
Attacking right-to-left modular exponentiation
with timely random faults ?

Michele Boreale

Dipartimento di Sistemi e Informatica
Università di Firenze

Abstract. We show that timely induction of random failures can potentially be
used to mount very cost effective attacks against smartcards deploying crypto-
graphic schemes based on (right-to-left) modular exponentiation. We introduce a
model where an external perturbation, orglitch, may cause a single modular mul-
tiplication to produce a truly random result. Based on this assumption, we present
a probabilistic attack against the implemented cryptosystem. Under reasonable
assumptions, we prove that using a single faulty signature the attack recovers a
target bit of the secret exponent with an error probability bounded by3

7 . We show
the attack is effective even in the presence of message blinding.

Keywords: fault-based cryptanalysis, smartcards, public-key cryptosystems.

1 Introduction

In the past decade, a variety of potential attacks against supposedly tamper-proof de-
vices have been put forward. Many of these attacks exploit side-channel information,
such as that provided by timing analysis [11], differential power analysis [12], or com-
putation faults [3, 2, 9, 8, 13].

In this paper, we focus on attacks against implementations of public-key cryptosys-
tems based on modular exponentiation, such asRSA, El-Gamal and Diffie-Hellman. The
Bellcore attack [9] revealed that induction of random faults in a device implementing
RSA decryption with the Chinese Remainder Theorem (CRT) optimization could lead to
disclosure of the key material.

Subsequent works have extended fault-analysis beyondCRT-based exponentiation.
While revealing many potential weaknesses, these extensions have often been regarded
as too idealized [1]. The original Bellcore attack just made use of one random computa-
tion fault. Subsequent models typically assumed the ability of the attacker to selectively
alter the content of data registers, like flipping a few individual bits of the exponent [5],
or modifying a segment of a register during the execution of a modular multiplication
(e.g. thesafe errorsof [17]).

In the present paper we consider a model where truly random, hence "practical",
computation faults are combined with a simple form of timing control. As pointed out

? Author’s address: Dipartimento di Sistemi e Informatica, Viale Morgagni 65, I–50134 Firenze,
Italy. Email: boreale@dsi.unifi.it. Work partially supported by theEU within theFET-GC2 ini-
tiative, projectSENSORIA, and by University of Firenze, projects "ex-60%".

by several works [4, 6, 15], it is relatively simple to induce random computational er-
rors in smartcards usingglitch-based techniques. A glitch is an external perturbation,
like a rapid variation in the clock frequency or power supply voltage, which causes a
malfunction of the device. The effect of a glitch could be having a few instructions
skipped or misinterpreted by the processor. The induced error is transient in the sense
that the device will generally resume its correct functioning someµ-seconds after the
glitch, with possibly the only observable effect of data corruption in some register. To
quote Bar-Elet al. [6], who have experimented using this technique: for a certain set
of experiments,"the outcome was that the value of the data could be corrupted, while
the interpretation of instruction was left unchanged.". According to [6], this method
is widely researched and practiced behind closed doors by the smartcard industry. An
alternative to this technique is optical fault induction, presented by Skorobogatov and
Anderson in [15].

Given these premises, we can formulate our basic assumption as follows: a glitch
applied during the execution of a modular multiplicationA← B ·C modn will result
in a random value to be written into registerA. This assumption seems reasonable, as
execution of a modular multiplication provides a time window wide enough to allow a
processor to resume its correct functioning after the glitch and before the next operation.
Another relevant assumption we make is that the attacker has a control on the timing of
the device that is fine enough to allow the choice of an appropriate instant in time for
applying the glitch. This assumption (already present in other works on fault analysis)
is justified by the circumstance that the clock signal is supplied to the device by an
external card reader, which is presumably controlled by the attacker. In any case, we
will show that precision in timing control can be traded off with success probability of
the attack.

The basic idea is of the attack is easily explained. We focus on the right-to-left bi-
nary exponentiation algorithm (see e.g. [10]). For the purpose of illustration, suppose
that the device implements theRSA signature scheme with secret exponentd and mod-
ulusn, and suppose for simplicity that the message to be signed is a quadratic residue
modn. Assuming the attacker has already determined thei−1 least significant bits of
d, he can determine the initial instant in time of theith iteration (the one dealing with the
ith bit of d), and apply a glitch during the squaring operation that immediately precedes
this iteration. As a result, a randomr will be written in a certain register in place of the
squaring correct result. Then, if bitdi is set, the attacker will observe a faulty signature
of the formr ·C2, otherwise the observed faulty signature will be of the formC2, for
someC. With high probability, the attacker can tell these two cases apart by computing
the Jacobi symbol of the faulty signature, thus determining theith bit of the exponent.

The rest of the paper is organized as follows. In Section 2 some preliminary notions
are recalled. Section 3 introduce the basic model, where the attacker has a complete
control on timing (the multiplication time is constant and known to the attacker, time
due to control flow instructions is ignored). Section 4 presents the attack based on this
model as a probabilistic algorithm. The attack is presented in detail for the case of a
RSA modulus; the obvious modifications for a prime modulus are outlined. The results
of some software simulations are also discussed. Section 5 extends the model and the
attack to the case where time is randomized, possibly meaning partial control of the

attacker on timing. A few software countermeasures are discussed in Section 6; the
technique of message blinding is shown to be not effective against the attack. Some
concluding remarks and lines for further research are discussed in Section 7. Details of
proofs have been confined to Appendix A.

2 Preliminary notions

Recall (see [16]) that for a given primep, x is aquadratic residuemodp if gcd(x, p) = 1
andx = y2 mod p for somey. If gcd(x, p) = 1 andx is not a quadratic residue modp,
thenx is calledquadratic non-residuemod p.

TheJacobi symbol
(m

n

)
, for m andn integers,n≥ 3 odd, is defined as follows. If

n = p is prime (in this case one also speaks ofLegendresymbol), then

(
m
p

)
def=

 1 if m is a quadratic residue modp
−1 if m is a quadratic non-residue modp

0 otherwise.

If k = p1 · · · pl , with p j ’s primes not necessarily distinct, then
(m

n

)
is the product(

m
p1

)
· · ·

(
m
pl

)
. It can be shown that

If m= m1 · · ·mh modn then
(m

n

)
=

(m1

n

)
· · ·

(mh

n

)
. (1)

It is well-known that
(m

n

)
can be efficiently computed without knowing the factoriza-

tions ofmor n.
Suppose thatn = p ·q, with p,q distinct primes. Since inZp there are exactly(p−

1)/2 quadratic residues modp and an equal number of quadratic non-residues modp
(similarly for q), using the Chinese Remainder Theorem and (1) above, it is immediate
to check that

|{r ∈ Zn |
(r

n

)
=−1}|= (p−1) · (q−1)/2 = φ(n)/2 .

whereφ(·) is Euler’s totient function.

3 The model

Throughout the rest of the paper, unless otherwise stated, we assume a fixed modu-
lus n = p ·q (with p,q distinct secret primes) and a fixed documentM ∈ Zn. The se-
cret exponentd≤ n has been chosen according to some possibly unknown probability
distribution; in particular, we need not assume thatd is an RSA exponent. Thesig-
natureof M is S= Md modn. Both n andd are representable inl bits, in particular
d = (dl−1 · · ·d1d0)2, wherel need not to be known to the attacker.

In our scenario the attacker has got to know the device’sPIN, or the device is not
PIN operated. We also assume that the attacker controls the clock of the device, and can
apply a glitch (e.g. through a rapid variation of clock frequency) during the computation

at an instant of his choice, and read the resulting valueS′. The device can be queried
in this way repeatedly. The rest of the section is devoted to a detailed description of
algorithmic, timing and failure assumptions, and of faulty computations that can be
induced by exploiting these assumptions.

Assumptions.We assume the device implements theright-to-left exponentiation al-
gorithm (Figure 1). The algorithm uses two variablesw andz, viewed as (physical or
logical)s-bit registers withs≥ l . The value returned by the algorithm is the final content
of registerw, that is the (correct) signature,S= Md modn (see below).

Input : M
Output : S= Md modn

w← 11

z←M2

for j = 0. . . l −1 do3

if d j = 1 then w← w ·z modn4

z← z·z modn5

end6

return w7

Fig. 1.The right-to-left exponentiation algorithm.

Concerning timing and failures, we make the following assumptions:

1. each modular multiplication/squaring operation takes a constant time, sayδ clock
cycles, andδ is a constant known to the attacker;

2. time taken by control-flow instructions is ignored, in other words, we view the
algorithm as a sequence of modular multiplications, grouped for ease of reference
into thel iterations orphasesdepicted in Figure 2. Each phasei takes eitherδ or 2δ
cycles, depending on the value ofdi , 0≤ i ≤ l −1;

phase 0

[
if d0 = 1 then w← w ·z modn
z← z·z modn

phase 1

[
if d1 = 1 then w← w ·z modn
z← z·z modn

...

phasel −1

[
if dl−1 = 1 then w← w ·z modn
z← z·z modn

Fig. 2.The right-to-left exponentiation algorithm as a sequence ofl phases.

3. a glitch applied onto the device during the execution of a modular multiplication
will result in a random valuer ∈ Z2s to be written in the involved register (w or z),
in place of the multiplication’s correct result.

(We will discard conditions 1 and 2 in Section 5.) If we denote byTi the first cycle of
phasei in a correct computation (counting fromT0 = 1), then

Ti = δ
(
i−1+

i−1

∑
j=0

d j
)
+1 0≤ i ≤ l −1 . (2)

Faulty computations.Let us first analyze the use of variablesw and z in a correct
execution of the algorithm. Variablez is used to store successive squaring ofM; more
precisely, when entering phasei, z containsci , where:

ci
def= M2i

modn 0≤ i ≤ l −1 .

Variablew is used to store intermediate products of theci ’s; more precisely, when leav-
ing phasei, w containsSi , where:

Si = (c0)d0 · (c1)d1 · . . . · (ci−1)di−1 · (ci)di modn (3)

in particular at, the end of phasel −1, Swill be obtained as the product:

S= (c0)d0 · (c1)d1 · . . . · (cl−2)dl−2 · (cl−1)dl−1 = Md modn.

Suppose the bits of the exponent fromd0 to di−1 have been determined, and that
bit di must be determined, for some 0< i ≤ l − 1; note thatd0 can easily be
guessed/determined by other means (and in cased is a RSA exponent, one already
knows thatd0 = 1). The attacker computes the first instantTi of phasei using (2),
and applies a glitch at timeT, for someTi > T > Ti −δ. This glitch will affect a single
operation, i.e. the squaringz← z· z of phasei−1. As a consequence, a random value
r ∈Z2s will be written in registerzat the end of phasei−1. Let us see how this fault af-
fects the final result of the computation, thefaulty signature S′. It is easy to see, relying
on (3) or on Figure 2, thatS′ will be computed as:

S′ = (c0)d0(c1)d1 · · ·(ci−1)di−1 · rdi · (r2)di+1 · · ·(r2l−i−1
)dl−1 modn. (4)

It is convenient to sum up the above considerations in the definition below. We code
up the faulty behavior of a device where theith bit is targeted as a random variable,
assumingd0, ...,di−1 have been determined and are fixed binary constants.

Definition 1. Let di , ...,dl−1 be binary random variables and r be a random vari-
able uniformly distributed inZ2s and independent from di , ...,dl−1. We denote by
S′(r,di , ...,dl−1) the random variable whose value is given by theRHS of (4).

4 The basic attack

For the rest of the section, we fixi with 0< i ≤ l−1. The target of the attack will be bit
di , assuming that bits fromd0 to di−1 have been determined. We assume without loss of
generality that: (

M
n

)
= 1 .

We shall indicate below how to modify the attack if

(
M
n

)
6= 1 (see Remark 1 below).

Equation (4) allows an attacker to extract information about thedi by computing the
Jacobi symbol ofS′, i.e., by taking the result of the random variableJ:

J
def=

(
S′

n

)
.

All factors ofS′ different fromrdi have Jacobi symbol6=−1. Hence, if one getsJ =−1,
one can immediately conclude thatdi = 1 (by (1)). On the other hand, if one getsJ 6=−1

then one concludes thatdi is probably0 (in case

(
M
n

)
=−1, we should just reverse the

role of ’1’ and ’−1’). For ease of reference, we code the test just outlined as a random
variable.

Definition 2 (a test for di). The random variableA is defined as:

A def=
{

1 if J =−1
0 if J 6=−1.

Remark 1.Suppose that

(
M
n

)
= −1. A moment’s thought shows that the testA still

works if d0 = 0. If d0 = 1, then we can makeA work by modifying it as follows:

A def=
{

1 if J = 1
0 if J 6= 1.

That is, ifd0 = 1 and one getsJ 6=−1 then from (4) one can immediately conclude that
di = 1.

Of course, if

(
M
n

)
= 0 one can immediately factorn by computing gcd(M,n).

From now onward, we shall assume without loss of generality that

(
M
n

)
= 1.

The analysis of the testA is straightforward. In the sequel, letα def= Pr[di = 1], and

let the success probability ofA beρ def= Pr[A = 1|di = 1], where we stipulate thatρ def= 1

if α = 0. Finally let the error probability ofA beε def= Pr[di = 1|A = 0].

Lemma 1. It holds that:

(a) Pr[di = 1|J =−1] = 1;
(b) ρ = Pr[J =−1|di = 1]≥ φ(n)/2s+1.

PROOF: See Appendix. �

The following theorem says thatA may be viewed as a Monte-Carlo type proba-
bilistic algorithm.

Theorem 1. The random variableA is a 1-biased probabilistic test for di , more pre-
cisely:

(a) Pr[di = 1|A = 1] = 1;

(b) ε = (1−ρ)α
(1−ρ)α+1−α ≤

(1− φ(n)
2s+1)α

(1− φ(n)
2s+1)α+(1−α)

.

PROOF: Part (a) follows from Lemma 1(a). For part (b), we may assumeα 6= 0,1,
otherwise the wanted equality and inequality hold trivially. First observe that Pr[A =
0|di = 0] = 1−Pr[A = 1|di = 0] = 1, by part (a). Then, observe that, by definition ofA,
Pr[A = 1|di = 1] = Pr[J =−1|di = 1] = ρ. Apply Bayes theorem to get:

ε = Pr[di = 1|A = 0] = Pr[A=0|di=1]·Pr[di=1]
Pr[A=0|di=1]·Pr[di=1]+Pr[A=0|di=0]·Pr[di=0]

= (1−ρ)α
(1−ρ)α+(1−α) .

The last expression is decreasing with respect toρ in [0,1]. By Lemma 1(b) we know
thatρ≥ φ(n)/2s+1, whence the thesis. �

As usual, one can make the error probability arbitrarily small by repeating the test
m times independently in succession, for a suitablem, for fixed values ofd0, ...,dl−1. In
this case, the error probability is bounded above by:

(1−ρ)mα
(1−ρ)mα+1−α

.

A more precise estimation ofε is obtained by making some further assumptions. In par-
ticular, it seems reasonable to assumeα = 1/2 (this is not exact ifd is aRSA exponent,
but seems a good approximation in practice). Let us say thatn = p · q is balancedif
p andq have the same size (an integerm has sizet if 2t−1 ≤ m < 2t). Finally, let us
assume that size ofn fits the sizes of the registers.

Corollary 1. If n is balanced and has size s andα = 1
2 thenε≤ 3

7.

PROOF: Sincep andq have the same size, it must bep,q> 2
s−1

2 . Easy calculations then
yieldsφ(n)/2s+1 ≥ 1/4. When we substitute this value forφ(n)/2s+1 and 1/2 for α in
the upper bound forε given in the previous theorem, we get the value 3/7. �

Here is a small example to illustrate.

i 7 6 5 4 3 2 1 0
S′, J 44, 158, -1 11, 1 86, 1120, 043, -1 34, 1 -

44, 1 106, 1113, 1 77, 1 100, 1 -
44, 1 35, 1 79, 1 5, 1 29, 1 -
44, 1 43, -1 59, -1 92, 1 53, -1 -

di 0 1 1 1 0 1 1 1

Fig. 3.An attack on the exponentd = 119= (01110111)2 with n = 141.

Example 1.Suppose thatn = 141= 3 · 47 andM = 23. The bits of the exponentd
are determined inl = 8 successive stages, as in illustrated in Figure 3 (the value ofl
is not known in advance), starting from the least significant bitd0 which is guessed
to be 1. For each stage, the test is repeated at mostm = 4 times independently. At
each stage, the glitch time is given byT = Ti − ε for some 0< ε < δ. In conclusion,
d = (01110111)2 = 119. Of course, onJ = 0 we could have factored the modulus
right away. Also note that, in the last column, 44 is the correct value ofMd modn: the
squaring in the last but one iteration has no effect on the final result, asdl−1 = 0.

Remark 2 (software simulations).In the hypotheses of the corollary above, to obtain an
error probability less say, than 2−10, one may have to run the test up tom= 25 times
independently. In practice, software simulations have shown that a bit less than 5000
queries (=faulty signatures) are sufficient to recover aRSA-768 key in about 70% of
the cases. Considering a realistic time of 300 ms per query, and ignoring the time taken
by a common PC to perform the test, this means that about 25 minutes are enough to
recover such a key with a success probability of 0.7.

Remark 3 (Discrete log cryptosystems).The attack presented in this section can be
repeated essentially unchanged when the modulus is a primep. In this case, the
success probabilityρ = Pr[J = −1|di = 1] can be lower-bounded by|φ(p)|/2s+1 =
(p−1)/2s+1. If the size ofp is l = s, then againρ ≥ 1/4 andε ≤ 3/7. Thus, in prin-
ciple, in both El-Gamal decryption and Diffie-Hellman key-exchange an attacker might
target and recover the secret exponent.

5 Randomized time

We discard the assumption that all modular multiplications in the algorithm take the
same known constant timeδ. We represent multiplication times as random variables,
possibly absorbing the time taken by control flow instructions. Times might change
from an execution to the next, depending e.g. on instructions schedule, random delays
or blinding of the argument. Or simply the randomness might represent the attacker’s
incomplete knowledge about the timing of the device (i.e. initial instant of each phase).

The first instant of phasei is given by the random variable

Ti =
i−1

∑
j=0

(d j ·µj +ν j)+1 0≤ i ≤ l −1

where for 0≤ j ≤ i−1: d j ’s are known values andµj ’s andν j ’s are continuous random
variables, which, following [11], we assume to be normally distributed, with known
variance and mean. We also assume that all these random variables (µj , ν j ’s) are pair-
wise independent, and independent fromdi as a random variable. The model of the
device (Definition 1) is modified as expected:S′ yields theRHS of (4) whenever the
glitch time T is such thatTi > T > Ti − νi−1, for 0 < i ≤ i−1. Now, the midpoint in

time of the squaring operation at phasei−1 is given byτ def= Ti−1 +di−1µi−1 +νi−1/2.
We take the glitch timeT to be the expectation:

T
def= E[τ] .

The definition ofJ andA remain unchanged. As we show below, with these definitions
A yields a 2-sided probabilistic algorithm. Letγ > 0 be half the minimal duration of

the squaring at phasei−1, i.e. take the supremum of allγ s.t. Pr[νi−1 < 2γ] = 0, and

let Γ def= Pr[|T− τ|< γ]: this value can be computed exactly asτ is normally distributed

with meanT and standard deviationσ def= ∑i−2
j=0(d jvar(µj)+var(ν j))+di−1var(µi−1)+

1
4var(νi−1). Recall thatα = Pr[di = 1]. The following result is proven by noting that if
τ falls within γ of the glitch timeT, then the glitch will be ’correct’, i.e. it will affect the
squaring in phasei−1.

Theorem 2. The random variableA is a 2-sided probabilistic algorithm for bit di . In
particular:

a) the success probability for 1 is:ρ def= Pr[A = 1|di = 1]≥ φ(n)
2s+1 ·Γ, withρ def= 1 if α = 0;

b) the error probability for 1 is:ε1
def= Pr[d = 1|A = 0]≤ (1−Γ)(1−α)

(1−Γ)(1−α)+ρα ;

c) the error probability for 0 is:ε0
def= Pr[d = 0|A = 1]≤ (1−ρ)α

(1−ρ)α+Γ(1−α) .

The expressions forε0, ε1 are monotonically decreasing w.r.t.ρ ∈ [0,1].

PROOF: See Appendix �

Given thatA is a two-sided probabilistic test, one has to run the testm times inde-
pendently with fixed values of the exponent bits and take the majority of the outcomes
to have a reliable result. Note that form independent iterations ofA, with fixed values of
the exponent bits, the error probabilities for 1 and 0 can be lower-bounded respectively
as:

(1−Γ)m(1−α)
(1−Γ)m(1−α)+ρmα

and
(1−ρ)mα

(1−ρ)mα+Γm(1−α)
.

For the test to be useful, one has to make sure that the above values vanish asm grows.
This is the case precisely whenρ + Γ > 1; by virtue of (a) above, this holds ifΓ >

1
1+φ(n)/2s+1 .

As a general remark, the attack performs well in situations with a moderate variance
of multiplication times, that is, when timing attacks are more difficult to mount. The
following example provides some numerical evidence that for typical values ofΓ the
randomized version of the attack is feasible.

Example 2.For ease of reference, we use numerical data drawn from Kocher’s orig-
inal paper [11]. The following figures refer to time measurements (inµ-seconds) of
actual modular multiplications executed during modular exponentiations. The random
variablesµj andν j ’s are all normally distributed with standard deviationσm = 12.01
and meant = 1167.8. The minimal duration of a modular multiplication can be taken
1130, hence we setγ = 565. Suppose we target the 512th bit of a secret exponent
of size l = 1024 bit. Assuming, on average, that half of the bits fromd0 to d511

are set, we can compute the mean ofτ as T = t(511+ 1
2 + 256) = 896286.5 and

its variance asσ2 = σ2
m(511+ 1

4 + 256) = 110668.2167. These values gives (here
Φ(·) denotes the cumulative distribution function of standard normal distribution):
Γ = Φ(γ/σ)−Φ(−γ/σ)≈ 0.9105. Under the hypotheses of Corollary 1, we get

ρ≥ 1
4
·Γ≈ 0.2275 ε0≤ 0.4590 and ε1≤ 0.2825.

If we want both error probabilities to decrease under, say, 2−10, we may have to run the
test up to 43 times independently.

6 Countermeasures

We discuss a few software countermeasures.

Blinding Exponentiation withblinding (Figure 4) is a common and effective technique
to thwart attacks based on timing [11].

Fig. 4. RSA with message blinding.
choose at randomv∈ Z∗n1

X←Mve modn2

Y← Xd modn3

S←Yv−1 modn4

It is easy to see that message blinding has no effect on our attack. Suppose the
attacker’s target is bitdi . Given that the valuesve, v−1 modn are usually precomputed,
the attacker can easily target theith bit during the exponentiation at step 3 and induce a
faulty computation yieldingY′ as a result (i.e. a faulty signature ofY, without blinding),
hence getting from the device a faulty signature

S′′ = Y′v−1 modn .

Let S′ be the faulty signature one would obtain by targeting theith bit in the case

with no blinding – but with the same choice of the randomr ∈ Z2s. Let ci
def= (ve)2i

, for
i = 0, ..., l −1. It is easy to see, relying on equation (4), that:

S′′ = S′ ·C ·v−1 modn

whereC = (c0)d0 · · ·(ci−1)di−1. Noting that thate is odd we have:(
ve

n

)
=

(v
n

)
=

(
v−1

n

)
and sinced0 = 1, hencec0 = ve, we get(

S′′

n

)
=

(
S′

n

)
.

Effective countermeasures Checking before output, i.e. checking thatSe = M modn,
with e a RSA public exponent (see [9]), before transmitting the signature has been pro-
posed to contrast fault attacks. This is feasible in case the public exponente is small.
In the case of a prime modulusp, a strategy suggested by Shamir [14] involves doing
exponentiation twice, once modp and once modp · r, for r a 32-bit prime, and then
comparing the results.Random delays(see [11]) have been proposed as a countermea-
sure against timing analysis. An alternative form of blinding, also proposed in [11], is
blinding of the exponent, which consists in summing a quantitykφ(n), with k random,
to the exponentd before performing modular exponentiation. Adoption of one of above
listed methods appears to thwart our attacks.

7 Conclusions

We have demonstrated that fault analysis can be combined with timing control to po-
tentially get effective cryptanalysis of cryptographic schemes implemented using the
(right-to-left) modular exponentiation algorithm. Our model is based on random, tran-
sient computation faults, that appear to be easier to induce than faults based on modify-
ing individual bits of data registers.

At the moment it is not clear how to extend the attack presented here to the left-to-
right version of the exponentiation algorithm. Indeed, one can easily show that, in the
case of a prime modulusp, a straightforward extension of this attacks based on detecting
2i-th power modp permits to recover thek least significant bits of the exponent, wherek
is the exponent of 2 in the factorization ofp−1: however, these bits are already known
to be "easy" to recover.

Also, one wonders whether an analog of the present attack might work againstECC

schemes that rely on "double and add" algorithms, perhaps along the lines of the attacks
presented in [7]. These extensions will be the subject of further study.

References

1. R.J. Anderson, M. Bond, J. Clulow, S. Skorobogatov. Cryptographic processors – a survey,
Technical Report UCAM-CL-TR-641, University of Cambridge, Computer Laboratory, Au-
gust 2005.

2. R.J. Anderson, M.J.Kuhn, Tamper resistance− a cautionary note.The second USENIX Work-
shop on Electronic Commerce proceedings, Nov. 1996.

3. R.J. Anderson, M.J. Kuhn, Low cost attacks on tamper-resistant devices,Security protocols,
5th International Workshop, Paris, 1997.

4. C. Aumüller, P. Bier, P. Hofreiter, W. Fischer and J.- P. Seifert. Fault attacks on RSA with
CRT: Concrete Results and Practical Countermeasures,Cryptology ePrint Archive: Report
2002/073.

5. F.Bao, R.H.Deng, Y.Han, A.Jeng, A.D.Nirasimhalu, T.Ngair. Breaking Public Key Cryp-
tosystems on Tamper Resistant Devices in the Presence of Transient Faults. InProc. of the
5th Workshop on Secure Protocols, LNCS 1361, Springer, 1997.

6. H.Bar-El, H.Choukri, D.Naccache, M.Tunstall, C.Whelan. The Sorcerer’s Apprentice Guide
to Fault Attacks, InWorkshop on Fault Detection and Tolerance in Cryptography, Florence,
2004. Also inCryptology ePrint Archive: Report 2004/100, 2004.

7. I. Biehl, B. Meyer, V. Müller. Differential Fault Attacks on Elliptic Curve Cryptosystems, In
Advances in Cryptology - Crypto 2000, LNCS 1880, Ed. Mihir Bellare, Springer, 2000.

8. E.Biham, A.Shamir. Differential fault analysis of secret key cryptosystem, InAdvances in
Cryptology, CRYPTO ’97, LNCS 1294, Springer, 1997.

9. D.Boneh, R.A.DeMillo, R.J.Lipton. On the importance of checking cryptographic protocols
for faults,Journal of Cryptology, 14(2), Springer, 2001.

10. D.E.Knuth. The art of computer programming vol.2, Seminumerical algorithms. Addison
Wesley, third edition, 1997.

11. P.Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other sys-
tems,Advances in Cryptology-CRYPTO’96, LNCS 1109, Springer, 1996.

12. P.Kocher, J.Jaffe, B.Jun. Differential Power Analysis, InAdvances in Cryptology,
CRYPTO’99, LNCS 1294, Springer, 1999.

13. J.J.Quisquater, G.Piret. A Differential Fault Attack Technique Against SPN Structures, with
Application to the AES and KHAZAD, InFifth International Workshop on Cryptographic
Hardware and Embedded Systems (CHES 2003), LNCS 2779, Springer, 2003.

14. A. Shamir. How to check modular exponentiation. Presented atEUROCRYPT’97rump ses-
sion, Konstanz, May 1997.

15. S. Skorobogatov, R. Aderson. Optical Fault Induction Attacks. InWorkshop on Crypto-
graphic Hardware and Embedded Systems (CHES 2002), LNCS 2523, Springer, 2002.

16. D.R.Stinson.Cryptography: Theory and Practice. CRC Press, second edition, 2002.
17. S-M. Yen, M.Joye. Checking before output may not be enough against fault-based crypt-

analysis. InIEEE Transactions on Computers, 49(9), 2000.

A Proofs

PROOF OF LEMMA 1: Part (a) follows from the discussion immediately preceding the
statement of the lemma. For part (b), suppose thatdi = 1. Then, by definition ofS′ and

J and by the property of the Jacobi symbol (1),J =
(r

n

)
with r chosen at random in

Z2s. Thus

ρ = |{r ∈ Z2s :
(r

n

)
=−1}|/2s ≥ |{r ∈ Z2n :

(r
n

)
=−1}|/2s

sincen≤ 2s. But, as noted in Section 2, the set that appears at the numerator in the last
expression has cardinalityφ(n)/2. �

PROOF OF THEOREM 2: Concerning (a), one can lower bound the success probability
ρ = Pr[J = −1|di = 1] by noting that ifτ falls within γ of the glitch timeT, then the
glitch will be ’correct’, i.e. it will affect the squaring in phasei−1. Therefore

Pr[J =−1|di = 1, |T− τ|< γ]≥ φ(n)
2s+1 .

By the independence ofdi andτ, we have:

ρ = Pr[J =−1|di = 1, |T− τ|< γ] ·Γ+Pr[J =−1|di = 1, |T− τ| ≥ γ] · (1−Γ)
≥ Pr[J =−1|di = 1, |T− τ|< γ] ·Γ
≥ φ(n)

2s+1 ·Γ .

The upper bounds forε0 andε1 follow using Bayes theorem. In particular, forε1 we use
the lower-bound:

Pr[A = 0|di = 0] = Pr[J 6=−1|di = 0, |T− τ|< γ] ·Γ +
Pr[J 6=−1|di = 0, |T− τ| ≥ γ] · (1−Γ)

= 1·Γ+(· · ·)
≥ Γ .

It is immediate to check that the given bounds are monotonic decreasing inρ. �

