
On the Complexity of Bisimilarityfor Value-Passing Processes(Extended Abstract)Michele Boreale1 and Luca Trevisan21 Istituto per l'Elaborazione dell'Informazione, Consiglio Nazionale delle Ricerche,Via S. Maria 46, 56126 Pisa, Email: michele@dsi.uniroma1.it2 Dipartimento di Scienze dell'Informazione, Universit�a di Roma \La Sapienza", ViaSalaria 113, 00198 Roma, Email: trevisan@dsi.uniroma1.itAbstract. We study the complexity of deciding bisimilarity betweennon-deterministic processes with explicit primitives for manipulatingdata values. In particular, we consider a language with value-passing(input/output of data) and parametric de�nitions of processes. We dis-tinguish the case in which data cannot be tested and the case in whicha simple equality test over data is permitted.In the �rst case, our main result shows that the problem is PSPACE-hard for the full calculus. In the second case, we �rst show that theproblem is coNP-complete in the fragment with value-passing and noparametric de�nitions. We then de�ne a compositional polynomial-timetranslation of the full calculus to the fragment with parametric de�nitionsbut no value-passing. The translation preserves bisimilarity. This factestablishes the decidability of the full calculus and the PSPACE-hardnessof the fragment without value-passing. In other words, once parametricde�nitions and equality test are allowed, the adding of value-passing doesnot increase neither the expressive nor the computational power.1 IntroductionRecently, there has been a renewed interest in process calculi with explicit prim-itives to manipulate data values. In particular, several enriched versions of Mil-ner's CCS [Mil80, Mil89, JP93, HL95, HL93] have been studied. In pure, i.e.data-less, process calculi such as CCS, beside standard operators for describingbehaviours of processes (such as non-determinism + and parallel compositionj) only pure-synchronization actions (also called \pure" actions) are provided.By contrast, process calculi with explicit treatment of data contain primitivesfor expressing transmission and receipt of values at communication ports: thisfeature is known as value-passing. Using the notation of [Mil80], output of v atport a is written av:, while input at a is written a(x):; here the variable x acts asa formal parameter. Besides being exchanged, usually data values can be usedas parameters in recursively de�ned processes and tested by means of predicatesto control the execution
ow. Languages with explicit manipulation of valuespermit a natural description of realistic systems. As an example, the recursively

de�ned process C(x):C(x) ([x < o](a(y):C(y) + bx:C(x)) + [x � o]Error(x)speci�es a memory cell whose initial content is a number x; as long as thiscontent is less than an over
ow value o, the cell can either receive a new valueat a, or transmit its content at b; as soon as the value x equals or exceeds o, arecovery process Error is called.A very peculiar kind of value-passing language is Milner, Parrow andWalker's�-calculus [MPW92], where the values being exchanged among processes arecommunication ports themselves (name-passing). This permits the descriptionof systems with dynamical communication linkage.When analysing concurrent systems, a central problem is to be able to de-cide whether two given descriptions (usually regarded as a speci�cation and asan implementation) are equivalent or not, according to a chosen notion of equiv-alence (veri�cation). The algebraic aspects of this problem are becoming nowwell-understood, also for value-passing processes [HL93, PS93, BD94]. On thecontrary, a lot of questions concerning the decidability and the computationalcomplexity of veri�cation remain unanswered. A basic problem is to determinemeaningful fragments of the calculi with values over which the veri�cation prob-lem is decidable. Then, a fundamental issue is to determine the abstract com-putational complexity of each of these fragments w.r.t. veri�cation. Answeringsuch questions would improve our understanding of the mathematical nature ofprocesses. In practical cases, it could provide us with useful information to locatesources of ine�ciency. In the present work, we will try to address some of theseissues. We will restrict our attention to one of the most widely studied equiv-alences, Milner's bisimulation equivalence (or simply \bisimilarity"), written �and described e.g. in [Mil89].For processes manipulating values, a non-trivial aspect of the problem isthat they have usually an operational description in terms of an in�nite state-transition graph (they are in�nite state), at least if the domain of data valuesis in�nite. This is due to the fact that each input action a(x): gives rise toin�nitely many actual transitions, one for each di�erent value. In [JP93], Jonssonand Parrow concentrate on a particular class of processes with values, the dataindependent ones, which cannot test data nor perform any kind of operationover them. They prove that the bisimilarity problem for such processes can betransformed into a bisimilarity problem for �nite-state processes. For the latter,decision algorithms exist [PT87, KS90], which are polynomial in the sizes of theinvolved graphs (that can be however much larger than the syntactical size ofthe processes). A detailed comparison of our work with [JP93] is contained inSection 6.In the present paper, we consider a calculus for describing non-deterministicprocesses. It should be naturally embedded in every \reasonable" language withexplicit data manipulation. More precisely, besides permitting the execution ofpure actions, we allow data values to be exchanged, used as parameters in re-cursive de�nitions and tested for equality. The latter is done via the matching

predicate [a = b], also considered in the �-calculus [MPW92]. This is perhapsthe most elementary form of test one would admit on data. Not even negativetests, to decide inequality of data, are permitted.Our goal is to classify and separate the computational complexity of the twobasic operations for manipulating data, value-passing and parametric recursivede�nitions. This will be done both for the data-independent case (where match-ing is excluded) and for the data-dependent one (where matching is included).In each of the two cases, we consider separately three (sub-)languages, ob-tained from the calculus with pure actions by adding either or both of value-passing and recursive de�nitions. Then we asses the decidability and the di�er-ence in complexity of these languages. In this analysis, we refer to the complexityclasses P,NP, coNP and PSPACE. Recall that the latter contains both NP andcoNP and that it is believed that this containment is strict (see e.g. [BC93]).In the data-independent regime, we �rst note that the bisimilarity prob-lem is solvable in polynomial time for the calculi allowing either, but not both,of recursive de�nitions or value-passing. Then we prove that the problem isPSPACE-hard for the full language, i.e.: every problem in the class PSPACE isnot more di�cult than the bisimilarity problem over the matching-free calculus.This improves on a NP-hardness result due to Jonsson and Parrow and is, to thebest of authors' knowledge, the highest known lower-bound to the complexity ofa decidable bisimilarity over a meaningful language.In the data-dependent regime, we �rst show that, in the sublanguage withvalue-passing but no recursive de�nitions, the bisimilarity problem is decidableand is as di�cult as the most di�cult problems in coNP, i.e. it is coNP-complete.Then we analyze the complexity of the full language, with both value-passingand recursive de�nitions. We show that the language can be compositionallytranslated down to the fragment without value-passing, in a way that preservesbisimulation equivalence. The translation can be carried out in a time polynomialin the sizes of the processes. The result is interesting for two reasons. First, itgives us a procedure for deciding the bisimilarity problem in the full language,since the problem is easily seen to be decidable in the fragment without value-passing. Second, it ensures that the problem for the fragment without value-passing is just as complex as for the full language (which is of course PSPACE-hard). It is important to point out that the matching predicate plays a crucialrole in the de�nition of the translation.To sum up, in the absence of matching, value-passing and recursive de�nitionsare separately tractable, but if we join them together the bisimilarity problembecomes very complex (PSPACE-hard). If matching is allowed, the presence ofvalue-passing itself makes the problem coNP-complete. By contrast, the presenceof recursive de�nitions themselves makes the problem PSPACE-hard; then, theadding of value-passing does not increase neither the expressive nor the compu-tational power. These results are also summarized in Table 1.The rest of the paper is organized as follows. In Section 2, syntax and seman-tics of the considered language are presented, and a few notions from complexitytheory are recalled. Section 3 deals with the complexity of data-independent pro-

Language Complexity Reduces to : : :VP (ILv) P allRD (ILr) P allVP, RD (ILv;r) PSPACE-hard Lr , Lv;rM, VP (Lv) coNP-complete ILv;r, Lr, Lv;rM, RD (Lr) PSPACE-hard Lv;rM, VP, RD (Lv;r) PSPACE-hard LrVP = value-passing, RD = recursive de�nitions, M = matching.Table 1. The complexity results of the paper.cesses. As to data-dependent processes, the treatment of value-passing is con-tained in Section 4, while the relationship between the full language and thefragment without value-passing is investigated in Section 5. Comparison withrelated work and conclusive remarks are contained in Section 6.2 Preliminaries2.1 The LanguageBelow, we present �rst the syntax and then operational and bisimulation se-mantics of the language. The notation we use is that of value-passing CCS[Mil80, Mil89] and of �-calculus [MPW92]. We assume the following sets:{ a countable set Act of pure actions or communications ports, ranged over bya; a0; : : :;{ a countable set V ar of variables, ranged over by x; y; : : :;{ a set V al of values, ranged over by v; v0; : : :, containing at least two distinctelements;{ a countable set Ide of identi�ers each having a non-negative arity. Ide isranged over by Id and capital letters and is disjoint from the previous sets.A value expression is either a variable or a value. Value expressions areranged over by e; e0; : : :. We also consider the set Act = fa j a 2 Actg of co-actions, which represent output synchronizations. The set Act [Act will beranged over by c.The set of terms of our language, ranged over by P;Q; : : :, is given by the oper-ators of pure synchronization pre�x, input pre�x, output pre�x, non-determinism,matching and identi�er, according to the following grammar:P ::= c:P j a(x):P j ae:P j Xi2I Pi j [e1 = e2]P j Id(e1; : : : ; ek)where k is the arity of Id. We always assume that the index set I inPi2I Pi is�nite and sometimes write P1+ � � �+Pn forPi2f1;:::;ng Pi. When I is empty, we

use the symbol 0: 0 def= Pi2; Pi. When no confusion may arise, we write c forc:0.An occurrence of a variable x in a term P is said to be bound if it is withinthe scope of an input pre�x a(x); otherwise it is said a free occurrence. The setof variables which have a bound occurrence in P is denoted by bvar(P), whilethe set of variables which have a free occurrence in P is denoted by fvar(P);var(P) is bvar(P)[fvar(P). We de�ne val(P) as the set of values occurring inP . The size of a term P , indicated by jP j, is the number of symbols appearingin it; e.g., if P = a(x):ax:a0:0+ Id(x) then jP j = 9.Substitution of the distinct variables x1; : : : ; xn with the values v1; : : : ; vn,indicated by fv1=x1; : : : ; vn=xng = f~v=~xg and composition of two substitutions� and �0, denoted by ��0, are de�ned as expected. We let �; : : : range oversubstitutions. The function val is extended to substitutions in the obvious wayand such notations as val(P;Q; �) will mean val(P) [val(Q) [val(�).We presuppose an arbitrarily �xed �nite set Eq of identi�ers de�nitions, eachof the form Id(x1; : : : ; xk)(Pwhere k � 0 is the arity of Id. We require that the xi are pairwise distinct andthat fvar(P) � fx1; : : : ; xkg. In Eq, each identi�er has a single de�nition. Therequirement for the set Eq to be �nite is motivated by the fact that we are onlyinterested in syntactically �nite processes.Note that we have not made any assumption on whether the sets V ar, V aland Act are pairwise disjoint or not. There are two particularly interesting cases:(i) if Act, V ar and V al are pairwise disjoint we get a proper sublanguage ofvalue-passing CCS [Mil80, Mil89]; this case will be referred to as the simplevalue-passing case; (ii) if Act = V ar = V al, we get a proper sublanguage of the�-calculus [MPW92]; this case will be referred to as the name-passing case.Most of our results will not depend on a particular such assumption. Also,they will not depend on whether V al is �nite or in�nite (though, of course, ifthe name-passing assumption is made, V al must be in�nite, since Act is).A process term P is said to be closed if fvar(P) � V al = ; ; in this case, Pis said to be a process. According to this de�nition, all terms are processes in aname-passing setting. Processes are the terms we are most interested in. As weshall see, bisimulation semantics will be de�ned only over the set of processes.Since we are interested in determining the contributions of di�erent operatorsto the complexity of deciding bisimilarity, it is convenient to single di�erent(sub)languages out of the syntax de�ned above. The data-independent languagesILv, ILr and ILv;r are de�ned as follows:{ ILv contains all operators, but identi�ers and matching;{ ILr contains all operators, but input and output pre�xes and matching;{ ILv;r contains all operators, but matching.The data-dependent languages Lv, Lr and Lv;r, are de�ned similarly, but withmatching in addition. In particular, Lv;r is the full language.

The operational behaviour of our processes is de�ned by means of a transitionrelation. Its elements are triples (P; �; P 0) written as P ��! P 0. Here, � can be ofthree di�erent forms: c, av or a(v). A pure action c represents a synchronizationthrough the port c, without passing of data involved. An output action av meanstransmission of the datum v through the port a. An input action a(v) representsreceipt of the datum v through the port a. We let � range over actions. Thetransition relation is de�ned by the inference rules in Table 2.1. Note that ��!leads processes into processes. (Sync) c:P c�! P(Inp) a(x):P a(v)�! Pfv=xg; v 2 V al (Out) av:P av�! P(Match) P ��! P 0[v = v]P ��! P 0 (Sum) Pj ��! P 0Pi2I Pi ��! P 0 j 2 I(Ide)Pf~v=~xg ��! P 0Id(~v) ��! P 0 if Id(~x)(P is in EqTable 2. Inference rules for the transition relation ��! .On the top of the transition relation ��! , we de�ne strong bisimulationequivalence � , [Mil89, MPW92, PS93] as usual:De�nition1 (Strong bisimulation equivalence). A binary symmetric rela-tion R over processes in Lv;r is a bisimulation if, whenever P RQ and P ��! P 0,there exists Q0 s.t. Q ��! Q0 and P 0RQ0. We let P � Q, and say that P isbisimilar to Q, if and only if P RQ, for some bisimulation R .From now on, we will omit the adjective \strong". A drawback of the abovede�nition is that it requires considering the whole (possibly in�nite) set of tran-sitions of the two processes being compared. We will rely on an alternative\�nitary" de�nition of bisimulation. It di�ers from the standard one in that, onthe input action clause, case-analysis on just a �nite set of values is required. Inthe sequel, we say that a value v is fresh if v does not occur in any previouslymentioned process, nor in the set Eq.De�nition2 (F -bisimulation). Let R be a symmetric relation over pro-cesses. We say that R is a F -bisimulation if, whenever P R Q, then:

{ P ��! P 0, with � not an input action, implies Q ��! Q0 for some Q0 s.t.P 0RQ0, and{ for some fresh v0, P a(v)�! P 0, with v 2 val(P;Q;Eq)[fv0g, impliesQ a(v)�! Q0for some Q0 s.t. P 0RQ0.De�ne P �F Q if and only if P R Q for some F -bisimulation R .Intuitively, doing case-analysis on input actions by considering just one freshvalue su�ces, because, under certain conditions, bisimulation is preserved byreplacements of values with fresh values. Indeed, we have:Theorem3. P � Q if and only if P �F Q.2.2 Complexity Classes and Hard ProblemsIn the paper, we will measure the complexity of deciding bisimilarity for P andQ with a set of identi�er de�nitions Eq, in function of the sum of the syntacticalsizes of P , Q and of the processes occurring in Eq.We will deal with the complexity classes P, NP, coNP and PSPACE, and withthe notions of polynomial reducibility, hardness and completeness. It is knownthat P � NP; coNP � PSPACE, and it is strongly conjectured that all theseclasses are distinct. A problem is hard for a class C if every problem in C ispolynomial-time reducible to it; a C-hard problem is said to be C-complete if itbelongs to C. Formal de�nitions can be found in any textbook of computationalcomplexity theory, such as [BC93, Pap94].3 Data-Independent CalculiIn this section we will deal with the complexity of the bisimulation problem inthe three data-independent calculi. We will �rst restrict ourselves to the simplevalue-passing case (i.e. we assume that V ar, V al and Act are pairwise disjoint)and we will argue how the achieved results apply to the name-passing case.Theorem4. The bisimilarity problem for ILv and ILr is in P.Let us now consider the complexity of the bisimilarity problem in ILv;r.Jonsson and Parrow proved that such a problem is decidable and NP-hard [JP93].We will improve on this result and we will show that the problem is indeedPSPACE-hard, by reducing to it a well-known PSPACE-complete problem. We�rst need some preliminary de�nitions in order to introduce quanti�ed booleanformulas.Let U = fx1; : : : ; xng be a set of boolean variables. If x is a variable inU , then x and :x are said to be literals. A (conjunctive) 3-clause over U is theconjunction of three literals. A formula in 3DNF (disjunctive normal form) is thedisjunction of a set of 3-clauses, e.g. � def= (x1^:x3^:x4)_(x2^:x3^x4). A truthassignment for U is a function t : U ! ftrue; falseg. Given an assignment t, we

associate in the usual way a truth value to literals, clauses and formulas. Witha slight abuse of notation, we will admit that a literal may also be a member ofthe set ftrue; false;:true;:falseg. Each assignment t will map these specialliterals to the expected truth values. Moreover, let �fb1=x1; : : : ; bk=xkg, wherebi 2 ftrue; falseg, be the formula obtained from � by substituting bi to xi fori = 1; : : : ; k.De�nition5. A quanti�ed boolean formula (in short, QBF) is a formula � =Q1x1:Q2x2 : : :Qnxn:�0, where �0 is a formula in 3DNF, fx1; : : : ; xng is the setof variables occurring in �0 and, for any i = 1; : : : ; n, Qi 2 f9; 8g is a quanti�er.De�nition6. A quanti�ed boolean formula � = Q1x1:Q2x2 : : : :Qnxn:�0 is validif one of the following conditions holds:1. n = 0 and in �0 there is a true clause c;2. Q1 = 9, and Q2x2 : : :Qnxn:�0ftrue=x1g or Q2x2 : : :Qnxn:�0ffalse=x1g isvalid;3. Q1 = 8, and Q2x2 : : :Qnxn:�0ftrue=x1g and Q2x2 : : :Qnxn:�0ffalse=x1gare both valid.Given a QBF �, the QBF problem consists of deciding whether � is valid:this is a PSPACE-complete problem [SM73], and it is easy to see that it remainsPSPACE-complete even when restricted to formulas � = Q1x1Q2x2 : : : ; Qnxn:�0such that n is even and Qi = 9 if and only if i is odd. Let us call RQBF thisrestricted problem. We now come to describing the actual reduction.Let � = 9x1:8x2: : : :8xn:�0 be an instance of RQBF, where �0 = c1_ : : :_cm,and ci = l1i ^ l2i ^ l3i for i = 1; : : : ;m. Let us de�ne the processes B0; : : : ; Bn,T0; : : : ; Tn, E0; : : : ; En as shown in Table 3. There, in the clause for Bn, ij is theindex of the variable xij occurring in literal lji , and wij = yij if lji = xij , whilewij = zij if lji = :xij .We will prove that B0 � T0 if and only if � is valid. The proof is split intothree technical lemmas.Lemma7. For any i, 0 � i � n and for any (v1; : : : ; vi) 2 ftrue; falsegi,Bi(v1; : : : ; vi;:v1; : : : ;:vi) is either bisimilar to Ei or bisimilar to Ti.Lemma8. For any i, 0 � i � n, Ti is not bisimilar to Ei.Lemma9. Consider any i, 0 � i � n and any (v1; : : : ; vi) 2 ftrue; falsegi.Let 0 def= �0fv1=x1; : : : ; vi=xig, and de�ne def= Qi+1xi+1 : : :8xn: 0, whereQi+1 is the (i + 1)-th quanti�er in �. Then, is valid if and only ifBi(v1; : : : ; vi;:v1; : : : ;:vi) � Ti.Proof. (Sketch) We proceed by induction on n � i. If i = n, then the proofis trivial. Now, �x any (v1; : : : ; vi) 2 ftrue; falsegi and let 0 and beas described in the hypothesis. We can assume by inductive hypothesis thatfor any vi+1 2 ftrue; falseg, Bi+1(v1; : : : ; vi+1;:v1; : : : ;:vi+1) � Ti+1 if

En (P (v1;v2;v3)2ftrue;falseg3(v1;v2 ;v3)6=(true;true;true) av1:av2:av3Tn (P(v1;v2 ;v3)2ftrue;falseg3 av1:av2:av3Bn(y1; : : : ; yn; z1; : : : ; zn) (Pmi=1 awi1 :awi2 :awi3+P (v1;v2;v3)2ftrue;falseg3(v1;v2 ;v3)6=(true;true;true) av1:av2:av3For any even i, 0 � i � n� 2:Bi(y1; : : : ; yi; z1; : : : ; zi) (a:Bi+1(y1; : : : ; yi;true; z1; : : : ; zi;false)+a:Bi+1(y1; : : : ; yi;false; z1; : : : ; zi;true) + a:Ei+1Ti (a:Ti+1 + a:Ei+1Ei (a:Ei+1For any odd i, 1 � i � n� 1:Bi(y1; : : : ; yi; z1; : : : ; zi) (a:Bi+1(y1; : : : ; yi;true; z1; : : : ; zi;false)+a:Bi+1(y1; : : : ; yi;false; z1; : : : ; zi;true) + a:T1+1Ti (a:Ti+1Ei (a:Ei+1 + a:Ti+1Table 3. The reduction from QBF to bisimilarity in ILv;r .and only if Qi+2xi+2; : : : ; 8xn: 0fvi+1=xi+1g is valid. We have to distinguishtwo cases, depending on whether i is odd or even. Let i be even (the othercase is similar), then Qi+1 = 9. Due to lemmas 7 and 8, we have thatBi(v1; : : : ; vi;:v1; : : : ;:vi) � Ti if and only if a value vi+1 2 ftrue; falsegexists such that Bi+1(v1; : : : ; vi+1;:v1; : : : ;:vi+1) � Ti+1. By inductive hypoth-esis, the latter holds if and only if either 8xi+2 : : :8xn: 0ffalse=xi+1g is valid or8xi+2 : : :8xn: 0ffalse=xi+1g is valid, that is, if and only if = 9xi+1 : : :8xn: 0is valid. utThe following corollary is just a special case (i = 0) of the previous lemma.Corollary10. B0 � T0 if and only if � is valid.The de�nition of the identi�ers can be easily constructed in polynomial time,thus it immediately follows the main result of this section.Theorem11. The bisimilarity problem in ILv;r is PSPACE-hardLet us now consider the name-passing case arising when Act = V al = V ar.The results regarding ILv and ILv;r still apply, while bisimilarity in ILr canbe shown to be PSPACE-hard by using the reduction of Table 3, provided thatwe replace the output action av with the simple action v.

4 Data-Dependent Value-PassingIn this section we will show that the bisimilarity problem for the calculus Lvis coNP-complete. We will �rst present a reduction from the coNP-completeproblem 3-Tautology, thus establishing the coNP-hardness of the bisimilarityproblem. Then we will show that it belongs to the class coNP.The 3-Tautology problem consists in testing whether a given formula �in 3DNF (see the preceding section) is a tautology or not. From the results of[Coo71] it follows that any problem in coNP is polynomial-time reducible to3-Tautology, that is, the 3-Tautology problem is coNP-hard.Theorem12. The bisimilarity problem in Lv is coNP-hard.Proof. (Sketch) It is su�cient to prove that the 3-Tautology problem ispolynomial-time reducible to the bisimilarity problem in Lv. Let � = c1_: : :_cmbe an instance of 3-Tautology over the set of variables fx1; : : : ; xng, letci = l1i ^ l2i ^ l3i for i = 1; : : : ;m, and let xij be the variable occurring in literallij . Let also bij stand for true if lji = xij , and for false otherwise. Consider theprocesses P (�), Q, P 0, Q0 as de�ned in Table 4.P (�) def= a(y1) : : : a(yn):P 0Q def= a(y1) : : : a(yn):Q0P 0 def= a:a+Pni=1 a:([yi = true]a+ [yi = false]a)+Pmi=1[yi1 = bi1][yi2 = bi2][yi3 = bi3]aQ0 def= a+ a:aTable 4. The reduction from 3-Tautology to bisimilarity in Lv.It is possible to prove that � is a tautology if and only if, for any (v1; : : : ; vn) 2V aln, P 0fv1=y1; : : : ; vn=yng � Q0. This implies that Q � P (�) if and only if � isa tautology. By observing that Q and P (�) are computable in polynomial timein the size of �, the theorem follows. utTheorem13. The bisimilarity problem in Lv is in coNP.Proof. (Sketch) We prove that the inequivalence problem (given P;Q in Lv,decide whether P 6 � Q) is in NP. To this aim, it is su�cient to consider thenondeterministic algorithm in Figure 1 and to show that the following propertieshold:1. the algorithm runs in polynomial time (in the sizes of the terms);2. if P � Q all computations of the algorithm lead to rejection;

3. if P 6 � Q there exists a computation of the algorithm leading to acceptance.Due to lack of space, details are omitted. The only subtle point is the third one,where also Theorem 3 is exploited. utAlgorithm Non-equivInput: P;Qbeginif not B(P;Q) then acceptelse rejectendB(P;Q)beginFix v0 fresh; guess v 2 val(P;Q) [fv0g;I := f(�;P 0) jP ��! P 0 and if � is an input action then � = a(v), for some a g;J := f(�;Q0) jQ ��! Q0 and if � is an input action then � = a(v), for some a g;for each ((�;P 0); (�;Q0)) 2 I � J do b(�; P 0;Q0) := B(P 0;Q0);return (8(�;P 0) 2 I:9(�;Q0) 2 J : b(�;P 0;Q0) ^8(�;Q0) 2 J: 9(�;P 0) 2 I : b(�; P 0;Q0))endFig. 1. A nondeterministic algorithm for detecting inequivalence of processes in Lv.Corollary14. The bisimilarity problem in Lv is coNP-complete.5 Reducing Value-passing to Identi�ers and MatchingWe will exhibit a polynomial-time reduction of Lv;r to Lr. It is convenient hereto separate the case of simple value-passing (V al, V ar and Act disjoint) andthe case of name-passing (V ar = V al = Act). We �rst deal with simple value-passing, and then indicate the necessary modi�cations to accommodate name-passing.We will �rst give an informal account of the translation. As a �rst approxi-mation, the idea is to express each input process a(x):P as a nondeterministicsum Pv2V av:Pfv=xg. Here, each av is a pure action uniquely associated withthe channel a and the value v; V is a set of values, which is �nite, but largeenough to represent all \relevant" input actual parameters. The idea stems fromDe�nition 2 and from Milner's translation of CCS with values into pure CCS(with in�nite summation [Mil89]). However, in the presence of nested input ac-tions, this solution would give rise to an exponential explosion of the size of

translated term. To overcome this drawback, we exploit the ability of identi�ersof handling parameters. The idea is to translate a(x):P asPv2V av:A(v), whereA is an auxiliary identi�er de�ned by A(x)(T and T is the translation of thesubterm P .We assume an arbitrarily large supply of auxiliary identi�ers of arity j, A1;A2; A3; : : :, for any j � 0, each distinct from the identi�ers de�ned in Eq. Theseauxiliary identi�ers will be ranged over by the letter A.The actual translation consists of two parts: for each term P in Lv;r, we haveto specify, in Lr, a term [[P]], and a set of identi�ers de�nitions, D(P), whichde�nes the auxiliary identi�ers occurring in [[P]]. The de�nitions of [[P]] and D(P)are reported in Table 5. The de�nition of [[P]] is parametric with a chosen non-empty set V0 �fin V al of values, appearing in the clauses for input and outputpre�xes. Thus we should have written [[P]]V0 in place of [[P]]; we have omittedthe subscript V0 as no confusion can arise. Note that the de�nition of [[P]] doesnot depend on that of D(P), while the latter does depend on the former.[[P]] is de�ned as: D(P) is de�ned as:[[c:P]] = c:[[P]] D(c:P) = D(P)[[av:P]] = av:[[P]] D(av:P) = D(P)[[ax:P]] =Pv2V0[x = v]av:A(~y) D(ax:P) = fA(~y)([[P]]g[D(P)where ~y = fvar([[P]])[[a(x):P]] =Pv2V0 av:A(~y; v) D(a(x):P) = fA(~y; x)([[P]]g[D(P)where ~y = fvar([[P]])� fxg[[[e1 = e2]P]] = [e1 = e2][[P]] D([e1 = e2]P) = D(P)[[Pi2I Pi]] =Pi2I[[Pi]] D(Pi2I Pi) = Si2ID(Pi)[[Id(~e)]] = Id(~e) D(Id(~e)) = ;Table 5. The reduction of Lv;r to Lr .The translation has to be applied to the set of identi�ers de�nitions, Eq, asfollows:De�nition15. Let us de�ne D(Eq) as[Id(~y)(P 2Eq(fId(~y)([[P]] g[D(P)) :

The reduction proof can be split in two parts: completeness (if P � Q in Lv;r,then their translations are bisimilar in Lr) and correcteness (if the translationsof P and Q are bisimilar in Lr, then P and Q are bisimilar in Lv;r).Theorem16 (Completeness). For any two processes P0 and Q0 in Lv;r, ifP0 � Q0 then [[P0]] � [[Q0]] in Lr equipped with the set of identi�er de�nitionsD(P0) [D(Q0) [D(Eq).Proof. (Sketch) For any two terms P and Q, de�ne P � Q if P is a subterm ofQ, where the standard de�nition of subterm is extended by the axiom:Rf~v=~xg �Id(~v) if Id(~x)(R is in Eq.Let Lr be equipped with the identi�ers de�nitions D(P0) [D(Q0) [D(Eq).Over Lr, consider the relation R de�ned thus:f([[P]]�1; [[Q]]�2) j [[P]]�1 and [[Q]]�2 are closed, P � P0; (1)Q � Q0 and P�1 � Q�2 in Lv;r g: (2)Then it is not di�cult to prove that R is a bisimulation up to � [Mil89] and,hence, R �� . utWe now come to the correctness part. This is slightly more di�cult, becausewe have to choose appropriately the parameter parameter V0 of the translation.The choice depends also on whether or not V al is in�nite. In the next theo-rem, we assume that V al is in�nite; the case when V al is �nite will be easilyaccommodated afterward. Intuitively, V0 must contain all \relevant" values, i.e.all values appearing in the two processes being compared and in their subterms,plus a reserve of fresh values.Theorem17 (Correctness). For any two processes P0 and Q0 in Lv;r, if[[P0]] � [[Q0]] in Lr equipped with D(P0) [D(Q0) [D(Eq), then P0 � Q0.Proof. (Sketch) Let the parameter V0 of the translation be set as V0 =val(P0; Q0; Eq) [V , for some V �fin V al s.t. V \ val(P0; Q0; Eq) = ; andjV j = jP0j + jQ0j+ PId(~x)(R2Eq jRj. Over Lv;r, de�ne the relation R as fol-lows: f(P�1; Q�2) j P�1 and Q�2 are closed, P � P0; Q � Q0;val(�1; �2) � V0 and [[P]]�1 � [[Q]]�2 in Lrg:It is not hard to show that R is an F -bisimulation, and hence (by Theorem 3)P0 � Q0. utIf V al is �nite, then the above theorem can be proven by just letting V0 =V al.It is easily seen that the translation can be carried out in polynomial-timewith the size of the problem. Thus, putting together Theorems 16 and 17, weget:Theorem18. The equivalence problem in Lv;r is polynomial-time reducible tothe equivalence problem in Lr. Consequently, the equivalence problem in Lr isPSPACE-hard.

We indicate now the necessary changes to accommodate the name-passingcase (Act = V ar = V al). In a name-passing input action a(x):, not only theformal parameter x, but also the channel a is subject to be possibly instantiated.It then su�ces to replace the output (both av: and ax:) clauses and the inputclause of the de�nition of [[:]] in Table 5 with the following two:[[a(x):P]] =Pv2V0 [a = v]Pw2V0 vw:A(~y; w) where ~y = fvar([[P]])� fxg[[ay:P]] =Pv2V0 [a = v]Pw2V0 [y = w]vw:A(~y) where ~y = fvar([[P]]) :The remaining clauses and the de�nition of D are left unchanged. It is easy tosee that the translation is still polynomial and that the reduction proofs carryover essentially without modi�cations.6 ConclusionsIn this paper we have studied the decidability and the complexity of bisimilar-ity in fragments of CCS with values and of the �-calculus. We considered botha data-independent setting, in which processes are allowed to send and receivedata, but cannot do any test on them, and a simple data-dependent one, in whichprocesses can only perform equality tests. In the literature, some variant formof bisimulation have been proposed, such as late bisimilarity [MPW92, PS93]and open bisimilarity [San93]. Most of the results presented in previous sectionsextend to these equivalences. In particular, both late and open bisimilarity arePSPACE-hard over the data-independent processes, because the three equiva-lences coincide in this case (see e.g. [PS93]).Our paper is mainly related to [JP93]. There, Jonsson and Parrow prove thatbisimilarity is decidable in the data-independent language ILv;r, by showingthat the in�nitely many transitions due to an input action can be reduced to asingle, suitably chosen, schematic action [JP93]. The latter is characterized asthe receipt of the least value (w.r.t. to a �xed ordering of values) not \used"in the considered process. This approach yields the polynomial-time tractabilityof some restricted cases. On the other hand, the technique cannot be used ina data-dependent setting, mainly because in the presence of the equality test,determining the set of \used" values of a process becomes very complex (perhapsundecidable). In this paper, we have taken a less radical approach to deal withthe in�nite-state problem: instead of substituting in�nitely many actions witha single one, we replace them with a \moderate" number of actions (the onescorresponding to the set V0). Jonsson and Parrow also show that ILv;r is NP-hard, by means of a quite involved reduction from the clique problem. Here,we have for the same language a stronger result with an easier technique.In [HL95, HL93, San93, BD94, EL95], notions of symbolic bisimulation areinvestigated for both CCS with value-passing and �-calculus, aiming at a moree�cient representation of bisimilarity.Our results show that, even for very simplefragments, it is very unlikely that e�cient algorithms exist. It remains to be seenwhether symbolic techniques give some bene�ts on the average.

A question that is left open by the present work is the exact complexity ofbisimilarity in ILv;r and Lv;r. Moreover, other interesting fragments of CCSwith values should be considered from a complexity point of view. For example,the parallel composition operator j has been considered in the case of traceequivalence [MS94], but nothing is known regarding bisimilarity.References[BC93] D.P. Bovet and P. Crescenzi. Introduction to the Theory of Complexity.Prentice Hall, 1993.[BD94] M. Boreale and R. De Nicola. A symbolic semantics for the �-calculus. InProc. of CONCUR '94, LNCS 836, pages 299{314. Springer-Verlag, 1994.[Coo71] S.A. Cook. The complexity of theorem proving procedures. In Proc. ofSTOC '71, pages 151{158, 1971.[EL95] U.H. Engberg and K.S. Larsen. E�cient simpli�cation of bisimulation for-mulas. In Proc. of TACAS '95, pages 89{103, 1995.[HL93] M. Hennessy and H. Lin. Proof systems for message-passing process alge-bras. In Proc. of CONCUR '93, LNCS 715. Springer-Verlag, 1993.[HL95] M. Hennessy and H. Lin. Symbolic bisimulations. Theoretical ComputerScience, 138:353{389, 1995.[JP93] B. Jonsson and J. Parrow. Deciding bisimulation equivalences for a classof non-�nite state programs. Information and Computation, 107:272{302,1993.[KS90] P.C. Kannellakis and S.A. Smolka. CCS expressions, �nite state processes,and three problems of equivalence. Information and Computation, 86:43{68,1990.[Mil80] R. Milner. A Calculus of Communicating Systems. LNCS, 92. Springer-Verlag, 1980.[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, partI and II. Information and Computation, 100:1 {41 and 42{78, 1992.[MS94] A.J. Mayer and L.J. Stockmeyer. The complexity of word problems { thistime with interleaving. Information and Computation, 115:293{311, 1994.[Pap94] C.H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.[PS93] J. Parrow and D. Sangiorgi. Algebraic theories for name-passing calculi.Technical Report ECS{LFCS{93{262, University of Edinburgh, Departmentof Computer Science, 1993. To appear in Information and Computation.[PT87] R. Paige and R.E. Tarjan. Three partition re�nement algorithms. SIAMJournal on Computing, 16(6):973{989, 1987.[San93] D. Sangiorgi. A theory of bisimulation for the �-calculus. In Proc. of CON-CUR '93, LNCS 715. Springer-Verlag, 1993. To appear in Acta Informatica.[SM73] L. Stockmeyer and A. Meyer. Word problems requiring exponential time. InProc. of STOC '73, pages 1{9, 1973.This article was processed using the LaTEX macro package with LLNCS style

