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Abstract

In the pi-calculus, we consider decidability of safety properties expressed in a simple
spatial logic. We first introduce a behavioural type system that, given a (in general infinite-
control) process P, tries to extract a spatial-behavioural type T , in the form of a CCS term
that is logically equivalent to the given process. Using techniques based on well-structured
transition systems (WSTS), we prove that satisfiability (T |= φ) is decidable for types over
an interesting fragment of the logic. The WSTS techniques we use require first endowing
the considered transition system with a well-quasi order, then defining a finite basis for
the denotation of each formula. This is achieved by viewing types as forests, with a well-
quasi order that essentially corresponds to forest embedding. Finally, as a consequence
of the logical equivalence between types and processes, we obtain the decidability of the
considered fragment of the logic for well-typed pi-processes.
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1. Introduction

In the setting of process calculi, spatial logics [10, 9] and behavioural type sys-
tems [19, 17, 11, 3] have recently gained attention as useful tools for the analysis of
concurrent systems. Spatial logics are well suited to express properties related to dis-
tribution, thanks to a combination of spatial and dynamic connectives. An example is
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the property expressing race-freedom on some channel a: “it is never the case that some-
where in the system there are two concurrent outputs ready at channel a”. As discussed
in [9], these logics are very rich and the equivalences they induce come very close to struc-
tural congruence. On the other hand, behavioural type systems are used to obtain abstract
representation of message-passing systems and to simplify their analysis. The paper that
initiated this approach is Igarashi and Kobayashi’s work on generic type systems [17],
where pi-calculus processes are abstracted by means of CCS types. The main property of
Igarashi and Kobayashi’s system is type soundness: any safety property (expressed in a
simple logic) satisfied by a type is also satisfied by the processes that inhabit that type. A
further elaboration on this theme can be found in [11].

In [3], we have combined ideas from spatial logics and behavioural type system into a
single framework. Like in [17], the language of processes we consider is the pi-calculus
and types are CCS terms. Differently from [17], though, types of [3] account for both
the behaviour and the spatial structure of processes. This fact allows one to establish a
strong correspondence between processes and their types. This makes it possible to prove
type soundness for a fairly general class of properties, not just safety invariants. This
enhancement comes at some price in terms of flexibility of the type system, though. A
prominent feature of [3] is that structural congruence is used as a subtyping relation. This
is consistent with the principle that processes and their types share, at least at a “shallow”
level, the same spatial structure. This principle would be violated if adopting other forms
of semantic subtyping, such as simulation preorders.

A driving motivation in all the mentioned works is being able to combine type check-
ing and model checking. The idea is that, rather than model checking a given property
against a process, with a behavioural type system at hand, one checks the property against
a simpler model, that is a type. Moving from processes to types certainly implies a gain
in simplicity in terms of reasoning [17, 3]. But surely something more precise can be said
about the effectiveness of this approach: this is the goal of the present paper.

In [18], undecidability of behavioural type systems using the simulation preorder as
a sub-typing relation has been proven. This result is a consequence of undecidability
of simulation in BPP’s. The result does not directly apply to the system of [17], which
is “generic”, but certainly suggests that any “reasonable” instance of this system based
on simulation preorders might turn out to be undecidable. We may hope the situation is
better for our system in [3]. As mentioned, this system adopts structural congruence as a
subtyping relation, which is easily seen to be decidable for the considered language.

In the present paper, our goal is to show decidability of an interesting fragment of Spa-
tial Logic over a class of (in general, infinite-control) pi-calculus processes. The fragment
in question is expressive enough to capture interesting safety invariants. We achieve our
goal in two steps. First, we devise a behavioural type system whose purpose is basically
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to extract a behavioural CCS type T out of given processes P. The type extracted this way
is logically equivalent to the original process, in the sense that, for the considered logic, a
formula is satisfied by P if and only if it is satisfied by T . This part of the work is based
on behavioural types techniques similar to those discussed in [3].

Second, we show that it is actually decidable whether a CCS type satisfies a formula in
the considered fragment. This part, which is largely independent from the first one, heavily
relies on the notion of well-structured transition systems (WSTS) introduced by Finkel and
Schnoebelen [15]. WSTS’s are a general technique for proving decidability of reachability-
related problems. Applying the technique requires two conditions to be satisfied. First,
one has to endow the transition system at hand, in our case CCS’s, with a well-quasi order
(WQO) that be compatible with the transition system, i.e. be a simulation relation. Second,
one has to show that certain sets of states, in our work those corresponding to denotations
of logical formulae, have a finite basis.

In our case, the first condition is met by viewing type terms as labelled forests and
endowing them with a preorder, which we name rooted tree embedding. Essentially, a
forest F is greater than another forest G if F contains an isomorphic copy of G . This
preorder is different from the standard Kruskal’s preorder often found in Graph Theory,
which would not result in a compatible WQO for our model.

The second condition is met by showing that, for each formula, a finite set of terms
(aka finite basis) is computable, whose upward closure wrt the quasi-order coincides with
the formula’s denotation. The definition of a finite basis is made nontrivial by the presence
of the boolean connective ∧, which requires some ingenuity.

In the end, we obtain decidability of the mentioned fragment of Spatial Logic over
types. In this respect, our result generalizes a previous result by Busi et al. [5], who
had proven decidability of weak barbs in CCS with replication, a very simple example of
structural property expressible in our logic. As a corollary of the logical correspondence
given by the type system, decidability of the considered logic carries over to well-typed
pi-processes. As far as we know, our work is the first attempt at combining tree-theoretic
reasoning and WSTS techniques in a process calculus setting.

It is worth to stress that, in the economy of the proof, being able to go from the pi-
calculus to CCS via the behavioural type system is essential. In particular, the WSTS

techniques do not apply directly to pi-calculus. The technical reason is that there is no
upper bound on the run-time nesting depth of restrictions in pi-terms, a fact that prevents
defining our syntax-based WQO directly on the pi-calculus. On the contrary, there is such
a bound in CCS, and this allows one to view CCS terms as forests. A minimalistic view
of the behavioural type system would be that it selects a set of pi-processes to whom the
WSTS technique can be applied. In practice, though, the type system does more than that,
since it computes CCS abstractions logically equivalent to the original processes, but much
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easier to manipulate.

Structure of the paper. In Section 2 we introduce the language of processes, a standard
polyadic pi-calculus with guarded summations. Section 3 describes the type system and
its main properties. In Section 4 we introduce Shallow Logic, the fragment of Spatial Logic
we are interested in, and two classes of formulae: monotone and anti-monotone, the latter
corresponding to safety properties. Logical equivalence of processes and types is also
discussed. Section 5 presents some definitions and results on forests and WQO’s, which
will be useful in the rest of the paper. Section 6 discusses how to endow behavioural types
with a WSTS structure. Decidability of (anti-)monotone formulae is proven in Section 7.
Further and related work is discussed in Section 8. Some technical material has been
confined to three separate appendices.

2. Processes

The language we consider is a synchronous polyadic pi-calculus [24] with guarded
summations and replications. We presuppose a countable set of names N and let
a,b, . . . ,x,y, . . . range over names. Processes P,Q,R, . . . are defined by the grammar be-
low

t ::= (x̃ : t̃)T

α ::=a(b̃)
∣∣ a〈b̃〉

∣∣ τ P ::=∑i∈I αi.Pi
∣∣ P|P

∣∣ (νb : t)P
∣∣ !a(b̃).P

where b̃ is a tuple of distinct names and t = (x̃ : t̃′)T is a channel type, with T a process
type to be defined in Section 3 and x̃ a tuple of distinct names. In a channel type, (x̃ : t̃) is a
binder with scope T (with x̃⊆ fn(T )); x̃ and t̃ (with x̃∩ fn(t̃) = /0) represent, respectively,
the formal parameters and types of objects that can be passed along the channel; type
T is a process type prescribing a usage of those parameters. The calculus is equipped
with standard notions of free names fn(·) and bound names bn(·). We let fn((νb : t)P) =
(fn(P)∪ fn(t))\{b} and that we identify terms up to alpha-equivalence, defined as usual.
To prevent arity mismatch in synchronizations, from now on we will only consider well-
sorted terms in some fixed sorting system (see e.g. [24]), and call P the resulting set of
processes.

In the rest of the paper, we write 0 for the empty summation, often omit trailing 0’s
and sometimes abbreviate (νb1 : t1) · · ·(νbn : tn)P as (νb̃i : t̃i)i∈1..nP, or simply (νb̃ : t̃)P
or (νb̃)P.

Over P , we define a reduction semantics, based as usual on a notion of structural
congruence and on a reduction relation. These relations are defined as the least congruence
≡ and as the least relation→ generated by the axioms in Table 1 and Table 2, respectively.
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(νy : t)0≡ 0 (P|Q)|R≡ P|(Q|R) P|Q≡ Q|P

P|0≡P (νx : t)P|Q≡ (νx : t)(P|Q) if x̃ /∈ fn(Q)

Table 1: Laws for structural congruence ≡ on processes

(COM) αl = a(x̃) α
′
n = a〈b̃〉 l ∈ I n ∈ J

∑i∈Iαi.Pi|∑ j∈Jα
′
j.Q j→ Pl[b̃/x̃]|Qn

(TAU)
j ∈ I α j = τ

∑i∈Iαi.Pi→ Pj

(REP) αn = a〈b̃〉 n ∈ J
!a(x̃).P|∑ j∈Jα j.Q j→!a(x̃).P|P[b̃/x̃]|Qn

(PAR) P→ P′
P|Q→ P′|Q

(STRUCT) P≡ Q Q→ Q′ Q′ ≡ P′

P→ P′
(RES) P→ P′

(νx : t)P→ (νx : t)P′

Table 2: Rules for the reduction relation→ on processes.

Concerning Table 1, note that we have dropped the law (νx : t)(νy : t′)P ≡ (νy : t′)(νx : t)P,
which would allow one to swap restrictions: swapping t with t′ would imply the capture
of y in case y is used as a free name in t. The rules in Table 2 are standard and do not
deserve explanations.

In the sequel, we say that a process P has a barb a, written P↘a, if P≡ (νb̃)(∑i αi.Pi+

a(x̃).Q|R) or P≡ (νb̃)(!a(x̃).Q|R), with a /∈ b̃. P↘a is defined similarly. By P
〈a〉−−→ Q we

denote a reduction P → Q arising from a synchronization on the channel name (subject)
a ∈ fn(P).

3. Type System

This section introduces the type system and some basic results about it. As to the class
of properties captured by the type system (Type Soundness), we postpone the discussion to
the next section, where we introduce Shallow Logic. Most of the material in this section is
adapted from [3]; however Proposition 2, which states the decidability of the type system,
is new.

3.1. Types
Types are essentially CCS terms, carrying some extra annotation on input prefixes and

restrictions. Let a, b, . . . range over finite set of names. The set T of types is generated by
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the following grammar:

µ ::= aa
∣∣ a

∣∣ τ T, S,U ::= ∑i∈I µi.Ti
∣∣ !aa.T

∣∣ T |T
∣∣ (νaa)T .

Notions of free and bound names (resp. fn(·) and bn(·)), alpha-equivalence, structural
congruence and reduction for types parallel those for processes and are not repeated here.
Note that, in the case of channel types, we let fn((x̃ : t̃)T ) = (fn(t̃)∪ fn(T )) \ x̃ while in
aa.T and (νaa)T , the annotations a contribute to the set of free names of a type, indeed
fn(aa.S) = {a} ∪ a∪ fn(S). In the type system, annotations will be employed so as to
ensure that each free name in a process is also free in the corresponding type, so that scope
extrusion, hence structural congruence, works properly in P and T (See [3, Remark 3] for
additional details; the annotations used there take a slightly different form but serve the
same purpose.)

In the sequel, we shall often omit the channel type ()0, writing e.g. (x)x instead of
(x : ()0)x and annotations on input prefixes and restrictions when not relevant for the dis-
cussion. We will let G, F, . . . range over guarded summation and replications.

G, F ::= ∑i∈I µi.Ti
∣∣ !aa.T

Consider any a ∈ N and any term T . In the following, we abbreviate a /∈ fn(T ) as
a#T . This notation is extended to tuples of names ã as expected. Similarly, given two sets
of names A and B, we write A#B to mean A∩B = /0.

3.2. Typing rules
The judgements of type system are of the form Γ ` P : T , where: P ∈ P , T ∈ T and Γ

is a context, that is, a finite partial map from names to channel types. We write Γ ` a : t if
a∈ dom(Γ) and Γ(a) = t. We say that a context is well-formed if whenever Γ ` a : (x̃ : t̃)T
then fn(T, t̃)⊆ x̃∪dom(Γ). In what follows we shall only consider well-formed contexts.

The type system can be thought of as a procedure that, given P, builds a CCS approx-
imation T of P, with help from a context Γ prescribing channel usage. Like in [17, 3],
rules for input and output are asymmetric, in the sense that, when typing a receiver a(x̃).P,
the type information on P that depends on the input parameters x̃ is moved to the sender
process (rule (T-OUT)). The intuitive reason is that the transmitted names b̃ are statically
known only to the sender.

Accordingly, the type of the input continuation P is required to decompose, modulo
≡, as T |T ′, where T is the type prescribed by the context Γ for a, and T ′, which does
not mention the input parameters x̃, is anything else. As a consequence, on the receiver’s
side (rule (T-INP)), one only keeps track of the part of the continuation type that does
not depend on the input parameters. In essence, in well typed processes, all receivers on a
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(T-INP)

Γ ` a : (x̃ : t̃)T fn((x̃ : t̃)T ) = a
Γ, x̃ : t̃ ` P : T |T ′ x̃#T ′

Γ ` a(x̃).P : aa.T ′
(T-REP) Γ ` a(x̃).P : aa.T

Γ `!a(x̃).P :!aa.T

(T-OUT) Γ ` a : (x̃ : t̃)T Γ ` b̃ : t̃ Γ ` P : S
Γ ` a〈b̃〉.P : a.(T [b̃/x̃] |S)

(T-TAU) Γ ` P : T
Γ ` τ.P : τ.T

(T-SUM) |I| 6= 1 ∀i ∈ I : Γ ` αi.Pi : µi.Ti
Γ `∑i∈Iαi.Pi : ∑i∈Iµi.Ti

(T-EQ) Γ ` P : T T ≡ S
Γ ` P : S

(T-RES) Γ,a : t ` P : T a= fn(t)
Γ ` (νa : t)P : (νaa)T (T-PAR) Γ ` P : T Γ ` Q : S

Γ ` P|Q : T |S

Table 3: Rules of the behavioural type system.

must share a common part that deals with the received names x̃ as prescribed by the type T .
Finally, note that (T-EQ) is related to sub-typing. In order to guarantee preservation of the
(shallow) spatial structure it is necessary to abandon preorders in favor of an equivalence
relation that respects the structure of terms, i.e. structural congruence. In the following we
say that a process P is Γ-well-typed if Γ ` P : T for some T ∈ T .

3.3. Results
This section presents the basic properties of the type system. Theorem 1 and 2 guar-

antee the reduction-based correspondence between processes and the types, while Propo-
sition 1 guarantees the structural one. Note that the structural correspondence is shallow,
in the sense that in general it breaks down underneath prefixes. Proofs are omitted and can
be found in [3, Subsection 4.3 and Appendix D].

Theorem 1 (subject reduction). Γ ` P : T and P→ P′ implies that there exists a T ′ such
that T → T ′ and Γ ` P′ : T ′.

Theorem 2 (type subject reduction). Γ ` P : T and T → T ′ implies that there exists a P′

such that P→ P′ and Γ ` P′ : T ′.

Proposition 1 (structural correspondence). Suppose Γ ` P : T .

1. P↘α, with α ::= a
∣∣ a, implies T ↘α; and vice-versa for T and P.

2. P≡ (νã : t̃)R implies T ≡ (νãã)S, with ã= fn(t̃) and Γ, ã : t̃ ` R : S; and vice-versa
for T and P.

3. P ≡ P1|P2 implies T ≡ T1|T2, with Γ ` Pi : Ti, for i = 1,2; and vice-versa for T and
P.
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We come now to discuss decidability of the type system. The actual proof is based on
a type inference algorithm that, given Γ and P, computes a sort of symbolic most general
type for P under Γ. A few preliminary definitions are in order.

Consider a countable set of type variables V , ranged over by X , . . .. We let E range
over open type expressions, c range over constraints and C range over tuples of constraints,
as defined below.

E ::= ∑i∈I µi.Ei
∣∣ !aa.E

∣∣ E|E
∣∣ (νaa)E

∣∣ X
c ::= 〈E ≡ X |T, ỹ#X〉
C ::= c ·C

∣∣ (Ci)i∈I

We will denote by /0 the empty forest (Ci)i∈ /0.
Below, we give a syntax-driven definition of the inference algorithm inf(·, ·). In the

definition, we assume that all the bound names in Γ and P are distinct from one another
and from the free names. In the clauses for parallel composition and summation, renaming
of type variables is implicitly applied in order to ensure that each type variable occurs at
most once in a constraint.

inf(a(ỹ).P,Γ)=
(
aa.X , 〈E ≡ X |T, ỹ#X〉 ·C

)
, (E,C )= inf(P,(Γ, ỹ : t̃)), a= fn(t̃,T )\ ỹ

if Γ ` a : (ỹ : t̃)T and X#C
inf(a〈b̃〉.P,Γ)=

(
a.(E |T [b̃/x̃]),C

)
, (E,C )= inf(P,Γ), Γ ` b̃ : t̃

if Γ ` a : (x̃ : t̃)T
inf(τ.P,Γ)=

(
τ.E,C ), (E,C )= inf(P,Γ)

inf(∑i∈I αi.Pi,Γ)=
(

∑i∈I µi.Ei,(Ci)i∈I
)
, (µi.Ei,Ci)= inf(αi.Pi,Γ), for each i ∈ I, |I| 6= 1

inf(P1|P2,Γ)=
(
E1|E2,(C1,C2)

)
, (Ei,Ci)= inf(Pi,Γ), for i = 1,2

inf(!a(x̃).P,Γ)=
(
!aa.E,C

)
, (aa.E,C )= inf(a(x̃).P,Γ)

inf((νa : t)P,Γ)=
(
(νaa)E,C

)
, (E,C )= inf(P,(Γ,a : t)), a= fn(t)\a

In order to solve the constraints C , we make use of an auxiliary function split(·), which
takes a constraint c of the form 〈T ≡ X |S, ỹ#X〉 and returns an arbitrarily chosen type U
such that U |S≡ T and ỹ#U , if it exists:

split(〈T ≡ X |S, ỹ#X〉) =
{

[U/X ] with U s.t. U |S≡ T and ỹ#U
undefined if such a U does not exists.

Lemma 1. split(〈T ≡ X |S, x̃#X〉) is computable.

PROOF: (Outline) First, we observe that ≡, as defined in Table 1, is decidable: this can
be proved by an argument similar to that used in the proof of decidability of ≡!fr in [12],
where ≡!fr corresponds to ≡ plus the rule (νx)(νy)P≡ (νy)(νx)P.
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Consider now the constraint 〈T ≡ X |S, x̃#X〉 and assume that in T and S the bound
names are pairwise distinct and distinct from the free names and names in x̃. The algorithm
proceeds by distinguishing the following cases.

1. If T ≡ S then split(〈T ≡ X |S, x̃#X〉) = [0/X ].
2. If S≡ 0 and x̃#T then split(〈T ≡ X |S, x̃#X〉) = [T/X ].
3. If (1) and (2) do not apply then let T ′ and S′ be the types obtained by deleting from

T and S any 0 component, at any nesting level (i.e. by repeatedly applying rule
P|0≡ P from left to right, until this is possible). Hence both T ′ ≡ T and S′ ≡ S.
The algorithm proceeds by trying to find a substitution for X satisfying T ′ ≡ X |S′.
Let

Π
4
= {〈T1,T2〉 : T ′ ≡− T1|T2} ,

where ≡− denotes the congruence induced by the axioms of ≡ except alpha-
conversion and P|0 ≡ P. Note that Π is finite and can be built by applying ≡− and
reducing T ′ into a web-form (see [12]), a normal form identifying the maximal num-
ber of parallel components which a term can be decomposed into. If there exists a
pair 〈T1,T2〉 ∈Π such that (S≡)S′≡T1 and x̃#T2 then split(〈T ≡X |S, x̃#X〉)= [T2/X ].

4. In case no one of the above cases applies, split(〈T ≡ X |S, x̃#X〉) is undefined.

2

The function solve(C ) we define below yields either a substitution σ from type vari-
ables to types satisfying C (written σ |= C ), if it exists, or is undefined otherwise. The
constraints are solved by proceeding bottom-up. Formally, the function solve(·) is defined
as follows (where /0 is the empty substitution):

solve( /0)= /0

solve(c ·C )=

{
[U/X ]∪σ if σ = solve(C ) and split(cσ) = [U/X ]
undefined, otherwise

solve((Ci)i∈I)=
⋃

i∈I σi if σi = solve(Ci) .

As a consequence of Lemma 1 we get the following result.

Lemma 2. Both inf(·, ·) and solve(·) are computable.

Proposition 2. Let Γ be a context. It is decidable whether P is Γ-well-typed. Moreover, if
this is the case, it is possible to compute a type T such that Γ ` P : T .

PROOF: The proof rests on the type inference algorithm defined above. It is sufficient to
prove correctness and completeness of the algorithm, that is
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1. inf(Γ,P) = (E,C ) and solve(C ) = σ implies Γ ` P : Eσ;
2. if Γ ` P : T then there are E,C and σ s.t. inf(Γ,P) = (E,C ), solve(C ) = σ and

Eσ≡ T .

Statements (1) and (2) above, can be proven by relying on the existence of normal
derivations. A normal derivation, written Γ `N P : T , is a typing derivation where rule
(T-EQ) can be applied only immediately before (T-INP) (see also Appendix D.1 of [3]).
It is an easy matter to prove that for any process P and derivation Γ ` P : S there exists
a normal derivation Γ `N P : T , for some T ≡ S. The proof of (1) is straightforward by
induction on the last rule applied for deducing inf(P,Γ) = (E,C ). Statement (2) can be
proven by induction on the normal derivation Γ `N P : T , where S≡ T .

Lemma 2 shows that inf(·, ·) is computable and that a solution for the inferred con-
straints can be computed. Therefore, by (1) it is possible to compute a type T such that
Γ ` P : T . 2

4. Shallow Logic and Type Soundness

The logic for the pi-calculus presented below can be regarded as a fragment of Caires
and Cardelli’s Spatial Logic [9]. In [3] we have christened this fragment Shallow Logic,
to emphasize the fact that it allows one to speak about the dynamic as well as the “shal-
low” spatial structure of processes and types. In particular, the logic does not provide for
modalities that allow one to “look underneath” prefixes. Another important feature of this
fragment is that the basic modalities focus on channel subjects, ignoring the object part at
all. The selected mix of operators is sufficient to express a variety of interesting process
properties (no race condition, unique receptiveness [26], deadlock freedom, to mention a
few). In what follows we present the logic. Then discuss an undecidability result that mo-
tivates the introduction of a restricted fragment of the logic. We then introduce the logical
correspondence between types and processes.

4.1. Definitions
The set L of Shallow Logic formulae φ,ψ, . . . is given by the following syntax, where

a ∈N :
φ ::= T

∣∣ a
∣∣ a

∣∣ φ|φ
∣∣ ¬φ

∣∣ H∗φ
∣∣ φ∧φ

∣∣ φ∨φ
∣∣ 〈a〉φ ∣∣♦∗φ .

The set of logical operators includes spatial (a,a, |,H∗) as well as dynamic (〈a〉,♦∗) con-
nectives1, beside the usual boolean connectives, including a constant T for “true”. We

1The version of the Shallow Logic considered in [3] features slightly more general versions of the even-
tuality modality. Here we have left these operators out to simplify the presentation, however they can be
accommodated with only cosmetic changes.
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[[T]]=U [[H∗φ]]=
{

A
∣∣∃ã,B : A≡ (νã)B, ã#n(φ), B ∈ [[φ]]

}
[[φ1∨φ2]]= [[φ1]]∪ [[φ2]] [[φ1∧φ2]]= [[φ1]]∩ [[φ2]]

[[¬φ]]=U \ [[φ]] [[〈a〉φ]]=
{

A
∣∣∃B : A

〈a〉−−→ B, B ∈ [[φ]]
}

[[a]]=
{

A
∣∣A↘a

}
[[φ1|φ2]]=

{
A
∣∣∃A1,A2 : A≡ A1|A2, A1 ∈ [[φ1]], A2 ∈ [[φ2]]

}
[[a]]=

{
A
∣∣A↘a

}
[[♦∗φ]]=

{
A
∣∣∃B : A→∗ B, and B ∈ [[φ]]

}
Table 4: Interpretation of formulae.

have included both disjunction and conjunction to present more smoothly “monotone”
properties, that is, properties that are preserved when “adding structure” to terms. The set
of names of a formula φ, written n(φ), is defined as expected. The interpretation of L over
processes and types is given in Table 4. We let U be the set including all processes and all
types. We write A |= φ if A ∈ [[φ]], where A ∈U. Similarly, given any sequence Ã ∈U∗
we write Ã |= φ if Ã = (A1, . . . ,An) and A1| · · · |An |= φ. Connectives are interpreted in the
standard manner. In particular, concerning spatial modalities, the barb atom a (resp. a)
requires that A has an input (resp. output) barb on a; φ|ψ requires that A can be split into
two parallel components satisfying φ and ψ; H∗φ requires that A satisfies φ, up to some top
level restrictions. Concerning the dynamic part, formula 〈a〉φ checks if an interaction with
subject a may lead A to a state where φ is satisfied; ♦∗φ checks if any number, including
zero, of reductions may lead A to a state where φ is satisfied.

In this paper, we shall mainly focus on safety properties, that is, properties of the form
“nothing bad will ever happen”. The following definition is useful to syntactically identify
classes of formulae that correspond to safety properties.

Definition 1 (monotone and anti-monotone formulae). We say a formula φ is monotone
if it does not contain occurrences of ¬ and anti-monotone if it is of the form ¬ψ, with ψ

monotone.

Safety invariants can often be written as anti-monotone formulae ¬♦∗ψ with ψ a
monotone formula representing the bad event one does not want to occur.

Example 1. The following formulae define properties depending on generic names, a and
l.

No race condition: NoRace(a)
4
= ¬♦∗H∗(a|a)

Linearity: Linear(a)
4
= ¬♦∗〈a〉♦∗〈a〉

Lock: Lock(a, l)
4
= ¬♦∗H∗(l|〈a〉)

NoRace(a) says that it will never be the case that there are two concurrent outputs com-
peting for synchronization on a. Linear(a) says that it is not the case that a is used twice
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in a computation. In Lock(a, l), a represents a shared resource and l a lock: the formula
says that it is never the case that the resource is acquired in the presence of the lock, that
is, without prior acquisition of the lock.

The driving motivation leading us to identify the classes of monotone and anti-
monotone formulae and to focus on safety properties is that satisfiability of formulae like
♦∗(a∧¬b) – that are neither monotone nor anti-monotone – is not decidable even in the
case of CCS.

Theorem 3. Let a and b be any two distinct names. The problem of deciding whether
T |=♦∗(a∧¬b) is undecidable.

PROOF: (Outline) Undecidability of the logic can be proven by reduction from the (unde-
cidable) termination problem for Random Access Machines (RAMs) [27]. More precisely,
one defines a nondeterministic encoding of RAMs into CCS. The encoding is not entirely
faithful, in that translation of a decrement operation can perform the jump even in case the
register is not empty, as follows.

[[i : Succ(r j)]] : !pi.(inc j | ack.pi+1)

[[i : DecJump(r j,s)]] : !pi.(dec j | (ack.pi+1 + jmp.ack.ps))

[[r j]] : !nr j.(ν m,u)(
m | !m.(ack | inc j.(m | u+wrong)+dec j.(u.m+ jmp.nr j))

)
The execution of these wrong jumps can be detected at the end of the computation

by checking the presence of the barb wrong. Thus, if a computation reaches a state with
invocation to instruction in+1 (indicating the terminating instruction) but without the barb
wrong, we can conclude that the modeled RAM terminates. In this way we have reduced
RAM termination to the problem of checking whether the process modeling the RAM
satisfies the formula ♦∗(in+1 ∧¬wrong). From this undecidability of the logic follows
(see [1, Appendix A] for more details). 2

4.2. Type Soundness
The following theorem is crucial: it basically asserts that, under a condition of well-

typing, model checking on processes can be reduced to model checking on types. The
proof is based on the structural and operational correspondences seen in Section 3 and can
be found in [3, Section 5].

Theorem 4 (type-process correspondence). Suppose Γ ` P : T . Let φ be any formula.
Then P |= φ if and only if T |= φ.

12



(a.T ) ↓x̃ =

{
τ.(T ↓x̃) if a /∈ x̃
a.(T ↓x̃) otherwise

(aa.T ) ↓x̃ =

{
τa∩x̃.(T ↓x̃) if a /∈ x̃
aa∩x̃.(T ↓x̃) otherwise

(T1|T2) ↓x̃ =(T1 ↓x̃)|(T2 ↓x̃) (τ.T ) ↓x̃ = τ.(T ↓x̃) ((νb̃b)T ) ↓x̃ =(νb̃b∩{x̃,b̃})(T ↓x̃,b̃)

(∑i µi.Ti) ↓x̃ =∑i
(
(µi.Ti) ↓x̃

)
(!aa.T ) ↓x̃ = !

(
(aa.T ) ↓x̃

)
((ỹ : t̃)T ) ↓x̃ =(ỹ : t̃ ↓x̃,ỹ)T ↓x̃,ỹ

Table 5: T ↓x̃.

The correspondence given by the previous theorem can be enhanced by the next result
(the technical development in the rest of the paper does not depend on it, though). This
result says that, under certain conditions, model checking can be safely carried out against
a more abstract version of the type T , with a further potential gain in efficiency. This more
abstract version is obtained by “masking” the free names of the type that are not found in
the formula. Moreover, if this masking produces a top-level sub-term with no free names,
this term can be safely discarded. More precisely, for any type T and set of names x̃, we
let T ↓x̃ denote the type obtained by replacing each annotation (·)a with the annotation
(·)a∩x̃ and each free occurrence of a prefix a. or a., for a /∈ x̃, with the prefix τ.. The formal
definition can be found in Table 5. In this definition we assume as usual that all bound
names in T are distinct from each other and disjoint from the set of free names and from
x̃.

For instance, we have that

(νaa)(aa.bb|aa.cc|c|a) ↓b= (νaa∩{a,b})(aa∩{a,b}.bb∩{a,b}|aa∩{a,b}.τc∩{a,b}|τ|a) .

Notice that terms produced by the hiding operator are in general not in T . Consider e.g.
the τc∩{b} prefix above or (!aa.c) ↓c=!τa∩{c}.c. More precisely, T ↓x̃ belongs to the set of
terms defined by the syntax of types extended as follows:

T ::= · · ·
∣∣ !τa.T

∣∣ τ
a.T .

Again, the proof of the proposition below can be found in [3, Section 5 and Ap-
pendix A].

Proposition 3. (a) Suppose Γ`P : T and let φ be an anti-monotone formula with n(φ)⊆ x̃.
Then T ↓x̃|= φ implies that T |= φ. (b) Suppose fn(U) = /0. Then, for any T and φ, T |U |= φ

if and only if T |= φ.

As shown in the following example, in some cases Proposition 3 (b) allows one to
safely discard subterms of T possibly producing an infinite behaviour. This is clearly
useful in the model checking phase.
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Example 2. Consider the formula NoRace(a) introduced in Example 1 and the process

P = b〈a〉+a |b(x).(νc)(c | !c.x.c
)
| !a. f | ! f .n .

Here, at runtime, the number of occurrences of n “counts” the number of interactions
performed on a. For a suitable Γ, one finds Γ ` P : T , where (ignoring annotations)

T = b.(νc)(c | !c.a.c
)
+a |b | !a. f | ! f .n .

It can be easily seen that

T ↓a= (b.(νc)(c | !c.a.c
)
+a |b | !a. f | ! f .n) ↓a= τ.(νc)(c | !c.a.c

)
+a |τ | !a.τ | !τ.τ .

Now,
(
τ.(νc)(c | !c.a.c)+ a

)
| !a.τ |= NoRace(a), and, by Proposition 3 and Theorem 4,

P |= NoRace(a).

5. Ordered forests

In this section we will introduce some definitions and prove results concerning trees
and forests, which will be useful in the rest of the paper.

5.1. Definitions
Let L be a non-empty set ranged over by `,`′, . . .. We define ordered forests F , G , ...

with labels in L (from now on, simply forests) to be the set of objects inductively defined
as follows:

(i) the empty sequence ε is a forest;

(ii) if F1, ...,Fk are forests (k ≥ 0) then the sequence (`1,F1) · · ·(`k,Fk), with `i ∈ L, is a
forest with roots `1, ..., `k.

A forest of the form (`,F ) is called an (ordered) tree with root `. A tree of the form (`,ε)
is called a leaf.

It is useful to introduce a syntax to denote forests and forest contexts. We presuppose
a countable set of forest variables ranged over by X1,X2, . . .. Let L be the set of terms
generated by the following grammar:

C,C′ ::= X
∣∣ 0

∣∣ `(C)
∣∣C|C′

where ` ∈ L.
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Any term C ∈ L describes a forest context on the set of labels L where one interprets
composition | as concatenation of forests. Formally, each C is mapped to a forest context
FC as follows:

F0 = ε FX = (X ,ε) F`(C) = (`,FC) FC1| C2 = FC1 ·FC2 .

Note that open terms represent contexts, with variables acting as the “holes”. In what
follows, we will let C range over possibly open terms, reserving the letters t,s, . . . for the
subset of closed terms. We will often use the familiar pictorial representation of trees and
forests, as illustrated in the following example.

Example 3 (pictorial representation of forests). Let A = {a,b} and consider the term
C = a(b|a(a(X)))|b(a(b)), where b abbreviates b(0). The corresponding forest context
FC is depicted below.

a

b a

a

X

b

a

b

Via the correspondence C−FC, we can identify the term C with the forest context FC;
in what follows we shall not notationally distinguish between the two.

We introduce now some auxiliary notations for forests. The sequence of leaves ˜̀=
(`1, . . . , `n) obtained by visiting F in depth first order, aka the frontier of F , is denoted
by ∂F . Similarly, the sequence of roots (`1, . . . , `n) occurring in F , from left to right, is
denoted by ρF . By a slight overload of notation, we will sometimes denote by ∂F also
the set and the multiset of leaves of F : in each case, it should be clear from the context
wether ∂F denotes a sequence, a set or a multiset. The same convention applies to ρF .
We will use both a ground and an open version of the function ∂, denoted respectively
∂g and ∂o, yielding the sequence of ground (non-variables) and open (variables) leaves.
In the example above: ∂C= (b,X ,b), ∂gC= (b,b), ∂oC= (X) and ρC = (a,b). We will
sometimes write C[X̃ ] to indicate that ∂oC = X̃ = (X1, . . . ,Xk). In this case, taken t̃ =
(t1, ..., tk), we will denote by C[t̃] the term obtained by textually replacing each Xi with ti
in C[X̃ ].

The height of a forest F , written h(F ), is defined as the maximal length of a path from
a root to a leaf, as expected; the height of a leaf is 0 while the height of the empty forest is
not defined. We will denote as F(n) the set of all forests of height at most n.
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5.2. A well-quasi order on forests
The next step is to introduce a well-quasi order over forests. We start by recalling some

background definitions and results.

Definition 2 (WQO). Let S be a set. A quasi-ordering (QO, aka preorder) on S is a reflexive
and transitive binary relation over S. A QO� on S is a well quasi-ordering (WQO for short)
if for any infinite sequence of elements of S, (si)i≥0, there exist i and j, with i < j, such
that si � s j.

It can be easily seen that the condition on sequence (si)i≥0 in the definition of WQO

above can be equivalently reformulated as follows: for any i there exists an infinite se-
quence of indices j0, j1, . . . such that i < jk and si � s jk , for each k ≥ 0.

The following definition provides us with a WQO � on forests called rooted tree em-
bedding. One can think of this WQO as saying that F1 � F2 if F2 contains an isomorphic
copy of F1, preserving the roots of F1. It is worth to note that the embedding consid-
ered here is stronger than the one considered by Kruskal in his tree theorem [20] (see
Remark 1).

Definition 3 (rooted-tree embedding). Let F be the set of all forests with labels in a
nonempty set L. The rooted-tree embedding � over F is inductively defined as follows:

(`1,F1) · · ·(`k,Fk)� (`′1,G1) · · ·(`′h,Gh)

iff there are distinct indices 1 ≤ i1 < · · · < ik ≤ h s.t. for each j, 1 ≤ j ≤ k, ` j = `′i j
and

F j � Gi j .

Example 4 (embedding). Let L = {a,b}. It is easy to see that a(b(a)|a)|b(a|b) �
a(b(a)|a(b))|b(a|a(b)|b). Pictorially:

a

b a

a

b

a b �

a

b a

a b

b

a a

b

.b

In Theorem 5 below, we prove that the rooted tree embedding is a WQO, by relying on
Higman’s Lemma. In what follows, given any set S, we will denote by S∗ the set of finite
sequences of elements of S.

Lemma 3 (Higman’s Lemma [16] ). Let S be a finite set and � a WQO over S. Define
�∗ over S∗ as follows: for any u = u1u2 · · ·un and v = v1v2 · · ·vm in S∗, with 1 ≤ n ≤ m,
u �∗ v if and only if there are j1, · · · , jn such that 1 ≤ j1 ≤ ·· · ≤ jn ≤ m and ui � v ji for
each 1≤ i≤ n. Then the relation �∗ is a WQO over S∗.

16



Theorem 5. Let k ≥ 0, L be a finite set of labels and let F(k) be the subset of all forests of
height at most k with labels in L. Then (F(k),�) is a WQO.

PROOF: We proceed by induction on k.
The case k = 0 follows from Lemma 3.
Assume k > 0 and consider any infinite sequence F1,F2, . . .∈ F(k). Fix a generic i0≥ 1

and let Fi0 = (`1,G1) · · ·(`n,Gn). Therefore, ρFi0 = (`1, · · · , `n). We show that there exists
a j > i0 such that Fi0 � F j.

Consider the infinite sequence of elements in F(0) (sequences of leaves):

ρF1, ρF2, . . . .

Let I0 =
{
( j, f ) | j > i0 and ρFi0 � f ρF j

}
, where (`1, · · · , `n) � f (`

′
1, · · · , `′h) means that

`i = `′f (i), with f : {1, . . . ,n} → {1, . . . ,h} a monotone and injective total function. Given

that F(0) is a WQO (Lemma 3, by taking = as the underlying preorder) we have that Π1(I0),
the projection of I0 on the first coordinate, is an infinite set.

In what follows, for any pair ( j, f ) ∈ I0 with F j = (`′1,H1) · · ·(`′h,Hh), we let F j, f (m)

stand for H f (m). Consider the sets

I1 =
{
( j, f ) ∈ I0 |G1 � F j, f (1)

}
I2 =

{
( j, f ) ∈ I1 |G2 � F j, f (2)

}
...

In =
{
( j, f ) ∈ Ik−1 |Gn � F j, f (n)

}
.

Again, we get that Π1(Ii) ⊆ F(k−1), for i = 1, . . . ,n, above is infinite, by applying the
induction hypothesis.

Now, take any ( j, f ) ∈ In and let F j = (`′1,H1) · · ·(`′h,Hh). By construction, it holds
that h≥ n and that for any i = 1, . . . ,n

`i = `′f (i) and Gi �H f (i)

hence Fi0 � F j. 2

Remark 1 (on bounded height and Kruskal’s preorder). The condition of bounded
height in Theorem 5 is necessary to make � a WQO. Indeed, if we drop this condition,
it is easy to build an infinite sequence of trees violating the condition of WQO. This is
illustrated by the following sequence of trees on the labels L = {a,b}.
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b a

b

a

a

b

a

a

...

b

This sort of situations does not arise when considering Kruskal’s preorder [20]. In the
case of a finite alphabet L, Kruskal’s preorder, �kr, can be defined on trees inductively as
follows:

1. a�kr a(t1, . . . , tn), for any a ∈ L;
2. s�kr a(. . . , t, . . .) if s�kr t;
3. a(s1, . . . ,sm)�kr a(t1, . . . , tn) if m≤ n and there exists j1, . . . , jm such that 1≤ j1 <

j2 < · · ·< jm ≤ n and si �kr t ji , for i = 1, . . . ,m.

Thanks to condition 2, the sequence of trees above is strictly increasing wrt �kr. This pre-
order would not be a good choice for our proposal, though, as discussed later in Remark 4.

5.3. Other results on forests
In the remainder of the section we give some properties of the rooted tree embedding

that will prove useful in later sections. Some additional notation is in order. A path in
a forest F as a sequence of natural numbers that uniquely identifies a node in the forest.
As an example, let L = {a,b,c} and consider the forest depicted below. The sequence 122
identifies the path characterized by dashed arrows, hence the node labelled c.

a

a b

b c

a

b

b a

Given any forest F , the set of all its paths, written path(F ) ⊆ (N \ {0})∗, is defined as
follows

path(ε)= /0

path((`1,F1), . . . ,(`n,Fn))={1, . . . ,n}∪{1} ·path(F1)∪·· ·∪{n} ·path(Fn) .

Note that the set path(·) is prefix closed. In the example above we have path(F ) =
{1,11,12,121,122,2,21,211,212} and, as an example, 122 corresponds to the (only)
node labelled c.
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In the following we will write F|I , with I a prefix-closedset of paths, for the forest
obtained from F by erasing each path and node not belonging to I. E.g. consider the
forest F depicted above and let I = {1,12,121,21,212}, then F|I is:

a

b

b

a

b

a

The following lemma gives an alternative characterization of rooted tree embedding:
it explicitly conveys the idea that F �G means that G contains an isomorphic copy of F .

Lemma 4. F � G if and only if there is an injective f : path(F )→ path(G) such that
G|range( f ) = F .

PROOF: (⇒). Let F = (`1,F1) · · ·(`k,Fk) and G = (`′1,G1) · · ·(`′h,Gh). By Definition 3,
F � G implies that there are distinct indices 1 ≤ i1 < · · · < ik ≤ h such that for each j,
1≤ j ≤ k, ` j = `′i j

and F j � Gi j .
By applying the induction hypothesis to each F j � Gi j , with 1 ≤ j ≤ k, we get that

there exists f j : dom(F j)→ dom(Gi j) such that Gi j|range( f j) = F j.
For any γ = j · γ′ ∈ path(F ), define f : path(F )→ path(G) as follows:

f (γ)
4
= i j · f j(γ

′) .

Hence G|range( f ) = (`′i1,Gi1|range( f1)) · · ·(`
′
ik ,Gik|range( fk)) = (`1,F1) · · ·(`k,Fk), as expected.

(⇐). The vice-versa is obvious. 2

In the following, we introduce a couple of results on forest contexts that will be useful
when proving the decidability of the logic. The first one guarantees that given two contexts
related by �, one can always find a new context in between the two, having as leaves all
the holes of the bigger one and all the ground leaves of the smaller one.

Lemma 5. Let C,C′ ∈L. If C′�C then there is C′′ ∈L such that C′�C′′�C, ∂oC′′= ∂oC
and ∂gC′′ = ∂gC′.

PROOF: From C′ � C we know that a copy of C′ is embedded into C, in the sense of
Lemma 4. Let Xi ∈ ∂oC \ ∂oC′. Consider the path γ joining a root of C to Xi. Let n be
the last node from the root in the path γ which is shared between C and C′, if any such
node exists, otherwise let n be the root in the path. Build a new context C∗ by extending
C′ with the new path from n to Xi: this may possibly require inserting a new tree into C∗
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if n does not belong to C′. By construction, the new context C∗ thus obtained is such that
C′�C∗�C, and ∂oC∗= ∂oC′∪{Xi}. Repeat this construction for another X j ∈ ∂oC\∂oC∗,
and continue until the wanted C′′ is obtained. 2

The following lemma states some basic properties of context filling and of the preorder
�. Its proof follows easily from Lemma 4 and is omitted.

Lemma 6. 1. C[X̃ ]�C′[X̃ ] implies C[t̃]�C′[t̃].
2. t �C[s̃] implies that there are C′, t̃ ′ such that t =C′[t̃ ′] with C′ �C and t̃ ′ � s̃.
3. C[s̃]� t implies that there is C′ such that t =C′[s̃] and C �C′.

6. A well-structured transition system for behavioural types

We first review below some background material on well-structured transition sys-
tems [15]. We then introduce a well-structured transition system for our behavioural types.

6.1. Background
Recall that a transition system is a pair Tr = (S, → ), where S is the set of states and

→⊆ S× S is the transition relation. Tr is finitely-branching if for each s ∈ S the set of
successors {s′|s → s′} is finite.

Definition 4 (WSTS, [15]). A well-structured transition system (WSTS for short) is a pair
W = (�, Tr) where:

(a) Tr = (S, → ) is a finitely-branching transition system, and

(b) � is a WQO over S that is compatible with → ; that is: whenever s1 � s2 and s1 → s′1
then there is s′2 such that s2 →∗ s′2 and s′1 � s′2.

Otherwise said, a WSTS is a finitely-branching transition system equipped with a WQO

that is a weak simulation relation. Let W = (�,Tr) be a transition system equipped with
a QO �. Let I ⊆ S be a set of states. We let the upward closure of I, written ↑ I, be
{s ∈ S| s′ � s for some s′ ∈ I}. The set ↑ {s} will be often abbreviated as ↑ s. A basis of
(an upward-closed) set Y ⊆ S is a set I such that Y =↑ I. We let the immediate predecessors
of I, written Pred(I), be the set {s ∈ S| s → s′ for some s′ ∈ I} and the set of predecessors
of I, written Pred∗(I), be {s ∈ S| s →∗ s′ for some s′ ∈ I}. We say W has an (effective)
pred-basis if there is a (computable) function pb(·) : S→ 2S such that for each s∈ S, pb(s)
is a finite basis of ↑ Pred(↑ s).

Proposition 4 (Finkel and Schnoebelen [15]). Let W be a WSTS such that: (a) � is de-
cidable, and (b) W has an effective pred-basis. Then there is a computable function that,
for any finite I ⊆ S, yields a finite basis of Pred∗(↑ I).
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The above proposition entails decidability of a number of reachability-related problems
in WSTS’s (see [15]). Indeed, saying that the set I is reachable from a given state s is
equivalent to saying that s ∈ Pred∗(↑ I): this can be decided, if one has at hand a finite
basis B for Pred∗(↑ I), by just checking whether s� s′ for some s′ ∈ B.

6.2. A WSTS for behavioural types
In this subsection, we show that our types can be represented as ordered forests. This

representation is convenient for endowing them with a WSTS structure.
Let (Xi)i≥1 be an infinite set of variables disjoint from N and consider the grammar

of types in Section 3, augmented with the clause T ::= X , where X ranges over variables.
Let T be the set of terms generated by this grammar – by “term” we mean here a proper
term, not an alpha-equivalence class of terms – that respect the following conditions: each
variable occurs at most once in a term and only in the scope of restrictions and/or parallel
compositions. E.g. (νaa)(X1|aa.b.c)|X2 is in T, while a.X1 is not. In what follows, we will
let C,C′, . . . range over T, reserving the letters S,T, . . . for the subset of closed terms, that
is types.

The definitions and results of Subsection 5.1 apply here, by setting the set of labels
thus

L = {(νaa), G, X |a ∈N ,a⊆fin N ,G guarded summation or replication} .

More explicitly, each context C can be seen as a forest FC, having restrictions (νaa) as
internal labels and either guarded summations/replications G or variables X as leaves, and
parallel composition | interpreted as concatenation. That is, each C is mapped to a forest
FC as follows:

FX = (X ,ε) FG = (G,ε) FT |S = FT ·FS F(νaa)T = ((νaa),FT ) .

Note that F0 = F∑i∈ /0 µi.Ti = (0,ε). It is worth to stress that L can be partitioned into two
sets: one containing labels like (νaa), which are only used to annotate internal nodes, and
the other containing labels like G and X , which are only used to annotate leaves.

Example 5. Consider the context C = b. f f |(νaa)
(
b
b
.a |X1 |(νcc)(b |a.(νdd)d )

)
. The for-

est FC is depicted below.

b. f f (νaa)

bb.a X1 (νcc)

b a.(νdd)d
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Clearly, the QO introduced in Definition 3 is inherited by T, that is, we can set: C �C′

iff FC � FC′ .
To make the rooted-tree embedding a well QO, though, we have to restrict ourselves to

some subset of T with bounded height and finite set of labels, so as to meet the conditions
of Theorem 5. This set will be obtained by tailoring out of T a set of all forests that,
roughly, only mention terms that occur in a given initial closed term T . To this purpose,
we introduce a few more additional notations directly on terms. Given a C, let us write
dp(C) for the maximal nesting depth of restrictions in C, defined thus (max over an empty
set yields 0):

dp(X) = 0 dp(∑i∈I µi.Ci) = maxi∈I dp(Ci) dp(!aa.C) = dp(C)
dp(C1|C2) = max{dp(C1),dp(C2)} dp((νaa)C) = 1+dp(C) .

In the example above, dp(C) = 3. We denote by sub(C) the set of variables, summations
and replications that occur as subterms of C:

sub(!a.T ) = {!a.T}∪ sub(T ) sub((νa)T ) = sub(T ) sub(X) = {X}
sub(T |S)= sub(T )∪ sub(S) sub(∑i∈I µi.Ti)={∑i µi.Ti}∪

⋃
i∈I sub(Ti) .

The set sub(C) is of course finite. We denote by res(C) the set of restrictions (νaa) occur-
ring in C. The set of terms we are interested in is defined below.

Definition 5 (TT [X̃ ] ). Let T be a type and X̃ be a finite set of variables. Then

TT [X̃ ]
4
=
{

C ∈ T
∣∣ ∂C ⊆ sub(T )∪ X̃ , res(C)⊆ res(T ), dp(C)≤ dp(T )

}
.

In the following, we abbreviate TT [X̃ ] as TT when X̃ = /0. Consider now the rooted-tree
embedding � (Definition 3), we have the following result.

Proposition 5. For any T and X̃, the relation � is a WQO over TT [X̃ ].

PROOF: The forests in TT [X̃ ] have bounded height: indeed, for any C ∈ TT [X̃ ], we have
h(C) = dp(C) ≤ dp(T ). Moreover, they are built using a finite set of labels: L = X̃ ∪
res(T )∪ sub(T ). Hence TT [X̃ ]⊆ F(k), with k = dp(T ). Theorem 5 ensures then that � is
a WQO over F(k), hence over TT [X̃ ]. 2

We want to show now that TT can be endowed with WSTS structure. In what follows,
we shall consider the standard CCS transition relation over closed terms [25], denoted

here by
µ
p−→ (see AppendixA); in particular, we shall write

τ

p−→ as 7→. The relation 7→
is preferable to → in the present context, because it avoids alpha-renaming, structural
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congruence and is finitely branching for the considered fragment of CCS. In Section 7, we
will show that 7→ is equivalent to → for the purpose of defining the satisfaction relation
S |= φ.

The set of closed terms TT enjoys the properties stated in the lemmas below, which
can be easily inferred by induction on the structure of the term. Note in particular that,
by Lemma 7, the restriction nesting depth of any term is not increased by 7→. This is
a crucial property that does not hold in the pi-calculus. E.g. in the pi-term below, the
restriction nesting depth grows indefinitely. Reductions that increase the depth by one are
alternated to reductions that keeps the nesting depth unchanged (type annotations omitted
and communicating prefixes underlined):

(νb1)a〈b1〉 | !a(y).(νb2)(y.b2 |c〈b2〉) | !c(x).a〈x〉 →
(νb1)(νb2)(b1.b2 |c〈b2〉) | !a(y).(νb2)(y.b2 |c〈b2〉) | !c(x).a〈x〉 →
(νb1)(νb2)(b1.b2 |a〈b2〉) | !a(y).(νb2)(y.b2 |c〈b2〉) | !c(x).a〈x〉 →
(νb1)(νb2)(b1.b2 |(νb3)(b2.b3 |c〈b3〉)) | !a(y).(νb2)(y.b2 |c〈b2〉) | !c(x).a〈x〉 →∗

(νb1)(νb2)(b1.b2 |(νb3)(b2.b3 | · · ·(νbn+1)(bn.bn+1 |c〈bn+1〉) · · ·))
| !a(y).(νb2)(y.b2 |c〈b2〉) | !c(x).a〈x〉 .

Lemma 7. Assume S
µ
p−→ S′. Then dp(S)≥ dp(S′) and res(S)⊇ res(S′).

It is then easy to prove that the set TT is closed with respect to
µ
p−→ .

Lemma 8. (1) T ∈ TT . (2) For any S ∈ TT and S′, S
µ
p−→ S′ implies that S′ ∈ TT .

PROOF: Part (1) follows by definition of TT (notice that ∂T ⊆ sub(T )).

Concerning part (2), the proof proceeds by induction on the derivation of S
µ
p−→ S′ and

by distinguishing the last transition rule applied. The base cases of prefixes are easy to
prove by applying Lemma 7 and by noting that sub(S) ⊇ ∂S for any S. In the other cases
the proof proceeds by applying the inductive hypothesis.

Consider e.g. the case S = (νa)U
µ
p−→ (νa)U ′ = S′. S ∈ TT implies U ∈ TT by defini-

tion. Therefore, by applying the induction hypothesis, we get U ′ ∈ TT and, by Lemma 7,
dp(U ′) ≤ dp(U) and res(U ′) ⊆ res(U) hence dp(S′) ≤ dp(S) and res(S′) ⊆ res(S) and
S′ ∈ TT . 2

Lemma 9. Suppose that either C[X1,X2]�C′[X1,X2] or C[X1,X2]�C′[X1,X2] holds true.

If G1|G2
µ
p−→ S1|S2 and C[G1,G2]

µ
p−→ C[S1,S2] then C′[G1,G2]

µ
p−→ C′[S1,S2].
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Proposition 6. The relation � is a simulation relation over TT wrt 7→.

PROOF: Assume S � T and S 7→ S′. Let G1, G2 be the generic sums which this reduction
originates from, i.e. assume, for some C, S1 and S2, that S = C[G1,G2] 7→C[S1,S2] = S′

and that G1|G2 7→ S1|S2.
By Lemma 6 (3), there is C′ such that T = C′[G1,G2], with C � C′. Hence, by

Lemma 9, T =C′[G1,G2] 7→C′[S1,S2]
4
= T ′. Moreover, by Lemma 6 (1) T ′ =C′[S1,S2]�

C[S1,S2] = S′. 2

As a consequence of Proposition 5 and 6 above we get the wanted result.

Corollary 1. For any T , let Tr be the transition system (TT ,
τ

p−→ ). Then WT
4
= (�,Tr) is

a WSTS.

Remark 2. Consider the labelled version of the reduction relation,
〈λ〉
p−→ , λ ::= a|ε. For

any a, Proposition 6 still holds if considering the transition system given by
〈a〉
p−→ , rather

than 7→. As a consequence, (TT ,
〈a〉
p−→ ) is a WSTS too for any a.

Concerning the decidability of WT , we note that: (a) the WQO � is decidable, indeed

its very inductive definition yields a decision algorithm; (b) the transition relation
µ
p−→ is

decidable for the fragment of CCS that corresponds to our language of types.

7. Decidability

In this section, we prove the decidability of an interesting monotone fragment of Shal-
low Logic, applying Proposition 4 to WT . The WQO � has already seen to be decidable.
In order to be able to apply this proposition, we have to fulfill obligation (b), that is, to
show that WT has an effective pred-basis. Moreover, we have to show that each denotation
[[φ]], under certain conditions on φ, can be presented via an effectively computable finite
basis: this will play the role of “I” in Proposition 4. We face these tasks in the next two
subsections.

7.1. Pred-basis
Informally, the pred basis function, pbT (S), works in two steps. First, all decomposi-

tions of S as S = C[Ũ ], with |Ũ | = 0,1 or 2, are considered – there are finitely many of
them. Then, out of each C, all contexts C′ are considered that can be built by inserting 1
or 2 extra holes into C. Again, there are finitely many such contexts. The contexts C′ are
then filled with ground leaves, in such a way that the resulting terms posses a reduction to
S, up to �.
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Definition 6 (pred-basis). Let T be a type and let S ∈ TT . Let C,C′ below range over
TT [X1,X2]. We define:

pbT (S)
4
=

⋃
S=C[Ũ ]

{
C′[G̃] ∈ TT |C′ �C, ∂gC′ = ∂gC, G̃⊆ sub(T ), C′[G̃] 7→� S

}
.

The construction of pbT (S) is effective. In particular, given C, there are finitely many
ways of inserting one or two extra holes to C, resulting into a C′ �C, and they can all be
considered in turn. In what follows we let PredT (·) stand for Pred(·)∩TT .

Theorem 6. Suppose T ∈ T . Then for any S ∈ TT , ↑ pbT (S) =↑ PredT (↑ S). Moreover,
pbT (·) is effective.

PROOF: Effectiveness has already been discussed above.
By construction, ↑ pbT (S)⊆↑ PredT (↑ S). Let us examine the other inclusion. Suppose

first V 7→� S, we show that there is U ∈ pbT (S) s.t. V �U : this will be sufficient to prove
also the most general case V �7→� S, since WT is a WSTS.

Assume that the reduction in V originates from two communicating prefixes – the τ-
prefix case is easier. That is, assume V =C[G1,G2] 7→C[S1,S2]� S, where G1|G2 7→ S1|S2.

By Lemma 6, S = C′′[S̃′], with C �C′′ and (S1,S2) � S̃′. By Lemma 5, it is possible
to build out of C′′ a 2-holes context C′ ∈ TT [X1,X2] such that C � C′ � C′′. Take U =
C′[G1,G2]; notice that U � V by Lemma 6. Now, U ∈ pbT (S). Indeed, by Lemma 5,
∂oC′ = ∂oC, ∂gC′′ = ∂gC′ and C′′ �C′. Notice also that {G1,G2} ⊆ sub(T ) and by C′ �C
and Lemma 9, U 7→C′[S1,S2]� S. 2

We can extend pbT to finite sets I ⊆ TT , by setting pbT (I)
4
=

⋃
S∈I pbT (S). By doing

so, we obtain the following corollary, which says that WT has an effective pred-basis.

Corollary 2. There is a computable function pbT (·) such that, for any finite I ⊆ TT , ↑
pbT (I) =↑ PredT (↑ I).

Remark 3. Consider the labelled version of the reduction relation,
〈λ〉
p−→ , λ ::= a|ε. For

any fixed label 〈a〉, Corollary 2 still holds if considering the transition system given by
〈a〉
p−→ , rather than 7→. We shall name pb〈a〉T (·) the corresponding pred-basis function.

Applying Proposition 4, we get the result we were after.

Corollary 3. There exists a computable function pb∗T (·) such that, for any finite set I⊆TT ,
pb∗T (I) is a finite basis of Pred∗T (↑ I).
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7.2. Finite bases for plain formulae
We first show that, for certain formulae φ, the satisfaction relation S |= φ can be de-

fined relying solely on 7→ and on context decomposition, with no reference to structural
congruence and → . We then proceed by showing that the denotation of a formula is
upward-closed, hence it makes sense to look for a finite basis of it. We do so in Proposi-
tion 7 and Proposition 8 below. Both results are valid only for plain monotone formulae,
as defined below.

Definition 7 (plain formulae). The set of plain formulae contains all formulae φ,φ′, . . .
that can be generated by the following grammar:

ψ ::= T
∣∣ a

∣∣ a
∣∣ H∗(ψ1|ψ2)

∣∣ ¬ψ
∣∣ ψ∧ψ

∣∣ ψ∨ψ
∣∣ 〈a〉ψ

φ ::= ψ
∣∣ ¬φ

∣∣ φ∧φ
∣∣ φ∨φ

∣∣ 〈a〉φ ∣∣♦∗φ .

For the sake of readability, from now on we will abbreviate formulae of the form
H∗(ψ1|ψ2) as ψ1 (ψ2. Note that

[[ψ1 (ψ2]] =
{

S : S≡ (νx̃)(S1|S2), x̃#n(ψ1 (ψ2), Si ∈ [[ψi]], i = 1,2
}
.

In essence, plain formulae are formulae where ♦∗ cannot occur underneath H∗ while
| are always H∗-guarded.2 We briefly explain the rationale behind the two restrictions
of plain formulae. We want that checking T |= H∗φ be essentially equivalent to checking
satisfiability of φ against the parallel composition of T ’s leaves. This is clearly not the case
if ♦∗ does appear underneath H∗: indeed, putting the leaves of T in parallel may give rise
to interactions not possible in T , merely because certain names that in T are kept distinct
by restrictions are now free and in a position to communicate. As an example, suppose
T = (νa)(a.c) |(νa)(a.d) and φ = H∗♦∗c. Clearly T 6|= φ while ∂T does: a.c |a.d |= φ.
Note that the crucial point here is that we want to check satisfiability while disallowing
alpha-equivalence.

The second constraint is necessary in order to guarantee the upward-closure of the de-
notation of formulae. Indeed, in the absence of this constraint, insertion of new leaves in a
term might create new connections that can prevent the splitting of the new term, as shown

in the following example. Consider T
4
= (νc,d)(a.c |b.d ) and S

4
= (νc,d)(a.c |b.d |c.d );

clearly T � S and T |= a|b, however S 6|= a|b.
Given two sequences ˜̀ and ˜̀′, in what follows we let ˜̀∗ ˜̀′ denote a generic element of

the shuffle of ˜̀ and ˜̀′.

2The condition of H∗-guardedness of parallel composition was mistakenly omitted in the short version
of this paper [3].
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The following proposition gives an alternative characterization of formulae satisfac-
tion in terms of either the shape or the behaviour of the terms. The proof is reported
in AppendixB.

Proposition 7. Assume S ∈ TT , φ plain and monotone and bn(T )∩ n(φ) = /0. Then we
have the following equivalences, where G̃, G̃1, G̃2 are sequences of leaves assumed to be
included in sub(T ):

S |=a iff ∃G ∈ ∂S : G↘a

S |=a iff ∃G ∈ ∂S : G↘a

S |=ψ1 (ψ2 iff ∂S = G̃∗ F̃ with G̃ |= ψ1 and F̃ |= ψ2

S |= 〈a〉φ iff ∃U : S
〈a〉
p−→ U and U |= φ

S |=♦∗φ iff ∃U : S 7→∗ U and U |= φ .

By definition of FT , i.e. by the partitioning of nodes into internal ones and leaves, and
by definition of � (rooted tree embedding), we get the following result.

Lemma 10. S� T implies ∂S� ∂T .

As a consequence of the previous lemma we get that S � T implies ∂S ⊆ ∂T , where both
∂S and ∂T are seen as multisets. We are now ready to prove that the denotation of each
plain and monotone formula is an upward-closed set.

Proposition 8. Assume φ plain and monotone. Then [[φ]] is upward-closed.

PROOF: The proof proceeds by induction on the structure of φ. The cases φ ::= a |a |T
and the boolean connectives are easy to prove. The cases φ ::= ♦∗φ′ | 〈a〉φ′ follow by
Proposition 6 and Remark 2. Consider now φ = ψ1 (ψ2 and any S |= φ. By Proposition 7,
we get that ∂S = G̃ ∗ F̃ with G̃ |= ψ1 and F̃ |= ψ2. Consider now any T such that S � T .
By Lemma 10, we get ∂S � ∂T , hence G̃ � G̃′ and F̃ � F̃ ′ for suitable G̃′ and F̃ ′ such
that ∂T = G̃′ ∗ F̃ ′. By applying the induction hypothesis to ψ1 and ψ2 we get G̃′ |= ψ1 and
F̃ ′ |= ψ2 and, by Proposition 7,s it follows that T |= ψ1 (ψ2. 2

As discussed at the beginning of this section, in order to take advantage of Corollary 3,

we have to show that each set [[φ]], or, more accurately, each set [[φ]]T
4
= [[φ]]∩TT , can

be presented via an effectively computable finite basis in WT . We define this basis for φ

below. This definition is by induction on the structure of φ. The ♦∗ and 〈a〉 cases take
advantage of the pred-basis function (Definition 6), the other cases basically follow the
corresponding cases of Proposition 7 or, in the case of ∨ and T, the expected boolean
interpretation. The only exception to this scheme is the ∧ connective, which is nontrivial
and will be commented below. Some more terminology first. Given an upward closed set
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I ⊆ TT , we denote by Min(I) an arbitrarily chosen set of representatives of the minimal
elements of I, wrt the WQO �, i.e. ↑Min(I) = I.

In the following, we say that a context C is pure if ∂gC = /0 and we let D range over
pure contexts, e.g. D = (νa)(X1|X2)|X3 is pure.

Definition 8 (finite basis). Let T be a type and φ be a plain and monotone formula, such
that bn(T )∩n(φ) = /0. The finite basis FbT (φ) is inductively defined below, where G, G̃, G̃1
and G̃2 are sequences of leaves assumed to be included in sub(T ):

FbT (T)
4
= {D[G] ∈ TT

∣∣ G ∈ sub(T )}
FbT (a)

4
= {D[G] ∈ TT

∣∣ G↘a}
FbT (a)

4
= {D[G] ∈ TT

∣∣ G↘a}
FbT (ψ1 (ψ2)

4
=

⋃
S1∈FbT (ψ1),S2∈FbT (ψ2)

{
D[∂S1 ∗∂S2] ∈ TT

}
FbT (φ1∨φ2)

4
= FbT (φ1)∪FbT (φ2)

FbT (φ1∧φ2)
4
= Min([[φ1]]∩ [[φ2]])

FbT (〈a〉φ)
4
= pb〈a〉T (FbT (φ))

FbT (♦∗φ)
4
= pb∗T (FbT (φ)) .

As required by Proposition 4, the basis defined above is finite. This follows from
finiteness of the set sub(T ) and of the number of 1-hole pure contexts D[·] one can build
from a given T . Finiteness of the set Min([[φ1]]∩ [[φ2]]) follows from Corollary 1 and Def-
inition 2: if not, one would find an infinite sequence of pairwise incomparable elements,
thus violating the condition of WQO. The proof of the following proposition can be found
in AppendixC.

Proposition 9. Consider T and φ like in Definition 8. Then FbT (φ) is a finite basis for
[[φ]]T , that is ↑ FbT (φ) = [[φ]]T .

In order to prove the decidability of the logic, it is necessary to guarantee the effective-
ness of FbT (φ). This is not an easy matter due to the case φ = φ1∧φ2, where effectiveness
of the set Min([[φ1]]∩ [[φ2]]) has to be made effective. In order to do that, we introduce the
merge operator ||| , which allows one to compute a finite over-approximation of Min by
appropriately merging terms, seen as forests, drawn from FbT (φ1) and FbT (φ2).

For any forest F = (`1,F1) · · ·(`n,Fn) we write F(`) for the sub-forest of F containing
all trees with root `. That is, F(`) = (`i1,Fi1) · · ·(`ik ,Fik) where 1≤ i1 < · · ·< ik ≤ n and
`i j = ` for j = 1, · · · ,k, `im 6= ` for each im ∈ {1, · · · ,n}\{i1, · · · , ik}. The forest F1 |||F2
is defined as the set containing all terms obtained as combinations of the subtrees with
common roots in F1 and F2. Formally, we have:
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Definition 9 (forest merging). Let G and H be forests. Then G |||H is a set of forests
defined as follows. F ∈ G |||H iff for each root ` of F , letting F (`) = (`,F1) · · ·(`,Fn),
G(`) = (`,G1) · · ·(`,Gm) and H (`) = (`,H1) · · ·(`,Hk) one has

1. min{m, k} ≤ n≤ m+ k;
2. for each 1≤ i≤ n

Fi ∈ {G1, · · · ,Gm,H1, · · ·Hk}∪
⋃

j=1,··· ,m, l=1,··· ,k
G j |||Hl .

Note that {G ,H } ⊆ G |||H .

Example 6 (forest merging). Suppose L= {a,b,c,d,e} and consider the forests depicted
below: F1, F2 and F3 belong to the merging G |||H .

G
a

b c

d

b

a

H
a

b c

e

b

e

F1
a

b c

d

b

e

F2
a

b c

d e

b

a

F3
a

b c

d e

b

a e

The definition of ||| can be generalized to sets of forests A and B as follows

A |||B 4
=

⋃
G∈A, F ∈B

G |||F .

The following lemma will give us a way of computing FbT (φ1∧φ2).

Lemma 11. Let φ1 and φ2 be plain and monotone. Then

[[φ1∧φ2]]T =↑
((

FbT (φ1) |||FbT (φ2)
)
∩ ↑ FbT (φ1)∩ ↑ FbT (φ2)

)
.

PROOF: We prove the inclusion in both directions. The ⊇-direction follows by definition
of [[φ1∧φ2]]T and from Proposition 8 and 9. Consider the opposite inclusion. We prove
the following: for any U , if there are S1,S2 s.t. U � Si (i = 1,2) then there is S ∈ S1 |||S2
s.t. U � S � Si (i = 1,2). This fact implies the thesis, because if U ∈ [[φ1∧φ2]]T then, by
Proposition 9, there are Si ∈ FbT (φi) s.t. U � Si (i=1,2); hence S belongs to the r.h.s. of
the equality above.

So, assume U � S1,S2. We want to prove that there is a S ∈
(
(S1 |||S2)∩ ↑ S1∩ ↑ S2

)
such that S�U . The proof proceeds by induction on the height of U seen as a forest. For
a generic label `, let

U(`) = (`,U1) · · ·(`,Un)
S1(`) = (`,T1) · · ·(`,Tm)
S2(`) = (`,V1) · · ·(`,Vk)
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be the subforests with roots ` in U, S1 and S2. By definition of rooted-tree embedding
(Definition 3), there are distinct indices 1≤ i1 < · · ·< im ≤ n and 1≤ l1 < · · ·< lk ≤ n s.t.
for each j, 1≤ j ≤m it holds that Tj �Ui j and for each j, 1≤ j ≤ k it holds that Vj �Ul j .

Let f1 : {1, · · · ,m} → {1, · · · ,n} and f2 : {1, · · · ,k} → {1, · · · ,n} such that f1( j) = i j
and f2( j) = l j. Let u1, · · · ,uv be the indices in range( f1)∪ range( f2). Note that v≤ m+ k
by definition. Define S such that, for each `, S(`) = (`,S′1) · · ·(`,S′v), with the S′j defined as
follows, for each j ∈ 1, · · · ,v:

• if i j ∈ range( f1)\ range( f2) then take S′j = Tt if f1(t) = i j (hence S′j �Ui j);

• if i j ∈ range( f2)\ range( f1) then take S′j =Vt if f2(t) = i j (hence S′j �Ui j);

• if i j ∈ range( f1)∩ range( f2) then there are t and s such that f1(t) = i j and f2(s) = i j.
By applying the induction hypothesis to Ui j we get that there is B ∈

(
(Tt |||Vs)∩ ↑

Tt∩ ↑Vs
)

such that B�Ui j . Choose S′j = B.

By construction S(`) �U(`), for each label `; therefore S �U . Moreover, again by con-
struction, S� S1, S� S2 and S ∈

(
(S1 |||S2)∩ ↑ S1∩ ↑ S2

)
.

2

Lemma 12. For any T ∈ T , FbT (·) is computable.

PROOF: This follows from effectiveness of the cases of the inductive definition of FbT (·).
Effectiveness of the cases φ ::=T

∣∣ a
∣∣ a is given by finiteness of sub(·) and finiteness of the

number of pure contexts D. In the cases φ1∨φ2 and ψ1 (ψ2 the proof relies on the inductive
hypothesis. In the cases φ ::= 〈a〉φ

∣∣♦∗φ the proof relies on Theorem 6, Corollary 2 and 3.
Finally, in case φ1∧φ2 the proof relies on Lemma 11, by virtue of which Min([[φ1]]∩ [[φ2]])
can be realized by the set

(FbT (φ1) |||FbT (φ2))∩ ↑ FbT (φ1)∩ ↑ FbT (φ2)
=

{
S ∈ (FbT (φ1) |||FbT (φ2))

∣∣ S� FbT (φ1), S� FbT (φ2)
}
.

Effectiveness then follows from the inductive hypothesis applied to FbT (φ1) and FbT (φ2),
and from computability of the rooted tree embedding �. 2

Theorem 7. Consider T and φ like in Definition 8. Then FbT (φ) is a finite basis for [[φ]]T ,
that is ↑ FbT (φ) = [[φ]]T . Moreover, FbT (·) is computable.

PROOF: By Proposition 9 and Lemma 12. 2

By virtue of the above theorem, we can decide if S |= φ, with S ∈ TT , by checking if
there is U ∈ FbT (φ) s.t. S �U . Since � is decidable, this can be effectively carried out,
and we obtain Corollary 4. Finally, Corollary 5 is a consequence of Proposition 2.

30



Corollary 4 (decidability on types). Let φ be plain and monotone. It is decidable
whether T |= φ. Hence, decidability also holds for φ plain and anti-monotone.

Corollary 5 (decidability on pi-processes). Let Γ be a context. Given a Γ-well-typed pi-
process P and φ plain and (anti-)monotone, it is decidable whether P |= φ.

Remark 4 (again on Kruskal’s preorder). It should now be clear why Kruskal’s pre-
order cannot be usefully employed as WQO for types. Indeed, by recalling the definition
of �kr in Remark 1, we would for instance get that

(νaa)

a.b.c a.b.c

�kr (νaa)

a.b.c (νbb)

a.b.c

The term on the left satisfies the formula ♦∗〈c〉, while this is not true for the term on the
right.

8. Conclusion and related work

We have proven the decidability of a fragment of Spatial Logic that includes interest-
ing safety properties of a class of infinite-control pi-calculus processes. The proof relies
heavily on both behavioural type systems [17, 3] and well-structured transition system
techniques [15].

Implementation issues are not in the focus of the present paper. Whether a practical
algorithm can be obtained or not from the theoretical discussion presented here is an inter-
esting topic, that is left for future work. Complexity of the presented decision procedure
is also left as an open problem.

Our proof of decidability for CCS generalizes the result in [5] that “weak” barbs ♦∗a
are decidable in CCS with replication. Variations and strengthening of these results have
recently been obtained by Valencia et al. [28]. It is worthwhile to note that weak barbs are
not decidable in the pi-calculus in general [4]. On the other hand, our results show that
they are decidable restricting to well-typed pi-processes.

During our investigation, we have also considered the possibility of approximating CCS

with Petri Nets, somehow along the lines of [21, 22, 23], where structural stationary pi-
processes are mapped into finite nets. Unfortunately, this approach turned not to reconcile
well with the needs of Spatial Logic. In particular, it appears that the spatial structure
of terms determined by restrictions is hard to recover from the nets resulting from the
translation.
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Decidability of Shallow logic in a general setting of Spatial Transition Systems, i.e.
transition systems where a monoidal structure on states accounts for the “spatial” dimen-
sion, has been recently studied in [1]. The negation-free fragment of the logic has been
shown to be decidable and an alternative characterization of the logical preorder is given
in terms of a weak simulation enriched with constraints on the spatiality of terms. This
result has been obtained by applying forward reachability analyses techniques based on
the completion of WSTS, recently introduced in [13, 14]. These techniques are essentially
based on providing a finite representation of downward closed sets.

Also related to our approach are Yoshida’s graph types [29], which extend Milner’s
sorting system with informations on the communication behaviors of terms expressed as
graphs, and some recent proposals by Caires [6, 7], where a logical semantics approach
to types for concurrency is pursued. Specifically, in [7], a notion of spatial-behavioural
typing suitable to discipline concurrent interactions and resource usage in a distributed
object calculus is defined. Types, that can be viewed as a fragment of a spatial logic for
concurrency, express resource ownership. The proposed system guarantee the availability
of services and (resource access) race freedom. Closest to our type system is [6], where
a generic type system for the pi-calculus - parameterized on the subtyping relation - is
proposed. In [8], Caires has proved that model-checking of bounded pi-calculus processes,
and in particular of finite-control processes, is decidable. Note that the class of processes
we have considered here includes properly finite-control ones.

Acknowledgments. We wish to thank Luis Caires, Roland Meyer and Gianluigi Zavattaro
for stimulating discussions on the topics of the paper.
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p−→ T ′

S|T
µ
p−→ S|T ′

Table A.6: Transition relation
µ
p−→ on types.

AppendixA. Standard operational semantics of CCS

The standard operational semantics of CCS terms [24] is reported in Table A.6.

Throughout the paper,
τ

p−→ is usually abbreviated as 7→ and 7→∗ denotes the reflexive
and transitive closure of 7→.

The correspondence between 7→ and → relies on the following lemmas that can be
proven by induction on the derivation of 7→ and → .

Lemma 13. S → S′ implies that there exists T ′ such that S′ ≡ T ′ and S 7→ T ′.

Lemma 14. T 7→ T ′ implies T → T ′.

Both lemmas are applied in the proof of Proposition 7 to guarantee the correctness
of the alternative characterization of S |= φ in the cases of formulae containing dynamic
connectors (i.e. ♦∗ and 〈a〉).

AppendixB. Proof of Proposition 7

The proof is broken into several simple lemmas. It is necessary to introduce some
more terminology. Let us say that a term T is in head-normal form if T = (νx̃)G̃. The
following lemma guarantees that any term T is structural congruent to one in head-normal
form (νx̃)G̃. The proof is straightforward by induction on the structure of T .

Lemma 15. For any T there exist G̃ and distinct x̃ such that x̃#fn(G̃) and T ≡ (νx̃)G̃.

Given any two structurally congruent terms, their frontiers are equivalent up to renam-
ing of bound names. In virtue of the preceding lemma, this result can be applied to any
term and the corresponding head-normal form.
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Lemma 16. For any T and S such that the bound names in S are pairwise distinct,
fn(S)#bn(S) and T ≡ S there exists an injective substitution σ such that dom(σ) = bn(S),
range(σ) = bn(T ) and ∂T ≡ ∂Sσ.

In the following we write n(σ) for the set dom(σ)∪ range(σ). The following re-
sult guarantees that satisfiability of formulae is preserved by substitutions. The proof is
straightforward by induction on the structure of the formula.

Lemma 17. Suppose φ is monotone and φ does not contain ♦∗. Consider σ such that
n(σ)#n(φ). Then S |= φ if and only if Sσ |= φ.

The following two lemmas will be necessary when dealing with the case φ = ψ1 (ψ2 of
Proposition 7. Lemma 19 will be applied in the proof of the if statement, while Lemma 18
in the only if case.

Lemma 18. Suppose φ = ψ1 (ψ2 is monotone and plain and bn(S)#n(φ). Then ∂S |= φ

implies S |= φ.

PROOF: ∂S |= φ implies ∂S = F̃1 ∗ F̃2 with F̃i |= ψi, i = 1,2, by definition. By Lemma 15,
we have S ≡ (νx̃)G̃, for some G̃ and x̃ satisfying the premise of Lemma 16. Therefore,
∂S ≡ G̃σ for some σ such that dom(σ) ⊆ x̃ and range(σ) ⊆ bn(S) (Lemma 16). Without
loss of generality, we assume x̃#n(φ). Therefore, by ∂S = F̃1 ∗ F̃2, F̃i |= ψi and ∂S≡ G̃σ we
get G̃σ = G̃1σ∗ G̃2σ with F̃i ≡ G̃iσ and G̃iσ |= ψi. Moreover, by n(σ)⊆ bn(S)∪ x̃ we get
n(σ)#n(φ), and by Lemma 17, G̃i |= ψi, i = 1,2. Then, S |= ψ1 (ψ2 follows by S≡ (νx̃)G̃
and definition of [[ψ1 (ψ2]]. 2

Lemma 19. Suppose φ is plain and monotone, does not contain ♦∗ and bn(S)#n(φ). If
S |= φ then for any D and T̃ such that S = D[T̃ ] it holds that T̃ |= φ.

PROOF: The proof is by induction on the structure of the formula φ. The most interesting
case is when φ=ψ1 (ψ2. S |= φ implies S≡ (νx̃)(S1|S2), with x̃#n(φ) and Si |=ψi. Without
loss of generality, we assume that x̃#fn(S). S = D[T̃ ] implies ∂S = ∂D[T̃ ]≡ (∂S1 ∗∂S2)σ,
for some σ such that n(σ)#n(φ) (Lemma 16). Hence, ∂T̃ = F̃1 ∗ F̃2 with F̃i ≡ ∂Siσ, for
i = 1,2. By applying the induction hypothesis to Si |= ψi we get that ∂Si |= ψi, for i = 1,2.
Therefore, by Lemma 17, ∂Siσ |= ψi and F̃i |= ψi. This implies that ∂T̃ |= φ, hence, by
Lemma 18, T̃ |= φ. 2

We are now ready to prove the correctness of the alternative definition of S |= φ.

PROOF OF PROPOSITION 7: The proof is by induction on the structure of φ.
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φ ::= a
∣∣ a. In both cases, (⇒) and (⇐), the proof relies on the definition of↘x.

φ = ψ1 (ψ2. (⇒). By Lemma 19 with T̃ = ∂S. (⇐). By Lemma 18.

φ ::= 〈a〉φ′
∣∣♦∗φ′. The proof relies on the correspondence between→ and 7→. Consider

e.g. the case φ =♦∗φ′ and suppose that S |= φ. By definition, S→∗ S′ with S′ |= φ′.
By applying Lemma 13 at each step of the derivation S→∗ S′ we get that there exists
T ≡ S′ such that S 7→ T . Hence, by definition of |= and by S′ |= φ′, we obtain T |= φ′.
In the opposite case, S 7→ T and T |= φ′, Lemma 14 is applied to prove that S |= φ.

2

AppendixC. Proof of Proposition 9

Given a term C[X̃ ] and two sequences of terms T̃ and S̃ such that |T̃ | = |X̃ | and
S̃� T̃ , fix any injection f : {1, . . . , |S̃|} → {1, . . . , |T̃ |} such that S j � Tf ( j), for 1≤ f (1)<
· · · < f ( j) < · · · < f (|S̃|) ≤ |T̃ |. We write C[S̃ / f T̃ ] for the closed term obtained from
C[S j/X f ( j)] j=1,··· ,|S̃| by pruning all sub-trees having only variables as leaves. In the fol-
lowing we will write C[S̃ / T̃ ] for C[S̃ / f T̃ ], when f is the identity. As an example, take
T̃ = T1, T2, T3, T4, S̃ = S1, S2 and suppose f (1) = 1 and f (2) = 4 (that is S1 � T1 and
S2 � T4). Then C[X1,X2,X3,X4], C[T̃ ] and C[S̃/ f T̃ ] are depicted below from left to right.

l1

X1 l3

X2 X3

l2

l4 l5

X4

l1

T1 l3

T2 T3

l2

l4 l5

T4

l1

S1

l2

l4 l5

S2

The following lemma says that C[S̃ / f T̃ ] is embedded into C[T̃ ]. The proof is an easy
application of Lemma 4.

Lemma 20. C[S̃/ f T̃ ]�C[T̃ ] for any injection f such that 1≤ f (1)< · · ·< f (i)< · · ·<
f (n)≤ |T̃ | and Si � Tf (i), for 1≤ i≤ |S̃|.

The following result is a consequence of the correspondence between “→” and “7→”
(see Lemma 13 and Lemma 14 in AppendixA).

Lemma 21. (1) T ∈ [[〈a〉φ]] if and only if T
〈a〉
p−→ S with S ∈ [[φ]]. (2) T ∈ [[♦∗φ]] if and only

if T 7→∗ S with S ∈ [[φ]].
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As a consequence of Theorem 6, Corollary 3 and the lemmas above, we can guarantee
the expected result. That is, FbT (·) is a (finite) basis for [[·]]T .

PROOF OF PROPOSITION 9: The proof proceeds by showing that each term in FbT (φ)
satisfies φ, and that given any term U ∈ [[φ]]T there is a S ∈ FbT (φ) such that S � U .
Together with Proposition 8, this guarantees that ↑ FbT (φ) = [[φ]]T .

The proof is by induction on the structure of the formula φ and proceeds by distin-
guishing the following cases:

φ = T. For each S ∈ FbT (T) it holds that S ∈ [[T]]T , by definition.

Take any U ∈ [[T]]T and take any leaf G∈ ∂U ⊆ sub(T ). By Lemma 20, if U = D[G̃]
then D[G / G̃] � U and D[G / G̃] ∈ FbT (T) by definition (recall that G ∈ sub(T )
because U ∈ TT ).

φ = a. For each S ∈ FbT (a) it holds that S↘a, and S ∈ [[a]]T , by definition.

Take any U ∈ [[a]]T . By Proposition 7, there is G ∈ ∂U such that either G↘a. Now,
D[G/∂U ]�D[∂U ] =U by Lemma 20 and D[G/∂U ] ∈ FbT (a) by definition (recall
that G ∈ sub(T ) because U ∈ TT ).

φ = a. The proof is similar to the previous case.

φ = φ1∨φ2. By applying the induction hypothesis to φ1 and φ2 we get that there exist finite
basis FbT (φ1) and FbT (φ2) of [[φ1]]T and [[φ2]]T . Therefore, for any S ∈ FbT (φ1∨φ2)
either S ∈ [[φ1]]T or S ∈ [[φ2]]T , hence S ∈ [[φ1∨φ2]]T by definition.

Consider any U ∈ [[φ1∨φ2]]T . By definition, either U ∈ [[φ1]]T or U ∈ [[φ2]]T . Sup-
pose U ∈ [[φ1]]T . Therefore, there exists B ∈ FbT (φ1) ⊆ FbT (φ1 ∨ φ2) such that
B�U . Similar comments in case U ∈ [[φ2]]T .

φ = φ1∧φ2. Take any S ∈ FbT (φ1∧φ2), by definition S ∈ [[φ1]]T ∩ [[φ2]]T , hence FbT (φ1∧
φ2)⊆ [[φ1∧φ2]]T .

Consider any U ∈ [[φ1∧φ2]]T . By definition of FbT (φ1∧φ2) either U ∈ FbT (φ1∧φ2)
or there is a minimal element T of [[φ1]]T ∩ [[φ2]]T such that T �U .

φ = ψ1 (ψ2. By applying the induction hypothesis to ψ1 and ψ2 we get that there are two
finite basis FbT (ψ1) and FbT (ψ2) of [[ψ1]]T and [[ψ2]]T .

Consider now any S ∈ FbT (ψ1 (ψ2). By definition, S = D[∂S1 ∗∂S2], for some Si ∈
FbT (ψi), i = 1,2. By induction, Si |= ψi and by Lemma 19, ∂Si |= ψi, for i = 1,2.
Hence, by Proposition 7, S ∈ [[ψ1 (ψ2]]T .
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Consider any U ∈ [[ψ1 (ψ2]]T . By Proposition 7, ∂U = G̃1 ∗ G̃2 with G̃i ∈ [[ψi]], for
i= 1,2. By applying the inductive hypothesis, we get that there are Ti ∈ FbT (ψi), for
i = 1,2, such that Ti � G̃i. Let F̃i = ∂Ti. By Ti � G̃i and Lemma 10, we get F̃i � G̃i.
Hence, by Lemma 20, for some injection f and sequence F̃1 ∗ F̃2 in the shuffle of F̃1
and F̃2

D[F̃1 ∗ F̃2 / f G̃1 ∗ G̃2]� D[∂U ] =U

and D[F̃1 ∗ F̃2 / f G̃1 ∗ G̃2] ∈ FbT (ψ1 (ψ2) by definition.

φ = 〈a〉φ′. FbT (〈a〉φ′) is a basis of [[φ]]T by Corollary 2.

φ =♦∗φ′. FbT (φ) is a basis of [[φ]]T by Corollary 3.
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