
j

?

?

1

2

1 2 2

�

a:P

a P

1 Introduction

Asynchronous Observations of Processes

asynchronous

synchronous

state transformers processes

Dipartimento di Scienze dell'Informazione, Universit�a di Roma \La Sapienza"

Dipartimento di Sistemi e Informatica, Universit�a di Firenze

We study may and must testing{based preorders in an asyn-

chronous setting. In particular, we provide some full abstraction theo-

rems that o�er alternative characterizations of these preorders in terms

of context closure w.r.t. basic observables and in terms of traces and

acceptance sets. These characterizations throw light on the asymmetry

between input and output actions in asynchronous interactions and on

the di�erence between synchrony and asynchrony.

Work partially supported by EEC: HCM project EXPRESS, and by CNR: project

\Speci�ca ad alto livello e veri�ca formale di sistemi digitali". The third author

has been supported by a scholarship from CNR | Comitato Scienza e Tecnologie

dell'Informazione.

Michele Boreale Rocco De Nicola Rosario Pugliese

Distributed systems can seldom rely on a global clock, and little assumptions can

be made about their relative speed; as a consequence, it is natural to adopt for

them an communication mechanism. This calls for non{blocking

sending primitives that do not oblige producers and consumers to synchronize

when exchanging messages, but allow the sender of a message to continue with

its task while the message travels to destination. Therefore, for describing dis-

tributed systems, a model based on a paradigm that imposes a neat distinction

between input and output primitives, in the style of [1] and [17], appears to

be a natural choice. In spite of these considerations, the most studied concur-

rency models in the process algebra community (e.g. [18, 3, 14, 20]) are based

on communications and model process interaction as the execution

of simultaneous \complementary actions".

Only recently, variants of process algebras based on asynchronous communi-

cations have been studied. Two main approaches have been followed to this pur-

pose. They di�er in the way (non{blocking) output actions are modelled. These

actions are rendered either as or as themselves. The

asynchronous variants of ACP [9] and CSP [16] follow the �rst approach and

introduce explicit bu�ers in correspondence of output channels. This makes out-

puts non{blocking and immediately executable; their executions make messages

available for consumption. The asynchronous variants of -calculus [15, 6, 12, 2]

and CCS [21, 11, 8] follow the second approach and model outputs by creating

new concurrent processes. This amounts to modelling an output pre�x as a

parallel composition .

0

�

�!

h i

�

�

a:a

testing

synchronous

may must

basic observables

traces

input

The problem of specifying the abstract behaviour of asynchronous processes,

i.e. of de�ning \good" observational semantics, has not yet been investigated

in depth. Only few observational semantics have been considered. The maxi-

mal congruence induced by completed trace equivalence has been studied in [9]

for asynchronous ACP. Bisimulation [18] for asynchronous -calculus has been

investigated in [15, 12, 2].

A natural alternative is represented by the framework of [10, 13].

Testing o�ers a uniform mechanism to de�ne sensible behavioural equivalences

on di�erent process algebras, as it relies on little more than a notion of reduc-

tion relation (). Moreover, testing has the advantage of identifying only

those processes that cannot be di�erentiated by running observers in parallel

with them. No new operator is introduced, as both the parallel composition op-

erator and the observers are taken from the process description language under

investigation. The testing approach has been partially followed in [22], where

processes and observers are connected via input/output queues.

This permits asynchronously testing synchronous processes.

In this paper we investigate the testing theory for a variety of asynchronous

process algebras. For the sake of simplicity, the basic theory will be developed for

an asynchronous version of CCS [18] (ACCS); we will then see how the obtained

results can be extended with little e�ort to an asynchronous variant of -calculus

and to an asynchronous version of CCS with non{injective relabelling. The latter

leads to a signi�cantly di�erent theory.

We shall study both the and the testing preorders. While nat-

ural, these preorders rely on a universal quanti�cation over the set of all ob-

servers that makes reasoning about processes extremely di�cult. This calls for

alternative, observers{independent characterizations that permit a full appre-

ciation of the impact of an asynchronous semantics over the considered lan-

guages. For each preorder, we will o�er two characterizations: one in terms of

the traces/acceptances of processes, the other in terms of the context{closure

w.r.t. some , in the same spirit as [5].

As far as basic observables are concerned, we will see that, di�erently from the

synchronous case, the only important actions are the output ones. In particular,

for capturing the may preorder, we will need, as basic observables, tests about

the possibility of processes to perform speci�c output actions. For capturing the

must preorder, we will need, as basic observables, tests about the guarantee that

processes o�er of performing speci�c output actions.

The other alternative characterizations for the may preorder will be based

on sequences of visible actions (), while that for the must preorder will

rely on pairs trace, acceptance set in the same spirit as [13] and [7]. However,

the usual trace containment for may is not adequate anymore, and the notion

of acceptance{set for must is more complicate. We have for both may and must

preorders equalities like = . The underlying reason is that, since no be-

haviour can causally depend upon outputs, observers cannot fully determine the

occurrence of process actions. As a consequence, both for may and for

must, the set of traces will have to be factored via the preorder induced by the

1 2

0

0

�

2

�

i I

i i

i

�

�

P

�

�

�

�

�

�

�

�

�

�

P

2 Asynchronous CCS

{

{

{

2.1 Syntax

De�nition1.

�

�

�

�

N

N f j 2 Ng N N

�

L N [N

L L [f g

L

L L f j 2 g

X

j n f g

2 N [f g N ! N

f j 6 g L

8 2 N P

s

s s

� a

sa as

� aa

�

�

a; b; : : :

a a a; b; : : :

a a l; l ; : : :

� �

� A;B; L; : : : M

s L l l L

M s X; Y; : : :

E a g :E E E E L E f X recX:E

g � I f

l f l l f

a f a f a P Q

X recX:

deletion

postponement

annihilation

names

co{names

complementation

visible actions

actions

labels

process variables

ACCS terms

relabelling function

closed guarded processes

three laws below, whose intuition is that whenever a trace performed by some

process is \acceptable" for the environment, then any is acceptable as

well:

() : process inputs cannot be forced;

() : observations of process inputs can be delayed;

() : bu�ers are not observable.

The extension of the alternative characterizations to the -calculus is rela-

tively straightforward and vindicates the stability of the approach. The extension

to a process description language with non{injective relabelling shows that this

operator enables external observers to get more precise information about inputs

of asynchronous systems.

The rest of the paper is organized as follows. Section 2 introduces Asyn-

chronous CCS and the testing preorders. Section 3 presents the alternative char-

acterizations based on traces and acceptance{sets, while the next section presents

those based on basic observables. The extensions to -calculus and to CCS with

general relabelling are sketched in Section 5. Some concluding remarks are re-

ported in Section 6. Due to space limitations, many proofs will be omitted.

In this section we present syntax, and operational and testing semantics of asyn-

chronous CCS (ACCS, for short). It di�ers from standard CCS because only

guarded choices are used and output guards are not allowed. The absence of

output guards \forces" the asynchrony; it is not possible to have processes that

causally depends on output actions.

We let , ranged over by , be an in�nite set of and

= , ranged over by , be the set of . and

are disjoint and are in bijection via the function (); we de�ne:

() = . We let = be the set of , and let range

over it. We let = for a distinct action , be the set of all or

, ranged over by . We shall use , to range over subsets of ,

to range over multisets of and to range over . We de�ne =

and similarly for and . We let , ranged over by , be a countable

set of .

The set of is generated by the grammar:

::=

where , is �nite and : , called ,

is injective and such that () = is �nite. We extend to by letting

: () = (). We let , ranged over by , , etc., denote the set of

and terms or (i.e. those terms where every occurrence

of any agent variable lies within the scope of some and operators).

j

0 0

P

P

P

1 2

1 1 2 2

1

1

()

AR1 AR2

AR3 AR4

AR5 AR6

AR7

AR5

2f g

2;

2

0 0

0

2

0

0

0

0

0

0

0

0

0

0 0

0 0 0

�

�

Notation.

0 0

2.2 Operational Semantics

0

Fig. 1.

Lemma2.

i ;

i i

i

i i i I i

i

n

n

i

i

�

�

i I

i i

g

j

a

�

f �

�

�

�

�

�

�

l l

�

�

� s s l s l s

s s s �

sl l

l

s

�

a

structural congruence

sort

input output successors

successors

language

stable

fresh

f g

f g 2 f g

�

P L �!

�! 2 �!

�!

f g �! f g

�!

n �! n

62 [

�!

j �! j

�!

�!

�! �!

j �! j

))

�!) �!) �!) �! �!

) 9) �! �!

f 2 L j 9 2 L

) g f 2 N j) g

f 2 N j) g [

f 2 L j) g

6�!

f j 6 g

2 N �! � j

g :E g :E g :E

g :E g g: � E

E l =l ; : : : ; l =l

f f l l l l i ; : : : ; n f l l

E F=X

X E F

; ;

g :P P j I a

P P

P f P f

P P

P L P L

� L L

P P

P Q P Q

P recX:P=X P

recX:P P

P P Q Q

P Q P Q

s ls P P P P P P

P sort P l s

P P In P l P

Out P l P P S P In P Out P

P L P s P

P P

f

l f l l

P a P Q P Q a

In the sequel, will be abbreviated as + ,

will be abbreviated as ; we will also write for . repre-

sents the parallel composition of the terms . We write for

the relabelling operator where () = if = , 1 , and () =

otherwise. As usual, we write [] for the term obtained by replacing each

occurrence of in by (with possibly renaming of bound process variables).

Throughout the paper, we will use the relation over

ACCS processes, , as de�ned in, e.g., [19] (the unique change with respect to

[19] is the addition of some obvious distribution laws for injective relabelling).

The labelled transition system (), which characterizes the operational

semantics of the language, is given by the rules in Figure 1.

if

[]

,

Operational semantics of ACCS (symmetric of rule omitted)

As usual, we use = or = to denote the reexive and transitive closure

of and use = (resp.) for = = (resp.) when

= . Moreover, we write = for : = (and will

be used similarly). We will call of the set () = :

= , (resp.) of the set () = =

(() = =), of the set () = () ()

and generated by the set () = = . We say that a

process is if .

From now onward, we adopt the following convention: an action declared

in a statement is assumed di�erent from any other name and co{name

mentioned in the statement. Note that, since for all relabelling operators we

have that () = is �nite, every ACCS process has a �nite sort.

The following lemma implies that behaviours do not causally depend on the

execution of output actions.

For any process and , implies .

�

�

m

M

<

<

< < <

0 0 1 1 2 2

1

� �

k k

�

k k

n

!

TO1 TO2 TO3

O

j j �! j �! j � � � j �! � � �

j

� �!

j

j

�

2 O

�

2 O

'

�

'

�

\

�

� L

� � �

Observers

success action computation

successful

3 Alternative Characterizations of Testing Semantics

!

P O

P O P O P O P O P O

P O

n O

P O

P may O P O

P mustO P O

P Q O P may O Qmay O

P Q O P must O QmustO

� a la al � aa

2.3 Testing Semantics

De�nition3.

De�nition4.

{

{

De�nition5.

{

{

3.1 A trace ordering

De�nition6.

Fig. 2.

We are now ready to instantiate the general framework of testing equivalences

[10, 13] on ACCS.

are ACCS processes that can also perform a distinct

. denotes the set of all the ACCS observers. A

from a process and an observer is sequence of transitions

=

which is either in�nite or such that the last is stable. The computation

is i� there exists some 0 such that .

For every process and observer , we say

i� there exists a successful computation from ;

i� each computation from is successful.

We de�ne the following preorders over processes:

i� for every observer , implies ;

i� for every observer , implies .

We will use to denote the equivalence obtained as the kernel of a preorder

(i.e. =).

The adaptation of the testing framework to an asynchronous setting discussed

in the previous section is straightforward, but, like in the synchronous case, uni-

versal quanti�cation on observers makes it di�cult to work with the operational

de�nitions of the two preorders. This calls for alternative characterizations that

will make it easier to reason about processes. These characterizations will be

given in terms of the traces and of the acceptance sets of processes.

The following ordering over sequences of actions will be used for de�ning the

alternative characterizations of the testing preorders.

Let be the least preorder over preserved under trace com-

position and satisfying the laws in Figure 2.

Trace Ordering Laws

0

�

2

<

1 2
n

m

0 1

1

2

TO1

TO2

TO3

TO1 TO3

TO2

i o

i i o o

l M

M

s

s

� �
�

n

i

l

n

s

s

0

0

0

�

0

0

0

0 0

0

0 0

2

0

0

0

0

0 0

00 00 00 0

0

deletion

postponement

annihilation

De�nition7.

Notation.

Lemma8.

3.2 The may case

We remind the reader that denotes structural congruence.

�

�

�

�

�

2 L fj jg

fj jg fj jg

	

fj jg nfj jg n fj jg n fj jg n

� 	

	 fj jg

)

)

)

�! �! � � � �!

6�! � � � � �

�

�)

) � j 	

�

�

s

s s

s s s s

bc abc

abc bc bc

a

bac abc

abc bac

b aab aab a

a b

s s

s s s

s s s

s s s s

s s s s s

s

s abac s b s s c

M �M � l

M P P

P P s M M

M M

P P l

P P P P P

P i n s � � �

P l s s P P

l P P P l P P � s s

The intuition behind the three laws in Figure 2 is that, whenever a process

interacts with its environment by performing a sequence of actions , an inter-

action is possible also if the process performs any . To put it di�erently, if

the environment o�ers , then it also o�ers any s.t. .

More speci�cally, law () says that process inputs cannot be forced

to take place. For example, we have : if the environment o�ers the

sequence , then it also o�ers , as there can be no causal dependence of

upon the output . Law () says that observations of process

inputs can be delayed. For example, we have that . Indeed, if the

environment o�ers then it also o�ers . Finally, law ()

allows the environment to internally consume pairs of complementary actions,

e.g. . Indeed, if the environment o�ers it can internally consume

and and o�er .

Given , we let denote the multiset of actions

occurring in , and (resp.) denote the multiset of input

(resp. output) actions in . We let denote the multiset of input actions

() (), where denotes di�erence between multisets.

Intuitively, if then is the multiset of input actions of which

have actually been deleted (law), and not annihilated (law), in . For

instance, if = and = then = .

If is a multiset of actions, we will write for denoting ,

the parallel composition of all actions in . We shall write \ = " if

= for some sequentialization of the actions in . When is a

multiset of input actions, with a slight abuse of notation, we will sometimes

denote by also the trace obtained by arbitrarily ordering the elements of

(remember that we work modulo law). We shall write \ = {free" if

there exists a sequence of transitions = = such

that for 0 and is obtained from by erasing the 's.

The following is the crucial lemma for the preorder . Its proof relies on

Lemma 2 and proceeds by induction on the number of times the laws in Figure

2 are used.

Let be a process and an action and assume . If =

{free then there exists such that = {free and .

By relying on the trace ordering , we can now de�ne a new preorder that will

be proved to be an alternative characterization of the may preorder .

P

0

0

0

Proof:

TO1 TO3

<

<

<

2

<

<

<

<

def def def

s

s

!

s s

s

s !

!

i I

i i

m

m

m

m

m

m

m

m

m

m

m

m m m m

m

m

m

m

m

0 0

�

0 0 0 0

�

0 0

0 0

0 0 0

0 0

0 0 0 0

00 00 00 0

0

0

00 0 00

2

�)

�)

2 L

j

2 L

2 �

�

�

�

2

2 � 2

�

�

j) j �!

)) �

� �!

) � j 	 �!

�! j) j

�

�

�

�

�

2

' ' ' '

'

j ' j

�

'

�

j

De�nition9.

De�nition10.

Proposition11.

Theorem12.

Examples.

{

{

0 0 0

0

{

0

P Q P Q P

s s s Q

s t s

t � ! t as a:t s t as a t s

P s P may t s

s L P s s

P Q P Q P Q

P Q s L P

s L Q s s s L P

P may t s P Q Qmay t s

P Q P may O O

P O P O O

P P O O P Q

s Q s s Q Q

O O O O O � s s O

O Q O Q O

L P L Q P Q

� L P P

a a:a a a b

a:b b:a

a: a b b a: a G G

G a :P a:a

G b a: a b

b:!

For processes and , we write i� whenever =

then there exists such that and = .

The di�erence with respect to the synchronous case (see, e.g., [10, 13]) is

that we require a weaker condition than trace inclusion by taking advantage of

a preorder over single traces. We de�ne below a special class of observers.

Let . The observers () are de�ned inductively as follows:

() = , () = () and () = ().

The following property can be easily proved relying on Lemma 8.

For every process and , () i� there exists

() such that .

For all processes and , i� .

`Only if' part. Suppose that and that (). We must show

that there exists () such that . The hypothesis () implies

that (). Since , we infer that (). The thesis follows from

Proposition 11.

`If' part. Suppose that and that for an observer .

Then there exists a successful computation with an initial sequence of transitions

= where . This sequence of transitions may be unzipped

into two sequences = and = . The hypothesis implies

that there exist and such that and . By Lemma 8, there

exists an observer such that = and . Now,

implies . Hence, the sequence of transitions = can be

extended to a successful computation and the thesis is proved.

By relying on the alternative characterization one can easily prove that

is a pre{congruence.

We show some examples of pairs of processes related by the pre-

order. All of the relationships can be proven by using the alternative character-

ization of the preorder .

Since () () implies , all of the relationships for the syn-

chronous may preorder do hold in our setting.

Since () for each process , from and in Figure 2, we get

and . In particular, from we get and

which imply that all processes containing only input actions are

equivalent to .

An interesting law is the () . More generally, we have () ,

where is an input guarded summation (in fact, is

just a consequence of this law). Guardedness of is essential: ()

does not hold (consider the observer).

O

<

0

0

M

M

M

b

b

b

Proof:

� � �

s

s

a

a

1 2

def

�n

def

�n

�n

�

0 0

0

�

0

0

0 0

�

0 0

�

0

0

0

0 0

0 0

con-

verges

converges along

diverges along

3.3 The must case

De�nition13.

{

{

{

De�nition14.

{

{

Lemma15.

Theorem16.

2 L #

�! �! �! � � � #

)

"

#

2 L

f j 	 �) g

� N

2 2)

� L # #

2 f � g

� 2 L #

#

� N

	

\ ;

� N

� j ;

) [f g �

�

�

6

6 6

P s P P

P P P P P s P

s s s P P

P P s P s

P s

P s P after s

P after s P � s s s s P P :

X L X must L

P X a L P

T P T P s

s T s s s s

P Q s P s

Q s

L P after s must L Qafter s must L

P after s

P

s

P after s

s

s � s s

P

P In P Out P

P P M

P P � M Out P

P P S P a S P

P P M

P Q P Q

O Q mustO

P must O Q must O

Let be a process and . We write , and say that

, if and only if there is no in�nite sequence of internal transitions

starting from . We write , and say that

if and only if whenever is a pre�x of and =

then converges. We write , and say that if it is

not the case that .

Let be a process and . The set of processes is de�ned by:

= () : and =

Let be a set of processes and . We write if and only

if for each there exists s.t. = .

In the sequel, given a set of traces , we will let stand for

for each . Furthermore, we de�ne = : .

We set i� for each s.t. it holds that:

, and

for each : () implies () .

Note that the above de�nition is formally similar to that for the synchronous

case [10, 13]. The di�erence lies in the de�nition of the set : the latter

can be seen as the set of possible states that can reach after an interaction trig-

gered by the environment o�ering . In an asynchronous setting, output actions

can be freely performed by the environment, without any involvement of the pro-

cess under consideration. In the de�nition of , these particular output

actions represent the \di�erence" between the behaviour of the environment, ,

and the actual behaviour of the process, , that is, .

Let be any process.

1. If is stable then () () = .

2. If is stable then there exist and a unique multiset s.t.

and () = .

3. If = then () ().

When is stable, we will use () to denote the unique multiset implicitly

de�ned by part 2 of the above lemma.

If then .

Let be any observer and suppose that : we show that

as well. We make a case analysis on why . All cases can be

easily reduced to the case of a �nite unsuccessful computation, i.e. a sequence

M

2

O

0

0

0

b b

b

P

def def

1 1

1

�n

De�nition17.

s s

s

� �

s

M

sM

s

s

!

M

!
M

a L

0 0 0 0

0 0

0 0

0

0

0

0

0

0

0

0

0

0 0

0 0 0

0

0 0

0 0

0

0 00

0 00 00 0 00

00 0

00

0

0

0 0 00

0

0 00

0

0

0 00

00

0 0 00

00

00 0 00

�

2

0 0 0 0

0 0 0 0

j) j))

j # #

j

\ ;

\ ;

\ ;

j

6

�) j 2

j 6�! 6�! \

; \ ;

j \ ;

� 6

�

) j 	 \ ;

� j ; �!�

)� �

) � j 	

)

j) j � j j 	

j j 	 6)

j 	 \ ; �

�!�

;

6) �!�

2 L � N

j j

Q O Q O s Q Q O O

! Q O P s Q s

Q O

i Out Q In O

ii In Q Out O

iii In O Out O :

P O

L In O M

O O

Qafter sM mustL :

s sM Q Q Q � M Qafter sM

Q � M Q Out Q L

M L

Out Q � M L

P after sM must L

P s sM

P P Out P � sM s L :

O O

O O � M Out O O O

O O ! s sM

O O O O � sM s !

O P P

P O P O P O � sM s !

P O � sM s

Out P � sM s In O In O

In O L O O

Out O

O O O

s s; L

s L c s a s; L

s

c s c � �:! a s; L a �; L a:!

c bs b c s a bs ; L b a s ; L

c bs �:! b:c s a bs ; L �:! b:a s ; L :

of transitions = such that, for some : = , =

{free and is stable. Furthermore, we suppose that and .

From the fact that is stable and from Lemma 15(1), we deduce that:

() () () =

() () () =

() () () =

We show now how to build an unsuccessful computation for . Let us de�ne

the set of output actions = () and the multiset of input actions =

() (note that, since is stable, this multiset is well de�ned in virtue of

Lemma 15(2)). First, we show that

() (1)

Indeed, since and = , we have that ();

furthermore, we have that (from (ii) and), that () =

(from (i)) and that = (from (iii)). From these facts, it follows that

() = . This proves (1).

Now, from (1) and de�nition of it follows that () ,

which means that there are and such that:

= and () = (2)

Now, since is stable, from Lemma 15(2), it follows that there exists

such that and () = . Hence and therefore

= {free. Since , from Lemma 8 it then follows that there is

such that = {free. Combining these transitions

of with = in (2), we get:

= {free. (3)

To prove that (3) leads to an unsuccessful computation, it su�ces to show that

= . The latter is a consequence of the following three facts:

1. () () = . This derives from (2) and from ()

() = (Lemma 15(3) applied to);

2. () = ;

3. = (Lemma 15(3) applied to).

For proving the converse of the above theorem, we will use two families of

observers: the �rst can be used to test for convergence along sequences of a given

set , and the second to test that a given pair () is an \acceptance" pair.

Let and . The observers () and () are

de�ned by induction on as follows:

() : () = () : () =

() = () () = ()

() = + () () = + ()

3

0

�

a

a

�n

3

b

b

P

i I

i i

s

s

�

2

0 0

0 0 0

0

2

<

2

<

< < < <

<

Proof:

Proof:

� � �!

) �

) �

) �

) � j

M

M

M

M

M

M M M M

M

M

M

M

M

M

0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

strongly convergent

P Q P P

� � Q Q Q P Q

� a Q Q Q P Q

� a Q Q Q P Q

Q Q P Q a

2 L � N

#

#

�

�

�

�

�

�

6

� �

6

�

'

'

'

j '

j

6'

j

#

�

�) �

) � j 	

�

�

Lemma18.

Theorem19.

Examples.

{ 0

0 0

{

{

{ 0

0

0

Proposition20.

Corollary 21.

P s L

P must c s P s

P s P must a s; L P after s must L

P Q P Q

a a a b a a a b

a: b c a:b a:c

a:b a a:b

a:a

a: a G G G G g :P

recX: a: a X

a recX: a: a X

P P s s

P Q P P s s

Q Q P Q � s s Q P

P Q P Q

P Q

We remind the reader that asynchronous bisimilarity is de�ned as the maximal equiv-

alence relation s.t. whenever and then:

(a) if = then there is such that = and ,

(b) if = then there is such that = and , and

(c) if = then there is such that either (i) = and , or (ii)

= and .

Let be a process, and . We have:

1. () if and only if .

2. Suppose that . Then () if and only if () .

An easy application of Lemma 8.

implies .

An easy consequence of Lemma 18.

By relying on , it is straightforward to show that is a pre{

congruence.

We give below some meaningful examples of processes that are

related (or unrelated) according to the preorder. All the examples are checked

relying on the alternative characterization provided by . In the examples,

we shall also refer to the asynchronous bisimilarity of [2].

The process represents the top element for the family of terms built using

only input actions: , but ; thus + , but + .

Input pre�xes can be distributed over summation, i.e. (+) + .

This is in sharp contrast with the asynchronous bisimilarity.

Sequences of inputs can absorb their own pre�xes, as in + This

law was also present in [9], but is not valid for asynchronous bisimilarity.

Like in [2], we have . This is an instance of the more general law

()+ , where is any guarded summation . Unlike

[2], however, the law does not hold for in�nite behaviours: (())

. This is due to the sensitivity of must to divergence: when put in

parallel with , (()) diverges, while does not.

As shown in the examples above, must equivalence and asynchronous bisim-

ilarity are in general incomparable, due to the sensitivity of must to divergence.

They are comparable if we consider only processes, i.e. those

processes such that for each . The crux is given by the following

characterization of :

if and only if whenever = then there is

s.t. = and , and vice{versa for and .

Let and be strongly convergent processes. Then

implies .

a

<

<

<

2

m

m

m

m

m

m

Proof:

0 0

� 0

0 0

0 0

0

p

p

p

p

p

p

p

p p

c

c c

c

c

c c

c

c

c

c

c

c c

4 Basic Observables for Asynchronous Processes

De�nition22.

4.1 The may case

De�nition23.

Theorem24.

R R

R R R

R R R � R R � R

6R R

2 N

p

)

p

�

2 N

p p

� �

�

�

�

�

�

�

� 2 N �

�

� �

� �

2 2 L 2

�

j

p

2

�

C

C P C P=

P Q C C P C Q

P a

P a P a P

P Q

a P a Q a

P Q P Q P Q

a s a s a

P Q

s L P s s L Q

s s t s t s

c !

R c c

t s R c s L R

s s

basic observables

context

closure

obser-

vation predicate o�ers

contextual preorder

Following [5], we introduce a characterization of the asynchronous may and must

preorders in terms of the pre{congruence induced by . The dif-

ference with the synchronous case is that here only output actions are important.

A is a term with one free occurrence of a process

variable, usually denoted by . We write [] instead of [].

The context of a given binary relation over processes, is de-

�ned as: i� for each context , [] []. enjoys two important

properties: (a) () = , and (b) implies . In the following,

we will write for the complement of .

Let be a process and . We de�ne the following

over processes: () i� = .

The observation preorder induced by is de�ned as follows: i� for

each : implies .

Of course, the observation preorder is very coarse; a more re�ned relation

can be obtained by closing it under all ACCS contexts. The

of is just its context closure ; the latter is another characterization of

.

For all processes and , i� .

We use the alternative characterization of .

`Only if' part. From the de�nition, it is easily seen that is contained in

(note that for each , implies =). From this fact, by closing

under contexts and recalling that is a pre{congruence the thesis follows.

`If' part. Here, we show that is contained in . From this fact and

recalling that is a pre{congruence the thesis will follow.Assume that

and that (), for some . We have to show that there exists ()

such that . Now, let () be the process de�ned like the observer () in

De�nition 10, but with a fresh, standard action in place of . The following

fact, where is any process where neither nor occur, is straightforward to

prove by relying on Lemma 8: (()) i� there exists () such that

. The thesis is an immediate consequence of this fact.

�

a

<

<

2

#

#

#

#

M

M

M

M

b

b

b

b

b

!

c

!

!

c

!

Proof:

0 0

0 0

0

0

0

5 Dealing with Richer Languages

2 N

))

�

#

�

�

�

f g

� �

�

#

#

j

j

j

�

N

guarantee

guarantees

observation preorder

names

4.2 The must case

De�nition25.

Theorem26.

{

{

5.1 -calculus

P l

P l

P a P a P a

P P P

P Q

a P P a Q Q a

P Q P Q

P a P after � must a

s L P s

P after s must L Q s Qafter s must L

c s a s; L

c ! R

c c

R s R c s

R s R a s; L Rafter s must L

R a s; L c

Q s Qafter s must L

�

a; b; : : :

P Q R �

We introduce below the predicate, ! ; informally, this predicate

checks whether will always be able to o�er a communication on ; however,

di�erently from [5], we here only consider output actions.

Let be a process and . We write ! ()

if and only if whenever = then = .

The induced by and ! is de�ned as: if and

only if for each : (and !) implies (and !).

if and only if .

We use the characterization of the must preorder in terms of .

`If' part. First, note that ! if and only if () . Hence,

by de�nition, is included in . The thesis then follows by closing under

contexts and recalling that is a pre{congruence.

`Only if' part. Fix any and and suppose that and

() . We have to show that and () .

Now, let () and () be the observers de�ned like in De�nition 17, but

with a fresh, standard action in place of . The following two facts, where

is any process where neither nor occur, are straightforward to prove relying

on Lemma 8:

if and only if () .

Suppose that . Then () and furthermore ()

if and only if () ! .

Then and () follow from the de�nition of and from

the above two facts.

In this section we discuss the extensions of our theory to the asynchronous variant

of -calculus [15, 6, 12, 2] and to a version of asynchronous CCS of Section 2

with possibly non{injective relabelling.

For the sake of simplicity, we con�ne ourselves to the may preorder. The must

preorder requires a more complex notational machinery but also leads to results

similar to those for ACCS.

A countable set of is ranged over by . Processes are ranged

over by , and . The syntax of asynchronous {calculus contains the oper-

ators for output action, input{guarded summation, restriction, parallel compo-

sition, matching and replication:

P

m

c

b

b

y

Fig. 3.

i I

i i

a b

ab

�

�

�

2

0 0

� 0 00

0 00 0

0 00

1 2

()

def

def def def

P1

P2

P3

P4

P1, P2, P3

P2

P4

P4

P4

j j j j j j

[

�

� �

;

�! �! 2

�

f g L

2 L

L T

� � T

T

�

� \ ;

�

f g �

� T

� �

T

j

f g

6

j

Free names bound names

names

bound input

normal

mismatching

P ab a b :P � aP P P a b P P:

P P P

P P P P

�

� ab ab a b

� b

� a b �

P P P P b = P

a b

a b b

� �

s s s s :�:s :

s � s � s

� s s

s

a b a b

ab ab ab ab a b a b s s

� � �

s:� �:s � � s

� �:ab � ab � a b

ac: s = a b :s

�

a b b c � b ab b c :P

�

a c :s ab: s =

a b P

a b O

a b:O

::= () [=] !

and of a process , written fn() and bn() respec-

tively, arise as expected; the of , written n() are fn() bn(). Due

to lack of space, we omit the de�nition of operational semantics (see, e.g., [2]).

Recall that transition labels (actions), ranged over by , can be of four forms:

(interaction), (input), (output) or () (bound output). Functions bn(),

fn() and n() are extended to actions as expected: in particular, bn() = if

= () and bn() = otherwise.

In the sequel, we will write if and fn(). The new

kind of action () is called ; we extend bn() to bound inputs by

letting bn(()) = . Below, we shall use to denote the set of all visible

-calculus actions, including bound inputs, and let range over it. Given a trace

, we say that is if, whenever = (the dot stands for

trace composition), for some , and , then bn() does not occur in and

bn() is di�erent from any other bound name occurring in and . The set of

normal traces over is denoted by and ranged over by . From now on, we

shall work with normal traces only. Functions bn() and fn() are extended to

as expected. A complementation function on is de�ned by setting () = (),

= , = and () = (); please notice that = .

if is an input action

if is an input action and bn() bn() =

if = or = ()

() ()

Rules for the preorder over

The de�nition of remains formally unchanged, but the relation is

now the least preorder over closed under composition and generated by the

rules in Figure 3. Rules are the natural extensions to asynchronous

-calculus of the rules for ACCS. Here, some extra attention has to be paid

to bound names: in the environment, an output declaring a new name (bound

output) cannot be postponed after those actions which use the new name (side

condition of). For an example, consider actions () and () of (()).

Rule is speci�c to -calculus; it is due to the impossibility for observers to

fully discriminate between free and bound outputs. Informally, rule states that

if () is \acceptable" for an observer (i.e. leads to success), then ()

would be acceptable as well. Rule would not hold if we extended the language

with the operator [=] , considered e.g. in [4]. It is worthwhile

to note that ruling out matching from the language would not change the dis-

criminating power of observers. The e�ect of the test [=] can be simulated

by the parallel composition .

0

< <

<

<

P P

b

b

b

TO1 TO2

M m

M

m

M

m

M

M

1 1

1 2 2 2 2

�n

�n

6 Conclusions

i I

i i

i I

i i

o o i i

s

2 2

�

0 0 0 0

0

0 0

�

0

0 0 0 0

�

0 0 0 0 0 0 0

5.2 ACCS with General Relabelling

0 0

0

De�nition27.

Acknowledgments.

6

�

6

�

j f g 6

�

j f g j '

j '

L

� fj jg fj jg 	 fj jg n fj jg

�

�

� fj jg fj jg L � L

n fj 2 j 62 jg

�

� 2 L #

#

2 � N

	 	

2 L N

f) � � 	 \ n 	 ;g

a:a a:a

b a:! a=b a:a

b �:! a a=b a: a G G

G a :P a: a G G G G g :P

s s s s s s s s

s s

s s s s M L

M L l M l L

P Q s P s

Q s

s s L

P after s s s mustL Qafter s s s mustL

R s M Rafter sM

P R P ; s sM; s s s s ; In P M s s

�

A consequence of the presence of non{injective relabelling functions, is that

observers and contexts become more discriminating. For instance, they lead to

and . These can be proved by considering the observer

() . We also have , that can be proved by considering the

observer ((+)) . Therefore, the general laws () , where

= , and () + , where = , are not

sound anymore. By means of general relabelling, observers are able to distinguish

between the messages they emit and those emitted by the observed processes.

The trace preorder is now de�ned as the least preorder over closed under

trace composition and satisfying the laws and in Figure 2. Notice that

if then = , therefore now we have = .

The de�nition of remains formally unchanged.

Let us now consider the must preorder. In the following we shall write

i� and = , and for �nite multiset of and we shall

write for the multiset . The alternative characterization

of the preorder is now the following.

We set i� for each s.t. it holds that:

a) , and

b) for each , for each :

(()) implies (()) ,

where for any process , and multiset of , we de�ne as

: = () () (()) = .

We have examined the impact of the testing framework as proposed in [10, 13]

on asynchronous CCS. In particular, we have given three equivalent characteri-

zations of asynchronous testing observational semantics. The �rst one is given in

terms of observers and successful computations, the second relies on sets of traces

and acceptances, the third one is de�ned in terms of basic observables and con-

text closures. We have discussed generalizations of the results to asynchronous

-calculus and to ACCS with non{injective relabelling.

The above mentioned characterizations provide a good starting point for un-

derstanding asynchronous semantics and for relating testing semantics to other

approaches. The picture would have been more complete with an equational

characterization of our semantics; this will be the topic of a forthcoming paper.

Three anonymous referees provided valuable suggestions.

We are grateful to the Dipartimento di Scienze dell'Informazione of Universit�a

di Roma \La Sapienza" and to Istituto di Elaborazione dell'Informazione in Pisa

for making our collaboration possible.

A

th

�

�

�

References

Actors: a model of concurrent computation in Distributed Systems

CONCUR'96 LNCS

Infor-

mation and Control

Information

and Computation

ICALP'97

LNCS

Journal of the ACM

LICS'92

Theoretical

Computers Science

COORDINA-

TION'96 LNCS

Algebraic Theory of Processes

Communicating Sequential Processes

ECOOP'91 LNCS

Proc. of the IFIP Working Conf. on Programming Concepts and Methods

In ACM Symposium on Principles of Distributed Computing

Communication and Concurrency

Information and Computation

1. G.Agha. . Mit{

Press, Boston, 1986.

2. R.M. Amadio, I. Castellani, D. Sangiorgi. On Bisimulations for the Asynchronous

{calculus. , 1119, pp.147-162, Springer, 1996.

3. J. Bergstra, J.W. Klop. Process Algebra for Synchronous Communication.

, 60:109-137, 1984.

4. M. Boreale, R. De Nicola. Testing Equivalence for Mobile Systems.

, 120: 279-303, 1995.

5. M. Boreale, R. De Nicola, R. Pugliese. Basic Observables for Processes. ,

1256, pp.482-492, Springer, 1997.

6. G. Boudol. Asynchrony in the {calculus (note). Rapport de Recherche 1702, IN-

RIA Sophia{Antipolis, 1992.

7. S.D. Brookes, C.A.R. Hoare, A.W. Roscoe. A theory of communicating sequential

processes. , 31(3):560-599, 1984.

8. N. Busi, R. Gorrieri, G-L. Zavattaro. A process algebraic view of Linda coordina-

tion primitives. Technical Report UBLCS-97-05, University of Bologna, 1997.

9. F.S. de Boer, J.W. Klop, C. Palamidessi. Asynchronous Communication in Process

Algebra. , IEEE Computer Society Press, pp. 137-147, 1992.

10. R. De Nicola, M.C.B. Hennessy. Testing Equivalence for Processes.

, 34:83-133, 1984.

11. R. De Nicola, R. Pugliese. A Process Algebra based on Linda.

, 1061, pp.160-178, Springer, 1996.

12. M. Hansen, H. Huttel, J. Kleist. Bisimulations for Asynchronous Mobile Processes.

In Proc. of the Tblisi Symposium on Language, Logic, and Computation, 1995.

13. M.C.B. Hennessy. . The MIT Press, 1988.

14. C.A.R. Hoare. . Prentice-Hall Int., 1985.

15. K. Honda, M. Tokoro. An Object Calculus for Asynchronous Communication.

, 512, pp.133-147, Springer, 1991.

16. H. Jifeng, M.B. Josephs, C.A.R. Hoare. A Theory of Synchrony and Asynchrony.

, pp.446-

465, 1990.

17. N.A. Lynch, M.R. Tuttle. Hierarchical correctness proofs for distributed algo-

rithms. 6 , pp.137{

151, 1987.

18. R. Milner. . Prentice Hall International, 1989.

19. R. Milner. The Polyadic -calculus: A Tutorial. Technical Report, University of

Edinburgh, 1991.

20. R. Milner, J. Parrow, D. Walker. A calculus of mobile processes, (Part I and II).

, 100:1-77, 1992.

21. R. Pugliese. A Process Calculus with Asynchronous Communications. 5th Ital-

ian Conference on Theoretical Computer Science, (A. De Santis, ed.), pp.295-310,

World Scienti�c, 1996.

22. J. Tretmans. A formal approach to conformance testing. Ph.D. Thesis, University

of Twente, 1992.

This article was processed using the LT

E

X macro package with LLNCS style

