
sented. Correctness and completeness of the latter w.r.t. standard hisimulations
are also discussed. Section 4 presents the proof system and the corresponding
theorems of soundness and completeness. Section 5 contains conclusions, com-
parisons with related work and suggestions for future research. Due to lack of
space, proofs are just sketched; detailed proofs can bhe found in the full version

of the paper [BD94].

2 Symbolic Semantics

In this section the m-calculus [MPW92] and its standard bisimulations will he
briefly reviewed; then the new symbolic semantics will be introduced.

2.1 The m-caleculus and its standard bisimulation semantics

Definition1. (Syntar) Let N be a countable set and x,y range over it, let ¢
range over the language BF of Boolean Formulae:

¢ = truelle =yl ¢ 6 Ad
and let o range over actions:
a =7 (silent move) | x(y) (input) | Ty(free output)

Tet X range over a countable set of process variables and consider the Tan-

guage of agent terms built by means of agent variables, inaction, action prefir,

summaltion, boolean quard, restriction, parallel composition and recursion in the
following way:
P:= X[0]|a.P[P+ P|¢P]|(y)P] P[P | recX.P

A process is an agent term where each occurrence of any agent variable X Ties

within the scope a recX. operator. We let m denote the set of processes.

We fix now some basic notations. We shall use false as an abbreviation for
—true, [x # y] as an abbreviation for =[xz = y] and ¢ V ¢ as an abbreviation
for =(=é1 A =¢s). Fvaluation of a bhoolean formula into the set {true, false}
is defined in the expected way, once we set that for any two distinct names =
and y, [x = x] evaluates to true and [z = y] evaluates to false. We will write
¢ = true (¢ = false) if ¢ evaluates to true (false); n(¢) will denote the set of
names occurring in ¢.

We use the bound output action T(y).P, » # y, as a shorthand for (y)(Ty.P).
If o = z2(y) or @ = Ty or a = E(y), we let subj(a) = = and obj(a) = y. The
m-calculus has two kinds of name binders: input prefix z(y).P and restriction
(y) P bind the name y in P; consequently, the notions of free names, fn(.), bound
names, bn(.) and a-equality, =, over both process terms, formulae and actions,
are the expected ones (we define fn(¢) = n(¢) for a boolean formula ¢). We let
n() = fl)Ubn().

Substitutions, ranged over by o, p, are functions from A to N'; for any 2 € N,
a(x) will be written as zo. Given a substitution ¢ and V Cy,;, N, we define:

Vo={zo|lz eV}

dom(o) = {x|xa # z}
range(ad) = dom(o)o

n(o) = dom(o) Urange(r)

In the rest of the paper we confine ourselves to finite substitutions, i.e. those o
s.t. n(o) is finite. Tf ¢ is either an action, a formula or a process term, o denotes
the result of applying the substitution o to #, i.e. the expression obtained from ¢
by simultaneously replacing each x € fn(t) with za. A set {z1/y1, ..., %n/yn} =
{35}, with the ;’s pairwise distinct, will denote the following substitution o:
ro = y; if @ = x; for some i € {1,...,n}, zo = = otherwise. We also define
fn(o) = n(a); in this way, function fn(.) is defined over both names, actions,
processes, formulae and substitutions.

Unless otherwise stated, we will let x,y, ... range over N, o, 3,... over the
set, of actions (including derived bound output), ¢,¢,...over BF, P,Q, ... over
m and p, o, ... over substitutions.

The standard “concrete” transitional semantics of 7 is given in Table 1. By
following [PS93] we also include the (non-structural) Alpha rule, that permits

oa.P — P
P = P P = P
Sum——M— Par bn(a)N fn(Py) =0
P+P, 5 P P | P, = P/| P,
P P, T py P 2 oprop, T py
Com Close
Py Py — P | P3{*y} Prl Py — (y)(P{ | P3)
P -2 P P p
Res————— y ¢ n(a) Open————— v #y
(P 5 (5) P (P "4 P
p > pr PlrecX.P/X] 2 P’
Guard——— ¢ = frue Rec
oP 25 P recX.P s P’
I
Alpha——— P=Q, o.P' =5.Q’
QL

Symmetric versions of Sum, Par, Com and Close are omitted.

Table 1. Standard SOS for «.

freely a-renaming actions and processes; this rule often avoids tedious side condi-
tions in the proofs. With our transitional semantics, the definition of (standard)
early ground bisimulation equivalence ~ and early bisimulation congruence ~
can be given as follows:

Definition 2. (Farly Bisimulation)

A symmetric relation R C 7 x 7 is a ground early bisimulation iff (P, Q) € R
and P -5 P" with bn(a) N fn(P,Q) =0, imply
e if o is not an input action, then 3 Q": Q@ — @’ and (P',Q’) € R.
e ifa=z(y), thenVz € f(P,Q,y) 3Q" : Q - Q' and (P'{#ly}, Q'{?/y}) €
R.
~ = U{R |R is a ground early bisimulation }.
P~QiffVo. Po~Qo.

The late version of the above definition is obtained by replacing the input-
clause (the second clause of the first item) by the stronger:

o ifa=2x(y),then Q" : Q LN Q andV z € fn(P,Q,y) (P'{*/y}, Q' {*ly}) €
R.

Tt turns out [MPW92] that Tate bisimulation is strictly finer than early bisimu-
afion.

2.2 Symbolic semantics

Before introducing the symbolic semantics, we need to fix some additional no-

tation for hoolean formulae and subsfitufions.

Definition 3. (Basic Definitions)

o |= ¢ stands for ¢o = true;

¢ |E ¢ stands for V o: o |= ¢ implies ¢ |= ¢;
[= 3] stands for

[z = 2] if for some y (o = z(y) and 8 = z(y)) or
(@ =%(y) and § = z(y));

[r=2]AJy=w] ifa =Ty and B = zw;

true Wfa=p=r;

false otherwise.

\V/ D, where D = {¢1,...,6n} Ctin BF, n > 0, is the boolean formula
é1 V...V ¢,. A similar notation will be used for A D. Furthermore, we let
\/ @ denote false and A@ denote true.

The boolean formula (y)¢ is defined by structural induction on ¢ as follows:

(y)true = true
(y) [= wsy] = [wr = ws) ify & {wr,wy}
(W)ly = 9] = true
Wy =w]l = (y)[w=y] = false fy#w
(y)~¢ = =(y)¢
W) (é1 A d2) = (y)é1 A (y)2

The symbolic transitional semantics of 7 is presented in Table 2. We com-

ment. on the rules. Each symbolic rule is the counterpart of a concrete one.

Intuitively, the boolean condition ¢ in P M P’ is a constraint over the free

names of P that has to hold for the transition to take place. The rule ¢ — Act
says that o.P can perform o unconditionally. ITn ¢ — Com and ¢ — Close, the
condition of matching channels ([= w]) is moved into the boolean condition of
the resulting symbolic transition; this is necessary to infer symbolic transitions

such as: (2(y).0) | (w(y). 0) =l g | 0. The rule ¢ — Res reveals the interplay
between name-scoping and constraining: in (y)P, the name y is declared to bhe
new, i.e. different from any other name; thus the rule says that, given a symbolic

transition P M P’ as a premise, under the assumption that y is new, we have
to discard every assumption about the identity of y from ¢ in the conclusion;

¢ — Act

a.p MY p
P25 P P23 Py
¢ — Sum# ¢ — Par o a bn(a) N fo(Py) =10
P1+P2;>P1/ P1|P2;>P1/|P2
p % prop, P2 py p, oI prp,) py
¢ — Com P1APaN[z=w], T , , ¢ — Close P1APaN[z=w], T ; ;
Pi| Py — Pi | P3{#fy} Pi| Py B (y)(Pi | P3)
p &8 pr p & pr
¢ — Res y & n(a) ¢ — Open — Tty
P U5)P (P VS pr
p 3 pr PlrecX.P/X] 23 pr
QS 7GuardTa/ QS — Rec b o ,
oP "—" P recX.P ~“— P
p 25 pr
¢ — Alpha———— P=Q, a.P =5.0Q
Q%5 @

Symmetric versions of ¢ — Sum, ¢ — Par, ¢ — Com and ¢ — Close are omitted.

Table 2. Symbolic SOS for 7.

as a result, the new constraint (y)¢ that does not contain y is obtained. An
example of derivation is:

[y=z]V[z=w], T
—

P P’

¢ — Res
(P "EET ()P

where z and w are different from y (note that false V [z = w] is equivalent

to [z = w]). A similar comment holds for ¢ — Open. The other inference rules
should be self-explanatory.

We are now set to introduce symbolic bisimulation for the m-calculus. For a

variant, of CCS with value passing, symbolic bisimulation has been introduced

in [H1.92]. The underlying intuition is that of establishing equivalence of, say,

P and @@ under a condition ¢, by matching, under ¢, symbolic transitions of P,

P M P’, by sets of symbolic transitions of Q. More precisely, the condition

¢ A, 1s partitioned into a set, 1D of subcases, each of which entails a matching

transition for). Due to the freatment of restricted names in the m-calculus,

here we have to take into account the case when the performed action i1s a
bound output Z(y). Tn this case, we impose, by adding an extra condition, that

the name y be different from any known name in subsequent reasoning.

Definition4. (¢-decomposition) Given ¢ and a finite set of formulae D =
{é1, ..., ¢n}, we say that D is a ¢-decomposition iff ¢ E\/ D.

Definition 5. (Symbolic Early Bisimulation)

A family F = {Rg]¢ € BF} of symmetric binary relations over m, in-

dexed over the set BF of boolean formulae, is a family of symbolic early

bisimulations (FSEB) iff for each ¢, (P,@Q) € R4 and P Rl P’, with

bn(a) N fn(P,Q,¢) =0, imply:
there exists a y-decomposition 1, such that for each ¢’ € D, there is a sym-
bolic transition Q@ 228 Q' with ¢/ = (¢ A [o = 8]) and (P",Q') € Ry,

where:

_JoNYAN N epnipgely # 2] i ais abound output action 7 (y)
oA otherwise.

P ~% @Q iff there exists a FSEB {Ry|v¢ € BF} such that (P, Q) € Ry.

Note that, on input actions, no multiple instantiation of the formal param-
eter is required; instead, a single instantiation with a fresh name suffices (the
“freshness” condition is bn(a) N fn(P,Q,¢) = 0 2). The case analysis on the
received value is now embodied in the decomposition D; by performing this de-
composition in an appropriate way, the number of cases to deal with is in general
much smaller than that arising with the original definition (as shown, e.g., by
the example about the processes Py, Py in the Introduction).

Actually, the appropriate decomposition can be determined automatically. Tn
[H1.92], an algorithm is presented to check symbolic bisimulation between two
finite standard symbolic transition graphs. A symbolic graph 1s standard if the
bound name of each bound action transition does not occur free in any ancestor-
node of the transition. This amounts to requiring that only new names are used
for bound actions when generating the graph. Given two such graphs (7 and
(75, the algorithm calculates, in a time polynimial with the sizes of the graphs,
the most general boolean expression under which the two graphs are equivalent,
i.e. a boolean ¢ such that if Gy ~¥ Go, then ¢ = 1. Therefore, the equivalence
problem for graphs is reduced to the implication problem for boolean expressions.
Now, altough a m-calculus process, even if finite, has in general infinitely many
a-equivalent transitions (due to the ¢ — Alpha rule), it is easy to see that only
finitely many of them need to be considered when performing verificaton. More
precisely, 1t is enough to consider a transition for each a-equivalence class of
transitions. Starting from a m-calculus term, we can thus generate a graph that

2 fn(y) need not to be considered because we have fn(y) C fn(P).

represents 1t and that, af least for finite processes, is finite. Tn order for the

graph to be standard, we have also to take care of using fresh names for input
and bound output transitions (by resorting, e.g., to a fresh name generator).

By introducing minor modifications (that take into account the extra conditions

due to bound output when determining the decomposition), we can then use

Hennessy and Tin” algorithm to calculate the most general boolean expression

of two m-calculus processes represented by finite symbolic transition graphs.
Symbolic Late Bisimulation is obtained by simply adding the condition bn(a)N

n(\V/ D) =0 to the first item of the Definition 5: this amounts to imposing that

no alternative of the decomposition depends on the “value” of the formal pa-

rameter dn(a), i.e. to forbidding case-analysis on the actual value of bn(a). The
above discussion on automatic verification extends to the late case as well, by
considering the late version of Hennessy and Tin’ algorithm.

The following lemma, that relates standard and symbolic transitional seman-
tics, 1s crucial to establish correctness and completeness of symbolic bisimula-
tions.

Lemma 6. (Correspondence between Symbolic and Concrete SOS)

1. IfP M> P’ with bn(a) N fn(P,e) =0, and o |= ¢, then Po 2% ple

2. If Po -2 P!, with bn(a) N fn(P,o) = (0, then there emists a symbolic

transition P 25 P", with o = ¢, Bo =a and P'oc = P’.

Proor: By transition induction on P 9% Pl and Po -2 P a

In order to state both the the correctness and the completeness theorems, it
is useful to have the following definition:

Definition 7. (Closing ~ under ¢)For each ¢ € BF, let relation ~% be: P ~% @
iff Yo such that o = ¢, Pe~Qo.

Theorem 8. (Correctness of Symbolic Bisim.) P ~% Q implies P ~% Q.

Proor: Sketch. Consider the relation R = {(Po,Qc)|3¢.0 = ¢ and P ~¢
Q1. Tt is not difficult, by exploiting L.emma, 6, to show that R C ~. Precisely,
one shows that R is a Bisimulation up to Injective Substitutions; in this proof
technique, the clauses of usual bisimulation are weakened so to permit that
matching transitions lead to states that are in the relation provided that some
injective substitution is applied to them (in the present case, this is useful for

bound output transitions). Details on the technique can be found in the full
version of this paper [BD94] or in [San94]. a

3 Completeness of Symbolic Bisimulation

To prove the completeness theorem, we shall rely on the fact that only a suitable
finite set of name-substitutions is “relevant” when working with fixed collection

10

of processes and formulae. All the remaining substitutions are, in fact, variants

of the considered ones, i.e. they can be obfained by injective renaming. This is

a distinctive property of the m-calculus, since 1t relies on the blurring of names

ana variables.

Theorem 9. (Completeness of Symbolic Bisim.) P ~% Q implies P ~% Q.

PROOF: Sketch. We show that {~% [¢ € BF} is a family of symbolic bisimula-

tions. Suppose that P ~? @ and that P M P’. We sketch here only the case

o = 7. We have to find a decomposition of ¢ A1), such that each subcase entails

a matching symbolic transition for Q). Fix any ¢ s.t. ¢ = ¢ A1). From Lemma

6 applied to P vg P’ we obtain that Pe¢ — P’c. Hence, by definition of

~® there is a transition Qo — Q'~P’e. Again from Lemma 6, we obtain that

there exists a transition 0] Q,, with Qo0 = Q'~P'c and o = ¢,.

Now, let V = fn(P,Q, ¢ A ¢). The idea is to consider a finite set. of substi-
tutions, S = {oy,..., 0%}, such that each substitution ¢ satisfying ¢ A 1) is a
variant over V of some ;. These are obtained as the set of those o’s satisfy-
ing ¢ A ¢ with n(e) C VUY, where Y is a suitably large finite set of names
disjoint from V (Y represents a reserve of fresh names). Then, we decompose

¢ Ay into a set D = {iq,... Yr}, one subcase for each o; € S; more precisely
i = x(0, V) A ¢, where x(o;, V) is a certain formula satisfied exactly by the
the variants of o; over V. Now, for each 1 € {1,... k}, from P'o;~Q,,0; and

from the fact that ; is satisfied only by variants of ¢;, we can conclude that
P’ ~¥i Q,, (in fact, variant substitutions “behave the same” w.r.t. ~). Further-
more, by exploiting the fact that for each variant o of o;, o5 = ¢ A implies
o |E ¢ A, we can conclude that D is a ¢ A 1p-decomposition.

The cases when « is an input or a is bound output are more involved, because
we have to take into account the possibility of case-analysis also over the formal
parameter bn(a).)

We end the section by showing that also ground bisimulation ~ can be char-
acterized in terms of the symbolic one.

Theorem 10. P<Q iff P ~% Q, where ¢ = A, yEn(P.Q), my distinet [z # y].

ProoF: The theorem follows immediately from the correctness and completeness
theorems for symbolic hisimulation and from the fact that ~ is closed under
injective substitutions . a

4 The Proof System

Let us now consider the finite fragment of the calculus, i.e. the calculus with-
out the recX. operator zand discuss an equational axiomatization of symholic
bisimulation over it. Tt is well known that decidable axiomatizations cannot exist
for the full language. The statements derivable within the system are guarded
equations of the form ¢ > P = @, to be read as “under ¢, P equals Q”. Tn the

11

sequel, we will write ¢ > P = () to mean that the equation ¢ > P = @) is deriv-
able within the proof system. Furthermore, we will abbreviate “true > P = Q
simply as “P =(Q".

The inference rules and the new relevant axioms of the proof system are

presented in Table 3 and Table 4. The standard inference rules for reflexivity,

symmetry and transitivity and the usual Taws for Summation, Restriction and

Alpha-conversion (see [MPW92]) have been omitted in this shortened version
for Tack of space. Our proof system can be viewed as the result of merging that
of THT.93] and [PS93]. More precisely, all of the inference rules, but the Res rule,
are taken from [HT.93], while the axioms are taken from [PS93].

The C'ut rule permits case analysis on ¢: it says that if ¢ can be split into two

subcases ¢1 and ¢4, and for each subcase we can prove P = Q, then P = () is
derivable under ¢. The Res rule exhibits the same kind of logical “hiding” of the
bound name y as the rules ¢ — Res and ¢ — Open of the transitional semantics.
The other rules and axioms should he self-explanatory; anyway, we refer the
reader to [PS93, H1.93] for explanations on their intuitive meaning.

Soundness 1s straightforward to prove by exploiting the correctness and com-
pleteness of symbolic bisimulation w.r.t. the standard one.

Theorem 11. (Soundness of the Proof System)¢ > P = Q implies P ~% Q.

The actual proof of completeness relies on a “customized” notion of head
normal form. Each process term has a provably equivalent head normal form.

Definition12. (Head Normal Forms) A process P is in head normal form
(HNF) if it is of the form 3~ ., ¢;S;, where:

{¢i|1 € T} is a true-decomposition such that ¢; A¢; = false foreachi,j €T
with 7 # j;
each S; is of the form Z_y’eJ, o;.P;.

Theorem 13. (Complet. of the Proof System) P ~% Q implies ¢ > P = Q.

Proor: Sketch. The proof is by induction on the depth of P and @ under ¢. Tf
P ~% @, we can suppose, without loss of generality, that both P and Q are in
HNF. We then split the condition ¢ into a decomposition 1) such that for each
subcase ¥ € D:

1. under ¥, both P =%, ;. Py and Q = Z_ie] B3;.Q;, that is P and @ are
equal to some head normal form in the sense of [Mil&89].

2. under ¢, all the free names appearing in some «; or some [3;, can be treated
as constants. More precisely, for any to such name x and y, if not ¢ = [z =]

then ¢ |= [z 7 y].

By exploiting the above facts, the symbolic transitional semantics and the induc-
tive hypothesis, one can show that P and @ are equal under ¢, 1.e. ¢ > P = Q.
Since this holds for each subcase ¢ € D, we can conclude by applying the Cut
rule that ¢ > P = Q. a

(Congr) —— where P" = " stands for either of
o> P=0 P =7.Q. 7P = 7.Q. P = ¥Q,
PYR=0%R PIR=Q[R
> =
(Res)
(Inp)
PAYD>P=Q, 0 AN—YD>Q =0
(Guard)
o> YP=@Q
(False) ——————
false > P =@
P >P=0Q, ¢2>P=0Q
(Cut) PGV
o> P=0Q
(Aziom) ————— for each axiom P = @
true > P = (@

Table 3. Inference Rules of the Proof System

A sound and complete proof system for late bisimulation can be obtained by
replacing the Inp rule of the considered system with the simpler rule:

¢ P=qQ
(Inp—1.) y & n(o).

13

(Subst) [x = yla. P =[x = yla{"y}.P

(Res2) (y)(@P) = ((y)o) (W) P

Fap
Suppose P =37, ¢ia;.Prand Q@ =57, ¢iBi.Qi.
Suppose that no «; (resp. 3;) binds a name free in @ (resp. P).

PIQ =2 1 0ici-(Bi1Q)+ 32,6, 0iB-(P1Qy) +22,, opp s, (6 AU Al = y]) TR

where o, opp 3; and R,; are defined as follows:

Looi =iz and B = y;(y); then Ry = P | Q;{*/y}
2. 05 = 7(y) and B; = y;(y); then Ry = (y)(Pi | Q;)
3. The converse of 1.

4. The converse of 2.

Table 4. Relevant Axioms of the Proof System.

5 Conclusions and Related Work

A symbolic transitional semantics for the m-calculus has been introduced and, on
top of it, a notion of symbolic bisimulation has been defined, amenable to efficient,
checking. Symbolic bisimulation has then been related to the standard bisimu-
lations of the m-calculus. A consequence of this is that more efficient checking of
early and late bisimulations is possible. A sound and complete proof system for
symbolic bisimulation has then been provided.

The symbolic characterization of the bisimulations has another major benefit:
it sheds new light on the logical difference between various m-calculus bhisimu-
lations, based on different instantiation strategies, such as early, late and open.
Tt is not. difficult to see that different instantiation strategies correspond to dif-
ferent degrees of generality in the case analysis. Indeed, early bisimulation is
the most general (and natural) one, since no restriction is imposed on the case-
decomposition 1. Late bisimulation is obtained by adding the requirement that
the formal parameter of the input action (bn(«)) does not appear in D, i.e.
by forbidding case-analysis on the actual value of the formal parameter. Open
bisimulation [San93] is only defined over the language without negation (hence
essentially without mismatch [z # y]). Tt appears, but this needs to to be worked
out in full detail, that open hisimulation can be obtained from the early symbolic
one by completely omitting case analysis; this amounts essentially to requiring
that 1) be a singleton. Extending open bisimulation to a language with mis-
match is an interesting open problem of [San93]. Tt could be solved within our
symbolic framework. Tt appears that a meaningful “conservative” extension of
open bisimulation to the richer language can be obtained by requiring a limited

14

form of case-analysis.

The original idea of symbolic bisimulation has been presented in [HL.92].
There, a polynomial verification algorithm is proposed for a class of symbolic

transition graphs and a theorem relating symbolic bisimulations to concrefe

bisimulations over a version of CCS with value-passing is presented. Tn [HT.93],

the same lTanguage has then been equipped with a sound and complete proof

system. The results obtained by Hennessy and Lin are the direct inspiration of
our work but they cannot be directly extended fo the m-calculus for two main

T. the blurring of the distinction between variables, values and channels proper
of the m-calculus;

2. the absence of a specific language for boolean constraints in the work by
Hennessy and Lin.

Tt is easier to deal with a static value-passing process algebra, because channel
names are neatly separated from the exchanged values and thus channels do not,
appear in the constraints. Of course, this is no longer true in a name-passing cal-
culus, where a subtle interplay between name-scoping and boolean constraining
is present. An example of such interplay is offered by the symbolic SOS rules for
the restriction operator.

The symbolic framework of [HL.92] and [HT.93] is parametrised on the lan-
guage of boolean constraints, in other words they do not have a specific language
for boolean constraints. In order to establish the relationship between symbolic
and concrete bisimulation, they just assume the existence of an extremely ex-
pressive language, capable of describing any given collection of environments
(associations of variables with values). This is admittedly [HT.92] a very strong
requirement. Tt is at least not obvious, in presence of non-trivial types of values,
that such a language exists. Here, we had to consider a specific language (BF')
and had to deal with name substitutions rather than environments. Indeed, it
must be said that our solution heavily depends on the specific features of the
m-calculus: only finitely many substitutions are important when dealing with a
fixed set of constraints and processes. This property does not hold for languages
that, besides names, permit exchanging other kinds of values (e.g. integers) and
make use of predicates (e.g. <) over them.

Tn [PS93], the ground equivalence and the corresponding congruence, for the
early and late cases, are separately axiomatized, via four distinct algebraic proof
systems. Confining ourselves to one specific form of bhisimulation (either early
or late), the main differences between our proof system and theirs can be sum-
marized as follows. They consider the ground equivalence and the congruence
separately: in our framework, all the equivalences obtainable as substitution-
closure of the ground one (including, as particular cases, the ground equivalence
itself and the congruence) are considered at once. As a consequence, it is pos-
sible to reason about each such equivalence, just by selecting the appropriate
¢. Furthermore, at least when considering late ground equivalence, we gain in
efficiency. Tf it has to be proven that z(y). P is ground bisimilar to z(y).Q, within
our framework it just suffices to derive ¢ > P = @, for some ¢ not containing

15

y and not stronger than the constraint given by our characterization of ~ in
terms of ~%_ Within the framework of [PS93], it is instead needed to apply the
mput-prefix rule:

V2 € n(P.Qy). Py} = QU
A 7(y).P = x(y).Q

P

whose premise always requires as many sub-proofs as the cardinality of fn(P, @, y).

This example shows that making reasoning assumptions explicit can often avoid

a number of useless checks. An accurate comparison between the two approaches
w.r.t. efficient deduction strategies would be interesting.

Finally, our work is somewhat related to [Dam93] and to [FMQ94], where
different. kinds of symbolic transitional semantics for the m-calculus have been
presented. Tn [Dam93], a symbolic semantics is used as a basis for developing

a model checker; first-order (rather than boolean) formulae are utilized; in the
operational rules for the restriction operator, the “hiding” of a name y in a
formula is modeled using an existential quantifier Jy. The aim of [FMQ94] is
to define a general framework, within which the different kinds of instantiation
strategies (such as early, late, open) can be described just by instantiating certain
parameters. The problem of efficiently representing the considered equivalences
is not. tackled.

References

[BD92] M. Boreale and R. De Nicola. Testing equivalence for mobile processes.
Technical Report ST 92 RR 04, Dipartimento di Scienze dell’Tnformazione
Universita “T.a Sapienza”, Rama, 1992. FExtended abstract appeared in: R.
Cleaveland (ed.), Proceedings of CONCUR ’92, LNCS 630 , Springer-Verlag.
Full version to appear in Information and Computation.

[BD94] M. Boreale and R. De Nicola. A symbolic semantics for the m-calculus. Tech-
nical Report ST 94 RR 04, Dipartimento di Scienze dell’'Tnformazione Uni-
versita “T.a Sapienza”, Roma, 1994.

[Dam93] M. Dam. Model checking mabile processes. In F. Best, editor, Proceedings
of CONCUR 93, LNCS 715. Springer-Verlag, Berlin, 1993.

[FMQ94] G. Ferrari, U. Montanari, and P. Quaglia. The m-calculus with explicit sub-
stitutions. Technical report, Universita di Pisa, 1994. Accepted to MF(CS’94.

[Hen91] M. Hennessy. A madel for the m-calculus. Technical report, University of
Sussex, 1991.

[HT.92] M. Hennessy and H. T.in. Symbolic bisimulations. Technical repart, Univer-
sity of Sussex, 1992.

[HT.93] M. Hennessy and H. Lin. Praof systems for message-passing process alge-
bras. In E. Best, editor, Proceedings of CONCUR °93, LNCS 715. Springer-
Verlag, Berlin, 1993.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[MPW92] R. Milner, J. Parrow, and D). Walker. A calculus of mobile pracesses, part
1 and 2. Information and Computation, 100, 1992.

16

[PS93] J. Parrow and D). Sangiorgi. Algebraic theories for name-passing calculi.
Technical report, University of Edinburgh, 1993. To appear in Information

and Computation.
[San93] D. Sangiorgi. A theory of bisimulation for the m-calculus. Tn E. Best, editor,

roceedings o,
[San94] D. Sangiorgi. On the bisimulation proof method. Technical report, Univer-

sity of Edinburgh, 1994, Tn preparation.

This article was processed using the TATEX macro package with T.T.NCS style

17

