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We consider the language I, a name-passing calculus introduced by San-

giorgi, where only private names can be exchanged among processes (internal

mobility). The calculus I has simple mathematical theory, very close to that of

CCS. We provide an encoding from (an asynchronous variant of) the -calculus

to I, which is fully abstract on the reduction relations of the two calculi. The

result shows that, in name-passing calculi, internal mobility is the essential

ingredient as far as expressiveness is concerned.

By now, the -calculus [13] is generally recognized as prototypical algebraic

language for describing concurrent systems with dynamically evolving communication

linkage. The latter phenomenon, known as , is modelled through the passing

of channel names among processes (name-passing). The expressive power of the -

calculus is demonstrated by the existence of simple and fully abstract translations

into it for a variety of computational formalisms, including -calculus [12], higher-

order process calculi [15] and calculi which permits reasoning on the causal or spatial

structure of the systems [4, 17].

The price to pay for this expressiveness is a rather complex mathematical theory

of the -calculus. A source of complications is, above all, the need to take

(otherwise called substitution) into account. Input and output at of a

tuple of names are written, respectively, as ( ) (input pre�x) and (output

pre�x), with representing the continuation of the pre�x. An input and an output

pre�x can be consumed in a communication, where a tuple of names is passed and

used to instantiate the formal parameters of the input pre�x, thus:

( ) ( )

with denoting the instantiation of names in with names in . Name instantiation

is a central aspect in the mathematical treatment of certain behavioural relations.
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E.g., bisimilarity in the -calculus comes in several di�erent forms (early, late and

open), depending on the name instantiation strategy chosen for matching input actions

[13, 14, 16], and it is not clear which one should be preferred. Name instantiation also

complicates the pragmatics of the -calculus, since any implementation has to keep

track, explicitly (e.g. using environments) or implicitly, of the bindings among names

created by communications like (*) as the computation proceeds (see e.g. [8]).

It is therefore natural to try to isolate fragments of the -calculus enjoying a

simpler treatment of name instantiation, while retaining non-trivial expressive power.

In this paper, we examine the calculus I, a sub-language of the -calculus proposed

in [19]. A prominent feature of I is that it avoids using name instantiation (other

than -conversion). This makes its mathematical treatment and its pragmatics much

simpler than those of the -calculus: indeed the only extra ingredient of I over CCS

is -conversion of names (see [19]). We show that an \asynchronous" variant of the

-calculus [10, 3, 18] can be translated, in a simple and compositional fashion, into

I. There is a precise operational correspondence, on the reduction relations of the

two calculi, between the source process and translated process. The correspondence

can be also concisely stated as full abstraction of the translation w.r.t. the

equivalence of [15]. A more precise account of our work follows.

The language I is obtained from the -calculus by imposing the constraint that

only names be communicated among processes. Output at of a tuple of

private names is written as ( )( ), where ( ) is the operator of

the -calculus. After the interaction, the communicated names remain private:

( ) ( ) ( )( ) ( )

Since both ( ) and ( ) act as binders for the names and , respectively, up to

-conversion it is possible to assume in (**) that = : thus no name instantiation

is needed in I. The kind of dynamic recon�guration corresponding to the passing of

private names is called in [19].

In I it is impossible to directly describe mobility, i.e., output of public

names (or ), as given by (*). In [19], it has been shown that I is expressive

enough to encode in a fully abstract way -calculus and certain forms of

higher-order process calculi. However, neither of these formalisms exhibits external

mobility. In particular, in strictly higher- order calculi, no name-passing feature is

present, since only processes (or abstraction of processes) can be passed around. It is

therefore natural to wonder whether external mobility, at least in some limited form,

can be \programmed" via the internal one.

In the paper, we consider asynchronous -calculus, , a language with external

mobility introduced by Honda [10] and, independently, by Boudol [3]. This is a variant

of the -calculus where the continuation of a free output pre�x is always the empty

process ( ), and the operator [13], used to test for

equalities between names, is omitted. The limitation to asynchronous output pre�x is

not serious, since it has been shown that the full output pre�x can be, in a reasonable

sense, programmed in [3]. On the other hand, matching plays a secondary role, as

far as expressiveness is concerned (e.g. it is not necessary to encode the -calculus,

higher-order calculi etc.), and its omission leads to a nicer mathematical treatment of

many behavioural relations (e.g. on , unlike the -calculus, bisimulation is a full

congruence [10, 9, 5]).
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We de�ne a compositional encoding, [[ ]], from to I. The basic idea is that

the output of a free name at , , is replaced, in I, by the output of a private

name , which acts as a pointer to a process from to , written .

Intuitively, behaves like a bu�er with entrance at and exit at : however,

names transmitted at are not the same as names received at (this would require

free output), but are, in turn, linked to them (the de�nition of link processes will be

indeed recursive). Since a link transforms outputs at into outputs at , a

process owing can trigger an output at by interacting with .

Thus link processes can be used to naturally encode those -processes in which

any receiver, say ( ) , can only use in as an output channel. We call

the subset of obeying this \inversion of polarity" syntactical condition. We show

that the full can be faithfully encoded in the fragment . Thus the encoding

[[ ]] is actually obtained as the composition of two simple translations: one ( )

from to , and the other ( ) from to I. Each of these two encodings is

proven to be fully abstract w.r.t. barbed bisimilarity, a behavioural equivalence which

focuses on the reduction relations of process calculi. The meaning of this result is that

whatever can be programmed in the -calculus, it can be programmed in I. This

strengthens the claim of [19], that, in the -calculus, internal mobility is responsible

for most of the expressive power, whereas external mobility is responsible for most of

the mathematical complications.

The encoding is also interesting on its own. The underlying idea is that,

whenever a name is passed, the sender keeps for himself the right of using name

as an input. In the translated process, the receiver is hence passed two things: a

\polarized" , which can be only used for output, the private address of a channel

manager, to which all requests of using as an input channel must be addressed. Thus,

all subsequent communications along will have the channel manager as a receiver.

This suggests that, without loosing expressive power, it should be possible to further

re�ne the channel discipline of to get a calculus in which each channel, once

created, has a single, statically localized receiver; the latter could be understood as an

, in the sense of object-oriented programming. This \unique receiver" property

is particularly desirable for distributed implementation of concurrent languages: it is,

for example, one of the motivations behind the of Fournet and Gonthier

[7].

The rest of the paper is organized as follows. Section 2 contains some background

material on , I and on the behavioural relations used throughout the paper.

Section 3 presents the encoding from to . Section 4 presents the encoding from

to I. The paper ends with a few conclusive remarks in Section 5.

In this section we introduce the languages , and I, their basic operational

semantics and some behavioural relations on them.

The name-passing languages , and I can be regarded as fragments of a common

-calculus subset, which we call . Below, we shall �rst describe and then isolate
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out of it the fragments of our interest, by constraining the output constructs.

The countable set of is ranged over by . A countable

set of , each having a non-negative integer arity, is ranged over by

. are ranged over by and . The subset of the -calculus

syntax we shall consider is built from the operators of guarded summation, restriction,

parallel composition, replication and agent identi�er:

:= ! ( )

:= ( ) ( )

where is the arity of . The pre�xes ( ) , ( ) and are called, respectively,

input pre�x, bound output pre�x and (asynchronous) free output pre�x; in the input

pre�x ( ) and in the bound output pre�x ( ), the components of are pairwise

distinct. In the free output , we omit the surrounding brackets when has

one or zero components. In summations, the index-set is �nite; for the

symbol is also used, while binary summation is often written as + .

We abbreviate as and as ( ) .

We only admit summation, since, by contrast with full summation, it

preserves bisimilarity even for weak relations, where silent moves are partially ignored.

Following [19], we have also introduced explicitly the bound output pre�x ( ) , that

in in the full -calculus would only be syntactic sugar for ( ).

Input pre�x ( ) and restriction act as for names and , respectively.

, of a process , written fn( ) and bn( ) respectively, arise

as expected; the of , written n( ) are fn( ) bn( ). , ranged

over by are functions from to ; for any expression , we write for the

expression obtained from applying to . Composition of two substitutions and

is written . We assume the following decreasing order of precedence when writing

process expressions: substitution, pre�x, replication, restriction, parallel composition,

summation.

Each agent identi�er has an associated de�ning equation, ( ) ,

where is the arity of , the 's are all distinct and fn( ) .

The transition rules for the language operators are given in Table 1. ,

ranged over by , can be of four forms: (interaction), ( ) (input), or

(output), ( ) (bound output). By convention, we shall identify actions and

( ). Functions bn( ), fn( ) and n( ) are extended to actions as expected, once we set

bn( ( )) = and bn( ) = .

Throughout the paper, we work up to -conversion on names | that is, we im-

plicitly take an underlying representation of names based on de Bruijn indices [6] |

so to avoid tedious side conditions in transition rules and bisimulation clauses. There-

fore, for instance, in a process bound names are assumed di�erent from each other

and from the free names, and -equivalent processes are assumed to have the same

transitions. All our notations are extended to tuples componentwise.

Following Milner [11], we only admit : the sorting prevents

arity mismatching in communications, like in ( ) . Moreover, substitu-

tions must map names onto names of the same sort. We do not present the sorting

system because it is not essential to understand the contents of this paper.

We say that a name occurs in in if
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2.2 Barbed bisimilarity, standard bisimilarity and expan-

sion preorder

� :P P ; j I

P P P

P P

P P

P P P P

P P P P

P P � b P P

b

=c

P P

� c P � c P

; c = �

P P

� c P P

; c a; c b b

P

b

=x P

A b P

A x P

Table 1: Operational semantics of (symmetric versions of omit-

ted).

contains a pre�x ( ) (resp. or ( )) not inside the scope of a binder for . We

call:

the above de�ned set of -calculus processes;

the subset of with no bound output pre�xes and no agent identi�ers;

the subset of in which, for terms of the form ( ) , no occurs in

in input subject position;

I the subset of without free output pre�x.

Note that the language I contains both replication and agent identi�ers: contrary to

what happens in the -calculus, these two primitives are not equivalent (see [19]) in

I. Even though replication can be derived from identi�ers, we decided to keep it for

notational convenience.

Weak barbed bisimilarity [15] is the relation we are most interested in. We will,

however, use in some of the proofs a few auxiliary relations: standard (strong and

weak) bisimilarities and the expansion preorder.

In the sequel, we let = be the re
exive and transitive closure of , let = be

= = , and let = be = , if = , and = , if = .

Barbed bisimilarity [15] represents a uniform mechanism for de�ning behavioural

equivalences, which focuses on two concepts common to di�erent process calculi: the

and an . In -calculus, we say that
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De�nition 2.1 (weak barbed bisimilarity)

2.2.2 Standard bisimilarities

De�nition 2.2 (strong ground bisimilarity)

2.2.3 Expansion preorder

commits

A symmetric binary relation on

is a if and only if, whenever :

1. implies there exists s.t. and , and

2. implies , for any .

We say that and are , written if and only if for

some barbed bisimulation .

late, early open

ground

A symmetric relation is

a if and imply that there exists s.t.

and . Two processes and are , written

, if for some strong bisimulation .

to , and write , if contains a pre�x ( ), or or ( ) which

is not underneath another pre�x or in the scope of a restriction operator. This

means that is capable of interacting immediately on channel . We write if

is capable of interacting on possibly after a few invisible steps, i.e. if = .

weak barbed bisimulation

=

barbed bisimilar

A few forms of (standard) bisimilarity have been proposed for the -calculus, notably

the and bisimilarities [13, 16], depending on the speci�c name instan-

tiation strategy adopted for input actions. Here, we take advantage of the fact that,

over the subsets of the -calculus we are interested in ( I, and hence ), these

forms coincide with each other and with another, simpler form of bisimilarity, called

bisimilarity (see [9, 10, 18, 5]). In the latter, no name instantiation of the

input formal parameter is required, apart from -conversion. We recall its de�nition

below.

strong ground bisimulation

strongly ground bisimilar

The weak versions of this bisimulation, where one ignores silent steps in matching

transitions, is obtained in the usual way: weak ground bisimilarity is de�ned by

replacing in De�nition 2.2 the transition with = . We use for

weak ground bisimilarity.

Since we are only interested in the and I fragments of , where all mentioned

forms of standard bisimilarity coincide, in the sequel we shall omit the adjective

`ground' when referring to and .

The expansion relation [1, 20] is an asymmetric variant of which allows us to

count the number of -actions performed by the processes. Thus, holds if

but also has at least as many -moves as . As for standard bisimilarities,

di�erent (ground, early, late, open) forms of expansion can be de�ned on the -

calculus, depending on the chosen name instantiation strategy. Again, it is easily

seen that all these forms coincide on the subsets of the -calculus of our interest,

and I (the proof parallels that given in [9, 10, 18] for standard bisimilarities).

We give below the de�nition of ground expansion preorder, omitting the adjective

`ground'.
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A relation is an if

implies:

1. Whenever , there exists s.t. and ;

2. whenever , there exists s.t. and .

We say that , written , if , for some expansion .

a) Over the languages and , the relations , and are preserved by all

operators and by name instantiations.

b) The following is a chain of strict inclusions between relations: , , , .

Let and be two names. An

is the process:

fresh

expansion

=

expands

We often write in place of . The following proposition summa-

rizes a few properties of the behavioural relations considered in the paper, and some

relationships between them:

I

a

i

a

Let us illustrate informally how a process can be translated in . The basic idea

is that whenever a name is passed, the receiver, say , is also passed the (private)

address of an \input manager" process, . The latter serves all requests of

using as an input channel. In particular, whenever activated at , performs

the requested input and then gives the control and the result of the input operation

back at a private return address, . Hence, all input actions of at are transformed,

via the encoding, into interactions at with .

For notational simplicity, we only present below the encoding for the monadic

fragment of . The polyadic case will be easily accommodated afterward. First, the

formal de�nition of the input manager process:

input

manager for at

= ! ( ) ( )

The encoding from (monadic) to is de�ned in Table 2. The de�nition

makes use of an auxiliary parameter, , which is a �nite partial function from to .

It is used in the input clause ( ( ) ) to record the transformation of input actions

at into interactions at with links of the form . The notation [ ] denotes

the partial function which yields on and behaves like elsewhere. Furthermore,

ran( ) denotes the set : ( ) = for some . When, in some statement, we

declare a name to be we mean it is di�erent from any name occurring in any

process or in any function previously mentioned in the statement. Bound names

are always assumed to be fresh.

Before proving full abstraction of we need to �x a basic property of it. In

the following lemma, part 1 is a well-known distributivity law for ! , due to Milner

[11]. Part 2 shows that, under certain conditions, an input manager process

somehow acts as a substitution of with , if is hidden.
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Let , and be processes in .

1. , provided that

may occur free in , and only in output-subject position.

2. , where is unde�ned in , and is fresh.

Let and be s.t.
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� h a x; y :h x; y h x; y :� z z , a P � = =

>

� h

a x; y :� h h x; y h x; y : P � =

>

>

a x; y : P � =

:

P � :

P P �

� P P

�

P P

� a x P �

>

P � =

Let be a �nite partial function from to . is de�ned as:

( ) =

( ) [ ] if is unde�ned on , with fresh

( ) [ ] if ( ) = , with fresh

= with fresh =

= ! = !

= De�ne: =

Table 2: De�nition of the encoding from to .

! ( ) ( ! ( ) ) ( ! ( ) )

[ ] [[ ]]

Part 1 is shown by exhibiting the appropriate bisimulation (see e.g. [11]).

Part 2 is proven by induction on , exploiting part 1. The most interesting case is

when = ( ) . Then we have:

[ ] =

(de�nition of )

( ) [ ][ ]

(laws for and part 1)

( ) [ ][ ]

(laws for , and )

( ) ( ) [ ][ ]

(induction hyp., laws for , )

( ) ( ) [ ]

(a simple law for )

( ) [ ] =

(de�nition of ).

The following proposition shows the tight correspondence between transitions of

and transitions of .

fn( )

ran( ) =

= ( ) [ ]
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( )

( )

Proof:

Proposition 3.4

y

x

b

x

y

x

y

x

b

x

y

x

b

x

b

x

b

x

( )

1 a

( )

1

1

1

1

1

1

2

( )

2

1 2 1 2

1

1

1 1

2

( )

2

1 2

1 2

1 2

1

1 2

1 2

1

h i

0 0

h i

0 0

0

0

0 0

0 0 0

0 0

0

0 0

0

0 0

0

h i

0

0

0

0 0

0 0

0

0 0

0 0

0

0 0

� y a b;y

� b;y a b;y

�

�

a x

ab

� b ab

�

�

ab

a x

�

� y a b;y a x;y

�

2. implies , with ;

3. implies , with ;

4. implies .

b) The converse of part a), i.e.: Suppose that . Then there is

s.t.:

1. implies with ;

2. implies with and ;

3. implies with and

;

4. implies , with .

a) if and only if .

b) implies ;

� ab P �

>

y , b P � y = P

� � b ab P �

>

y , b P � y = P

� � P �

>

P �

P � P P �

� a x; y P P P

>

P � =

� � y a b; y P P y = P P

>

y , b P �

� � b; y a b; y P P y = P P

>

y ,

b P �

� � P P P

>

P �

P P

P P ;P P

P P P P =

:

x = P

P �

>

y , b P � y = P P �

>

P � = :

P P �

>

� y y , b P � P � = =

� y y , b P P � = =

x; y = P :

>

P P � =

P P = �

x = P

P a P a

P P P

>

P

fj jg �!

�

! j fj jg 2

fj jg �!

�

! j fj jg 2

fj jg �!

�

fj jg

fj jg �! 2

�!

�

fj jg

h i �! 2

�

! jfj jg

h i �! 2

�

!

j fj jg

�!

�

fj jg

�!

�! �!

j �! j f g

2

fj jg �!

�

! jfj jg 2 fj jg �!

�

fj jg

fj j jg �!

�

! j fj jg j fj jg f g

! j fj j jg f g

2 fj jg

�

fj j jg f g

fj j f gjg

2

# fj jg #

) fj jg )

�

fj jg

= fn( )

= fn( )

=

= ( ) [ ]

= fn( )

= ( ) fn( )

=

Each part is proven by transition induction. The only subtle points arise in

the proof of parts a)(4) and b)(4), where also Lemma 3.2(2) is used. As an example,

we show part a)(4). The only non-trivial case is when the last rule applied for deriving

is a communication rule (we suppose for simplicity that the communicated

name is free; the case when it is restricted can be easily accommodated):

:

where we suppose that fn( ). By induction hypothesis, we have that:

with fn( ) and [ ] (1)

Then we have:

[ ]

(from (1) and interaction)

= [ ]

(since fn( ) and by def. of )

(Lemma 3.2(2))

=

(by a simple property of the encoding and the fact

that fn( )).

As a consequence of the previous proposition, we get the following correspondence

on commitments and weak invisible transitions:

= =
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1 1

1

1

a

1

i

a

1

a

1

1

a

1 1 1

1 1 1

a

0 0 0

00

00

00

00

0

00 0

0

0 0 0

00

00 00

0 0 0

0

Remark 3.5

De�nition 3.6

Lemma 3.7

Theorem 3.8 (full abstraction of w.r.t. barbed bisimilarity)

P P P P P P

>

P

P a P a

<

n P P n

n n > Q P Q P

P �

P P Q

>

P :

Q P R �

P R P

>

R :

P �

P P R

>

P

P P P P

>

P

>

Q P Q P

P R P R

�

P Q

P P P Q Q P

>

P Q

Q

>

Q P Q :

P a Q a

: P

Q � P Q P Q

fj jg ) )

�

fj jg

+ fj jg +

�

� fj jg �!

fj jg �! �!

)

�

fj jg

�!

fj jg �!

�

�!

�

fj jg

)

�

fj jg

�

�

� fj jg �!

fj jg ) fj jg �!

R

R

�!

�

)

�

R

# +

R R �'

fj jg

' fj jg ' fj jg

c) implies that there is s.t. and .

d) if and only if .

A symmetric binary relation over is a

if, whenever it holds:

a) implies that there exist , and s.t.: and

and

b) implies .

If is a barbed bisimulation up to expansion then .

Let and

be processes in . Then if and only if .

= =

Part a) is a trivial consequence of the previous lemma. Part d) is a conse-

quence of parts a), b) and c). Part b) and c) are shown by exploiting Proposition 3.3,

parts a(4) and b(4), and the properties of . As an example, we show part c).

For some 0 it holds that . We proceed by induction on . The

case = 0 is trivial. If 0, the for some , we have . By the

induction hypothesis, we have, for some in ,

= with

From this and , we deduce that, for some in ,

with

Now, by Proposition 3.3(b)(4), there is in s.t.

with .

Thus, we have found s.t. = and , and proved the thesis.

In the proof of item (c) of the above proposition the use of the expansion

relation turns out to be necessary to close up the induction. Had we used weak

bisimilarity in place of in the above proof, from and ,

we could have only inferred = (in place of the stronger );

as a consequence, we could not have applied Proposition 3.3(b)(4) to close up the

induction.

A simple proof technique for barbed bisimilarity:

barbed bisimulation up

to expansion

=

We arrive at the main theorem of the section:
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v

u

v
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1
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def
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i
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i
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e
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(
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e

e

e
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e

e

e

e

e

e
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e

e
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De�nition 4.1 (link processes, [19])

link

linked

Let and be two names. A

is the recursively de�ned process:

R f fj jg fj jg ' g

R f fj jg ' fj jgg

fj jg

� � � ! ! j � � � j !

fj jg

fj jg

j fj jg

fj h ijg h i j !

!

!

! ( !

hj ji

hj ji

P ; Q P Q

�

P;Q P Q

�

:

� u u ; : : : ; u v v ; : : : ; v =

= = u , v u , v u , v

a x :P �

a x; z : P � = � a z

� h zh h x; y : P � = � a z h y

a b � � z a b; z z , b z

z y

� �

b x

x b x b x b

x b x b

b x

� �

a b a

b �

a b a x :b y : y x :

: � �

�

:

Exploiting the above Proposition 3.4 and Proposition 3.3, it is easy to show

that the relation:

= ( ) :

is a barbed bisimulation up to expansion in : this establishes the `if' part.

For the `only if' part, again exploiting the above Proposition 3.4 and Proposition

3.3, it is easy to see that the relation:

= ( ) :

is a barbed bisimulation up to expansion in .

We indicate now the modi�cations necessary to extend to the full polyadic

. We use the following notations: for = ( ) and = ( ), [ ]

stands for [ ] [ ] and stands for . The

clauses for input and output pre�xes of Table 2 are replaced by the two clauses:

( ) =

( ) [ ] if is unde�ned on , with fresh

( ) [ ] if ( ) = , with and fresh

= ( ) fresh

with the obvious requirements on the number of components of and , which must

furthermore be all distinct. The proofs carry over with some straightforward (mostly

notational) changes. We omit the details.

i

a

Let us explain informally the second step of our translation, from to I. The basic

idea is that the output of a free name is replaced by the output of a bound name

plus a from to , . The latter transforms outputs at into outputs at .

Intuitively, behaves like a bu�er with entrance at and exit at : however, the

name transmitted at is not the same as the one received at , but just, recursively,

to it. Link processes have been introduced in [19], where they have been used

to encode the lazy -calculus into I.

link from to

I

! ( ) ( )

The encoding from to I is de�ned in Table 3. Again, we present the en-

coding for the monadic fragment of . The polyadic calculus will be accommodated

afterward.

In order to prove full abstraction of , we need to �x a few properties of link

processes. In the next lemma, part 1 says that whenever the exit point of one link

coincides with the entrance point of another one, and this common point is hidden,

then the two links are, so to speak, connected. This means that they behave as a

single link. Part 2 of the lemma states then, under certain conditions, a link acts as

a substitution.
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Proof:

i I

i

i I

i

�

( )

( )

( )

( )

( )

( )

def def

def def

def def

i

a

a

def

1

1

i

a

Lemma 4.2

Proposition 4.3 (strong operational correspondences)

hj ji

hj ji hj ji hj ji !

hj ji hj ji hj ji hj ji

hj j ji hj ji j hj ji hj ji hj ji

hj ji

! j !

�

!

! j hj ji

�

hj f gji

! j hj ji ! j !

hj ji

� ! j ! j !

!

�

! j ! j !

�

� ! j ! j !

j

� ! j ! j !

6

6

! j !

�

!

�

! j !

�

!

hj f gji hj ji

hj ji

�!

1. Let and be di�erent from . Then .

2. Let be a process in and suppose that does not occur free in in input-

subject position. Then .

Let be a process in

.

a) Suppose that . Then we have:

P

a x :P a x : P ab a x : x b x

S S � xP � x P

P Q P Q P P :

: � �

x y z � y x y y z

>

x z

P � y P

� y y a P

>

P =

P

P yc c

� y y a P � y y a y x : x c

:

� y y x : a w :w x y a y x : x c

y a

>

� y; x a w :w x y a x c

>

a w : � y; x w x x c y a

� y; x

a w :� x w x � y x c y a

� y

P :

c y c y c y

c y

� y x c y a

>

x a

P

>

a w :� x w x x a

>

a w :w a

xx = :

P P

P

�

P P

is de�ned as:

( ) = ( ) = ( ) fresh

= =

= ! = !

Table 3: De�nition of the encoding , from to I.

( )

Part 1 is proven by exhibiting the appropriate expansion relation.

Part 2 is proven by induction on and exploiting part 1. The most interesting

case is when = , for some . Then we have:

( ) = ( )

(def. of )

( ) ( ( ) ) ( )

(def. of and laws for ! )

( ) ( )

(a simple law for )

( ) ( )

(laws for and ( ))

( ) ( )

(laws for )

=

Now, we have to distinguish whether = or = . Suppose that = (the case

= can be easily accommodated). Then applying part 1 of the lemma we get

( ) , by which we have:

( ) ( )

( ) (applying part 1 again)

= (def. of ).

The following proposition shows the tight correspondence between transitions of

and transitions of .
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b

x

b

x

b

x

Remark 4.4

Proposition 4.5

a x

a x

a x

�

�

a x

ab

a b

�

�

ab

a x

�

a x a x

�

0

0 0

0 0

0

0

0 0

0 0 0

0 0 0

0 0

0

0 0

0

0

0

0 0

0 0

0 0 0

0

0 0

( )

( )

( )

1

i

a

( )

1

1

( )

1

1

1

1

2

( )

2

1 2 1 2

1

( )

1 1

2

( )

2

1 2

1 2

1 2

1 2 1

2

i

a

2

i

a

� a x P

>

P

� ab P

>

x b P x = P

� a b P

>

� b x b P x = P

� � P

>

P

P P P �

� a x P P P

>

P

� a x

P P x = P P

>

x b P

P P x = P P

>

� b x b P

� � P P P

>

P

P P

P P ;P P

P P P P =

:

P

>

x b P x = P P

>

P :

P P

>

� x x b P P

>

P P =

P P = x = P

P � x

P

�

:

P a P a

P P P

>

P

hj ji �!

�

hj ji

hj ji �!

�

! j hj ji 2

hj ji �!

�

! j hj ji 2

hj ji �!

�

hj ji

hj ji �! 2

�!

�

hj ji

�! 2

�

! j hj ji

�! 2

�

! j hj ji

�!

�

hj ji

�!

�! �!

j �! j f g

hj ji �!

�

! j hj ji 2 hj ji �!

�

hj ji

hj j ji �!

�

! j hj j ji

�

hj j f gji

hj j f gji 2

fj jg

# hj ji #

) hj ji )

�

hj ji

1. implies ;

2. implies , with ;

3. implies , with ;

4. implies .

b) The converse of part a), i.e.: Suppose that . Then there is

s.t.:

1. implies with ;

2. implies either:

2.a) , with and , or

2.b) , with and ;

3. implies , with .

a) if and only if .

b) implies ;

= ( )

= fn( )

= ( ) ( ) fn( )

=

= ( )

= ( )

fn( )

fn( ) ( )

=

Each part of the lemma is proven by transition induction. The only subtle

points arise in the proof of parts a)(4) and b)(3), where also Lemma 4.2(2) is used.

As an example, we show part a)(4). The only non-trivial case is when the last rule

applied for deriving is a communication rule (we suppose for simplicity

that the communicated name is free; the case when it is restricted can be easily

accommodated):

:

By induction hypothesis, we have that:

with fn( ), and (2)

Then we have that:

(from (2) and interaction)

( ) (Lemma 4.2(2)).

= (since fn( )).

Note in the above proof that, since is a process, name does not

appear in in input-subject position: this fact permits applying Lemma 4.2(2). This

is the point in the technical development where the \inversion of polarity" property

of turns out to be essential.

The proof of the next tworesults is similar to the corresponding proofs for .

= =
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5 Conclusions

1 1

i

a

i

a

def def

1 1 1 1

i

a

def def

def

a

def

a

hj ji ) )

�

hj ji

+ hj ji +

hj ji

' hj ji ' hj ji

hj ji

hj ji hj ji hj h iji !

! ! j � � � j !

hj ji

j j

j 6�

hj ji � hj ji

R

f hj ji j ! hj ji j ! hj ji j ! hj ji j ! g

�

f hj ji hj ji hj ji hj ji g[ �

hj ji � hj ji

hj ji

fj jg

hj ji hjfj jgji

' '

c) implies that there is s.t. and .

d) if and only if .

Let and

be any two processes in . Then if and only if .

equalizer

up to expansion and up to context

Let and be

two processes in . Then if and only if .

Theorem 4.6 (full abstraction of w.r.t. barbed bisimilarity)

Counterexample 4.7 (non-full abstraction of w.r.t. weak bisimilarity)

Corollary 4.8 (full abstraction of for barbed bisimilarity)

P P P P P P

>

P

P a P a

: P

Q � P Q P Q

: �

a x :P a x : P ; a b a x : x b

x x ; : : : ; x b b ; : : : ; b x b x b x

b

:

� P Eq a; b ca Q Eq a; b cb

Eq a; b a x :bx b x :ax P Q

P Q z a

b

Eq a; b z b ; Eq a; b z a ; Eq a; b z a ; Eq a; b z b

P ; Q ; Q ; P

P Q

P Q

Eq a; b a b P

Q

:

: � � :

: P P :

: P Q

� P Q P Q

� �

= =

In order to extend the encoding to polyadic , it is enough to replace the

input pre�x and output pre�x clauses of Table 3 with the following two:

( ) = ( ) = ( )

where, for = ( ) and = ( ), stands for

. Again, the proofs are easily extended. We omit the details.

One might wonder whether our encoding is fully abstract w.r.t. weak bisimilarity.

The answer is negative, as shown by the following counter-example.

Consider the processes in : = ( ) and = ( ) , where

( ) = ! ( ) ! ( ) is Honda's [10]. Of course, , but

. The proof proceeds by �rst showing that for any di�erent from and

, the relation de�ned as:

( ( ) ( ) ) ( ( ) ( ) )

is a weak bisimulation and hence is contained in

[4, 19]. From this fact, it easily follows that the relation ( ) ( )

is a weak bisimulation up to context [4], and hence .

Note that, from an observational point of view, in the absence of matching it

is perfectly reasonable to regard the processes and as equivalent, because the

equalizer ( ) makes and indistinguishable under any context. Indeed, and

are barbed congruent, i.e. they are barbed bisimilar under any context. This leaves

open the possibility that be fully abstract for barbed congruence as well: but the

proof or disproof of this fact seems to be quite di�cult.

Let us de�ne now the encoding [[ ]] from to I as the composition of and

, thus: [[ ]] = As an easy consequence of Theorems 3.8 and 4.6, we get

the result we were most interested in:

[[ ]]

[[ ]] [[ ]]

In this paper, we have provided an encoding from asynchronous -calculus to I

which is fully abstract on the reductions relations of the two calculi, thus proving

that external mobility can be programmed via internal mobility.

For future work, it would be interesting to investigate full abstraction of (varia-

tions of) our encoding w.r.t. relations �ner than barbed bisimilarity, such as barbed
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