Attacking right-to-left modular exponentiation
with timely random faults *

Michele Boreale

Dipartimento di Sistemi e Informatica
Universita di Firenze

Abstract. We show that timely induction of random failures can potentially be
used to mount very cost effective attacks against smartcards deploying crypto-
graphic schemes based on (right-to-left) modular exponentiation. We introduce a
model where an external perturbationgditch, may cause a single modular mul-
tiplication to produce a truly random result. Based on this assumption, we present
a probabilistic attack against the implemented cryptosystem. Under reasonable
assumptions, we prove that using a single faulty signature the attack recovers a
target bit of the secret exponent with an error probability bounde%i hye show

the attack is effective even in the presence of message blinding.

Keywords: fault-based cryptanalysis, smartcards, public-key cryptosystems.

1 Introduction

In the past decade, a variety of potential attacks against supposedly tamper-proof de-
vices have been put forward. Many of these attacks exploit side-channel information,
such as that provided by timing analysis [11], differential power analysis [12], or com-
putation faults [3, 2,9, 8, 13].

In this paper, we focus on attacks against implementations of public-key cryptosys-
tems based on modular exponentiation, suckszs ElI-Gamal and Diffie-Hellman. The
Bellcore attack [9] revealed that induction of random faults in a device implementing
RSA decryption with the Chinese Remainder Theor@mT) optimization could lead to
disclosure of the key material.

Subsequent works have extended fault-analysis beg&tebased exponentiation.
While revealing many potential weaknesses, these extensions have often been regarded
as too idealized [1]. The original Bellcore attack just made use of one random computa-
tion fault. Subsequent models typically assumed the ability of the attacker to selectively
alter the content of data registers, like flipping a few individual bits of the exponent [5],
or modifying a segment of a register during the execution of a modular multiplication
(e.g. thesafe errorsof [17]).

In the present paper we consider a model where truly random, hence "practical",
computation faults are combined with a simple form of timing control. As pointed out

* Author’s address: Dipartimento di Sistemi e Informatica, Viale Morgagni 65, 1-50134 Firenze,
Italy. Email: boreale@dsi.unifi.it. Work partially supported by thewithin the FET-GC2 ini-
tiative, projectSENSORIA and by University of Firenze, projects "ex-60%".

by several works [4, 6, 15], it is relatively simple to induce random computational er-
rors in smartcards usingjitch-based techniques. A glitch is an external perturbation,
like a rapid variation in the clock frequency or power supply voltage, which causes a
malfunction of the device. The effect of a glitch could be having a few instructions
skipped or misinterpreted by the processor. The induced error is transient in the sense
that the device will generally resume its correct functioning sprseconds after the
glitch, with possibly the only observable effect of data corruption in some register. To
quote Bar-Elet al. [6], who have experimented using this technique: for a certain set
of experiments;the outcome was that the value of the data could be corrupted, while
the interpretation of instruction was left unchangeditcording to [6], this method

is widely researched and practiced behind closed doors by the smartcard industry. An
alternative to this technique is optical fault induction, presented by Skorobogatov and
Anderson in [15].

Given these premises, we can formulate our basic assumption as follows: a glitch
applied during the execution of a modular multiplicati&r— B - C mod n will result
in a random value to be written into regist&r This assumption seems reasonable, as
execution of a modular multiplication provides a time window wide enough to allow a
processor to resume its correct functioning after the glitch and before the next operation.
Another relevant assumption we make is that the attacker has a control on the timing of
the device that is fine enough to allow the choice of an appropriate instant in time for
applying the glitch. This assumption (already present in other works on fault analysis)
is justified by the circumstance that the clock signal is supplied to the device by an
external card reader, which is presumably controlled by the attacker. In any case, we
will show that precision in timing control can be traded off with success probability of
the attack.

The basic idea is of the attack is easily explained. We focus on the right-to-left bi-
nary exponentiation algorithm (see e.g. [10]). For the purpose of illustration, suppose
that the device implements thes A signature scheme with secret expongiaind mod-
ulusn, and suppose for simplicity that the message to be signed is a quadratic residue
modn. Assuming the attacker has already determined th& least significant bits of
d, he can determine the initial instant in time of {Héteration (the one dealing with the
it bit of d), and apply a glitch during the squaring operation that immediately precedes
this iteration. As a result, a randanwill be written in a certain register in place of the
squaring correct result. Then, if ldt is set, the attacker will observe a faulty signature
of the formr - C2, otherwise the observed faulty signature will be of the f@fn for
someC. With high probability, the attacker can tell these two cases apart by computing
the Jacobi symbol of the faulty signature, thus determining"tHgt of the exponent.

The rest of the paper is organized as follows. In Section 2 some preliminary notions
are recalled. Section 3 introduce the basic model, where the attacker has a complete
control on timing (the multiplication time is constant and known to the attacker, time
due to control flow instructions is ignored). Section 4 presents the attack based on this
model as a probabilistic algorithm. The attack is presented in detail for the case of a
RSA modulus; the obvious modifications for a prime modulus are outlined. The results
of some software simulations are also discussed. Section 5 extends the model and the
attack to the case where time is randomized, possibly meaning partial control of the

attacker on timing. A few software countermeasures are discussed in Section 6; the
technique of message blinding is shown to be not effective against the attack. Some
concluding remarks and lines for further research are discussed in Section 7. Details of
proofs have been confined to Appendix A.

2 Preliminary notions

Recall (see [16]) that for a given prinex is aquadratic residuenod pif gcd(x, p) =1
andx = y? mod p for somey. If gcd(x, p) = 1 andx is not a quadratic residue mqu
thenx is calledquadratic non-residuenod p.

The Jacobi symbo(%), for mandn integersn > 3 odd, is defined as follows. If
n= pis prime (in this case one also speak$ efiendresymbol), then

M\ def 1 if mis a quadratic residue maa
() ='! —1 if mis a quadratic non-residue mqd
0 otherwise.

If k= pg---pi, with p;’s primes not necessarily distinct, the(rL:) is the product

< m> (m) It can be shown that

P P
If m=my---my modnthen (%):(%)(%) (1)

. m - , . .
It is well-known that(F) can be efficiently computed without knowing the factoriza-

tions ofmorn.

Suppose that = p-q, with p,q distinct primes. Since i, there are exactlyp —
1)/2 quadratic residues mgaand an equal number of quadratic non-residues mod
(similarly for @), using the Chinese Remainder Theorem and (1) above, it is immediate
to check that

{r e Zal (1) = =1} =(p—1)-(a—1)/2=0n)/2.

whereq(-) is Euler’s totient function.

3 The model

Throughout the rest of the paper, unless otherwise stated, we assume a fixed modu-
lusn = p-q (with p,q distinct secret primes) and a fixed documbht Z,. The se-
cret exponentl < n has been chosen according to some possibly unknown probability
distribution; in particular, we need not assume ttas an RSA exponent. Thesig-
natureof M is S= MY modn. Both n andd are representable inbits, in particular
d = (d_1---didp)2, wherel need not to be known to the attacker.

In our scenario the attacker has got to know the deviee%s or the device is not
PIN operated. We also assume that the attacker controls the clock of the device, and can
apply a glitch (e.g. through a rapid variation of clock frequency) during the computation

at an instant of his choice, and read the resulting v8lu&he device can be queried

in this way repeatedly. The rest of the section is devoted to a detailed description of
algorithmic, timing and failure assumptions, and of faulty computations that can be
induced by exploiting these assumptions.

Assumptions.We assume the device implements tight-to-left exponentiation al-
gorithm (Figure 1). The algorithm uses two variablesndz, viewed as (physical or
logical) s-bit registers witts > |. The value returned by the algorithm is the final content
of registerw, that is the (correct) signatur8= M% modn (see below).

Input: M
Output: S=M% modn
1w—1
2z—M
3 for j=0...1—-1do
4 if dj =1thenw —w-zmodn
5 z+2z-zmodn
6 end
7 return w

Fig. 1. The right-to-left exponentiation algorithm.

Concerning timing and failures, we make the following assumptions:

1. each modular multiplication/squaring operation takes a constant timé,dagk
cycles, and is a constant known to the attacker;

2. time taken by control-flow instructions is ignored, in other words, we view the
algorithm as a sequence of modular multiplications, grouped for ease of reference
into thel iterations ophaseglepicted in Figure 2. Each phasikes eithed or 26
cycles, depending on the valuedf0<i <I —1;

[if dg = 1thenw «— w-zmodn

phase C_Z<— z-zmodn

[if d; = 1thenw «— w-zmodn

phase 1_2<— z-zmodn

[if d_q = 1thenw«— w-zmodn

phasd —1 | z—z-zmodn

Fig. 2. The right-to-left exponentiation algorithm as a sequendepbiases.

3. a glitch applied onto the device during the execution of a modular multiplication
will result in a random value € Zs to be written in the involved registew(or 2),
in place of the multiplication’s correct result.

(We will discard conditions 1 and 2 in Section 5.) If we denoteTpthe first cycle of
phasé in a correct computation (counting frofg = 1), then
i-1

T=8(i—1+5S d)+1 0<i<l—1. ()
(J;)J)

Faulty computations.Let us first analyze the use of variablesand z in a correct
execution of the algorithm. Variableis used to store successive squaring/ipfmore
precisely, when entering phase containsc;, where:

¢ ©'M? modn 0<i<l-1.
Variablew is used to store intermediate products of¢hie more precisely, when leav-
ing phase, w containsS, where:

S = (co)®- (cp)% - ... (ci_1)%1- (ci)% modn (3)
in particular at, the end of phase- 1, Swill be obtained as the product:
S=(co)®-(c)™-...-(g_2)%2-(g_1)%1 = MY modn.

Suppose the bits of the exponent fraiy to di_; have been determined, and that
bit di must be determined, for some Qi < | —1; note thatdy can easily be
guessed/determined by other means (and in dasea RSA exponent, one already
knows thatdy = 1). The attacker computes the first instdptof phasei using (2),
and applies a glitch at tim€&, for someT; > T > T, — 8. This glitch will affect a single
operation, i.e. the squarirmy— z- z of phase — 1. As a consequence, a random value
r € Zys will be written in registerz at the end of phase- 1. Let us see how this fault af-
fects the final result of the computation, tlaeilty signature S It is easy to see, relying
on (3) or on Figure 2, tha® will be computed as:

9 - (Co)do(cl)dl .. (Ci_l)di—l Lpdi .(rz)di+l . (rzl’i’l)du modn. (4)

It is convenient to sum up the above considerations in the definition below. We code
up the faulty behavior of a device where tif&bit is targeted as a random variable,
assuminglp, ..., di_; have been determined and are fixed binary constants.

Definition 1. Let d,...,d_1 be binary random variables and r be a random vari-
able uniformly distributed inZys and independent from;d..,d,_;. We denote by
S(r,di,...,d_1) the random variable whose value is given by ##es of (4).

4 The basic attack

For the rest of the section, we fixvith 0 < i <| — 1. The target of the attack will be bit
di, assuming that bits from to d; _; have been determined. We assume without loss of

generality that: (M) _

n

We shall indicate below how to modify the attac ig% # 1 (see Remark 1 below).

Equation (4) allows an attacker to extract information aboutdhsy computing the
Jacobi symbol of, i.e., by taking the result of the random variable

J§§<g).
n

All factors of S different fromr% have Jacobi symbet —1. Hence, if one gety= —1,
one can immediately conclude ttdat= 1 (by (1)). On the other hand, if one gétg —1

. . M .
then one concludes thdtis probably0 (in case| Y —1, we should just reverse the

role of '1’ and '—1"). For ease of reference, we code the test just outlined as a random
variable.

Definition 2 (atest for d;). The random variabld is defined as:

def [1 ifI=-1
A—{OHJ¢—L

M .
Remark 1.Suppose tha)= —1. A moment’s thought shows that the tésttill
works ifdp = 0. If dg = 1, then we can maka& work by modifying it as follows:
def [1 ifJ=1
A_{OHJ#L

That is, ifdg = 1 and one getd # —1 then from (4) one can immediately conclude that
d=1.

(M . . .
Of course, If(n) = 0 one can immediately factar by computing gc@M, n).
. (M
From now onward, we shall assume without loss of generalltyéhr?t) =1

The analysis of the tegt is straightforward. In the sequel, Ietd:efPr[di = 1], and

let the success probability &f bep d:EfPr[A = 1|d; = 1], where we stipulate thqud:efl

if a = 0. Finally let the error probability ok bee d:efPr[di =1A=0].

Lemma 1. It holds that:

(@) Prldi=13=-1=1,
(b) p=Pr{d=—1|d = 1] > g(n)/ 251,

PROOF. See Appendix. O

The following theorem says th#&t may be viewed as a Monte-Carlo type proba-
bilistic algorithm.

Theorem 1. The random variablé\ is a 1-biased probabilistic test forjdmore pre-
cisely:

(@ Pridi=1A=1]=1,

o)
__(pa (g
(b) € (I-pa+l-a = (1729(—”)1)0(+(17a)'

PrRoOOF. Part (a) follows from Lemma 1(a). For part (b), we may assumg 0,1,
otherwise the wanted equality and inequality hold trivially. First observe tHat £r
0|di = 0] = 1—Pr{A = 1|d; = 0] = 1, by part (a). Then, observe that, by definitiorAof
PrA =1|d = 1] = Pr{J = —1|d; = 1] = p. Apply Bayes theorem to get:

PHA=0|d=1]-Pridi=1
e=Prd =1A=0 = Pr[A:O|di:l]-rl[3r[di:‘1]+F]’r[ﬁt[:0\di]:0]-Pr[di:0]
_ __ (-pa
= Tpa+(i-a)

The last expression is decreasing with respegt it [0, 1]. By Lemma 1(b) we know
thatp > @(n)/25t1, whence the thesis. O

As usual, one can make the error probability arbitrarily small by repeating the test
mtimes independently in succession, for a suitabléor fixed values ofly,...,d;_1. In
this case, the error probability is bounded above by:

(1-p)"a
(1-p)Ma+1-a’

A more precise estimation efis obtained by making some further assumptions. In par-
ticular, it seems reasonable to assume 1/2 (this is not exact ifl is arRSA exponent,
but seems a good approximation in practice). Let us sayrthap - q is balancedif

p andq have the same size (an integarhas sizet if 2= < m < 2!). Finally, let us
assume that size offits the sizes of the registers.

Corollary 1. If nis balanced and has size s aod= % thene < %

PROOF Sincep andq have the same size, it must pgy > 257, Easy calculations then
yields@(n)/25t1 > 1/4. When we substitute this value fgfn)/25t1 and /2 for a in
the upper bound fag given in the previous theorem, we get the valy&.3 O

Here is a small example to illustrate.

i 7 6 5 4 3 2 1 0
S,J |44,158,-1 11,1 86, 1120, Q43,-1 34, 1 -
44, 1 106, 4113, 34 77,1 100, 1 -

44, 1 35,14 79,1 5,1 29,1 -

44, 1 43,-159,-1 92,1 53,-1 -

d 0 1 1 1 0 1 1 1

Fig. 3. An attack on the exponendt= 119= (0111011}, with n = 141.

Example 1.Suppose thah = 141 = 3-47 andM = 23. The bits of the exponert
are determined ih = 8 successive stages, as in illustrated in Figure 3 (the vallie of
is not known in advance), starting from the least significandpitvhich is guessed
to be 1. For each stage, the test is repeated at mest4 times independently. At
each stage, the glitch time is given by= T, — € for some 0< € < 8. In conclusion,

d = (0111011], = 119. Of course, ord = 0 we could have factored the modulus
right away. Also note that, in the last column, 44 is the correct valid®modn: the
squaring in the last but one iteration has no effect on the final result, as= 0.

Remark 2 (software simulations$i.the hypotheses of the corollary above, to obtain an
error probability less say, than %, one may have to run the test uprto= 25 times
independently. In practice, software simulations have shown that a bit less than 5000
queries (=faulty signatures) are sufficient to recovesa-768 key in about 70% of

the cases. Considering a realistic time of 300 ms per query, and ignoring the time taken
by a common PC to perform the test, this means that about 25 minutes are enough to
recover such a key with a success probability of 0.7.

Remark 3 (Discrete log cryptosystem$he attack presented in this section can be
repeated essentially unchanged when the modulus is a goinie this case, the
success probabilitp = PriJ = —1|d; = 1] can be lower-bounded byp(p)|/25t1 =
(p—1)/25*. If the size ofpis| = s, then agairp > 1/4 ande < 3/7. Thus, in prin-
ciple, in both EI-Gamal decryption and Diffie-Hellman key-exchange an attacker might
target and recover the secret exponent.

5 Randomized time

We discard the assumption that all modular multiplications in the algorithm take the
same known constant time We represent multiplication times as random variables,
possibly absorbing the time taken by control flow instructions. Times might change
from an execution to the next, depending e.g. on instructions schedule, random delays
or blinding of the argument. Or simply the randomness might represent the attacker's
incomplete knowledge about the timing of the device (i.e. initial instant of each phase).
The first instant of phasieils given by the random variable
i

T = lzo(dj'l.lj‘FVj)‘f’l 0<i<l-1

where for 0< j <i—1:dj’s Jare known values angj’'s andv;’s are continuous random
variables, which, following [11], we assume to be normally distributed, with known
variance and mean. We also assume that all these random variabless) are pair-
wise independent, and independent frdimas a random variable. The model of the
device (Definition 1) is modified as expectesl:yields therHs of (4) whenever the

glitch timeT is such thafl; > T > T; —v;_1, for 0 < i <i— 1. Now, the midpoint in

time of the squaring operation at phasel is given byt d:EfTi_l +diaMi—1+Vvie1/2.

We take the glitch timd to be the expectation:
def
T =E[1].
The definition ofJ andA remain unchanged. As we show below, with these definitions
A yields a 2-sided probabilistic algorithm. Lgt> 0 be half the minimal duration of

the squaring at phase- 1, i.e. take the supremum of alis.t. Pfvi_1 < 2y] = 0, and

letl dffPrﬂT — 1| < y]: this value can be computed exactlytds normally distributed

with meanT and standard dewanormdefz o(djvar(p) +var(v;)) +di—1var(pi—1) +

4var(v._l) Recall thatn = Pr{d; = 1]. The following result is proven by noting that if
1 falls withiny of the glitch timeT, then the glitch will be 'correct’, i.e. it will affect the
squaring in phase— 1.

Theorem 2. The random variabl&\ is a 2-sided probabilistic algorithm for bitjdin
particular:

a) the success probability for 1 ip:d:efPr[A =1|di=1] % r W|thp e ifa = 0;

>
b) the error probability for 1 isg; d:‘EfPr[=1A=0< %;

c¢) the error probability for O i |S£0 = Pr[d OA=1]< %

The expressions fay, €1 are monotonically decreasing w.rd.€ [0,1].
PROOFE See Appendix O

Given thatA is a two-sided probabilistic test, one has to run theresimes inde-
pendently with fixed values of the exponent bits and take the majority of the outcomes
to have a reliable result. Note that fmindependent iterations @f, with fixed values of
the exponent bits, the error probabilities for 1 and 0 can be lower-bounded respectively
- a-nra-a) (1-p)™

and .
1-M)M™1—a)+pma 1-p)ma+IMm1l—a)
For the test to be useful, one has to make sure that the above values vamighoass.
Thislis the case precisely whet-T > 1; by virtue of (a) above, this holds If >

1+¢(n)/25t1"

As a general remark, the attack performs well in situations with a moderate variance
of multiplication times, that is, when timing attacks are more difficult to mount. The
following example provides some numerical evidence that for typical valu€stioé
randomized version of the attack is feasible.

Example 2.For ease of reference, we use numerical data drawn from Kocher’s orig-

inal paper [11]. The following figures refer to time measurementgi&econds) of

actual modular multiplications executed during modular exponentiations. The random

variablesy; andv;’s are all normally distributed with standard deviatiop = 12.01

and meart = 1167.8. The minimal duration of a modular multiplication can be taken

1130, hence we set= 565. Suppose we target the H1Dit of a secret exponent

of sizel = 1024 bit. Assuming, on average, that half of the bits frdgto ds;1

are set, we can compute the meantoéis T = t(511+ 3 + 256) = 8962865 and

its variance aw? = 02,(511+ %1 + 256) = 1106682167. These values gives (here
®(-) denotes the cumulative distribution function of standard normal distribution):

r=ad(y/o)— y{c ~ 0.9105. Under the hypotheses of Corollary 1, we get

p>—--T=0.2275 £ <0.4590 and g; <0.2825.

If we want both error probabilities to decrease under, sa}f,ave may have to run the
test up to 43 times independently.

6 Countermeasures

We discuss a few software countermeasures.

Blinding Exponentiation wittblinding (Figure 4) is a common and effective technique
to thwart attacks based on timing [11].

Fig. 4. RsA with message blinding.
1 choose at randome Zj,
2 X« Mv modn

3 Y « X9 modn
4 S—Yv1imodn

It is easy to see that message blinding has no effect on our attack. Suppose the
attacker’s target is biti. Given that the valueg®, v-1 modn are usually precomputed,
the attacker can easily target tifebit during the exponentiation at step 3 and induce a
faulty computation yieldin” as a result (i.e. a faulty signatureXofwithout blinding),
hence getting from the device a faulty signature

S"=Y'v-1modn.
Let S be the faulty signature one would obtain by targetingithéit in the case

with no blinding — but with the same choice of the randomZs. LetT; def (ve)zi, for
i=0,..1—1.ltis easy to see, relying on equation (4), that:

S'=8.C-vlmodn
whereC = (To)%--- (g_1)%-1. Noting that that is odd we have:

(7)-G)-(5)

and sincedg = 1, hencegy = V&, we get

(3)-(5)

Effective countermeasures Checking before ouytipeit checking tha8 = M modn,

with e aRSA public exponent (see [9]), before transmitting the signature has been pro-
posed to contrast fault attacks. This is feasible in case the public expeisesamall.

In the case of a prime modulys a strategy suggested by Shamir [14] involves doing
exponentiation twice, once magaand once mod-r, for r a 32-bit prime, and then
comparing the resultfizandom delayésee [11]) have been proposed as a countermea-
sure against timing analysis. An alternative form of blinding, also proposed in [11], is
blinding of the exponent, which consists in summing a quaiktjty), with k random,

to the exponend before performing modular exponentiation. Adoption of one of above
listed methods appears to thwart our attacks.

7 Conclusions

We have demonstrated that fault analysis can be combined with timing control to po-
tentially get effective cryptanalysis of cryptographic schemes implemented using the
(right-to-left) modular exponentiation algorithm. Our model is based on random, tran-
sient computation faults, that appear to be easier to induce than faults based on modify-
ing individual bits of data registers.

At the moment it is not clear how to extend the attack presented here to the left-to-
right version of the exponentiation algorithm. Indeed, one can easily show that, in the
case of a prime modulys a straightforward extension of this attacks based on detecting
2'-th power modp permits to recover thieleast significant bits of the exponent, whére
is the exponent of 2 in the factorization pf- 1: however, these bits are already known
to be "easy" to recover.

Also, one wonders whether an analog of the present attack might work against
schemes that rely on "double and add" algorithms, perhaps along the lines of the attacks
presented in [7]. These extensions will be the subject of further study.

References

1. R.J. Anderson, M. Bond, J. Clulow, S. Skorobogatov. Cryptographic processors — a survey,
Technical Report UCAM-CL-TR-641, University of Cambridge, Computer Laboratory, Au-
gust 2005.

2. R.J. Anderson, M.J.Kuhn, Tamper resistanacautionary notel he second USENIX Work-
shop on Electronic Commerce proceedingsv. 1996.

3. R.J. Anderson, M.J. Kuhn, Low cost attacks on tamper-resistant deSeesrity protocols,
5th International WorkshqpParis, 1997.

4. C. Aumdiller, P. Bier, P. Hofreiter, W. Fischer and J.- P. Seifert. Fault attacks on RSA with
CRT: Concrete Results and Practical Countermeas@mptology ePrint Archive: Report
2002/073

5. F.Bao, R.H.Deng, Y.Han, A.Jeng, A.D.Nirasimhalu, T.Ngair. Breaking Public Key Cryp-
tosystems on Tamper Resistant Devices in the Presence of Transient Fabhc.lof the
5th Workshop on Secure ProtocaldNCS 1361, Springer, 1997.

6. H.Bar-El, H.Choukri, D.Naccache, M.Tunstall, C.Whelan. The Sorcerer’s Apprentice Guide
to Fault Attacks, InWorkshop on Fault Detection and Tolerance in Cryptogragtgrence,
2004. Also inCryptology ePrint Archive: Report 2004/108004.

7. 1. Biehl, B. Meyer, V. Miller. Differential Fault Attacks on Elliptic Curve Cryptosystems, In
Advances in Cryptology - Crypto 2000NCS 1880, Ed. Mihir Bellare, Springer, 2000.

8. E.Biham, A.Shamir. Differential fault analysis of secret key cryptosystemAdirances in
Cryptology, CRYPTO '9A.NCS 1294, Springer, 1997.

9. D.Boneh, R.A.DeMillo, R.J.Lipton. On the importance of checking cryptographic protocols
for faults,Journal of Cryptology14(2), Springer, 2001.

10. D.E.Knuth. The art of computer programming vol.2, Seminumerical algorithAdison
Wesley, third edition, 1997.

11. P.Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other sys-
tems,Advances in Cryptology-CRYPTO'96NCS 1109, Springer, 1996.

12. P.Kocher, J.Jaffe, B.Jun. Differential Power Analysis, Advances in Cryptology,
CRYPTO’99LNCS 1294, Springer, 1999.

13. J.J.Quisquater, G.Piret. A Differential Fault Attack Technique Against SPN Structures, with
Application to the AES and KHAZAD, IrFifth International Workshop on Cryptographic
Hardware and Embedded Systems (CHES 2Q08LTS 2779, Springer, 2003.

14. A. Shamir. How to check modular exponentiation. PresentBt®OCRYPT'9Fump ses-
sion, Konstanz, May 1997.

15. S. Skorobogatov, R. Aderson. Optical Fault Induction AttackaMamkshop on Crypto-
graphic Hardware and Embedded Systems (CHES 2Q08S 2523, Springer, 2002.

16. D.R.StinsonCryptography: Theory and Practic€RC Press, second edition, 2002.

17. S-M. Yen, M.Joye. Checking before output may not be enough against fault-based crypt-
analysis. INEEE Transactions on Computer9(9), 2000.

A Proofs

PROOF OoF LEMMA 1: Part (a) follows from the discussion immediately preceding the
statement of the lemma. For part (b), supposedhat 1. Then, by definition oS and

J and by the property of the Jacobi symbol (1)= (%) with r chosen at random in
Zos. Thus

p={reZs: (%) = 1}|/25 > |{r € Zpn: (%) = _1)|/2°

sincen < 25, But, as noted in Section 2, the set that appears at the numerator in the last
expression has cardinality(n)/2. O

PROOF OF THEOREM 2: Concerning (a), one can lower bound the success probability
p = PriJ = —1|d; = 1] by noting that ift falls within y of the glitch timeT, then the
glitch will be 'correct’, i.e. it will affect the squaring in phase- 1. Therefore

o(n)

By the independence of andt, we have:

p=Pd=-1|di=1|T-1/<Vy] - T+Pd=-1d=1,|T -1/ >Vy]-(1-T)
>Pld=-1|d=1|T—-1/<Vy]-T
>2.r

The upper bounds fap ande; follow using Bayes theorem. In particular, farwe use
the lower-bound:

PA=0|di=0] =Prid# —1|d =0, [T—1|<y]-T +
Pl +#—1ldi=0,|T -1 >Vy]-(1-T)
:1.r+(...)
>T .

It is immediate to check that the given bounds are monotonic decreaging in [

