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Abstract. We study the complexity of deciding bisimilarity between
non-deterministic processes with explicit primitives for manipulating
data values. In particular, we consider a language with value-passing
(input/output of data) and parametric definitions of processes. We dis-
tinguish the case in which data cannot be tested and the case in which
a simple equality test over data is permitted.

In the first case, our main result shows that the problem is PSPACE-
hard for the full calculus. In the second case, we first show that the
problem is coNP-complete in the fragment with value-passing and no
parametric definitions. We then define a compositional polynomial-time
translation of the full calculus to the fragment with parametric definitions
but no value-passing. The translation preserves bisimilarity. This fact
establishes the decidability of the full calculus and the PSPACE-hardness
of the fragment without value-passing. In other words, once parametric
definitions and equality test are allowed, the adding of value-passing does
not increase neither the expressive nor the computational power.

1 Introduction

Recently, there has been a renewed interest in process calculi with explicit prim-
itives to manipulate data values. In particular, several enriched versions of Mil-
ner’s CCS [Mil80, Mil89, JP93, HL95, HLI3] have been studied. In pure, i.e.
data-less, process calculi such as CCS, beside standard operators for describing
behaviours of processes (such as non-determinism + and parallel composition
|) only pure-synchronization actions (also called “pure” actions) are provided.
By contrast, process calculi with explicit treatment of data contain primitives
for expressing transmission and receipt of values at communication ports: this
feature is known as value-passing. Using the notation of [Mil80], output of v at
port a is written @v., while input at @ is written a(z).; here the variable x acts as
a formal parameter. Besides being exchanged, usually data values can be used
as parameters in recursively defined processes and tested by means of predicates
to control the execution flow. Languages with explicit manipulation of values
permit a natural description of realistic systems. As an example, the recursively



defined process C'(z):
Cz) <« [z<ol(a(y).Cly)+bx.C(x)) + [z > o]Error(z)

specifies a memory cell whose initial content is a number z; as long as this
content is less than an overflow value o, the cell can either receive a new value
at a, or transmit 1ts content at b; as soon as the value # equals or exceeds o, a
recovery process Error is called.

A very peculiar kind of value-passing language is Milner, Parrow and Walker’s
m-calculus [MPW92], where the values being exchanged among processes are
communication ports themselves (name-passing). This permits the description
of systems with dynamical communication linkage.

When analysing concurrent systems, a central problem is to be able to de-
cide whether two given descriptions (usually regarded as a specification and as
an implementation) are equivalent or not, according to a chosen notion of equiv-
alence (verification). The algebraic aspects of this problem are becoming now
well-understood, also for value-passing processes [HL93, PS93, BD94]. On the
contrary, a lot of questions concerning the decidability and the computational
complexity of verification remain unanswered. A basic problem is to determine
meaningful fragments of the calculi with values over which the verification prob-
lem 1s decidable. Then, a fundamental issue 1s to determine the abstract com-
putational complexity of each of these fragments w.r.t. verification. Answering
such questions would improve our understanding of the mathematical nature of
processes. In practical cases, it could provide us with useful information to locate
sources of inefficiency. In the present work, we will try to address some of these
issues. We will restrict our attention to one of the most widely studied equiv-
alences, Milner’s bisimulation equivalence (or simply “bisimilarity”), written ~
and described e.g. in [Mil89].

For processes manipulating values, a non-trivial aspect of the problem is
that they have usually an operational description in terms of an infinite state-
transition graph (they are infinite state), at least if the domain of data values
is infinite. This is due to the fact that each input action a(x). gives rise to
infinitely many actual transitions, one for each different value. In [JP93], Jonsson
and Parrow concentrate on a particular class of processes with values, the data
independent ones, which cannot test data nor perform any kind of operation
over them. They prove that the bisimilarity problem for such processes can be
transformed into a bisimilarity problem for finite-state processes. For the latter,
decision algorithms exist [PT87, KS90], which are polynomial in the sizes of the
involved graphs (that can be however much larger than the syntactical size of
the processes). A detailed comparison of our work with [JP93] is contained in
Section 6.

In the present paper, we consider a calculus for describing non-deterministic
processes. It should be naturally embedded in every “reasonable” language with
explicit data manipulation. More precisely, besides permitting the execution of
pure actions, we allow data values to be exchanged, used as parameters in re-
cursive definitions and tested for equality. The latter is done via the matching



predicate [a = b], also considered in the 7m-calculus [MPW92]. This is perhaps
the most elementary form of test one would admit on data. Not even negative
tests, to decide inequality of data, are permitted.

Our goal is to classify and separate the computational complexity of the two
basic operations for manipulating data, value-passing and parametric recursive
definitions. This will be done both for the data-independent case (where match-
ing is excluded) and for the data-dependent one (where matching is included).

In each of the two cases, we consider separately three (sub-)languages, ob-
tained from the calculus with pure actions by adding either or both of value-
passing and recursive definitions. Then we asses the decidability and the differ-
ence in complexity of these languages. In this analysis, we refer to the complexity
classes P NP, coNP and PSPACE. Recall that the latter contains both NP and
coNP and that it is believed that this containment is strict (see e.g. [BC93]).

In the data-independent regime, we first note that the bisimilarity prob-
lem 1s solvable in polynomial time for the calculi allowing either, but not both,
of recursive definitions or value-passing. Then we prove that the problem is
PSPACE-hard for the full language, i.e.: every problem in the class PSPACE is
not more difficult than the bisimilarity problem over the matching-free calculus.
This improves on a NP-hardness result due to Jonsson and Parrow and is, to the
best of authors’ knowledge, the highest known lower-bound to the complexity of
a decidable bisimilarity over a meaningful language.

In the data-dependent regime, we first show that, in the sublanguage with
value-passing but no recursive definitions, the bisimilarity problem is decidable
and is as difficult as the most difficult problems in coNP, 1.e. it is coNP-complete.
Then we analyze the complexity of the full language, with both value-passing
and recursive definitions. We show that the language can be compositionally
translated down to the fragment without value-passing, in a way that preserves
bisimulation equivalence. The translation can be carried out in a time polynomial
in the sizes of the processes. The result 1s interesting for two reasons. First, it
gives us a procedure for deciding the bisimilarity problem in the full language,
since the problem is easily seen to be decidable in the fragment without value-
passing. Second, it ensures that the problem for the fragment without value-
passing is just as complex as for the full language (which is of course PSPACE-
hard). Tt is important to point out that the matching predicate plays a crucial
role in the definition of the translation.

To sum up, in the absence of matching, value-passing and recursive definitions
are separately tractable, but if we join them together the bisimilarity problem
becomes very complex (PSPACE-hard). If matching is allowed, the presence of
value-passing itself makes the problem coNP-complete. By contrast, the presence
of recursive definitions themselves makes the problem PSPACE-hard; then, the
adding of value-passing does not increase neither the expressive nor the compu-
tational power. These results are also summarized in Table 1.

The rest of the paper is organized as follows. In Section 2, syntax and seman-
tics of the considered language are presented, and a few notions from complexity
theory are recalled. Section 3 deals with the complexity of data-independent pro-



Language Complexity |Reduces to ...
VP (ZL.) P all
RD (ZL,) P all
VP, RD (ZL,,) |PSPACE-hard Ly, Loy
M, VP (L.) coNP-complete|ZLy r, Ly, Lor
M, RD (£,) PSPACE-hard Ly,
M, VP, RD (L, )| PSPACE-hard Ly

VP = value-passing, RD = recursive definitions, M = matching.

Table 1. The complexity results of the paper.

cesses. As to data-dependent processes, the treatment of value-passing is con-
tained in Section 4, while the relationship between the full language and the
fragment without value-passing is investigated in Section 5. Comparison with
related work and conclusive remarks are contained in Section 6.

2 Preliminaries

2.1 The Language

Below, we present first the syntax and then operational and bisimulation se-
mantics of the language. The notation we use is that of value-passing CCS

[Mil80, Mil89] and of m-calculus [MPW92]. We assume the following sets:

— a countable set Act of pure actions or communications ports, ranged over by

/
a,a', ...
— a countable set Var of variables, ranged over by z,y, .. ;
— aset Val of values, ranged over by v,v’, ..., containing at least two distinct
elements;

— a countable set Ide of identifiers each having a non-negative arity. Ide is
ranged over by Id and capital letters and is disjoint from the previous sets.

A wvalue expression is either a variable or a value. Value expressions are
ranged over by e,e’,.... We also consider the set Act = {@|a € Act} of co-
actions, which represent output synchronizations. The set Act U Act will be
ranged over by c.

The set of terms of our language, ranged over by P, (), . . ., is given by the oper-
ators of pure synchronization prefix, input prefiz, output prefiz, non-determinism,
matching and identifier, according to the following grammar:

Pu=cP | a(@).P | @P | Y P | [ex=e]P | Id(er,. .. ex)
i€l

where k is the arity of Id. We always assume that the index set [ in ), ; P; is
finite and sometimes write P, +-- -+ P, for Zie{l n} FP;. When [ is empty, we



use the symbol 0: 0 = > icp Pi- When no confusion may arise, we write ¢ for

c.0.

An occurrence of a variable z in a term P is said to be bound if it is within
the scope of an input prefix a(z); otherwise it is said a free occurrence. The set
of variables which have a bound occurrence in P is denoted by bvar(P), while
the set of variables which have a free occurrence in P is denoted by fvar(P);
var(P) is bvar(P)U fvar(P). We define val(P) as the set of values occurring in
P. The size of a term P, indicated by |P], is the number of symbols appearing
in it; e.g., if P = a(#).@r.a’.0+ Id(z) then |P| = 9.

Substitution of the distinct variables zq,...,z, with the values vy,... v,,
indicated by {vi/x1,...,vn/2n} = {¥i} and composition of two substitutions
o and o', denoted by oo’, are defined as expected. We let &,... range over
substitutions. The function val is extended to substitutions in the obvious way
and such notations as val(P, @, o) will mean val(P) Uval(Q) Uval(s).

We presuppose an arbitrarily fixed finite set Eq of identifiers definitions, each
of the form

Id(zy,...,25) <= P

where k > 0 is the arity of Id. We require that the z; are pairwise distinct and
that fvar(P) C {x1,...,2x}. In Eq, each identifier has a single definition. The
requirement for the set Fq to be finite is motivated by the fact that we are only
interested in syntactically finite processes.

Note that we have not made any assumption on whether the sets Var, Val
and Act are pairwise disjoint or not. There are two particularly interesting cases:
(i) if Aet, Var and Val are pairwise disjoint we get a proper sublanguage of
value-passing CCS [Mil80, Mil89]; this case will be referred to as the simple
value-passing case; (ii) if Act = Var = Val, we get a proper sublanguage of the
m-calculus [MPW92]; this case will be referred to as the name-passing case.

Most of our results will not depend on a particular such assumption. Also,
they will not depend on whether Val is finite or infinite (though, of course, if
the name-passing assumption is made, Val must be infinite, since Act is).

A process term P is said to be closed if fvar(P) — Val = 0 ; in this case, P
is said to be a process. According to this definition, all terms are processes in a
name-passing setting. Processes are the terms we are most interested in. As we
shall see, bisimulation semantics will be defined only over the set of processes.

Since we are interested in determining the contributions of different operators
to the complexity of deciding bisimilarity, it is convenient to single different
(sub)languages out of the syntax defined above. The data-independent languages
ILy, 2L, and ZL, , are defined as follows:

— I.L, contains all operators, but identifiers and matching;
— ZL, contains all operators, but input and output prefixes and matching;
— IL, , contains all operators, but matching.

The data-dependent languages L., £, and L, ,, are defined similarly, but with
matching in addition. In particular, £, , is the full language.



The operational behaviour of our processes is defined by means of a transition
relation. Tts elements are triples (P, u, P) written as P 5 P’ Here, y can be of
three different forms: ¢, @v or a(v). A pure action c represents a synchronization
through the port ¢, without passing of data involved. An output action av means
transmission of the datum v through the port a. An input action a(v) represents
receipt of the datum v through the port a. We let u range over actions. The
transition relation is defined by the inference rules in Table 2.1. Note that £
leads processes into processes.

(Sync) c.P = P

(Inp) a(z).P o P{Y/z}, v € Val (Out) av.P 2 p

P 5 p P, L P
(Match) ———7m8 ——— (Sum)——— j eI
[v=uv]P Ay p ZieIPi £ p!
P{oz} L5 p!
(Ide)—————— if Id(¥) < Pis in Fiq
Id(v) £ P!

Table 2. Inference rules for the transition relation —= .

On the top of the transition relation —= , we define strong bisimulation

equivalence ~ , [Mil89, MPW92, PS93] as usual:

Definition1 (Strong bisimulation equivalence). A binary symmetric rela-
tion R over processes in L, , is a bisimulation if, whenever PR Q and P £ P’

there exists Q' s.t. Q - Q' and P'RQ’. We let P ~ @, and say that P is
bisimilar to @, if and only if PR @, for some bisimulation R .

From now on, we will omit the adjective “strong”. A drawback of the above
definition is that it requires considering the whole (possibly infinite) set of tran-
sitions of the two processes being compared. We will rely on an alternative
“finitary” definition of bisimulation. It differs from the standard one in that, on
the input action clause, case-analysis on just a finite set of values is required. In
the sequel, we say that a value v is fresh if v does not occur in any previously
mentioned process, nor in the set Fq.

Definition2 (F-bisimulation). Let R be a symmetric relation over pro-
cesses. We say that R is a F-bisimulation if, whenever P R @, then:



— P % P’ with g not an input action, implies Q —— @’ for some Q’ s.t.
P'RQ, and

— for some fresh vg, P M P!, with v € val(P, Q, Eq)U{uvg}, implies @ M Q'
for some @’ s.t. PPRQ’.

Define P ~p @ if and only if P R @ for some F-bisimulation R .

Intuitively, doing case-analysis on input actions by considering just one fresh
value suffices, because, under certain conditions, bisimulation is preserved by
replacements of values with fresh values. Indeed, we have:

Theorem3. P ~ @ if and only of P ~p Q.

2.2 Complexity Classes and Hard Problems

In the paper, we will measure the complexity of deciding bisimilarity for P and
() with a set of identifier definitions ¢, in function of the sum of the syntactical
sizes of P, () and of the processes occurring in Fq.

We will deal with the complexity classes P, NP, coNP and PSPACE, and with
the notions of polynomial reducibility, hardness and completeness. It is known
that P C NP, coNP C PSPACE, and it is strongly conjectured that all these
classes are distinct. A problem is hard for a class C if every problem in C is
polynomial-time reducible to it; a C-hard problem is said to be C-complete if 1t
belongs to C. Formal definitions can be found in any textbook of computational
complexity theory, such as [BC93, Pap94].

3 Data-Independent Calculi

In this section we will deal with the complexity of the bisimulation problem in
the three data-independent calculi. We will first restrict ourselves to the simple
value-passing case (i.e. we assume that Var, Val and Act are pairwise disjoint)
and we will argue how the achieved results apply to the name-passing case.

Theorem4. The bisimilarity problem for TL, and IL, is in P.

Let us now consider the complexity of the bisimilarity problem in Z.L, ,.
Jonsson and Parrow proved that such a problem is decidable and NP-hard [JP93].
We will improve on this result and we will show that the problem is indeed
PSPACE-hard, by reducing to it a well-known PSPACE-complete problem. We
first need some preliminary definitions in order to introduce quantified boolean
formulas.

Let U = {#1,...,25} be a set of boolean variables. If x is a variable in
U, then 2 and —z are said to be literals. A (conjunctive) 3-clause over U is the
conjunction of three literals. A formula in 3DNF (disjunctive normal form) is the

.. . d
disjunction of a set of 3-clauses, e.g. ¢ f (z1AmxgA—xg)V (zaAD3ALs). A truth
assignment for U is a function ¢ : U — {true, false}. Given an assignment ¢, we



associate in the usual way a truth value to literals, clauses and formulas. With
a slight abuse of notation, we will admit that a literal may also be a member of
the set {true, false, "true, ~false}. Each assignment ¢ will map these special
literals to the expected truth values. Moreover, let ¢{bi/a1,...,bg/xr}, where
b; € {true,false}, be the formula obtained from ¢ by substituting b; to x; for
t=1,...,k.

Definition5. A quantified boolean formula (in short, QBF) is a formula ¢ =
Qr121.Q222 ... Qua,.¢', where ¢/ is a formula in 3DNF, {z1,...,2,} is the set
of variables occurring in ¢’ and, for any i = 1,... n, @Q; € {3,V} is a quantifier.

Definition6. A quantified boolean formula ¢ = Q1x1.Q222 . ...Qnx,.¢" 1s valid
if one of the following conditions holds:

1. n =0 and in ¢’ there is a true clause c;

2. Q1 =3, and Qs20...Qpa,. ¢ {true/z 1} or Qoxo ... Qua,.¢'{false/a} is
valid,;

3. Q1 =V, and Qoxa...Quna, ¢’ {true/a 1} and Qs ... Qpa,.¢’ {false/z}
are both valid.

Given a QBF ¢, the QBF problem consists of deciding whether ¢ 1s valid:
this is a PSPACE-complete problem [SM73], and it is easy to see that it remains
PSPACE-complete even when restricted to formulas ¢ = Q121Q2xo ..., Qnry,.¢’
such that n is even and @; = 3 if and only if 7 is odd. Let us call RQBF this
restricted problem. We now come to describing the actual reduction.

Let ¢ = w1 .Vrs. ...V, .¢' be an instance of RQBF, where ¢’ = c1 V.. . Ve,
and ¢; = [} A2 A2 for i = 1,...,m. Let us define the processes B, ..., By,
Ty,...,Tn, By, ..., E, as shown in Table 3. There, in the clause for By, ¢; is the
index of the variable z;; occurring in literal l‘g, and wy; = y;, if l‘g = x;,, while
wij = Zij if l‘Zy = ﬁl‘ij.

We will prove that By ~ Tj if and only if ¢ is valid. The proof is split into
three technical lemmas.

Lemma7. For any i, 0 < i < n and for any (vi,...,v;) € {true, false}’,
Bi(v1, ..., v, 001, ..., ;) is either bisimilar to E; or bisimilar to T;.

Lemma 8. For any i, 0 <i<n, T; is not bissmilar to E;.

Lemma9. Consider any i, 0 < i < n and any (vy,...,v;) € {true, false}’.
Let o/ = ¢ {vi/aq, ..., vi/e;}, and define ¢ = Qit12ir1 .. Vo, ', where
Qi1 is the (i + 1)-th quantifier in ¢. Then, ¢ is valid if and only if

Bi(vi, ..., 05,701, ..., 00) ~ ;.

Proof. (Sketch) We proceed by induction on n — i. If i = n, then the proof
is trivial. Now, fix any (vi,...,v;) € {true ,false}’ and let ¢’ and % be
as described in the hypothesis. We can assume by inductive hypothesis that
for any v;41 € {true,false}, Biji1(vi,..., 41,701, ., Wiy1) ~ Tiqq if



S Z (v1,02,us)€{true falsey’ @V1-AV2.GU3
(v1,v2,v3)#(true true true)

Th <= Z(vl,v2,v3)e{true,false}3 avy.avz.avs

m p— p— —
Bo(yi, .. Yn, 21, 2n) = 3 QW Gwi, Gwi,+
(v1,vs,05)€{true falge}s @U1.4V2.4U3
(v1,v2,v3)#(true true true)

For any even 1, 0 <1 <n —2:

Bi(y1, ..., yi,51,...,2i) € a.Bij1(y1, ..., yi, true, z1,.. ., z;, false)+
a.Biy1(y1,...,yi, false, z1,. .., 2, true) + a. B
T, < Cl.T,‘+1 —|—Cl.E,‘+1
Ei < a.Bi
For any odd ¢, 1 < <n —1:
Bi(y1, ..., yi,51,...,2i) € a.Bij1(y1, ..., yi, true, z1,.. ., z;, false)+
a.Biy1(y1,...,yi, false, z1,..., 2, true) + a.T1 41
T < aTita

F, < Cl.E,‘+1 + Cl.T,‘+1

Table 3. The reduction from QBF to bisimilarity in Z.L, ;.

and only if Q;ro2iqo,... Vo, ' {viy1/x;41} is valid. We have to distinguish
two cases, depending on whether ¢ is odd or even. Let ¢ be even (the other

case is similar), then @;41 = 3. Due to lemmas 7 and 8, we have that
Bi(v1,...,v5,7w1,...,70;) ~ T; if and only if a value v;4; € {true,false}
exists such that B;yq(v1, ..., 041, 701, .., wiy1) ~ Tiy1. By inductive hypoth-

esis, the latter holds if and only if either Va0 ... Vo, ¢/ {false/x;41} is valid or
Vaiqo. .. Vo, ' {false/x;11} is valid, that is, if and only if ¢ = Jw; 41 ... Va, ¢’
1s valid. a

The following corollary is just a special case (i = 0) of the previous lemma.
Corollary 10. By ~ Ty of and only if ¢ is valid.

The definition of the identifiers can be easily constructed in polynomial time,
thus it immediately follows the main result of this section.

Theorem 11. The bisimilarity problem in Z.L, , 1s PSPACE-hard

Let us now consider the name-passing case arising when Aet = Val = Var.
The results regarding 7L, and ZL, , still apply, while bisimilarity in Z£, can
be shown to be PSPACE-hard by using the reduction of Table 3, provided that
we replace the output action av with the simple action v.



4 Data-Dependent Value-Passing

In this section we will show that the bisimilarity problem for the calculus £,
is coNP-complete. We will first present a reduction from the coNP-complete
problem 3-TAUTOLOGY, thus establishing the coNP-hardness of the bisimilarity
problem. Then we will show that it belongs to the class coNP.

The 3-TAUTOLOGY problem consists in testing whether a given formula ¢
in 3DNT (see the preceding section) is a tautology or not. From the results of
[CooT1] it follows that any problem in coNP is polynomial-time reducible to
3-TAUTOLOGY, that is, the 3-TAUTOLOGY problem is coNP-hard.

Theorem 12. The bissmilarity problem in L, is coNP-hard.

Proof. (Sketch) Tt is sufficient to prove that the 3-TAuToLOGY problem is
polynomial-time reducible to the bisimilarity problem in £,. Let ¢ = ¢1 V.. . Ve,
be an instance of 3-TAUTOLOGY over the set of variables {a1,...,2,}, let
ci =l ANF AR fori=1,...,m, and let z;; be the variable occurring in literal
l; Let also b;; stand for true if l‘g = z;;, and for false otherwise. Consider the

processes P(¢), Q, P, @ as defined in Table 4.

P(¢) = a(y1)...a(yn).P'
Q = a(yr) . ..a(yn).Q’
P’ def a.a + :.;1 a.(ly; = truela + [y; = falsela)
+ 20 i = billye, = biollyis = bisla
Q' «f a+ta.a

Table 4. The reduction from 3-TAUTOLOGY to bisimilarity in L,.

It is possible to prove that ¢ is a tautology if and only if, for any (v, ..., v,) €
Val®, P'{vi/y1,...,vn/yn} ~ Q. This implies that Q ~ P(¢) if and only if ¢ is
a tautology. By observing that @ and P(¢) are computable in polynomial time
in the size of ¢, the theorem follows. a

Theorem 13. The bisimiarity problem in L, is in coNP.

Proof. (Sketch) We prove that the inequivalence problem (given P,@Q in L,
decide whether P A @) is in NP. To this aim, it is sufficient to consider the
nondeterministic algorithm in Figure 1 and to show that the following properties

hold:

1. the algorithm runs in polynomial time (in the sizes of the terms);
2. 1if P ~ @ all computations of the algorithm lead to rejection;



3. if P A () there exists a computation of the algorithm leading to acceptance.

Due to lack of space, details are omitted. The only subtle point is the third one,
where also Theorem 3 is exploited. a

Algorithm Non-equiv

Input: P, Q

begin
if not B(P, Q) then accept
else reject

end

B(P,Q)

begin
Fix v fresh; guess v € val(P, Q) U{wo};
I={(p, PP -5 P’ and if u is an input action then p = a(v), for some a };
J={(11,Q)|Q - Q' and if u is an input action then u = a(v), for some a };
for each ( (1, P'),(1,Q")) € [ x J do b(u, P', Q") := B(P',Q");
return ( ¥(u, P') € 1.3(1, Q") € J : b(u, P, Q") A

V(u, Q') € J.3(u, P') € T: b(u, P, Q') )
end

Fig. 1. A nondeterministic algorithm for detecting inequivalence of processes in L, .

Corollary 14. The bisimilarity problem in L, is coNP-complete.

5 Reducing Value-passing to Identifiers and Matching

We will exhibit a polynomial-time reduction of £, , to £,. It is convenient here
to separate the case of simple value-passing (Val, Var and Act disjoint) and
the case of name-passing (Var = Val = Act). We first deal with simple value-
passing, and then indicate the necessary modifications to accommodate name-
passing.

We will first give an informal account of the translation. As a first approxi-
mation, the idea is to express each input process a(z).P as a nondeterministic
sum ) oy av.P{Yr}. Here, each av is a pure action uniquely associated with
the channel a and the value v; V' is a set of values, which 1s finite, but large
enough to represent all “relevant” input actual parameters. The idea stems from
Definition 2 and from Milner’s translation of CCS with values into pure CCS
(with infinite summation [Mil89]). However, in the presence of nested input ac-
tions, this solution would give rise to an exponential explosion of the size of



translated term. To overcome this drawback, we exploit the ability of identifiers
of handling parameters. The idea is to translate a(x).P as ) oy av.A(v), where
A is an auxiliary identifier defined by A(z) <= T and T is the translation of the
subterm P.

We assume an arbitrarily large supply of auxiliary identifiers of arity j, Aq,
Asq, As, ... for any j > 0, each distinct from the identifiers defined in Fq. These
auxiliary identifiers will be ranged over by the letter A.

The actual translation consists of two parts: for each term P in £, ,, we have
to specify, in L., a term [P], and a set of identifiers definitions, D(P), which
defines the auxiliary identifiers occurring in [P]. The definitions of [P] and D(P)
are reported in Table 5. The definition of [P] is parametric with a chosen non-
empty set Vo Cy Val of values, appearing in the clauses for input and output
prefixes. Thus we should have written [P]y, in place of [P]; we have omitted
the subscript v, as no confusion can arise. Note that the definition of [P] does
not depend on that of D(P), while the latter does depend on the former.

[P] is defined as: D(P) is defined as:
[e.P] = c.[P] D(c.P) =D(P)
[av.P] = av.[P] D(av.P) = D(P)
[@x.P] =", e [r = v]av.A(y) D(ax.P) = {A(g) « [PT}VD(P)
where § = fovar([P])
[a(z).P] = ZvGVo av.A(g,v) D(a(z).P) = {A(g,z) « [P]}uD(P)
where § = fvar([P]) — {z}
[ler = e2]P] = [e1 = e2][P] D([er = e2]P) = D(P)
[[Ziel P = Ziej[[Pi]] D(Zie] pi) = Uie] D(F)
[Zd(e)] = 1d(é) D(Id(&)) = 0

Table 5. The reduction of £, , to L.

The translation has to be applied to the set of identifiers definitions, Fyq, as
follows:

Definition15. Let us define D(Fq) as

U (1@ < [PIIuD(P)).

Td(g)<P€Eq



The reduction proof can be split in two parts: completeness (if P ~ Qin L, »,
then their translations are bisimilar in £,) and correcteness (if the translations
of P and () are bisimilar in £,, then P and () are bisimilar in £, ).

Theorem 16 (Completeness). For any two processes Py and Qo in Ly, if
Py ~ Qg then [Po] ~ [Qo] in L, equipped with the set of identifier definitions
D(Py) UD(Qo) UD(Eyq).

Proof. (Sketch) For any two terms P and @, define P < @ if P is a subterm of
@, where the standard definition of subterm is extended by the axiom: R{%/z} <
Id(v) if Id(#) < R is in Eq.

Let £, be equipped with the identifiers definitions D(Py) UD(Qo) UD(Eq).
Over L,, consider the relation R defined thus:

{([P]e1, [@]o2) | [P]o1 and [Q] oz are closed, P < Py, (1)

@ < Qo and Poy ~ Qo in L, }. (2)

Then it is not difficult to prove that R is a bisimulation up to ~ [Mil89] and,
hence, R C~. a

We now come to the correctness part. This is slightly more difficult, because
we have to choose appropriately the parameter parameter Vj of the translation.
The choice depends also on whether or not Val is infinite. In the next theo-
rem, we assume that Val is infinite; the case when Val is finite will be easily
accommodated afterward. Intuitively, V5 must contain all “relevant” values, i.e.
all values appearing in the two processes being compared and in their subterms,
plus a reserve of fresh values.

Theorem 17 (Correctness). For any two processes Py and Qo in Ly, if

[Po] ~ [Qo] in Ly equipped with D(Py) UD(Qo) UD(Eq), then Py ~ Qq.

Proof. (Sketch) Let the parameter Vy of the translation be set as Vp =
val(Py, Qo, Eq) UV, for some V Cyip Val s.t. V Nwal(Po,Qo, Eq) = § and
VI = 1P| + |Qol+ > 14y rerq | Rl Over Ly, define the relation R as fol-

lows:
{(Po1,Qo3)| Poy and Qos are closed, P < Py, @ < Qo,

val(oy,02) C Vo and [P]loy ~ [@]oz in L, }.

It is not hard to show that R is an F-bisimulation, and hence (by Theorem 3)
Py ~ Qo. O

If Val is finite, then the above theorem can be proven by just letting Vy =
Val.

It 1s easily seen that the translation can be carried out in polynomial-time
with the size of the problem. Thus, putting together Theorems 16 and 17, we
get:

Theorem 18. The equivalence problem in L, , ts polynomial-time reducible to
the equivalence problem in L,. Consequently, the equivalence problem in L, is

PSPACE-hard.



We indicate now the necessary changes to accommodate the name-passing
case (Act = Var = Val). In a name-passing input action a(z)., not only the
formal parameter x, but also the channel a is subject to be possibly instantiated.
It then suffices to replace the output (both @v. and @x.) clauses and the input
clause of the definition of [.] in Table 5 with the following two:

[a(z).P] = ZUEVD [a = v] ZwEVD vw. A(g, w) where § = fvar([P]) — {z}

[ay.P] = ZUEVD [a = v] ZwEVD [y = w]tw.A(y) where § = fvar([P]).

The remaining clauses and the definition of D are left unchanged. It is easy to
see that the translation is still polynomial and that the reduction proofs carry
over essentially without modifications.

6 Conclusions

In this paper we have studied the decidability and the complexity of bisimilar-
ity in fragments of CCS with values and of the w-calculus. We considered both
a data-independent setting, in which processes are allowed to send and receive
data, but cannot do any test on them, and a simple data-dependent one, in which
processes can only perform equality tests. In the literature, some variant form
of bisimulation have been proposed, such as late bisimilarity [MPW92, PS93]
and open bisimilarity [San93]. Most of the results presented in previous sections
extend to these equivalences. In particular, both late and open bisimilarity are
PSPACE-hard over the data-independent processes, because the three equiva-
lences coincide in this case (see e.g. [PS93]).

Our paper is mainly related to [JP93]. There, Jonsson and Parrow prove that
bisimilarity is decidable in the data-independent language Z.L, ., by showing
that the infinitely many transitions due to an input action can be reduced to a
single; suitably chosen, schematic action [JP93]. The latter is characterized as
the receipt of the least value (w.r.t. to a fixed ordering of values) not “used”
in the considered process. This approach yields the polynomial-time tractability
of some restricted cases. On the other hand, the technique cannot be used in
a data-dependent setting, mainly because in the presence of the equality test,
determining the set of “used” values of a process becomes very complex (perhaps
undecidable). In this paper, we have taken a less radical approach to deal with
the infinite-state problem: instead of substituting infinitely many actions with
a single one, we replace them with a “moderate” number of actions (the ones
corresponding to the set V4). Jonsson and Parrow also show that ZC, , is NP-
hard, by means of a quite involved reduction from the CLIQUE problem. Here,
we have for the same language a stronger result with an easier technique.

In [HL95, HLI93, San93, BD94, EL95], notions of symbolic bisimulation are
investigated for both CCS with value-passing and m-calculus, aiming at a more
efficient representation of bisimilarity. Our results show that, even for very simple
fragments, it is very unlikely that efficient algorithms exist. It remains to be seen
whether symbolic techniques give some benefits on the average.



A question that is left open by the present work is the exact complexity of
bisimilarity in ZL, , and £, ,. Moreover, other interesting fragments of CCS
with values should be considered from a complexity point of view. For example,
the parallel composition operator | has been considered in the case of trace
equivalence [MS94], but nothing is known regarding bisimilarity.
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