
Spatial and behavioral types in the pi-calculus✩

Lucia Acciai, Michele Boreale

Dipartimento di Sistemi e Informatica
Università di Firenze

Abstract

We present a framework that combines ideas from spatial logics and behavioural type systems.
Type systems for the pi-calculus are proposed where newly declared (restricted) names are an-
notated with spatial process properties, predicating on those names, that are expected to hold in
the scope of the declaration. Types are akin to terms and account for the process abstract
behaviour and “shallow” spatial structure. Type checking relies on spatial model checking, but
properties are checked against types rather than against processes. Type soundness theorems en-
sure that, for a certain class of spatial properties, well-typed programs are also well-annotated, in
the sense that processes in the scope of any restriction do satisfy the corresponding annotation at
run-time. The considered class of properties is rather general. Differently from previous propos-
als, it includes both safety and liveness ones, and is not limited to invariants. We also elaborate a
distinction between locally and globally checkable properties.

Key words: pi-calculus, behavioural type systems, spatial logic.

1. Introduction

In the past few years,spatial logics[13, 10] have emerged as a promising tool for analyzing
properties of concurrent systems. These logics aim at describing the spatial structure of pro-
cesses, hence at expressing properties related to distribution and concurrency. An easy to grasp
example is the race freedom property, stating that at any time, nowhere in the system there are
two output actions ready on the same channel. The spectrum ofproperties that can be expressed
by combination of simple spatial and behavioral connectives is very rich (see e.g. [10]). This
richness is rather surprising, given the intensional nature of such logics: the process equiva-
lences they induce coincide with, or come very close to, structural congruence (see e.g. [9]), a
fine equivalence that only permits elementary rearrangements of the term structure.

A by now well-established trend in the field of process calculi is the use ofbehavioural
type systemsto simplify the analysis of concurrent message-passing programs [18, 16, 12]. Be-
havioural types are abstract representations of processes, yet sufficiently expressive to capture
some interesting properties. In Igarashi and Kobayashi’s generic type systems [16], the work

✩Extended and revised version of [2]. Work partially supported by the EU within the FET-GC2 initiative, project
S.

Email addresses:lacciai@dsi.unifi.it (Lucia Acciai),boreale@dsi.unifi.it (Michele Boreale)

Preprint submitted to Elsevier 19th October 2009

that pioneered this approach, processes are pi-calculus terms, while types are akin to terms.
The crucial property enjoyed by the system is type soundness: in essence, for a certain class of
properties (expressed in a simple modal logic), it holds that if a property is satisfied by a type
then it is also satisfied by processes that inhabit that type.Results of this sort can in principle be
used to effectively combine type checking and model checking. That is,in some cases it is pos-
sible to replace (expensive) model checking on message-passing processes by (cheaper) model
checking on types. The paper [12] further elaborates on these themes.

A limitation of behavioural type systems proposed so far concerns the kind of properties that
can be tackled this way. In [16, 12], properties for which a general type soundness theorem works
are safety invariants – that is, properties of the form “nothing bad will ever happen”. Moreover,
compositionalitymay be an issue. Ideally, the type system should provide a means to performing
model checking on types compositionally. In other words, model checking on the global types
corresponding to entire programs should be avoided as much as possible.

In the present paper, we try to combine the expressiveness ofspatial logics with the effec-
tiveness of behavioural type systems. Building on Igarashiand Kobayashi’s work on generic
type systems, we present two distinct type systems for the pi-calculus where newly declared (re-
stricted) names are annotated with properties that predicate on those names. A process in the
scope of a restriction is expected to satisfy the restriction’s annotation (property) at run-time. We
shall focus on properties expressible in a spatial logic – theShallow Logic– which is a fragment
of Caires and Cardelli’s logic [10]. Types are akin to terms and account for the (abstract)
behaviour and the “shallow” spatial structure of processes. The type system relies on (spatial)
model checking: however, properties are checked against types rather than against processes. A
general soundness theorem is proven stating that, for a certain class of properties, well-typed
programs are also well-annotated, in the sense that annotations are satisfied as expected at run-
time. The considered class of properties is rather general:unlike previous proposals [16, 12],
it includes both safety and (weak) liveness ones, and is not limited to invariants. Several exam-
ples of such properties – including race freedom, deadlock freedom and many others – are given
throughout the paper.

As another contribution of the paper, we elaborate a distinction betweenlocally andglobally
checkableproperties. Informally, a locally checkable property is one that can be model-checked
against any type by looking at the (local) names it predicates about, while hiding the others; a
globally checkable one requires looking also at names causally related to the local ones, hence in
principle at names declared elsewhere in the process. Thesetwo classes of properties correspond
in fact to two distinct type systems, exhibiting different degrees of compositionality and effec-
tiveness (with the global one less compositional/effective). To sum up, we make the following
contributions:

• we establish an explicit connection between spatial logicsand behavioural type systems. In
this respect, a key observation is that processes and their behavioural types share the same
“shallow” spatial structure. This fact allows us to prove quite precise correspondences
between processes and types and strong type soundness theorems;

• we syntactically identify classes of formulae for which type soundness is guaranteed;

• unlike previous proposals, our type soundness results are not limited to safety properties,
nor to invariant properties;

• the verification process resulting from the system is compositional, in the sense that global
checks on the type of the whole program are not necessary in general;

2

• we investigate a distinction between locally and globally checkable properties.

Structure of the paper.In Section 2 we introduce the language of processes, a standard polyadic
pi-calculus. In Section 3 we introduce both spatial properties and the Shallow Logic, a simple
language to denote them. In Section 4 the first type system, tailored to “local” properties, is
presented and thoroughly discussed. Type soundness for this system is discussed in Section 5
and a few examples are discussed in Section 6. A “global” version of the type system is presented
and discussed in Section 7, followed by a soundness result and a few examples in Section 8 and 9.
A detailed comparison with Igarashi and Kobayashi’s systemis in Section 10. A few remarks on
further and related work conclude the paper in Section 11. The most technical or lengthy proofs
have been confined to Appendices A-D.

2. A process calculus

2.1. Types

Types are terms with annotations on input prefixes and restrictions, and input-guarded
replication in place of recursion. As usual, we presuppose acountable setN of names. We let
lowercase lettersa,b, ..., x,y, ... range over names, and ˜a, b̃, . . . , x̃, ỹ, . . . range over tuples of names.
The setT of typesT,S,U, . . . is generated by the following grammar:

Prefixes µ ::= a(t)
∣
∣
∣ a
∣
∣
∣ τ

Channel types t ::= (x̃ : t̃)T (with x̃ a tuple of distinct names, ˜x⊆ fn(T) andx̃#̃t)

Process types T ::=
∑

i µi .Ti

∣
∣
∣ T|T

∣
∣
∣ (νã : t̃)T

∣
∣
∣ !a(t).T

wherex̃#t means that ˜x∩ fn(t) = ∅. In a channel type (˜x : t̃)T, we stipulate that (˜x : t̃) is a binder
with scopeT, wherex̃ and t̃ represent, respectively, the formal parameters and types of objects
that can be passed along the channel, whileT is a process type prescribing a usage of those
parameters. Note that, in (˜x : t̃)T, it might in general be fn(T) \ x̃ , ∅: the usage of received
parameters prescribed by a channel type can depend on free names. Here,a(t).T is a process type
wherea can transport names of channel typet. In what follows, we shall write0 for the empty
summation and we shall often omit trailing0’s and the channel type ()0, writing e.g. (x)x instead
of (x : ()0)x and sometimes shortenT1| · · · |Tn by

∏

i=1,··· ,n Ti .
Notion of free and bound names arise as expected and types areidentified up to alpha-

equivalence. Notice that annotations contribute to the setof free names of types, e.g. fn(a(t).T)=
{a} ∪ fn(t)∪ fn(T) and fn((x̃ : t̃)T) = fn(t̃)∪ fn(T) \ x̃. This ensures that scope extrusion hence
structural congruence work properly on types, as discussedlater in Remark 3.

2.2. Processes

The language we consider is a synchronous polyadic pi-calculus [21] with guarded summa-
tions and replications. TermsP,Q,R, . . . are defined by the grammar below

Prefixes α ::= a(b̃)
∣
∣
∣ a〈b̃〉

∣
∣
∣ τ

Processes P::=
∑

i∈I αi .Pi

∣
∣
∣ P|P

∣
∣
∣ (νb̃ : t̃)P

∣
∣
∣ !a(b̃).P.

3

P|0 ≡ P (P|Q)|R ≡ P|(Q|R) P|Q ≡ Q|P (νx̃ : t̃)P|Q ≡ (νx̃ : t̃)(P|Q) if x̃#Q

Table 1: Laws for structural congruence≡ on processes

In the input prefixa(b̃). and in the restriction (νb̃ : t̃) the names in the tuplẽb are assumed distinct.
In the restriction clause,t̃ is a tuple of channel types such that|̃t| = |b̃|. Note that restriction acts
on tuples of names,̃b, rather than on individual names. Indeed, the formνb̃ is equivalent to
νb1 · · ·νbn from an operational point of view. When we will introduce annotations (Section 4),
however, the formνb̃ will allow us to specify properties that should hold of a group of names.
Notions of free names fn(·), of bound names and of alpha-equivalence arise as expectedand
terms are identified up to alpha-equivalence. In particular, we let fn((νb̃ : t̃)P) = (fn(P)∪ fn(t̃))\ b̃.
To avoid arity mismatches in communications, we shall only consider terms that are well-sorted
in some fixed sorting system (see e.g. [21]), and callP the resulting set ofprocesses.

Notation. In the sequel,P1| · · · |Pn will be sometimes shortened as
∏

i=1,··· ,n Pi . Givenn≥ 0 tuples
of names̃b1, ..., b̃n, we abbreviate (νb̃1 : t̃1) · · · (νb̃n : t̃n)P as (ν̃ b̃i : t̃i)i=1,··· ,nP, or simply as (˜ν b̃)P,
with b̃ = (b̃1, · · · , b̃n), when the identity of thẽti is unimportant. When writing down process
terms, channel type annotationst may be omitted if not relevant for the discussion.

2.3. Structural congruence and reduction semantics

OverP, we definestructural congruenceand reduction semanticsas the least congruence

≡ and as the least relation
λ
−→ generated by the axioms in Table 1 and Table 2, respectively.

Reductions are annotated with labelsλ that carry information on the (free) subject name involved
in the corresponding synchronization, if any:

λ ::= 〈a〉 | 〈ǫ〉 .

Thus, either the subject of the reduction is a free name of theprocess,a, or ǫ is used to indicate
that either the subject is restricted or the reduction originates from aτ-prefix. We shall need the
piece of information represented byλ when defining process properties such as “a synchroniza-
tion on a will eventually take place”. We define a hiding operator on labels, writtenλ ↑b̃, as
follow: λ ↑b̃= 〈a〉 if λ = 〈a〉 and a < b̃, λ ↑b̃= 〈ǫ〉 otherwise.

Remark 1. Concerning Table 1, note that, similarly to [16], we drop twolaws for restrictions:
(νx̃ : t̃)(νỹ : t̃′)P = (νỹ : t̃′)(νx̃ : t̃)P and (νỹ : t̃)0 = 0. The first law is dropped because, on the
left-hand side, (νx̃) might bind names occurring iñt′ that would become free in the right-hand
side. The second law becomes problematic once restrictionsare decorated with formulae (see
Example 5 in Section 4). Also note the absence of a structurallaw for replication: this is replaced
by an explicit reduction rule.

OverT , we define notions of structural congruence and reduction relation similar to those
introduced above for processes. Indeed, type annotations on input prefixes play no role in the
reduction rules, where types are treated basically as 0-adic processes. As an example, we have

c.T|c(t).S
〈c〉
−−→ T|S. Recall that annotations contribute to the set of free names, though: hence

annotations do affect structural congruence.
4

() αl = a(x̃) βn = a〈b̃〉 l ∈ I n ∈ J
∑

i∈I

αi .Pi |
∑

j∈J

β j .Q j
〈a〉
−−→ Pl [b̃/x̃]|Qn

()
j ∈ I α j = τ
∑

i∈I

αi .Pi
〈ǫ〉
−−→ P j

(-) βn = a〈b̃〉 n ∈ J

!a(x̃).P|
∑

j∈J

β j .Q j
〈a〉
−−→ !a(x̃).P|P[b̃/x̃]|Qn

() P
λ
−→ P′

P|Q
λ
−→ P′|Q

() P≡ Q Q
λ
−→ Q′ Q′ ≡ P′

P
λ
−→ P′

() P
λ
−→ P′

(νx̃ : t̃)P
λ↑x̃
−−→ (νx̃ : t̃)P′

Table 2: Rules for the reduction relation
λ
−→ on processes.

Notation. In the sequel, for any sequences= λ1 · · · · ·λn, we letP
s
−→ Q meanP

λ1
−→ ·· ·

λn
−→ Q,

andP→ Q (resp. P →∗ Q) meanP
λ
−→ Q (resp. P

s
−→ Q) for someλ (resp. s). Moreover,

we say that a processP has abarb a (resp. a), written Pցa (resp. Pցa), wheneverP ≡
(ν̃b̃)(
∑

i αi .Pi +a(x̃).Q|R) or P≡ (ν̃b̃)(!a(x̃).Q|R) (resp.P≡ (ν̃b̃)(
∑

i αi .Pi +a〈c̃〉.Q|R)), with a< b̃.
Similar notations are defined for types.

3. Properties

We first take a general view of properties asP-sets: sets of processes and types, subject to
certain conditions. Then we introduceShallow Logic, a simple language to denote an interesting
class of such properties. Although processes and types livein different worlds, for the purposes
of this section it is possible and convenient to deal with them in a uniform manner. In what

follows, we letA,B, ... range over the setU
△
=P∪T . Elements ofU will be generically referred

to asterms. The proofs not reported in this section can be found in Appendix A.

3.1. P-sets

Following [10, 9], a property set, P-set in brief, is a set of terms closed under structural
congruence and having a finite support: the latter intuitively means that the set of names that
are “relevant” for the property is finite (somewhat analogous to the notion of free names for
syntactic terms). In the following, we let{a↔ b} denote thetranspositionof a andb, that is, the
substitution that assignsa to b andb to a, and leaves the other names unchanged. ForΦ ⊆U, we
let A |= Φmean thatA ∈ Φ, andΦ{a↔ b} denote the set{A{a↔ b} |A |= Φ}.

Definition 1 (support, P-set, least support [10]).LetΦ ⊆U andN ⊆ N.

1. N is asupportof Φ if for eacha,b< N, it holds thatΦ{a↔ b} = Φ.
2. A property set(P-set) is a set of termsΦ⊆U that is closed under≡ and has a finite support.

3. Theleast supportof Φ, written supp(Φ), is defined as supp(Φ)
△
=
⋂

N support ofΦN.

In other words,N is a support ofΦ if renaming namesoutside Nwith fresh names does
not affectΦ. P-sets have finite supports, and since countable intersection of supports is still a
support, they also have a least support.

5

In the rest of the paper we will deal with properties that neednot be invariant through reduc-
tions. This calls for a notion ofλ-derivativeof a P-setΦ, describing the set of terms reachable
via λ-reductions from terms inΦ:

Φλ
△
= {B|∃A s.t. A |= Φ and A

λ
−→ B} .

The following property ensures that aλ-derivative of a P-setΦ is a P-set itself, providedλ
involves a name in the support ofΦ.

Proposition 1. LetΦ be a P-set. Ifλ = 〈a〉 with a∈ supp(Φ) thenΦλ is a P-set andsupp(Φλ) ⊆
supp(Φ).

The Ok(·) predicate introduced below identifies P-sets that enjoy certain desirable conditions. (1)
requires a P-set to be closed under parallel composition with terms not containing free names. (2)
demands a P-set to be invariant under reductions that do not involve names in its support. Finally,
(3) requires preservation of (1) and (2) under derivatives.These requirements will be essential
for guaranteeing the subject reduction property of our typesystems. Note the coinductive form
of the definition.

Definition 2 (Ok(·) predicate). We define Ok(·) as the largest predicate on P-sets such that when-
ever Ok(Φ) then:

1. for anyA,B∈ P s.t. fn(B) = ∅: A |= Φ if and only if A|B |= Φ; similarly for A,B∈ T ;
2. if λ = 〈ǫ〉 or λ = 〈b〉 with b < supp(Φ) thenΦλ = Φ;
3. for eachλ, Ok(Φλ) holds.

Note that, by virtue of Proposition 1, if Ok(Φ) then eachΦλ is guaranteed to be a P-set.

3.2. Shallow Logic

The logic for the pi-calculus we introduce below can be regarded as a fragment of Caires
and Cardelli’s Spatial Logic [10]. We christen this fragment Shallow Logic, as it allows one to
speak about the dynamics as well as the “shallow” spatial structure of processes and types. In
particular, the logic does not provide for modalities that allow one to “look underneath” prefixes.
Another relevant feature of this fragment is that the basic modalities focus on channelsubjects,
ignoring the object part at all. This selection of operatorsis sufficient to express a variety of
interesting process properties (race freedom, unique receptiveness [23], deadlock freedom, re-
sponsiveness [5], to mention a few), while being tractable from the point of view of verification
(see also Caires’ [9]). Another important property of Shallow Logic will be discussed later in
this section (see Lemma 2 below).

Definition 3 (Shallow Logic). The setF of Shallow Logicformulaeφ,ψ, . . . is given by the fol-
lowing syntax, wherea ∈ N andã⊆fin N:

φ ::= T
∣
∣
∣ φ∨φ

∣
∣
∣ ¬φ
∣
∣
∣ 〈a〉φ

∣
∣
∣ 〈ã〉∗φ

∣
∣
∣ 〈−ã〉∗φ

∣
∣
∣ a
∣
∣
∣ a
∣
∣
∣ φ|φ
∣
∣
∣ H∗φ.

The free names of a formulaφ, written fn(φ), are defined as expected. We letFx̃ = {φ ∈

F : fn(φ) ⊆ x̃}. The set of logical operators includes spatial (a,a, |,H∗) as well as dynamic
(〈a〉, 〈ã〉∗, 〈−ã〉∗) connectives, beside the usual boolean connectives, including a constantT for
“true”. The interpretation ofF over the set of processes is given in Table 3. Connectives are

6

[[T]] =U [[H ∗φ]] =
{

A
∣
∣
∣∃ã,B : A≡ (ν̃ã)B, ã#φ, B ∈ [[φ]]

}

[[φ1∨φ2]] = [[φ1]] ∪ [[φ2]] [[φ1|φ2]] =
{

A
∣
∣
∣∃A1,A2 : A≡ A1|A2, A1 ∈ [[φ1]] , A2 ∈ [[φ2]]

}

[[¬φ]] =U\ [[φ]] [[〈a〉φ]] =
{

A
∣
∣
∣∃B : A

〈a〉
−−→ B, B∈ [[φ]]

}

[[a]] =
{

A
∣
∣
∣Aցa

}

[[〈ã〉∗φ]] =
{

A
∣
∣
∣∃s,B : A

s
−→ B, s∈ {〈b〉|b∈ ã}∗, B ∈ [[φ]]

}

[[a]] =
{

A
∣
∣
∣Aցa

}

[[〈−ã〉∗φ]] =
{

A
∣
∣
∣∃s,B : A

s
−→ B, ã#s, B∈ [[φ]]

}

Table 3: Interpretation of formulae over terms.

interpreted in the standard manner. In particular, concerning spatial modalities, the barb atom
a (resp. a) requires thatA has an input (resp. output) barb ona; φ|ψ requires thatA can be
split into two independent threads satisfyingφ andψ; H∗φ requires thatA satisfiesφ, up to some
top level restrictions. Concerning the dynamic part, formula 〈a〉φ requires an interaction with
subjecta may leadA to a state whereφ is satisfied;〈ã〉∗φ requires any number, including zero,
of reductions with subject in ˜a may leadA to a state whereφ is satisfied;〈−ã〉∗φ is similar, but it
requires that the subjects of the reductions leading to sucha state arenot in ã. We writeA |= φ if
A ∈ [[φ]]. Interpretations of formulae are P-sets, as stated below.

Lemma 1. Letφ ∈ F. Then[[φ]] is a P-set and f n(φ) ⊇ supp([[φ]]) .

Notation. In what follows, when no confusion arises, we shall often denoteΦ = [[φ]] just as
φ. We abbreviate¬〈−x̃〉∗¬φ as�∗

−x̃φ. Moreover,〈−∅〉∗φ and�∗
−∅
φ are abbreviated as♦∗φ and

�
∗φ, respectively. Note that♦∗ and�∗ correspond to the standard “eventually” and “always”

modalities as definable, e.g., in the mu-calculus.

Example 1 (some properties).The following formulae define properties depending on a generic
channel namea. They will be reconsidered several times throughout the paper.

Race freedom: NoRace(a)
△
= �∗ ¬H∗(a|a)

Unique receptiveness: UniRec(a)
△
= �∗

(

a∧¬H∗(a|a)
)

Responsiveness: Resp(a)
△
= �∗−a♦

∗〈a〉

Deadlock freedom: NoDead(a)
△
= �∗

((
a→H∗(a|♦∗a)

)
∧
(
a→ H∗(a|♦∗ a)

))

.

NoRace(a) says that it will never be the case that there are two concurrent outputs competing
for synchronization ona. UniRec(a) says that there will always be exactly one receiver ready on
channela. Resp(a) says that, until a reduction ona takes place, it is always possible to reach a
reduction ona. If a is a return channel passed to some service, this means the service will, under
a suitable fairness assumption, eventually respond (see also [5]). Finally,NoDead(a) says that
each active outputa will eventually have a chance of synchronizing with an input, and vice-versa
for each active inputa.

It is worth to notice thatNoRace(a) andUniRec(a) belong to the class of safety and liveness
properties, respectively. On the other hand,Resp(a) andNoDead(a) might be classified as “weak

7

liveness”, in the sense that they combine liveness and safety guarantees. (“No state is reachable
from which a good state is unreachable”, see Appendix A.2 of [17] for the definitions and more
insights on the difference between weak and strong liveness.)

A further motivation for our specific selection of modalities is that satisfaction of any formula
of F is, so to speak, invariant under parallel composition. In particular, whetherA satisfies or
not a propertyφ of a bunch of names ˜x, should not depend on the presence of aclosedparallel
contextB. This will be important to guarantee soundness of the scope extrusion law, hence of
the subject congruence property, in our system. Formulae ofCardelli and Caires’ Spatial Logic
outsideF do not, in general, meet this requirement. As an example, therequirement obviously
fails for ¬(¬0|¬0), saying that there is at most one non-null thread in the system. As another
example, take the formula♦T, where♦ is the one-tau-step modality, saying that one reduction is
possible, no matter about the subject: the reduction might be provided by the contextB and not
by A. This explains the omission of this modality from Shallow Logic. The following lemma
formally states this property of Shallow Logic (this is in fact a rephrasing of condition 1 of the
Ok predicate).

Lemma 2. Let A be a term andφ ∈ Fx̃. For any term B such that A|B is a term andfn(B) = ∅ we
have that A|= φ if and only if A|B |= φ.

We shall sometimes need to be careful about the placement of the modality〈−ã〉∗ with respect
to negation¬. To this purpose, it is convenient to introduce two subsets of formulae, positive and
negative ones.

Definition 4 (positive and negative formulae).We say a formulaφ is positive(resp.negative)
if each occurrence of modality〈−ã〉∗ in φ is in the scope of an even (resp. odd) number of
negations “¬”.

We letF + (resp.F −) denote the subset of positive (resp. negative) formulae inF. The sets
F +x̃ andF −x̃ are defined as expected.

Example 2. Formulae not involving the operator〈−ã〉∗ are both positive and negative. As an
example,a, 〈a〉T, ¬〈a〉T, (¬a)|a are both negative and positive. On the other hand,¬〈−b̃〉

∗
a is

negative but not positive, while〈−b̃〉
∗
¬a is positive but not negative. Concerning the formulae

introduced in Example 1, note thatNoRace(a) andUniRec(a) are negative, whileResp(a) and
NoDead(a) are neither positive nor negative, as in both of them the modality ♦∗ occurs simulta-
neously in negative and in positive positions.

Remark 2. Note that our definitions of “positive” and “negative” are more liberal than the ones
considered by Igarashi and Kobayashi [16], where the position of all spatial modalities – includ-
ing the analogs of|, a anda – w.r.t. negation must be taken into account. For instance, unique
receptiveness would not be considered neither as negative nor as positive in the classification
of [16]. This difference has influential consequences on the generality of thetype soundness
theorems of the type systems.

In the rest of the paper, we shall mainly focus on formulae whose denotations are Ok P-sets.
We write Ok(φ) if Ok([[φ]]) holds. The following lemma provides a sufficient syntactic condition
for a formula to be Ok (note that condition (1) of Ok(φ) is a direct consequence of Lemma 2).

8

Lemma 3. Letφ be a Shallow Logic formula of the form either¬♦∗¬ψ or ¬〈−ã〉∗¬♦∗ψ′, where
ψ′ does not contain¬. ThenOk(φ).

Example 3. formulae in Example 1 are in the format of Lemma 3, hence they are Ok.

4. A “Local” Type System

We present here our first type system. The adjective “local” refers to the controlled way
P-set membership (that is, model checking, in practical cases) is checked within the system.
Specifically, as we will see later on, in the restriction ruleonly the part of a process typeT
that depends on the restricted names is considered. We are now going to introduce a decorated
version of the syntax, the typing rules and the basic properties of the system. Proofs not reported
in this section can be found in Appendix B.

4.1. Annotated processes

As anticipated in Section 2, the type system works on annotated processes. Each restriction
introduces a property, under the form of an Ok P-set, that depends on the restricted names and
is expected to be satisfied by the process in the scope of the restriction. For annotated processes,
the clause of restriction is

P ::= · · ·
∣
∣
∣ (νã : t̃ ; Φ)P with ã⊇ supp(Φ) and Ok(Φ) .

For brevity, when no confusion arises we shall omit writing explicitly channel types and prop-
erties in restrictions, especially whent = ()0 andΦ = [[T]]. The reduction rule for restriction of
annotated processes takes into account theλ-derivative ofΦ in the continuation process. Hence
the rule for restriction on annotated processes is

()
P

λ
−→ P′

(νx̃ : t̃ ; Φ)P
λ↑x̃
−−→ (νx̃ : t̃ ;Φλ)P′

.

Note that, by removing property annotations from restrictions, one gets back exactly the syntax
and the reduction relation of plain processes. For an annotated processP, we take “P |= φ” to
mean that the plain process obtained by erasing all propertyannotations fromP satisfiesφ. A
“good” process is one that satisfies its own annotations at anactive position. Formally:

Definition 5 (well-annotated processes).A processP ∈ P is well-annotatedif wheneverP ≡
(ν̃b̃)(νã;Φ)Q thenQ |= Φ.

4.2. Typing rules

Judgements of the type system are of the formΓ ⊢ P : T, where: P ∈ P, T ∈ T andΓ is
a context, that is, a finite partial map from namesN to channel types. We writeΓ ⊢ a : t if
a ∈ dom(Γ) andΓ(a) = t. We say that a context iswell-formedif wheneverΓ ⊢ a : (x̃ : t̃)T then
fn(T, t̃) ⊆ x̃∪dom(Γ). In what followswe shall only consider well-formed contexts. In the type
system, we make use of a “hiding” operation on types,T ↓x̃, which masks the use of names not
in x̃ (as usual, in the definition we assume that all bound names inT andt are distinct from each
other and disjoint from the set of free names and from ˜x). T ↓x̃ is formally defined in Table 4.

9

(a.T) ↓x̃=






τ.(T ↓x̃) if a < x̃

a.(T ↓x̃) otherwise
(a(t).T) ↓x̃=






τ(t ↓x̃).(T ↓x̃) if a < x̃

a(t ↓x̃).(T ↓x̃) otherwise

(T1|T2) ↓x̃= (T1 ↓x̃)|(T2 ↓x̃) (τ.T) ↓x̃=τ.(T ↓x̃) ((νb̃ : t̃)T) ↓x̃= (νb̃ : t̃ ↓x̃,b̃)(T ↓x̃,b̃)

(
∑

i µi .Ti) ↓x̃=
∑

i
(

(µi .Ti) ↓x̃
)

(!a(t).T) ↓x̃= !
(

(a(t).T) ↓x̃
)

((ỹ : t̃)T) ↓x̃= (ỹ : t̃ ↓x̃,y)T ↓x̃,ỹ

Table 4:T ↓x̃.

(L-I) Γ ⊢ a : (x̃ : t̃)T Γ, x̃ : t̃ ⊢ P : T|T′ x̃#T′

Γ ⊢ a(x̃).P : a((x̃ : t̃)T).T′
(L-T) Γ ⊢ P : T

Γ ⊢ τ.P : τ.T

(L-O) Γ ⊢ a : (x̃ : t̃)T Γ ⊢ b̃ : t̃ Γ ⊢ P : S
Γ ⊢ a〈b̃〉.P : a.(T[b̃/x̃] |S)

(L-E) Γ ⊢ P : T T ≡ S
Γ ⊢ P : S

(L-S) |I | , 1 ∀i ∈ I : Γ ⊢ αi .Pi : µi .Ti

Γ ⊢
∑

i

αi .Pi :
∑

i

µi .Ti

(L-R) Γ ⊢ a(x̃).P : a(t).T
Γ ⊢!a(x̃).P :!a(t).T

(L-R) Γ, ã : t̃ ⊢ P : T T ↓ã|= Φ
Γ ⊢ (νã : t̃ ;Φ)P : (νã : t̃)T

(L-P) Γ ⊢ P : T Γ ⊢ Q : S
Γ ⊢ P|Q : T|S

Table 5: Typing rules for the local system.

As an example, we have that

(νa : t)(a(t).b(t′)|a(t).c(t′′)|c|a) ↓b= (νa : t ↓a,b)(a(t ↓a,b).b(t′ ↓a,b)|a(t ↓a,b).τ(t′′ ↓a,b)|τ|a) .

Notice that terms produced by the hiding operator are in general not inT . Consider e.g. the
τ(t′′ ↓a,b) prefix above or (!a(t).c) ↓c=!τ(t ↓c).c. Formally,T ↓x̃ belongs to the set of terms defined
by the grammar for types extended as follows:

T ::= · · ·
∣
∣
∣ !τ(t).T

∣
∣
∣ τ(t).T .

Note, however, that, by the rules of the type system, such terms only arise when checking the
premise of the restriction rule (L-R). They cannot appear as types assigned to processes.

The rules of the type system are shown in Table 5. The structure of the system is along
the lines of [16]; the main differences are discussed in Section 10. The key rules are (L-I),
(L-O), (L-R) and (L-E). By and large, the system works as follows: given a processP,
it computes an abstraction ofP in the form of a typeT. At any restriction (νã : t̃ ; Φ)P (rule
(L-R)), the abstractionT obtained forP is used to check thatP’s usage of names ˜a fulfills
propertyΦ (T ↓ã|= Φ): in practical cases,Φ is a shallow logic formula and this is actually spatial
model checking. Note thatT |=Φmight be undecidable, however significant decidable fragments
have recently been identified (this is further discussed in Section 11). Also note that, thanks to
↓ã, this is checked without looking at the environment: only the part ofT that depends on ˜a, that

10

is T ↓ã, is considered, the rest is masked. In particular, inT ↓ã, any masked parallel component
at top-level can be safely discarded (a consequence of condition 1 of Ok). In this sense the type
system is “local”.

Similarly to [16], rules for input and output are asymmetric, in the sense that, when typing a
receivera(x̃).P, the type information onP that depends on the input parameters ˜x is moved to the
sender side. The reason is that the transmitted namesb̃ are statically known only by the sender
(rule (L-O)). Accordingly, on the receiver’s side (rule (L-I)), one only keeps track of the part
of the continuation that does not depend on the input parameters, that isT′. More precisely, the
type of the continuationP is required to decompose – modulo structural congruence – asT|T′,
whereT is the type prescribed by the contextΓ for a, andT′, which does not mention the input
parameters ˜x, is anything else. In essence, in well typed processes, all receivers ona must share
a common part that deals with the received names ˜x as prescribed by the typeT.

Finally, rule (L-E) is related to sub-typing. As mentioned in the Introduction, a key point
of our system is that types should reflect the (shallow) spatial structure of processes. When
considering sub-typing, this fact somehow forces us to abandon preorders in favor of an equiv-
alence relation that respects P-sets membership, which leads to structural congruence. Further
discussion on this point is found in Section 10.

The judgements derivable in this type system are written asΓ ⊢L P : T.

Example 4. Consider the formulaφ = �∗¬H∗(a|b) saying that it is not possible to reach a
configuration where both an output barb ona and one onb are available at the same time.
Ok(φ) holds by Lemma 3. Consider the processP = (νa,b : t, t ; φ)Q, where: t = ()0, Q =
(

(d〈a〉 + d〈b〉) | !a.b| !b.a
)

|d(x).x and a contextΓ s.t. Γ ⊢ d : (x : t)x = t′. By applying the typ-
ing rules for input, output, summation and parallel composition:

Γ, a : t, b : t ⊢L Q : (d.a+ d.b) | !a(t).b| !b(t).a|d(t′)
△
= T .

T ↓a,b= (τ.a + τ.b) | !a(t).b| !b(t).a|τ |= φ; hence, by (L-R), Γ ⊢L P : (νa,b : t, t)T. This exam-
ple shows clearly that the structural correspondence between types and processes is shallow: it
breaks down as soon as we look underneath prefixes. Indeed,Q andT have the same number
of parallel components and they offer the same barbs, regardless of the communication objects.
But, as soon as we look at a deeper level, this correspondencebreaks down: e.g. the output
d〈a〉 in Q has no continuation, while the outputd in T has the continuationa. In this sense the
correspondence is shallow.

Example 5. The following examples further illustrate the reasons for dropping the two rules
(νa)0 ≡ 0 and (νa)(νb)P ≡ (νb)(νa)P from structural congruence (as discussed in Section 2).
Concerning the first rule, note that the process0 is well typed in any context (by (L-S)),
while e.g. (νy : t;φ)0, with φ = 〈y〉T requiring a communication ony, obviously is not. Con-
cerning the second rule, the process (νb : ()0;T)(νa : ()0;♦∗(a|a))(a.b|a.b) is well typed, while
(νa : ()0;♦∗(a|a))(νb : ()0;T)(a.b|a.b) is not. In other words, the presence of either rules would
violate the subject congruence property (see the next subsection).

Despite the absence of law (νa)(νb)P≡ (νb)(νa)P, swapping of two top level restrictions is
still possible providedP can be split into two parts, each of them not containing respectively a
andb.This swapping can be achieved by repeated applications of the scope extrusion structural
law. For instance (a,b andc are assumed of type ()0; annotations omitted for brevity):

(νb)(νa)
(
b.c|b|a|c.a

)

≡ (νb)
(
b.c|b

)

| (νa)
(
a|c.a

)

≡ (νa)(νb)
(
a|b|b.c|c.a

)

11

where at each step the scope extrusion rule is applied twice.

Remark 3 (on type annotations).We are now ready to motivate the annotations on types in-
troduced at page 3. Basically, type annotations on both input prefixes and restrictions guarantee
that the correspondence between the spatial structure of processes and types is preserved by the
scope extrusion law. Consider the process

P= (νa;φ)Q where Q= (νb)(νc : (x)b.x)(a.c(x).b.x|a.b)

and the formulaφ = �∗−a♦
∗(a|a), which is Ok according to Lemma 3. Under a suitable context,

the type system assigns toQ a type that, once annotations are removed, looks like

T = (νb)(νc)(a.c|a.b) .

Note that, according to the typing rules, the continuation of c is discarded when going fromQ to
T. Now, since inT namesb andc occur in distinct threads, we can splitT = T ↓a in two, thus

T = T ↓a≡ (νc)a.c| (νb)a.b |= φ .

Hence, ignoring annotations leads to concluding, by (L-R), that P is well typed. The prob-
lem is thatP is not well-annotated according to Definition 5. In fact,Q cannot be split in two
independent threads, due to the sharing of the restricted nameb

Q 6|= φ

so that the soundness result presented in the next section would be violated. This shortcoming is
avoided thanks to the presence of annotations in types. Indeed,

a : ()0 ⊢L Q : (νb)(νc : (x)b.x)(a.c((x)b.x) |a.b)

where the type on the right cannot be split in two, since nameb is shared by two threads. Hence

(νb)(νc : (x)b.x)(a.c((x)b.x) |a.b) ↓a= (νb)(νc : (x)b.x)(a.c((x)b.x) |a.b) 6|= φ

which entails, correctly, thatP is not well typed. Note that, to guarantee the proper workingof
scope extrusion, it would be sufficient to annotate restrictions and input prefixes by sets of free
names, rather than by whole channel types. We have preferredthe latter form, which makes the
structural correspondence between types and processes clearer.

Finally, note that, in the above example, the addition of therestriction operator H∗ to φ would
solve the problem: bothT andQ satisfyφ′ = �∗−a♦

∗H∗(a|a). This points to the expressiveness
of the Shallow logic. Indeed, in the logic considered in [16], the satisfaction ofφ1|φ2 is defined
up-to restrictions, hence it cannot logically distinguishQ above fromR= a.c(x).b.x|a.b.

4.3. Basic properties

We state here the basic properties of the type system presented in the preceding subsection.
Let us writeΓ⊢NL P : T if there exists anormal derivation ofΓ ⊢L P : T, that is, a derivation
where rule (L-E) can only be found immediately above rule (L-I). Modulo≡, every judgment
derivable in the type system admits a normal derivation.

Proposition 2 (normal derivation). If Γ ⊢L P : T thenΓ⊢NL P : S for someS ≡ T.
12

Normal derivations are syntax-directed, that is, processes and their types share the same
shallow structure. This is formally stated in the two lemmasbelow.

Lemma 4. Suppose thatΓ⊢NL P : T, thatΓ ⊢ b̃ : t̃ and thatΓ ⊢ a : (x̃ : t̃)U. Then for any Q,Q1,Q2,
andαi .Qi (i ∈ I), it holds that:

1. P= a(x̃).Q impliesT = a((x̃ : t̃)U).S for someS such thatΓ, x̃ : t̃ ⊢L Q : S|U andx̃#S;
2. P= a〈b̃〉.Q impliesT = a.(S|S′) for someS andS′ such thatΓ⊢NL Q : S′ andS = U[b̃/x̃];
3. P= τ.Q impliesT = τ.S for someS such thatΓ⊢NL Q : S;
4. P= (νc̃ : t̃′;Φ)Q impliesT = (νc̃ : t̃′)S for someS such thatΓ, c̃ : t̃′ ⊢NL Q : S andS ↓c̃|= Φ;
5. P=Q1|Q2 impliesT=S1|S2 for someS1 andS2 such thatΓ⊢NL Q1 : S1 andΓ⊢NL Q2 : S2;
6. P=!a(x̃).Q impliesT =!a((x̃ : t̃)U).S for someS such thatΓ⊢NL a(x̃).Q : a((x̃ : t̃)U).S;
7. P =

∑

i∈I αi .Qi impliesT =
∑

i∈I µi .Si for someSi andµi such thatΓ⊢NL αi .Qi : µi .Si , for
each i∈ I.

P. The proof is straightforward by induction on the derivation of Γ⊢NL P : T. It proceeds by
considering the last typing rule applied. All cases are obvious (recall that in a normal derivation,
rule (L-E) cannot be the last applied one).

Lemma 5. Suppose thatΓ ⊢L P : T, thatΓ ⊢ b̃ : t̃ and thatΓ ⊢ a : (x̃ : t̃)U. Then for anyS,S1,S2,
andµi .Si (i ∈ I), it holds that:

1. T = a((x̃ : t̃)U).S implies P≡ a(x̃).Q for some Q such thatΓ, x̃ : t̃ ⊢L Q : U|S and x̃#S;
2. T = a.S implies P≡ a〈b̃〉.Q for some Q andS′ such thatΓ ⊢L Q : S′ andS ≡ U[b̃/x̃]|S′;
3. T = τ.S implies P≡ τ.Q for some Q such thatΓ ⊢L Q : S;
4. T = (νc̃ : t̃′)S implies P≡ (νc̃ : t̃′;Φ)Q for some Q andΦ such thatΓ, c̃ : t̃′ ⊢L Q : S and

S ↓c̃|= Φ;
5. T = S1|S2 implies P≡ Q1|Q2 for some Q1 and Q2 such thatΓ ⊢L Q1 : S1, Γ ⊢L Q2 : S2;
6. T =!a((x̃ : t̃)U).S implies P≡!a(x̃).Q for some Q such thatΓ ⊢L a(x̃).Q : a((x̃ : t̃)U).S;
7. T=

∑

i∈I µi .Si, |I |, 1, implies P≡
∑

i∈I αi .Qi for some Qi andαi such thatΓ ⊢L αi .Qi : µi .Si ,
for each i∈ I.

Subject reduction relies on a few intermediate results. Letus first introduce some more

terminology. In the remainder of the paper we define ((˜y : t̃)T)[b̃/x̃]
△
= (ỹ : t̃[b̃/x̃])T[b̃/x̃], for any

x̃ and b̃, with implicit alpha renaming of bound names to avoid captures. This definition is
generalized toΓ such thatΓ ⊢ x̃ : t̃ andΓ ⊢ b̃ : t̃ as follows:Γ[b̃/x̃](a)=Γ(a)[b̃/x̃], for anya∈ dom(Γ).
Notice thatΓ ⊢ x̃ : t̃ andΓ ⊢ b̃ : t̃ imply that (i)Γ[b̃/x̃] ⊢ x̃ : t̃[b̃/x̃], (ii) Γ[b̃/x̃] ⊢ b̃ : t̃[b̃/x̃] and (iii) Γ[b̃/x̃]

is well-formed. Finally, let fn(Γ)
△
=
⋃

a∈dom(Γ) fn(Γ(a)).

Proposition 3 (subject congruence).Γ ⊢L P : S and P≡ Q impliesΓ ⊢L Q : S.

Proposition 4 (substitution). SupposeΓ, x̃ : t̃ ⊢L P : T, with Γ andΓ, x̃ : t̃ well-formed, andΓ ⊢
b̃ : t̃. ThenΓ[b̃/x̃] ⊢L P[b̃/x̃] : T[b̃/x̃].

The following result establishes the operational correspondence betweenT andT ↓x̃. This
correspondence is strict as long as reductions involve a name in x̃, a bound name or aτ-prefix (in
T). Otherwise, a single step fromT can be mimicked by two〈ǫ〉 reductions fromT ↓x̃.

13

Proposition 5 (operational correspondence betweenT and T ↓x̃). (i) If T
λ
−→ T′, with λ ::=

〈ǫ〉
∣
∣
∣ 〈a〉 and a∈ x̃, thenT ↓x̃

λ
−→ T′ ↓x̃. (ii) If T

λ
−→ T′, with λ = 〈a〉 and a< x̃, thenT ↓x̃

〈ǫ〉
−−→

〈ǫ〉
−−→

T′ ↓x̃. (iii) If T
s
−→ T′ thenT ↓x̃

s′
−→ T′ ↓x̃, with fn(s′) ⊆ fn(s). (iv) If T ↓x̃

λ
−→ T′, with λ = 〈a〉 or

λ = 〈ǫ〉 and the reduction originates from a synchronization on a bound name or aτ−prefix inT,

thenT
λ
−→ S, with T′ = S ↓x̃.

Theorem 1 (subject reduction).Γ ⊢L P : T and P
λ
−→ P′ implies that there exists aT′ such that

T
λ
−→ T′ andΓ ⊢L P′ : T′.

P. The proof proceeds by induction on the derivation ofP
λ
−→ P′, where the last reduction

rule applied is distinguished. We examine the most interesting cases below. Recall that by
Proposition 2, a normal derivation forΓ ⊢L P : T exists, sayΓ⊢NL P : S with T ≡ S.

(). By P
λ
−→ P′ and the premise of the rule, we getP ≡ Q, Q

λ
−→ Q′ andQ′ ≡ P′. By

Proposition 3 (subject congruence),Γ⊢NL P : S impliesΓ ⊢L Q : S; hence, by applying the

induction hypothesis, we getS
λ
−→ S′ andΓ ⊢L Q′ : S′. Finally, by (), S ≡ T

λ
−→

S′ = T′ and by Proposition 3 (subject congruence),Γ ⊢L P′ : T′.

(). Assume for notational simplicity thatP= a(x̃).R|a〈b̃〉.Q
〈a〉
−−→ R[b̃/x̃] |Q= P′ (the general

case with arbitrary guarded summations is similar). ByΓ⊢NL P : S and Lemma 4, we get
S = a.V|a.(U[b̃/x̃]|V′) with Γ ⊢L Q : V′, Γ, x̃ : t̃ ⊢L R : V|U with x̃#V, whereΓ ⊢L a : (x̃ : t̃)U
andΓ ⊢L b̃ : t̃. We can also assume that ˜x#Γ.

By () and (), S
〈a〉
−−→ V|U[b̃/x̃]|V′ andT

〈a〉
−−→ V|U[b̃/x̃]|V′

△
= T′. By x̃#Γ it fol-

lows thatΓ[b̃/x̃] = Γ. Moreover, by Proposition 4 (substitution) and (L-P) we getΓ ⊢L
R[b̃/x̃]|Q : (V|U)[b̃/x̃]|V′. Finally, by x̃#V we get (V|U)[b̃/x̃]|V′ = V|U[b̃/x̃]|V′ = T′ and by
(L-E), we getΓ ⊢L P′ : T′.

(). By P= (νã : t̃;Φ)P0
λ↑ã
−−→ (νã : t̃;Φλ)P′0= P′ and the premise of the rule, we getP0

λ
−→ P′0.

By Γ⊢NL (νã : t̃; Φ)P0 : S and Lemma 4, we getS = (νã : t̃)U, with Γ, ã : t̃ ⊢L P0 : U and

U ↓ã|= Φ. Hence, by applying the induction hypothesis, we getU
λ
−→ U′ andΓ, ã : t̃ ⊢L P′0 :

U′. By () we get (νã : t̃)U
λ↑ã
−−→ (νã : t̃)U′

△
= T′ and by (), T

λ↑ã
−−→ T′.

We have to prove that the premise of the rule (L-R) is fulfilled. We already know that
Γ, ã : t̃ ⊢L P′0 : U′, thus it suffices to show thatU′ ↓ã|= Φλ. We consider two possibilities
(recall thatã⊇ supp(Φ)):

1. λ = 〈a〉, with a ∈ ã, or λ = 〈ǫ〉. U′ ↓ã|= Φλ follows by U ↓ã|= Φ andU ↓ã
λ
−→ U′ ↓ã, a

consequence ofU
λ
−→ U′ and Proposition 5.

2. otherwiseΦλ = Φ〈ǫ〉 = Φ, by Ok(Φ). The reductionU
λ
−→ U′ has a free subject not in

ã. By Proposition 5, this reduction can be simulated by a pair of ǫ-reductions ofU ↓ã

that consume the corresponding prefixes, thus:U ↓ã
〈ǫ〉
−−→

〈ǫ〉
−−→ U′ ↓ã. By definition of

Φλ and by Ok(Φ), we have that:U′ ↓ã|= Φ〈ǫ〉〈ǫ〉 = Φ〈ǫ〉 = Φ = Φλ.

14

In both cases (L-R) can be applied to deduceΓ ⊢L P′ = (νã : t̃; Φλ)P′0 : (νã : t̃)U′ = T′.

The system⊢L enjoys a sort of “inverse subject reduction” property guaranteeing that pro-
cesses simulate their types.

Theorem 2 (type subject reduction).Γ ⊢L P : T andT
λ
−→ T′ implies that there exists a P′ such

that P
λ
−→ P′ andΓ ⊢L P′ : T′.

5. Type Soundness for the Local System

In this section we prove a general type soundness result for our system: we study classes of
properties for which well-typed-ness implies well-annotated-ness. We first identify the general
class of properties for which, at least in principle, model checking on processes can be reduced to
a type checking problem whose solution requires only a (local) use of model checking on types.
We do so by the following coinductive definition.

Definition 6 (locally checkable properties).We let Lc be the largest predicate on P-sets such
that whenever Lc(Φ) then Ok(Φ) and:

1. wheneverΓ ⊢L P : T andx̃⊇ supp(Φ) andT ↓x̃|= Φ thenP |= Φ;
2. Lc(Φλ) holds for eachλ.

If Lc(Φ) then we sayΦ is locally checkable.

A formula φ ∈ F is said to be locally checkable if [[φ]] is locally checkable. The following
theorem is quite expected.

Theorem 3 (type soundness).SupposeΓ ⊢L P : T and P is decorated with locally checkable
P-sets only. Then P is well-annotated.

P. SupposeΓ ⊢L P : T andP≡ (ν̃b̃)(νã :Φ)Q. The P-setΦ is locally checkable by hypothe-
sis. We have to prove thatQ |= Φ.

By Proposition 3 (subject congruence),Γ ⊢L P : T andP ≡ (ν̃b̃)(νã : Φ)Q, we deduce that
Γ ⊢L (ν̃b̃)(νã :Φ)Q : T. A normal derivation of this judgment exists (Proposition 2),Γ⊢NL (ν̃b̃)(νã :
Φ)Q : S ≡ T and, by Lemma 4,S ≡ (ν̃b̃)(νã)T′ with Γ, b̃ : t̃, ã : t̃′ ⊢L Q : T′ andT′ ↓ã|= Φ. By Def-
inition 6, part 1, it follows thatQ |= Φ.

The following corollary is a consequence of type soundness and subject reduction.

Corollary 1 (run-time soundness). Suppose thatΓ ⊢L P : T and that P is decorated with locally
checkable P-sets only. Then P→∗ P′ implies that P′ is well-annotated.

Our task is now providing sufficient syntacticconditions on a formulaφ that guarantee
Lc([[φ]]). In the following, we will write Γ ⊢K P : T if well-typedness ofP can be derived
from the rules in Table 5 by omitting the checkT ↓ã|= Φ in the premise of rule (L-R). The
system⊢K can be seen as the kernel of⊢L : its only purpose is to extract abstractions out of
processes, without performing any check. The following proposition guarantees that processes
and the corresponding types satisfy the same Shallow logic formulae.

15

Proposition 6. SupposeΓ ⊢K P : T and letφ ∈ F. ThenT |= φ if and only if P|= φ.

P. First, notice thatΓ ⊢K P : T if and only ifΓ ⊢L P′ : T, with P′ obtained fromPby replacing
each P-set annotation with [[T]]. Therefore, all basic properties of the system⊢L introduced in
Section 4.3 carry over to⊢K provided that allΦs are replaced by [[T]].

The proof is straightforward by induction on the structure of φ. The cases of the boolean con-
nectives easily follow from the induction hypothesis. The spatial connectives are accommodated
relying on the structural correspondence between processes and their types (by Lemma 4 and 5).
The dynamic connectives are accommodated relying on Theorem 1 and Theorem 2. Below, we
cover in detail the two most interesting cases.

φ = φ1|φ2.

(⇒). T |= φ1|φ2 implies thatT ≡ T1|T2 with Ti |= φi for i = 1,2. By rule (L-E), Γ ⊢K P :
T1|T2, hence by Lemma 5,P≡ P1|P2, with Γ ⊢K P1 : T1 andΓ ⊢K P2 : T2. Therefore,
by applying the induction hypothesis, we getP1 |= φ1 andP2 |= φ2, that isP |= φ.

(⇐). The proof proceeds in a similar way, by applying Proposition2 and Lemma 4 in
place of Lemma 5.

φ = 〈−b̃〉
∗
ψ.

(⇒). T |= φ implies thatT
s
−→ T′ andT′ |= ψ for someT′ andb̃#s. By Theorem 2 (type

subject reduction), we getP
s
−→ P′ andΓ ⊢K P′ : T′.

From T′ |= ψ, Γ ⊢L P′ : T′ and the induction hypothesis, we getP′ |= ψ. Hence,
P |= 〈−b̃〉

∗
ψ.

(⇐). The proof proceed in a similar way; Theorem 1 (subject reduction) is applied instead
of Theorem 2.

We still miss two ingredients to obtain our main result. The first one relates the hiding
operator to structural congruence. The second one is about the effect of the hiding operator on
satisfiability. (The proof of Lemma 6 can be found in AppendixB.)

Lemma 6.

1. Suppose a∈ x̃. (T ↓x̃)ցa if and only ifTցa.
2. If T ↓x̃≡ T1|T2 then there areS1 andS2 such thatT ≡ S1|S2 andSi ↓x̃= Ti , for i = 1,2.
3. If T ≡ T1|T2 then there areS1 andS2 such thatT ↓x̃≡ S1|S2 andSi = Ti ↓x̃, for i = 1,2.
4. If T ↓x̃≡ (ν̃ã)S then there isV such thatT ≡ (ν̃ã)V, with V ↓x̃,ã= S.
5. If T ≡ (ν̃ã)S then there isV such thatT ↓x̃≡ (ν̃ã)V, with V = S ↓x̃,ã.

Lemma 7. (a) If φ ∈ F −x̃ andT ↓x̃|= φ thenT |= φ. (b) If φ ∈ F +x̃ andT |= φ thenT ↓x̃|= φ.

P. The two statements (a) and (b) are proven by mutual induction on the structure of formula
φ. We show only the most interesting cases: H∗ and〈−b̃〉

∗
. Barb and parallel composition cases

follow from Lemma 6, while the others from the induction hypothesis. Notice that the mutual
induction comes into play in the caseφ = ¬ψ.

16

φ = H∗ψ. Supposeφ (henceψ) is a negative formula.T ↓x̃|= H∗ψ implies thatT ↓x̃≡ (ν̃ã)U with
U |= ψ. By Lemma 6 (4), it follows thatT ≡ (ν̃ã)V, for someV such thatV ↓x̃,ã= U. Hence
by φ ∈ F −x̃ ⊆ F

−
x̃,ã and by the induction hypothesis,V |= ψ andT ≡ (ν̃ã)V |= H∗ψ = φ.

Supposeφ (henceψ) is positive. T |= H∗ψ impliesT ≡ (ν̃ã)V, with V |= ψ. By Lemma 6
(5), T ↓x̃≡ (ν̃ã)U with U = V ↓x̃,ã. By applying the inductive hypothesis,U |= ψ and, by
definition, (ν̃ã)U |= H∗ψ, henceT ↓x̃|= φ.

φ = 〈−b̃〉
∗
ψ. By definition of positive formulae, bothφ andψ are positive.T |= φ implies that

T
s
−→ S, b̃#s andS |= ψ for someS. By Proposition 5,T ↓x̃

s′
−→ S ↓x̃, with fn(s′) ⊆ fn(s),

and by applying the inductive hypothesis,S ↓x̃|=ψ. Therefore, by definition,T ↓x̃|= 〈−b̃〉
∗
ψ.

Theorem 4. Any negative formula of the form�∗φ is locally checkable.

P. Each formula of the given form is Ok (Lemma 3). Notice that well typedness in⊢L
implies well typedness in⊢K , hence by Lemma 7(a) and Proposition 6, each (denotation of a)
negative formula satisfies condition 1 of the definition of Lc. Moreover, [[�∗φ]] = [[�∗φ]]λ for
eachλ. This shows that{[[�∗φ]]

∣
∣
∣ φ ∈ F −} ⊆ Lc.

The above result provides us a type soundness result for an interesting class of formulae, that
includes both safety and liveness properties. Some examples will be given in the next section.

6. Examples in the Local System

The formulaeNoRace(a) andUniRec(a) fit in the format given by Theorem 4, hence they are
locally checkable. As an example, consider

P= (νa,b,c : ()0, t′, t ; UniRec(a))
(

c〈a〉 | a+b(x).x|c(y).(b〈y〉|d〈y〉) |d(z).z.z
)

wheret = (x)b.x andt′ = (y)y. Assume thatΓ ⊢L d : t′′, with t′′ = (z)z.z. By the typing rules, we
easily derive

Γ,a : ()0,b : t′,c : t ⊢L c〈a〉 | a+b(x).x|c(y).(b〈y〉|d〈y〉) |d(z).z.z : T

with
T
△
= c.(b.a|d.a.a) | a+b(t′) | c(t) | d(t′′) .

Since
T ↓a,b,c= c.(b.a|τ.a.a) | a+b(t′) | c(t) | τ(t′′) |= UniRec(a)

we can apply (L-R) and get

Γ ⊢L P : (νa,b,c : ()0, t′, t)T .

For another example, consider the following access policy to a shared resourcec. Before
using the resource, a lockl must be acquired; the resource must then be used immediately, and
the lock must be released immediately after that. If we identify an available resource with an
input barbc, a use ofc with a synchronization onc and the availability ofl with an output barb
l, the above policy can be described by the following formula,where [c] stands for¬〈c〉¬:

SafeLock(l,c)
△
= �∗
(

(l→ c) ∧ [c]l
)

.

17

Herel → c= ¬l ∨c means that presence of the lock implies presence of the resource, while [c]l
guarantees that after using the resource the lockl must be made immediately available. This is a
negative formula fitting the format of Theorem 4, hence it is locally checkable. As an example
of use of this formula, the process

Q= (νc, l ;SafeLock(l,c))(l|c|a〈l,c〉) |a(x,y).!x.
(

y.y|x
)

is well typed under aΓ s.t. Γ ⊢ a : (x,y)!x.
(

y.y|x
)

. A more flexible version ofSafeLock, not
requiring an immediate release of the lock after using the resource, will be examined in Section 9.

Note that neither (the analog of)UniRec(a), norSafeLock(l,c) are covered by the type sound-
ness theorem of [16].

Finally, note thatResp(a) andNoDead(a) do not fit the format of Theorem 4. Indeed, these
formulae are not locally checkable. E.g., considerR= (νa;Resp(a))(c.a|a). This process is easily
seen to be well-typed underc : ()0, simply because thec blockinga is masked (turned intoτ) in
(L-R). However,c.a|a clearly fails to satisfyResp(a).

7. A “Global” Type System

TheResp(a) example at the end of the preceding section makes it clear that it is not possible to
achieve type soundness for properties like responsivenessunless we drop the “locality” condition
in the restriction rule, represented by the use of the hidingoperator↓x̃ in T ↓x̃|= Φ. Similar
considerations apply to the case of deadlock-freedom. Those properties are inherently global,
that is, they can be checked by looking also at names declaredelsewhere in the environment to
make sure that they do not interfere with the property being checked. More precisely, it appears
that one must also consider the part of the type involving names on which the local (restricted)
ones causally depend. In the previous example, whereT = c.a|a, this means checkingResp(a)
againstT ↓a,c= T, rather than againstT ↓a, thus detecting the failure of the property. This can be
regarded as an implicit form of assume-guarantee reasoning(this point of view will be further
discussed in the concluding section).

Below, we introduce a new type system that pursues this idea.Note that dropping locality
implies some loss of compositionality and effectiveness. However, that is done in a somewhat
controlled way: not all names, but only some of them, causally related to the restricted ones,
are considered when checking the validity of the property. The type system relies on the use of
normal forms and dependency graphs, two technical devices introduced in the next subsection
which help to keep track of causal dependencies among names in a type. Proofs omitted in this
section can be found in Appendix C.

7.1. Dependency graphs and (head) normal forms

Letχ range over the seta= {ǫ,◦,•} of annotations. ForI ⊆N, we let a set of annotated names
Î be a total function fromI to a; by slight abuse of notation, we writeaχ ∈ Î rather than̂I (a) = χ.
The informal meaning of annotations is:ǫ = free name,◦ = input-bound name,• = restricted
name. Adependency graph Gis a pair〈V,E〉, where:V = Î ∪W, with W⊆ {(νx̃)

∣
∣
∣ x̃⊆N}, is a set

of annotated names and restrictions, representingvertices, andE ⊆ V×V is a set ofedges.
A dependency graphG = 〈V,E〉, with V = Î ∪W ranged over byu,v, . . ., encodes causal rela-

tions among (free or bound) names inI . Vertices of the form (νx̃) are introduced for delimiting
the scope of restricted names. (u,v) ∈ E is also written asu→G v. Each edge (a,b) encodes a
direct causal dependence ofb from a. The reflexive and transitive closure of→G, written→∗G,

18

encodes indirect causal dependencies. Aroot of G is a vertexu ∈ V such that for nov, v→G u;
the set ofG’s roots is denoted by roots(G). Given a dependency graphG = 〈V,E〉, with V = Î ∪W,
a namea is critical in G with respect tõb, if it belongs to the set of namesG(b̃) defined below.

G(b̃)
△
=
{

x
∣
∣
∣ xǫ ∈ Î ∧∃ x→G v1→G · · · →G vn = b ∈ b̃ s.t.∀1≤ i < n : vi = (νỹ) impliesb < ỹ

}

(1)

The set ofcritical namesin G, written cr(G), is defined as cr(G)
△
=
⋃

b•∈Î G(b). Finally, we define
G[b̃] asG(b̃)∪ b̃. In order to associate dependency graphs to types, we introduce four auxiliary
operations on graphs:

(i) unionG1∪G2 is defined componentwise as expected, provided the sets of verticesV1 andV2

agree on annotations of common names (otherwise union is notdefined);

(ii) χ-updateG ↑χx̃ changes intoχ the annotation of all names in ˜x occurring inV;

(iii) a-rooting is defined asa→ G
△
=
〈

V ∪ {aǫ} , E∪ {(a,b) |b ∈ roots(G)}
〉

, whereG = 〈V,E〉,
provideda does not occur inV with annotations different fromǫ (otherwisea-rooting is
not defined);

(iv) (νx̃)-rooting is defined as (νx̃)→G
△
=
〈

V , E∪{((νx̃),b) |b∈ roots(G)}
〉

.

We are interested in graphsGT that correspond to typesT in normal form, which are defined
below.

Definition 7 ((head) normal forms). A type is prime if it is either of the form
∑

i∈I µi .Ti with
I , ∅ or !a(t).T. A type is inhead normal formif it is of the form (ν̃ã)(T1| · · · |Tn) with n≥ 0 and
theTi ’s prime.

A type is innormal formif it is in head normal form and each term occurring underneath ev-
ery prefix is, recursively, in normal form. Processes in (head) normal form are defined similarly.

Every type (and every process) is easily seen to be equivalent to one in normal form, as stated
by the lemma below.

Lemma 8. For eachT ∈ T there exists aS ∈ T in normal form such thatT ≡ S. For each P∈ P
there exist a Q∈ P in normal form such that P≡ Q.

In what follows, we assume the existence of a function NF(·) that maps each type/process

to a structurally congruent one in normal form. For channel types, we set NF((˜x : t̃)T)
△
= (x̃ :

NF(̃t))NF(T). Note that the normal forms are unique modulo reordering ofparallel components
and swapping of top-level restrictions originated by applications of the scope extrusion law.

For anyT and t in normal form, the dependency graphsGT andGt are defined by mutual
induction on the structure ofT andt as follows (it is assumed that inT andt bound names are
distinct from each other and from free names):

Ga(t).T = a→ (Gt∪GT) G!a(t).T = Ga(t).T Ga.T = a→GT

G∑i∈I µi .Ti =
⋃

i∈I Gµi .Ti |I | , 1 G∏i Ti =
⋃

i GTi

G(νx̃:t̃)T = (νx̃)→
(

(GT∪
⋃

t∈t̃ Gt) ↑•x̃
)

G(x̃:t̃)T =
(

GT∪
⋃

t∈t̃ Gt
)

↑◦x̃ .

19

In essence,GT encodes potential causal dependencies among – free or bound– names ofT, as
determined by the nesting of prefixes inT. Note thatGT is not expressive enough to describe
conflictsbetween causes, e.g.a conflicts withb as a cause ofd in (a.c+b.c)|c.d. Anyway, such
degree of accuracy is not necessary for our purposes. In the sequel, given any arbitrary typeT,
we shall writeGT for GNF(T) (similarly for channel types) and abbreviate cr(GT) andGT[b̃], for
anyb̃⊆ fn(T), as cr(T) andT[b̃], respectively.

Example 6 (a dependency graph).Consider

T = f .c| f ((z : ()0)z).(νb : (x)d.x)
(

a.b((y)d.y) |b.d.e+d.a((w : ()0)w)
)

.

GT can be graphically represented as the directed graph below (ǫ-annotations are omitted for the
sake of notation).

c

f

(νb)
d

e

x◦

y◦

z◦

a w◦

b•

It is easy to compute the following sets: cr(T) = {a,d}, T[e] = { f ,a,d,e} andT[c] = { f ,c}. Notice
that f < cr(T)=GT(b). Intuitively, this is the case becauseb is generated only afterf is consumed,
as shown by the pathf −→ (νb) −→ b• (recall the definition ofG(b) in (1)).

7.2. Typing rules

We need a more liberal definition of well-annotated process,that allows re-arranging of
top-level restrictions before checking annotations. To see why this is necessary, considerφ =
�
∗(♦∗a|♦∗a), a typical property one would like to check in the new system. Consider the pro-

cessesP = (νb)(νa;φ)R andQ = (νa;φ)(νb)R, with R= b.c|b.d |b|b|c.a|d.a. We observe that
(νb)R 6|= φ, so thatQ is not well-annotated according to Definition 5. On the otherhand,Q ≡ P
andR |= φ, which suggests thatP, henceQ, could be considered as well-annotated up to a swap-
ping of (νa) and (νb) obtained by applying the scope extrusion structural law twice. Recall that
in general it is not possible to swap restrictions (νx̃) and (νỹ) in (νx̃)(νỹ)P, as already discussed
on Section 4, Example 5.

Definition 8 (globally well-annotated processes).A processP ∈ P is globally well-annotated
if wheneverP≡ (ν̃b̃)(νã; Φ)(ν̃c̃)Q, with Q a parallel composition of prime processes, then there
is a permutatioñb′ c̃′ of b̃ c̃ such thatP≡ (ν̃b̃′)(νã; Φ)(ν̃c̃′)Q and (ν̃c̃′)Q |= Φ.

A channel type (˜x : t̃)T is said to bewell-formedif x̃#cr(T); in what follows, we only consider
contextsΓ containing well-formed channel types. E.g. we discard channel types of the form
(x : t)(νc)(x.c|S). For any typeT we let T ⇓x̃ denoteT ↓T[x̃] (note that fn(T ⇓x̃)∪ x̃ = T[x̃] by
definition). Intuitively, inT ⇓x̃, we keep the names in ˜x and those that are causes of ˜x in T; the
others are masked.

The global type system is reported in Table 6. Recall that in each rule the contextΓ is assumed
to contain only well-formed channel types as discussed above. The type system makes use of
an auxiliaryproperty-type simulationrelation∝x̃ among P-sets and types, defined coinductively

20

(G-I) Γ ⊢ a : (x̃ : t̃)T Γ, x̃ : t̃ ⊢ P : T|T′ x̃#T′

Γ ⊢ a(x̃).P : a((x̃ : t̃)T).T′
(G-T) Γ ⊢ P : T

Γ ⊢ τ.P : τ.T

(G-S) |I | , 1 ∀i ∈ I : Γ ⊢ αi .Pi : µi .Ti

Γ ⊢
∑

i αi .Pi :
∑

i µi .Ti

(G-R) Γ, ã : t̃ ⊢ P : T Φ ∝ã T
Γ ⊢ (νã : t̃ ;Φ)P : (νã : t̃)T

(G-R) Γ ⊢ a(x̃).P : a((x̃ : t̃)T).T′ cr(a((x̃ : t̃)T).T′) = ∅
Γ ⊢!a(x̃).P :!a((x̃ : t̃)T).T′

(G-E-P)Γ ⊢ P : T P≡ Q
Γ ⊢ Q : T

(G-P) Γ ⊢ P : T Γ ⊢ Q : S cr(T)#S cr(S)#T
Γ ⊢ P|Q : T|S (G-E) Γ ⊢ P : T T ≡ S

Γ ⊢ P : S

(G-O) Γ ⊢ a : (x̃ : t̃)T Γ ⊢ b̃ : t̃ Γ ⊢ P : S b̃#cr(T) cr(T[b̃/x̃])#S T[b̃/x̃]#cr(S)
Γ ⊢ a〈b̃〉.P : a.(T[b̃/x̃] |S)

Table 6: Typing rules for the global system.

below (the use of this relation will be explained in the sequel). We first need some additional

notations. A labeled transition relation on types is definedas expected: we writeT
a
−→ T′ if

T ≡ (ν̃d̃)(
∑

i µi .Ti +a(t).T′′|S) or T ≡ (ν̃d̃)(!a(t).T′′|S) andT
a
−→ T′ if T ≡ (ν̃d̃)(

∑

i µi .Ti +a.T′′|S),
where in both casesT′ ≡ (ν̃d̃)(T′′|S). In the following, we letγ range over〈ǫ〉, 〈a〉, a anda, and
definea ↓x̃= a ↓x̃= 〈ǫ〉 if a < x̃. Moreover, we writeT ≻γz̃ T′ if

• eitherT
γ
−→ T′ with γ ::= 〈ǫ〉

∣
∣
∣ 〈a〉, for somea∈ z̃

• or T
γ
−→ T′ with γ ::= a

∣
∣
∣ a anda< z̃.

Intuitively, T ≻γz̃ T′ means thatT can move toT′ with aτ-action after hiding names in ˜z.

Definition 9 (property-type simulation, ∝x̃). We letproperty-type simulation,∝x̃, be the largest
relation between P-sets and types such that wheneverΦ ∝x̃ T then Ok(Φ) and:

1. T ⇓x̃|= Φ;
2. for eachγ,T′ such thatT ≻γT[x̃] T′ we haveΦγ↓T[x̃] ∝x̃ T′.

In the type system, we note the presence of a new structural rule for processes, (G-E-P)
forcing subject congruence: this is not derivable from the other rules of the system. As an exam-
ple, whileP= (νa : t; Resp(a))(b.a|b|a) canbe typed without using rule (G-E-P), the structurally
congruent process (νa : t; Resp(a))(b.a|a)|b cannotbe typed without using that rule. The con-
dition on critical names in rule (G-P) ensures that anyQ put in parallel toP will not break
well-annotated-ness ofP (and vice-versa). In other words, the condition ensures that Q will not
interfere with properties decorating restrictions (νã) inside P, asQ does not contain ˜a-critical

21

names. As an example, the condition prevents us from puttingprocessQ = b in parallel with
P above: indeed, the resultingP|b≡ (νa : t; Resp(a))(b.a|b|a|b) is not well-annotated. A similar
remark applies to the rules for output and replication. In rule (G-R), the property-type simula-
tion relation∝ã ensures that each derivative ofT satisfies the corresponding derivative ofΦ, and
this will be crucial in the proof of the substitution lemma and of the subject reduction theorem.
It is worth noticing that checkingΦ ∝ã T might be undecidable, given that in generalT might
be infinite-state: at the end of the next section, however, wewill identify a class of formulae for
which checking [[φ]] ∝ã T can be done by checking the validity ofT ⇓ã|= φ (Proposition 10).

The judgements derivable in the new type system are written asΓ ⊢G P : T.

Example 7. Consider the propertyφ = �∗(♦∗a|♦∗a) and the processP defined at the beginning
of this subsection (for the sake of readability we omit channel types in annotations, which are
always ()0):

P = (νb)(νa; φ)R with R= b.c|b.d |b|b|c.a|d.a .

Assume thatΓ ⊢ c,d : ()0. It follows that Γ ⊢G P : (νb)(νa)T, with T = b.c|b.d |b|b|c.a|d.a.
Indeed, by applications of typing for prefixes followed by applications of rule (G-P), it can
be deduced thatΓ,a : ()0,b : ()0 ⊢G R : T. Then by (G-R) andT ⇓a= T |= φ it follows that
Γ,b : ()0 ⊢G (νa; φ)R : (νa)T. Finally, by applying (G-R) again,Γ ⊢G P : (νb)(νa)T.

7.3. Basic properties

The basic properties of the local type system carry over to the global one. In particular, we
have a form of normal or syntax-directed derivations. The typing rules introduced in Table 6 are
not syntax-directed. E.g. well-typedness of processP=

(

(νa : t;T)a
)

|b underΓ ⊢L b : ()0 can be
derived either by applying the typing rules as dictated by the structure ofP or by applying the
rules as dictated by the structure of (νa : t;T)

(

a|b
)

followed by an application of rule (G-E-P).
This is the case because applications of (G-E-P) and (G-P) can be freely intertwined. We get
syntax-directed derivations by disciplining the way theserules are used. Consider the rule

(G-P+)

P= P1| · · · |Pn n> 1 Pi prime for eachi

for eachi : Γ ⊢ Pi : Ti for eachi , j : cr(Ti)#T j

Γ ⊢ P : T1| · · · |Tn
.

Let us denote byΓ ⊢+G P : T judgments that can be derived by applying the typing rules inTable 6
with (G-P) replaced by (G-P+). We next prove the existence of normal derivations in⊢+G .
A normal derivation ofΓ ⊢+G P : T is one where (G-E) can only be found immediately above
(G-I), and (G-E-P) can only be applied with a process in head normal form in the premise
and onenot in head normal form in the conclusion. We writeΓ ⊢+NG P : T for judgments that
can be derived in the new system with a normal derivation. Thefollowing proposition asserts
that, modulo≡ on both processes and types, every judgment derivable in thesystem⊢+G admits
a normal derivation.

Proposition 7 (normal derivation). Γ ⊢+G P : T implies that there are R≡ P andS ≡ T such that
R andS are in head normal form andΓ ⊢+NG R : S.

22

Reconsidering the example at the beginning of this subsection, we see that the only normal
derivation in⊢+G for deducing well-typedness of a normal form ofP (that is ofP=

(

(νa : t;T)a
)

|b)
is the second one described at the beginning of this subsection.
⊢+NG -derivations are syntax-directed, in the sense that givenP, there is at most an instance

of one rule whereP can appear in the conclusion. This fact can be again exploited to show that
processes and their types share the same shallow structure.This is expressed by the following
lemma, saying that it is possible to infer the structure of a type from that of the process (a dual
of this result can also be proven but is not necessary for our purposes).

Lemma 9. Γ ⊢+NG (ν̃ã : t̃)(νb̃ : t̃′;Φ)P : T impliesT = (ν̃ã : t̃)(νb̃ : t̃′)S, withΓ, ã : t̃, b̃ : t̃′ ⊢+NG P : S
andΦ ∝b̃ S.

It is an easy matter to prove that systems⊢G and⊢+G are equivalent.

Proposition 8. Γ ⊢G P : T if and only ifΓ ⊢+G P : T.

Finally, we have subject reduction. The proof of the theoremis not completely standard. In
particular, it is convenient to reason with⊢+G rather than with⊢G , as the existence of normal
derivations⊢+NG makes the reasoning simpler. The idea is to consider a normalderivationΓ ⊢+NG
Q : S for a Q in head normal form and congruent to the originalP, and S congruent toT.
Lemma 9 ensures thatQ and the associated typeS share the same shallow spatial structure, thus
any reduction fromQ can be simulated by one fromS.

Theorem 5 (subject reduction).Γ ⊢G P : T and P
λ
−→ P′ implies that there exists aT′ such that

T
λ
−→ T′ andΓ ⊢G P′ : T′.

8. Type Soundness for the Global System

Similarly to the local case, we firstly identify a general class of properties for which, at least
in principle, model checking on well-typed processes can bereduced to a type checking problem
whose solution requires only model checking on types. Then we give sufficient syntactic con-
ditions for global-checkability. Proofs not reported in this section can be found in Appendix D.
The definition ofglobally checkable propertiesis the same as the local one, except that the local
hiding operator “↓x̃” is replaced by “⇓x̃”:

Definition 10 (globally checkable properties).We let Gc be the largest predicate on P-sets
such that whenever Gc(Φ) then Ok(Φ) and:

1. wheneverΓ ⊢G P : T andx̃⊇ supp(Φ) andT ⇓x̃|= Φ thenP |= Φ;
2. Gc(Φλ) holds for eachλ.

If Gc(Φ) then we sayΦ is globally checkable.

A formulaφ ∈ F is said to be globally checkable if [[φ]] is globally checkable. The following
result is quite expected. The subsequent corollary is a consequence of type soundness and of
subject reduction.

Theorem 6 (type soundness).SupposeΓ ⊢G P : T and P is decorated with globally checkable
P-sets only. Then P is globally well-annotated.

23

P. AssumeΓ ⊢G P : T andP≡ (ν̃b̃)(νã : t̃;Φ)(ν̃c̃)Q, with Q a parallel composition of prime
processes. The P-setΦ is globally checkable by hypothesis. We have to prove that there is a
permutatioñb′c̃′ of b̃c̃ such thatP≡ (ν̃b̃′)(νã : t̃;Φ)(ν̃c̃′)Q and (ν̃c̃′)Q |= Φ.

By Proposition 8,Γ ⊢+G P : T and by Proposition 7, there areR≡ P andS ≡ T such thatR is
in head normal form andΓ ⊢+NG R : S.

P≡ (ν̃b̃)(νã : t̃;Φ)(ν̃c̃)QandP≡RandR in head normal form implyR= (ν̃b̃′)(νã : t̃;Φ)(ν̃c̃′)Q′,
with b̃′, c̃′ permutations of̃b, c̃ andQ′ parallel composition of prime processes such thatQ′ ≡Q.
By Lemma 9,S = (ν̃b̃′)(νã : t̃)U with Γ, b̃′ : t̃′, ã : t̃ ⊢+NG (ν̃c̃′)Q′ : U andΦ ∝ã U. Therefore
U ⇓ã|= Φ. By Definition 10, it follows that (˜νc̃′)Q′ |= Φ, hence (˜νc̃′)Q |= Φ.

Corollary 2 (run-time soundness). Suppose thatΓ ⊢G P : T and that P is decorated with glob-
ally checkable P-sets only. Then P→∗ P′ implies that P′ is globally well-annotated.

Like in the local case, we can give syntactic conditions for aformula to be globally checkable. We
need some intermediate results. First we note that well-typedness in⊢G implies well-typedness
in the kernel system⊢K .

Proposition 9. Γ ⊢G P : T impliesΓ ⊢K P : T.

P. This result can be proved by an easy inspection of the typingrules of ⊢G . Notice that
in case (G-E-P) is the last rule applied, one exploits the⊢K ’s version of Proposition 3 (subject
congruence). Indeed, if the premise isP≡QandΓ ⊢G Q : T, by induction one can inferΓ ⊢K Q : T
and by Proposition 3Γ ⊢K P : T.

Proposition 6 carries over to the global system as a corollary of the previous result.

Corollary 3. SupposeΓ ⊢G P : T andφ ∈ F. ThenT |= φ if and only if P|= φ.

Lemma 10. Let φ ∈ Fx̃ be of the formφ = �∗
−ãψ with negation not occurring underneath any

〈−b̃〉
∗

in ψ. Then for anyT, T ⇓x̃|= φ impliesT |= φ.

As a consequence of Lemma 3, Lemma 10 and Corollary 3 we get thefollowing result.

Theorem 7. Let φ be one of the following forms: (a)�∗ψ with negation not occurring under-
neath any〈−ã〉∗ in ψ, or (b) �∗

−ã♦
∗ψ′, with negation not occurring inψ′. Thenφ is globally

checkable.

P. Each formula of the given forms is Ok (Lemma 3). AssumeΓ ⊢G P : T. By Lemma 10
and Corollary 3 we getT ⇓x̃|= φ implies P |= φ. That is, condition 1 of the definition of Gc is
satisfied by formulae of the form(a) or (b). It remains to show that Gc(φλ) holds for eachλ. We
distinguish the two cases,(a) or (b).

(a). [[φ]]λ = [[φ]] for eachλ. This, together with the above considerations, entails that [[φ]] ∈Gc.

(b). If [[�∗
−ã♦
∗ψ′]] = ∅ then [[�∗

−ã♦
∗ψ′]]λ = ∅. Otherwise, [[�∗

−ã♦
∗ψ′]] = [[�∗

−ã♦
∗ψ′]]λ for eachλ#ã

and [[�∗
−ã♦
∗ψ′]]λ =U otherwise (see the proof of Lemma 3, Appendix A, for the details).

This shows that

{∅,U}∪
{

[[�∗−ã♦
∗ψ′]]

∣
∣
∣ ψ′ does not contain negations

}

⊆Gc .

24

The following proposition guarantees that for formulae that satisfy the hypotheses of Theo-
rem 7 checking [[φ]] ∝ã T reduces to checkingT ⇓ã|= φ.

Lemma 11. Supposeφ ∈ Fx̃ with negation not occurring underneath any〈−ỹ〉∗ in φ. T ↓w̃|= φ
andw̃⊇ T[x̃] implyT ↓T[x̃] |= φ.

Lemma 12. T
λ
−→ T′ impliesT[x̃] ⊇ T′[x̃].

Proposition 10. Letφ ∈ Fx̃ be of the form (a) or (b) as specified in Theorem 7. IfT ⇓x̃|= φ then
[[φ]] ∝x̃ T.

P.

(a). �∗ψ, with negation not occurring underneath any〈−ã〉∗ in ψ. Define

R
△
=
{

([[φ]] ,T)
∣
∣
∣φ=�∗ψ with negation not occurring underneath any〈−ã〉∗ in ψ, T ⇓x̃|= [[φ]]

}

.

It is enough to prove thatR ⊆∝x̃. We have to prove that for each (Φ,T) ∈ R it holds that

1. T ⇓x̃|= Φ (this holds by definition ofR);
2. for eachγ,T′ such thatT ≻γT[x̃] T′ it holds that (Φγ↓T[x̃] ,T

′) ∈ R.

By definition, for eachλ, Φλ = Φ because [[�∗φ]] = [[φ]] = Φ. By T ≻γT[x̃] T′ we get

T
γ
−→ T′ with eitherγ ::= 〈ǫ〉

∣
∣
∣ 〈b〉, for someb ∈ T[x̃] or γ ::= c

∣
∣
∣ c, for somec < T[x̃].

Hence, by Proposition 5,

T ↓T[x̃]
γ↓T[x̃]
−−−−→ T′ ↓T[x̃] .

By T ↓T[x̃] |= Φ we haveT′ ↓T[x̃] |= Φγ↓T[x̃] = Φ. By Lemma 11 andT[x̃] ⊇ T′[x̃]
(Lemma 12) we getT′ ↓T′[x̃] |= Φγ↓T[x̃] = Φ. Therefore, (Φ,T′) ∈ R.

(b). �∗
−ã♦
∗ψ′, with negation not occurring inψ′.

Define

R
△
=
{

([[φ]] ,T)
∣
∣
∣φ=�∗−ã♦

∗ψ′ with negation not occurring inψ′, T ⇓x̃|= [[φ]]
}

∪
{

(U,T)
∣
∣
∣T ∈T

}

.

It is enough to prove thatR ⊆∝x̃. We have to prove that for each (Φ,T) ∈ R it holds that

1. T ⇓x̃|= Φ (this holds by definition ofR);
2. for eachγ,T′ such thatT ≻γT[x̃] T′ it holds that (Φγ↓T[x̃] ,T

′) ∈ R.

By definition of [[·]], Φγ↓T[x̃] = Φ for eachγ ::= 〈ǫ〉
∣
∣
∣ 〈y〉
∣
∣
∣ b
∣
∣
∣ b, with y< ã andb< T[x̃].

Moreover, byT ≻γT[x̃] T′ we getT
γ
−→ T′. Hence, by Proposition 5,

T ↓T[x̃]
γ↓T[x̃]
−−−−→ T′ ↓T[x̃] .

By the latter andT ↓T[x̃] |= Φ we getT′ ↓T[x̃] |= Φγ↓T[x̃] = Φ and by Lemma 11 and
T[x̃] ⊇ T′[x̃] (Lemma 12) we getT′ ↓T′[x̃] |= Φγ↓T[x̃] = Φ. Therefore, (Φ,T′) ∈ R.
Now, supposeγ = 〈y〉, for somey ∈ ã ⊆ x̃. As shown in the proof of Lemma 3 in
Appendix A,Φ〈y〉 =U = [[T]] and (U,T′) ∈ R by definition.

25

9. Examples in the Global System

All the properties defined in Example 1 fit the format of Theorem 7, hence they are globally
checkable. As an example, considerP= (νa : Resp(a))(c〈a〉)|Q, whereQ=!c(x).(x|x)|c〈b〉. Under

a suitableΓ, we deriveΓ ⊢G c〈a〉|Q : c.(a|a)|!c|c.(b|b)
△
=T. SinceT ⇓a= c.(a|a)|!c|c.(τ|τ) |=Resp(a),

by (G-R), we getΓ ⊢G (νa : Resp(a))(c〈a〉|Q) : (νa)T, hence we can conclude thatΓ ⊢G P : (νa)T
using (G-E-P).

For another example, consider a somewhat more realistic variant of theSafeLockproperty
introduced in Section 6. The new property,SafeLockExt, defines an access policy for a shared
resourcec. Before using the resource, a lockl must be acquired; resourcec must then be used
immediately, and the lock must be released (not necessarilyimmediately) after that:

SafeLockExt(l,c)
△
= �∗
(

(l→ c) ∧ [c]♦∗l
)

.

This is a formula fitting the format of Theorem 7, hence it is globally checkable. As an example
of use of this formula, the process

Q= (νc,d, l ;SafeLockExt(l,c))
(

l|c|d|a〈l,c,d〉 |a(x,y,z).
(

τ.x.z+ τ.x.y.z.(x|y|z)
))

is well typed under aΓ s.t.Γ ⊢ a : (x,y,z)
(

τ.x.z+ τ.x.y.z.(x|y|z)
)

.
It is worth to notice that (the analogs of) responsiveness and deadlock freedom are not cov-

ered by the type soundness theorem of [16]. In the case of deadlock freedom, though, a soundness
result can still be proven by ad-hoc reasoning on certain basic properties of the system.

10. Discussion

We discuss here some limitations, and possible workarounds, of our approach, and contrast
them with the generic type system approach of [16]. Generally speaking, these limitations arise
from design choices that, on the one hand, reduce the flexibility of the systems and, on the other
hand, allow to gain in precision and to widen the class of properties for which type soundness
can be proven (e.g., the class includes interesting liveness properties).

A first point is the uniform behavior of input continuations imposed by our systems, which
is somehow reminiscent of uniformity in Sangiorgi’s receptiveness work [23]. Indeed, a process
like R= a(x).x|a(x).x.x|a〈b〉 is discarded in both our systems, but is well typed in [16], for
example assuminga of type (x)(x& x.x), which says that the input continuation ofa can be either
of type x or x.x. The absence of union types in our system is a design choice motivated by our
search of type abstractions spatial correspondent to processes. Indeed, suppose we could assign
type (x)(x& x.x) to a. This would lead to assigningR the typea|a|a.

(
b+b.b

)
: here the spatial

correspondence breaks down after one reduction.
A second point is that, in [16], the subtyping relation makesan essential use of a “sub-divide”

law, T ≡ T ↑x̃ |T ↓x̃. This rule allows one to splitany type into a part depending only on ˜x, T ↓x̃,
and a part not depending on ˜x, T ↑x̃. As an example, one hasa.b.x ≡ a.b.τ|τ.τ.x. This law
enhances the flexibility of the input rule, hence of the type system.

An example of a process that cannot be handled in our type systems because of the absence
of the “sub-divide” law is

P= a(x).b(y).x.y .

26

Here, y causally depends onx: this makes the type ofb depend on a bound namex, which
cannot be expressed in our system. With a sub-divide law, thetype ofb’s continuationx.y can be
decomposed asx.τ|τ.y, thus allowing one to assignb the type (y)τ.y that ignores the dependency
on x. Note that this specific problem does not arise in the sub-calculus enforcing input locality
and asynchronous outputs, which is considered to be reasonably expressive. E.g. the process
a(x).b(y).(x|y) is typable in our systems. For another, subtler example, consider the process

Q = !a(x).(νc)
(

b(y).
(

(νz)(c〈x,z〉 |z.y) |c(x,z).(x|z)
))

.

Here,a can be viewed as a service invocation channel,x as a formal invocation parameter and
y as an acknowledgement channel, introduced by another input(on b). It appears thaty andx
are related (viac), which makes the type ofb dependent on the bound namex, which cannot be
expressed in our system. This dependency could be discardedusing the sub-divide law. Process
Q cannot be dealt with by our type systems, for reasons similarto those discussed above.

To sum up, as shown in the examples above, union types and the sub-divide law of [16] make
their system more flexible than ours: that is, when restricting to the class of properties handled
by [16] (i.e. the properties expressed by negative formulaein the sense of [16]), then the set of
processes typable in the system of [16] is larger than the setof processes typable in our systems.
However, union types and the sub-divide law do not preserve the spatial structure of terms, even
if this is partially mitigated by the presence of tags that keep track of certain correlations among
names. In our system, we stick to spatial-preserving laws, thus trading off some flexibility for
precision.

Let us now reconsider the two examples above. Suppose that the service invocation ona is
intended to trigger an interaction between two parties (dyadic session): then the very dependency
of y from x suggests a way to re-write the process into a conceptually equivalent one that can be
dealt with in our systems. In particular, there appears to beno reason whyy should be received
at a moment later thanx. E.g.,P can be re-written asa(x,y).x.y, andQ as

!a(x,y).(νc)
(

(νz)(c〈x,z〉 |z.y) |c(x,z).(x|z)
)

.

Both of these processes are typable in our local system. Of course, this sort of rewriting does not
make sense when the sessions triggered by invocations ata are multiparty, e.g. when it is a third
party, and not the invoker, which sends a message onb.

11. Conclusion, further and related work

We have defined and investigated a framework that incorporates ideas from both spatial
logics and behavioural type systems, drawing benefits from both. Our main results are: type
soundness theorems that, for interesting classes of properties, basically reduce model checking
on pi-processes to (local or global) model checking on processes, via type-checking; and
the definition of syntactic conditions identifying sets of interesting formulae belonging to such
classes.

Implementation issues are not in the focus of this paper and are left for future work. The
normal derivation property already provides us with syntax-directed systems. Of course, imple-
menting the model checksT |= φ is still an issue. In this respect, it is important to remark that,
for a large class of properties, checkingT |= φ might be decidable in spite of the fact thatP |= φ
is not. For instance, Busi et al.’s have shown [6] that “weak”barbs♦∗a are decidable in with

27

replication, while they arenot in the pi-calculus. In [1], we have recently proved decidability
of a subclass of Shallow logic formulae, expressive enough to describe interesting safety proper-
ties. As in the case of [6], the proofs rely on well-structured transition system techniques [11].
Another possibility would be re-using existing work on spatial model checking: Caires’ work [9]
seems to be a promising starting point. Also, approximations of possibly infinite-state types
with finite-state automata, in the vein of [19], seem useful to design effective tools.

Inference systems and their implementation are left for further work. Certain decidability re-
sults about structural congruence [15, 14] suggest their feasibility. It would also be interesting to
cast our approach in more applicative scenarios, like calculi for service-oriented computing [3].

Our work has been mainly inspired by Igarashi and Kobayashi’paper on generic type sys-
tems [16]. The main differences between this work and ours have been already discussed through-
out the paper. Some recent work by Kobayashi and collaborators has pointed out the intrinsic
limits of behavioural type systems based on the use of simulation as a subtyping relation [20].

Also related to our approach are some recent proposals by Caires. In [8, 7], a logical se-
mantics approach to types for concurrency is pursued. Specifically, in [8], a notion of spatial-
behavioral typing suitable to discipline concurrent interactions and resource usage in a distributed
object calculus is defined. Types, that can be viewed as a fragment of a spatial logic for concur-
rency, express resource ownership. The proposed system guarantees the availability of services
and (resource access) race freedom. Closest to our work is [7], where a generic type system for
the pi-calculus - parameterized on the subtyping relation -is proposed. The author identifies a
family of types, the so called shared types, which allow to modularly and safely compose spatial
and shared (classical invariants) properties and to safelyfactorize spatial properties.

Our dependency graphs are reminiscent of Yoshida’s graph types [24]. The main idea is the
same, to trace the nesting ordering among prefixes. However,Yoshida’s graphs are meant to be
quite more precise abstraction of the behavior of processes: this makes their derivation more
complex than dependency graphs’. Indeed, graph types are built by means of several operations:
prefixing, parallel composition and hiding. Intuitively, while prefixing is conceptually very sim-
ilar to ours, parallel composition in [24] is a sort of merge,which “consumes” the possible
communications by removing synchronizing nodes, while hiding (restriction) removes all nodes
(and the corresponding arcs) mentioning the hidden name. Our dependency graphs, instead, are
meant to over-approximate dependencies and can be easily built by inspection of types. Indeed,
parallel composition of two types corresponds to the union of the sets of nodes and arcs of the
two original graphs.

The side conditions on critical names in the typing rules (G-O) and (G-P) can be consid-
ered as giving rise to an assume-guarantee system allowing compositional reasoning at the level
of types. I.e., in (G-O), the assumption concerning disjunction of critical namesguarantees
that e.g. any well-typed environment that might become ready to receive the output will not in-
terfere with the sender by creating new dependencies and breaking well-annotated-ness. Related
papers using assume-guarantee techniques in a somehow moreexplicit way are [17, 12]. In the
already mentioned [12], the authors integrate the subtyping relation with an assume-guarantee
rule for  with respect to open simulation. In [17], Kobayashi and Sangiorgi propose a hybrid
type system for lock-freedom combining deadlock-freedom,termination and confluence analy-
sis. The relation of the proposal in [17] to assume-guarantee reasoning is clear: capability and
obligation annotations on channel usages represent respectively assumptions on the environment
and consequent guarantees. The so called hybrid typing rules of [17] discard those processes
that rely on the environment in order to fulfill their obligation. Hence well-typed processes are
lock-free without making any assumption on the environment.

28

A preliminary investigation of the ideas presented in this paper, in a much simpler setting, is
in [4].

Acknowledgments.We wish to thank Luis Caires, Michele Loreti and Gianluigi Zavattaro for
stimulating discussions on the topics of the paper. Anonymous reviewers of C 2008 and
Information and Computation provided valuable comments onthe shorter [2] and earlier version
of this paper.

References

[1] Acciai, L., Boreale, M.: Deciding safety properties in infinite-state pi-calculus via behavioural types. In: Albers,
S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S.E., and Thomas, W. (eds.) ICALP’09. LNCS, vol. 5556,
pp. 31–42 (2009)

[2] Acciai, L., Boreale, M.: Spatial and behavioral types inthe pi-calculus. In: van Breugel, F., and Chechik, M. (eds.)
CONCUR’08. LNCS, vol. 5201, pp. 372–386 (2008)

[3] Acciai, L., Boreale, M.: A type system for client progress in a service-oriented calculus. In: Degano, P. et al. (eds.)
Concurrency, Graphs and Models, Essays Dedicated to Ugo Montanari on the Occasion of His 65th Birthday.
LNCS, vol. 5065, pp. 642–658 (2008)

[4] Acciai, L., Boreale, M.: Type abstractions of name-passing processes. In: Arbab, F. and Sirjani, M. (eds.) FSEN’07.
LNCS, vol. 4767, pp. 302–317 (2007)

[5] Acciai, L., Boreale, M.: Responsiveness in process calculi. Theoretical Computer Science, 409(1), 59–93 (2008)
[6] Busi, N., Gabbrielli, M., Zavattaro, G.: On the Expressive Power of Recursion, Replication, and Iteration in Process

Calculi. In: Díaz, J., Karhumäki, J., Lepistö, A., and Sannella, D. (eds.) ICALP’04. LNCS, vol. 3142, pp. 307–319
(2004)

[7] Caires, L.: Logical Semantics of Types for Concurrency.In: Mossakowski, T., Montanari, U., Haveraaen, M. (eds.)
CALCO’07. LNCS, vol. 4624, pp. 16–35 (2007)

[8] Caires, L.: Spatial-Behavioral Types, Distributed Services, and Resources. In: Montanari, U., Sannella, D., Bruni,
R. (eds.) TGC’06. LNCS, vol. 4661, pp. 98–115 (2007)

[9] Caires, L.: Behavioral and Spatial Observations in a Logic for the pi-Calculus. In: Walukiewicz, I. (eds) FoS-
SaCS’04. LNCS, vol. 2987, pp. 72–89 (2004)

[10] Caires, L., Cardelli, L.: A spatial logic for concurrency (part I). Inf. Comput. 186(2), 194–235 (2003)
[11] Finkel, A. and Schnoebelen, Ph.: Well-Structured Transition Systems Everywhere! Theoretical Computer Science,

256(1-2), 63–92 (2001)
[12] Chaki, S., Rajamani, S.K., Rehof, J.: Types as models: model checking message-passing programs. POPL’02, pp.

45–57 (2002)
[13] Cardelli, L., Gordon, A.D.: Anytime, Anywhere: Modal Logics for Mobile Ambients. POPL’00, pp. 365–377

(2000)
[14] Engelfriet, J., Gelsema, Tj.: The decidability of structural congruence for replication restricted pi-calculuspro-

cesses. Technical Report, LIACS 2004–07 (2004)
[15] Engelfriet, J., Gelsema, Tj.: Structural Inclusion inthe pi-Calculus with Replication. Theoretical Computer Sci-

ence, 258(1-2), 131–168 (2001)
[16] Igarashi, A., Kobayashi, N.: A generic type system for the Pi-calculus. Theoretical Computer Science 311(1-3),

121–163 (2004)
[17] Kobayashi, N., Sangiorgi, D.: A Hybrid Type System for Lock-Freedom of Mobile Processes. In: Gupta, A., and

Malik, S. (eds) CAV 2008. LNCS, vol. 5123, pp. 80–93 (2008)
[18] Kobayashi, N.: Type-based information flow analysis for the pi-calculus. Acta Inf. 42(4-5), 291–347 (2005)
[19] Kobayashi, N., Suenaga, K., Wischik, L.: Resource Usage Analysis for the pi-Calculus. Logical Methods in Com-

puter Science 2(3) (2006)
[20] Kobayashi, N., Suto, T.: Undecidability of 2-Label BPPEquivalences and Behavioral Type Systems for the pi

-Calculus. In: Arge, L., Cachin, C., Jurdzinski, T., Tarlecki, A. (eds) ICALP’07. LNCS, vol. 4596, pp. 740-751
(2007)

[21] Milner, R.: The polyadicπ-calculus: a tutorial. Logic and Algebra of Specification, Springer, pp. 203–246 (1993)
[22] Milner, R.: Communication and concurrency. Prentice-Hall (1989)
[23] Sangiorgi, D.: The Name Discipline of Uniform Receptiveness. Theoretical Computer Science, 221(1-2), 457–493

(1999)
[24] Yoshida, N.: Graph Types for Monadic Mobile Processes.In: Chandru, V., and Vinay, V. (eds.) FSTTCS’96. LNCS,

vol. 1180, pp. 371–386 (1996)

29

A. Proofs of Section 3

This section reports the proofs omitted in Section 3, along with some intermediate results
that will be useful here and in the rest of the paper. The following lemma introduces a some-
what expected result concerning substitutions and transpositions. It is needed in the proof of
Proposition 1.

Lemma A.1. A
λ
−→ B implies A{x↔ y}

λ{x↔y}
−−−−−→ B{x↔ y}.

P. The proof is straightforward by induction on the derivation of A
λ
−→ B.

Proposition A.1 (Proposition 1). Let Φ be a P-set. Ifλ = 〈a〉 with a∈ supp(Φ) thenΦλ is a
P-set andsupp(Φλ) ⊆ supp(Φ).

P. We first prove thatN = supp(Φ) is a support ofΦλ. This, together with definition of least
support, is enough to ensure that supp(Φλ) ⊆ supp(Φ).

Consider a termB |= Φλ with λ = 〈a〉, for somea ∈ supp(Φ). By definition, there is anA |= Φ

such thatA
λ
−→ B. Take anyx,y < N. By definition of support, it holds thatA{x↔ y} |= Φ. Given

thata ∈ supp(Φ), we getλ{x↔ y} = λ and, by Lemma A.1,A{x↔ y}
λ
−→ B{x↔ y}. Hence, by

definition ofΦλ we getB{x↔ y} |= Φλ. Thus,N is a support ofΦλ.
Finally,Φλ is a P-set because it has a finite support and, by rule (), Φλ is closed under

≡.

Let us now point out some properties of formulae that will be useful more than once in the
sequel.

Lemma A.2. Assumeψ does not contain¬. Consider any P, Q ∈ P, anyT,S ∈ T and a sets of
fresh names̃z andw̃ of appropriate sort.

1. (ν̃x̃)P |= ψ implies(ν̃x̃)(P|Q) |= ψ and(ν̃x̃)T |= ψ implies(ν̃x̃)(T |S) |= ψ.
2. P |= ♦∗ψ impliesa〈z̃〉 |

(

a(w̃).Q+ τ.P
)

|= ♦∗ψ. T |= ♦∗ψ impliesa|
(

a.S + τ.T
)

|= ♦∗ψ.
3. P |= �∗

−ã♦
∗ψ implies a〈w̃〉 |

(

a(z̃).Q + τ.P
)

|= �∗
−ã♦
∗ψ, for every a∈ ã. T |= �∗

−ã♦
∗ψ implies

a|
(

a.S + τ.T
)

|= �∗
−ã♦
∗ψ, for every a∈ ã.

P. In (1), the proof is straightforward by induction on the structure of the formulaψ. For (2)
the proof relies on (1) with ˜x = ∅, Q = a〈z̃〉 (resp.S = a) and on the definition of [[·]] while for
(3) the proof relies on (2) and on the definition of [[·]].

Lemma A.3 (Lemma 1). Letφ ∈ F. Then[[φ]] is a P-set and f n(φ) ⊇ supp([[φ]]) .

P. The proof is straightforward by induction on the structureof φ. For the base casesφ = a
andφ = a it is obvious. In the other cases it proceeds by applying the inductive hypothesis.
Consider the caseφ = 〈−ã〉∗ψ and suppose that there isb#fn(φ) such thatb ∈ supp([[φ]]), we
prove that this assertion leads to a contradiction.

Take anyA ∈ [[φ]]. By definition, A |= ψ and for eachB s.t. A
s
−→ B, with ã#s, we getB |= ψ.

By applying the induction hypothesis toψ we get bothA{b↔ c} |= ψ and B{b↔ c} |= ψ, for

anyb,c#fn(ψ) ⊆ fn(φ). Moreover, by Lemma A.1,A
s
−→ B impliesA{b↔ c}

s{b↔c}
−−−−−→ B{b↔ c}.

Hence, by choosing anyc#fn(φ) we getA{b↔ c} |= φ. This holds for anyA ∈ [[φ]], therefore we
have a contradiction andb#supp([[φ]]), for any b#fn(φ).

30

As expected, ˜a is contained in the support of (the denotation of) any non-trivial formula
containing�∗

−ã.

Lemma A.4. LetΦ = [[�∗
−ã♦
∗φ]] , whereφ does not contain¬. ThenΦ ,U andΦ , ∅ imply

ã⊆ supp(Φ).

P. SupposeΦ ,U andΦ , ∅ and take anyA andB such thatA|B is a term,A 6|= Φ (A 6|=
�
∗
−ã♦
∗φ) andB |= Φ (B |= �∗

−ã♦
∗φ). Note thatA 6|= Φ impliesA{x↔ y} 6|= Φ for anyx,y < supp(Φ).

SupposeA andB are processes and consider the termC = a〈z̃〉 |
(

a(z̃).A+ τ.B
)

, for anya ∈ ã
and some fresh ˜zof suitable sort. By Lemma A.2 (3),C |= �∗

−ã♦
∗φ, thereforeC ∈ Φ.

Suppose by contradiction thata < supp(Φ). By definition of support, we getC{a↔ b} |= Φ
(that isC{a↔ b} |= �∗

−ã♦
∗φ) for eachb < supp(Φ), and in particular this holds for someb < ã.

Therefore,C{a↔ b} = b〈z̃{a↔ b}〉 |
(

b(w̃).A{a↔ b} + τ.B{a↔ b}
) 〈b〉
−−→ A{a↔ b}, and it must be

A{a↔ b} |= �∗
−ã♦
∗φ, henceA{a↔ b} |= Φ, andA |= Φ, by definition of support: contradiction.

Therefore, ˜a⊆ supp(Φ).

The following proof enhances compositionality of spatial model checking. Indeed, it guar-
antees that satisfiability does not depend on non-interfering parallel threads. This result allows
us to cut away some subterms when checking “|=”.

Lemma A.5 (Lemma 2). Let A be a term andφ ∈ Fx̃. For any term B such that A|B is a term
andfn(B) = ∅ we have that A|= φ if and only if A|B |= φ.

P. We prove that for any termB such thatA|B is a term,A#B andx̃#B we have thatA |= φ if
and onlyA|B |= φ. By this and fn(B) = ∅ we get the result.

The proof proceeds by induction on the structure ofφ. Casesφ = T, φ = a andφ = a, with
a ∈ x̃, are obvious. Let us consider the other cases:

φ = ¬ψ.

(⇒) A |= ¬ψ impliesA 6|= ψ. By applying the induction hypothesis,A|B 6|= ψ and by defini-
tion A|B |= ¬ψ.

(⇐) In this case the proof proceeds similarly.

φ = H∗ψ.

(⇒) A |= φ impliesA≡ (ν̃ã)A′ with A′ |= ψ andã#B. By induction hypothesis,A′|B |= ψ.
Moreover,A|B≡ (ν̃ã)(A′|B), andA|B |= H∗ψ by definition of “[[H∗ψ]]”.

(⇐) A|B |= φ means thatA|B ≡ (ν̃ã)(ν̃b̃)(A′|B′), with A ≡ (ν̃ã)A′ (ã#B,B′), B ≡ (ν̃b̃)B′

(b̃#A,A′) andA′|B′ |= ψ. FromA#B, ã#B′, b̃#A′ and x̃#B, we getA′#B′ and x̃#B′,
hence by applying the induction hypothesis,A′ |= ψ. Finally, by A ≡ (ν̃ã)A′ and
definition of “[[H∗ψ]]”, we get A |= φ.

φ = φ1∨φ2. In both cases, the proof proceeds by applying the induction hypothesis.

φ = φ1|φ2.

(⇒) A |= φ implies A ≡ A1|A2, with A1 |= φ1 and A2 |= φ2. By applying the induction
hypothesis, we getA1|B |= φ1 (similarly A2|B |= φ2). Hence, by definition of [[φ1|φ2]],
we getA1|B|A2 |= φ, and given thatA|B≡ A1|B|A2, by definition of “[[·]]”, A|B |= φ.

31

(⇐) A|B |= φ implies A|B ≡ A1|A2|B1|B2, with A ≡ A1|A2, B ≡ B1|B2, A1|B1 |= φ1 and
A2|B2 |= φ2. From A#B and x̃#B we getBi#Ai, and x̃#Bi, for i = 1,2. By apply-
ing the induction hypothesis, we getA1 |= φ1 andA2 |= φ2. Hence, by definition of
[[φ1|φ2]], we getA1|A2 |= φ, and given thatA≡ A1|A2, by definition of “[[·]]”, A |= φ.

φ = 〈a〉ψ.

(⇒) A |= φ impliesA
〈a〉
−−→ A′ with A′ |= ψ. By applying the induction hypothesis, we get

A′|B |= ψ. Moreover, by (), A|B
〈a〉
−−→ A′|B, henceA|B |= 〈a〉ψ.

(⇐) A|B |= φ implies A|B
〈a〉
−−→ C with C |= ψ. From x̃#B, the reduction with subject

a originates fromA and A|B
〈a〉
−−→ C has been deduced by applying (). Hence,

A
〈a〉
−−→ A′ and C ≡ A′|B. Moreover,B#A′ and x̃#B hold, hence by applying the

induction hypothesis, we getA′ |= ψ. Therefore,A |= 〈a〉ψ.

φ = 〈ã〉∗ψ, with ã⊆ x̃. this case can be proved as a generalization of the previous one ton ≥ 0
reductions with subjects in ˜a⊆ x̃.

φ = 〈−b̃〉
∗
ψ, with b̃⊆ x̃.

(⇒) A |= φ implies A
s
−→ A′, with A′ |= ψ andb̃#s. By B#A′, and x̃#B and by applying

the induction hypothesis, we getA′|B |= ψ. Moreover, by (), A|B
s
−→ A′|B and

A|B |= 〈−b̃〉
∗
ψ.

(⇐) A|B |= φ implies A|B
s
−→ C, with C |= ψ andb̃#s. FromA#B, we getC ≡ A′|B′ with

A
s1
−→ A′, B

s2
−→ B′ ands is some shuffle of s1 ands2. Again fromA#B and x̃#B,

we getA′#B′ andx̃#B′. Hence, by applying the induction hypothesis, it follows that
A′ |= ψ andA |= 〈−b̃〉

∗
ψ.

Recall that the following lemma syntactically identifies formulae that are guaranteed to be
Ok. Lemma A.4 is used in the second part of its proof.

Lemma A.6 (Lemma 3). Letφ be a Shallow Logic Formula of the form either�∗ψ or �∗
−ã♦
∗ψ′,

whereψ′ does not contain¬. ThenOk(φ).

P. We examine the two cases separately.

φ = �∗ψ. We prove that{[[�∗ψ]] } ⊆ Ok, by showing this set satisfies points (1), (2) and (3) in
Definition 2.

(1). It follows by Lemma 2.

(2). By definition, [[φ]] = [[�∗φ]], therefore [[φ]] = [[φ]]λ for eachλ.

(3). It follows by [[φ]] = [[φ]]λ for eachλ, as shown above.

We have proved that{[[�∗ψ]] } ⊆Ok.

φ = �∗
−ã♦
∗ψ′ for someψ′ that does not contain¬. As before, we prove that{[[φ]] ,U,∅} ⊆Ok, by

showing this set satisfies points (1), (2) and (3) in Definition 2. If [[φ]] = ∅ or [[φ]] =U this
is obvious. Assume the contrary, then, by Lemma A.4, ˜a⊆ supp([[φ]]).

32

(1). It follows by Lemma 2.

(2). By definition, [[�∗
−ã♦
∗ψ′]] = [[�∗

−ã�
∗
−ã♦
∗ψ′]] and [[φ]]λ = [[φ]] for λ not of the form〈a〉

with a ∈ ã.

(3). As already seen [[φ]]λ = [[φ]] for λ of the form〈a〉 with a < ã.
The proof proceeds by showing that [[φ]]λ =U for λ= 〈a〉with a∈ ã. Indeed, take any
A ∈ U andB |= [[φ]] such thatA|B is a term (such aB must exists because [[φ]] , ∅).
DefineC = a〈z̃〉 |

(

a(z̃).A + τ.B
)

, for a ∈ ã and some fresh ˜z of appropriate sort. By

Lemma A.2 (3), we haveC |= [[φ]] and C
〈a〉
−−→ A. This proves that [[φ]]λ =U, with

λ = 〈a〉 for somea ∈ ã. Of course,Uλ =U and∅λ = ∅ for anyλ. This proves point
(3).

We have proved that{[[φ]] ,U,∅} ⊆Ok, hence Ok(φ).

B. Proofs of Section 4

The proofs of the basic properties of the local system omitted in Subsection 4.3 can be found
here. Some additional results are also proved along the way.

The following lemma guarantees that, as already discussed in Remark 3, annotations on input
prefixes and restrictions on types are sufficient to guarantee that the scope extrusion law preserves
the spatial correspondence between processes and types. Toprove this, it is necessary to prove
that each free name in a process is also free in the corresponding type.

Lemma B.1. If Γ ⊢L P : T thenfn(P) ⊆ fn(T) andfn(T) ⊆ dom(Γ). If Γ, x̃ : t̃ ⊢L P : T and x̃#P,Γ
thenx̃#T.

P. The proof is straightforward by induction on the derivation of Γ ⊢L P : T.

The usual weakening and contraction properties hold for thelocal system.

Proposition B.1 (weakening and contraction).If Γ ⊢L P : T, Γ well-formed andx̃#P,Γ then
Γ, x̃ : t̃ ⊢L P : T. If Γ, x̃ : t̃ ⊢L P : T, Γ well-formed and̃x#P,Γ thenΓ ⊢L P : T.

P. The proof is straightforward by induction on the derivation of Γ ⊢L P : T andΓ, x̃ : t̃ ⊢L
P : T; it proceeds by distinguishing the last typing rule applied.

Recall that a normal derivation is a derivation where (L-E) is applied only before (T-I).
Proposition 2 can be proved by an easy induction on the typingderivation.

Proposition B.2 (normal derivation, Proposition 2). SupposeΓ ⊢L P : T. ThenΓ⊢NL P : S for
someS ≡ T.

P. The proof proceeds by induction on the derivation ofΓ ⊢L P : T by distinguishing the last
typing rule applied.

(L-I ). By Γ ⊢L a(x̃).P : a((x̃ : t̃)T).T′ and the premise of the rule, we getΓ ⊢L a : (x̃ : t̃)T,
Γ, x̃ : t̃ ⊢L P : T|T′ andx̃#T′. By applying the induction hypothesis toΓ, x̃ : t̃ ⊢L P : T|T′, we
derive that there is anS′ ≡ T|T′ such thatΓ, x̃ : t̃⊢NL P : S′. By applying (L-E) and then
(L-I) to this normal derivation, we deduce thatΓ⊢NL a(x̃).P : a((x̃ : t̃)T).T′.

33

(L-E). By Γ ⊢L P : T and the premise of the rule, we getΓ ⊢L P : S with S ≡ T. By applying the
induction hypothesis toΓ ⊢L P : S, we getΓ⊢NL P : S′ for anS′ ≡ S, and, by transitivity
of ≡, S′ ≡ T.

(L-R). In this case the proof relies on the induction hypothesis andon closure of P-sets with
respect to≡.

(L-O), (L-T), (L-S), (L-P), (L-R). In these cases the proof proceeds by applying the
induction hypothesis, for deriving a normal derivation forthe premise, followed by appli-
cation of the corresponding typing rule.

In what follows we writeΓ ⊢kL P : T if Γ ⊢L P : T can be deduced with a derivation of height
≤ k. This additional annotation is necessary in order to guarantee Lemma 5, which comes as a
corollary of the result below.

Lemma B.2. Suppose thatΓ ⊢kL P : T, thatΓ ⊢ b̃ : t̃ and thatΓ ⊢ a : (x̃ : t̃)U. Then for anyS,S1,S2,
andµi .Si (i ∈ I), it holds that:

1. T = a((x̃ : t̃)U).S implies P≡ a(x̃).Q for some Q such thatΓ, x̃ : t̃ ⊢lL Q : U|S, l < k andx̃#S.

2. T= a.S implies P≡ a〈b̃〉.Q for some Q andS′ such thatΓ ⊢lL Q : S′, l < k andS≡U[b̃/x̃]|S′.

3. T = τ.S implies P≡ τ.Q for some Q such thatΓ ⊢lL Q : S with l < k.

4. T = (νc̃ : t̃′)S implies P≡ (νc̃ : t̃′; Φ)Q for some Q such thatΓ, c̃ : t̃′ ⊢lL Q : S, S ↓c̃|= Φ and
l < k.

5. T = S1|S2 implies P≡ Q1|Q2 for some Q1 and Q2 such thatΓ ⊢l1L Q1 : S1, Γ ⊢l2L Q2 : S2

and l1, l2 < k;
6. T =!a((x̃ : t̃)U).S implies P≡!a(x̃).Q for some Q such thatΓ ⊢lL a(x̃).Q : a((x̃ : t̃)U).S and

l < k;
7. T=

∑

i∈I µi .Si, |I |, 1, implies P≡
∑

i∈I αi .Qi for some Qi andαi such thatΓ ⊢l iL αi .Qi : µi .Si

and li < k, for each i∈ I.

P. The proof proceeds by induction on the derivation ofΓ ⊢kL P : T by considering the last
typing rule applied.

Cases (L-I), (L-O), (L-T), (L-R), (L-P), (L-R) and (L-S) are obvious.
Let us suppose that (L-E) is the last applied. By its premise we getT ≡ S andΓ ⊢k−1

L P : S.
By applying the induction hypothesis and byΓ ⊢k−1

L P : S, we know that

points(1–7)hold forS andP. (2)

The proof proceeds by induction on the derivation ofT ≡ S, i.e. by considering the last
structural rule applied. Notice that in the following we consider not only the rules reported in
Table 1 but also the standard ones for transitivity, symmetry, reflexivity and contexts.

Let us consider first the rules in Table 1. Notice how the heights of the typing derivations
comes into play in each case.

S = S′|0 ≡ S′ = T. By (2) we know thatP ≡ P1|P2 with P1 andP2 such thatΓ ⊢l1L P1 : S′ and

Γ ⊢
l2
L P2 : 0, with l1, l2 < k−1. HenceP2 = 0, and, by applying the structural rules,P≡ P1

with Γ ⊢l1L P1 : T. By l1 < k and external induction, points(1–7)hold for P1 andT.

The proof for the converse is similar.
34

S = S1|S2 ≡ S2|S1 = T. By (2) we know thatP≡P1|P2 with P1 andP2 such thatΓ ⊢l1L P1 : S1 and

Γ ⊢
l2
L P2 : S2, with l1, l2 < k−1. By applying the structural rules for processesP≡ P2|P1.

The proof for the converse is similar.

S = (S1|S2)|S3 ≡ S1|(S2|S3) = T. By (2) we know thatP≡ Q|P3 with Q andP3 such thatΓ ⊢l1L
Q : (S1|S2) andΓ ⊢l3L P3 : S3, with l1, l3< k−1. By external induction,Γ ⊢l1L Q : (S1|S2) and
l1 < k−1 imply Q≡ P1|P2 with P1 andP2 such thatΓ ⊢m1

L P1 : S1 andΓ ⊢m2
L P2 : S2, with

m1,m2 < l1. Hence,P≡ (P1|P2)|P3 and by transitivity of “≡”, P≡ P1|(P2|P3). Moreover,
by (L-P), Γ ⊢nL (P2|P3) : (S2|S3) with n=max(m2, l3)+1< k.

The proof for the converse is similar.

S = (νx̃ : t̃)S1|S2 ≡ (νx̃ : t̃)(S1|S2) = T with x̃#S2. By (2) we know thatP≡ P1|P2 with P1 andP2

such thatΓ ⊢l1L P1 : (νx̃ : t̃)S1 andΓ ⊢l2L P2 : S2, with l1, l2 < k−1. By x̃#S2 and Lemma B.1

we deduce that ˜x#P2. By external induction,Γ ⊢l1L P1 : (νx̃ : t̃)S1 and l1 < k− 1 imply
P1 ≡ (νx̃ : t̃;Φ)P′1 with P′1 such thatΓ, x̃ : t̃ ⊢m1

L P′1 : S1 with m1 < l1 andS1 ↓x̃|= Φ, for
somẽt. Hence,P≡ (νx̃ : t̃; Φ)P′1|P2 and by transitivity of “≡”, P≡ (νx̃ : t̃; Φ)(P′1|P2). By
Ok(Φ), S1 ↓x̃|= Φ and fn(S2 ↓x̃) = ∅, we get (S1|S2) ↓x̃|= Φ. Moreover, by (L-P) and
Proposition B.1 (weakening and contraction),Γ, x̃ : t̃ ⊢mL (P′1|P2) : (S1|S2), with m< k.

The proof for the converse is similar.

Suppose now the last structural rule applied is one of the context rules. We distinguish the
following cases.

C[·] = a((x̃ : t̃)U).[·]. SinceS
△
=C[S′] we know thatS = a((x̃ : t̃)U).S′ and by (2)P≡ a(x̃).Q for

a Q such thatΓ, x̃ : t̃ ⊢lL Q : U|S′, l < k−1 andx̃#S′. Given thatS ≡ T andT =C[T′], we
getS′ ≡ T′. Hence, given that “≡” is preserved by parallel composition, we getΓ, x̃ : t̃ ⊢l+1

L
Q : U|T′, by (L-E), with l +1< k andx̃#T′.

C[·] = a.[·]. SinceS
△
=C[S′] we know thatS = a.S′ and by (2)P≡ a〈b̃〉.Q for someb̃ such that

Γ ⊢ b̃ : t̃, Γ ⊢lL Q : S′′, l < k−1 andS′ ≡ U[b̃/x̃]|S′′, if Γ ⊢ a : (x̃ : t̃)U. The result follows
from S ≡ T and transitivity of “≡”.

C[·] = τ.[·]. SinceS
△
= C[S′] we know thatS = τ.S′ and by (2)P ≡ τ.Q for a Q such that

Γ ⊢lL Q : S′, l < k−1. Given thatS ≡ T andT = C[T′], we getT′ ≡ S′ and by (L-E) we
getΓ ⊢l+1

L Q : T′, with l +1< k.

C[·] = [·]|U. SinceS
△
= C[S′] we know thatS = S′|U and by (2)P ≡ P1|P2, Γ ⊢l1L P1 : S′ and

Γ ⊢
l2
L P2 : U, for l1, l2 < k−1. By S ≡ T andT =C[T′], we getT′ ≡ S′. Hence, by (L-E),

Γ ⊢l+1
L P1 : T′, with l +1< k.

C[·] =
∑

i∈I , |I |>1µi .Si +µ.[·]. SinceS
△
=C[S′] we know thatS =

∑

i∈I , |I |>1µi .Si +µ.S′ and by (2)

P≡
∑

i∈I , |I |>1αi .Pi +α.Q, Γ ⊢l iL αi .Pi : µi .Si andΓ ⊢lL α.Q : µ.S′, for l i , l < k−1. The proof
proceeds as already seen forC[·] = µ.[·], with µ ::= a

∣
∣
∣ b(t)

∣
∣
∣ τ, for proving thatΓ ⊢l+1

L α.Q :
µ.T′, with l +1< k andT =C[T′].

35

C[·] =!a(t).[·]. SinceS
△
=C[S′] we know thatS =!a(t).S′ and by (2) we getP≡!a(x̃).Q for some

a(x̃).Q such thatΓ ⊢lL a(x̃).Q : a(t).S′, for anl < k−1. The proof proceeds as already seen
for C[·] = a((x̃ : t̃′)U).[·].

C[·] = (νd̃ : t̃)[·]. SinceS
△
=C[S′] we know thatS = (νd̃ : t̃)S′ and by (2) we getP≡ (νd̃ : t̃; Φ)Q

for someQ such thatΓ, d̃ : t̃ ⊢lL Q : S′, for an l < k− 1, andS′ ↓d̃|= Φ. By T ≡ S and
T=C[T′] we getS′ ≡ T′. By definition,S′ ↓d̃≡ T′ ↓d̃ and, by closure of P-sets with respect
to≡, T′ ↓d̃|= Φ. Finally, by (L-E), Γ ⊢l+1

L Q : T′, with l +1< k.

Concerning the cases of the rules for transitivity, symmetry and reflexivity the proof proceeds
by applying the induction hypothesis.

The subject congruence and substitution properties hold for the local system as expected.
Notice that, for subject congruence, the existence of normal derivations is a key point in order to
guarantee the structural correspondence between processes and types.

Proposition B.3 (subject congruence, Proposition 3).Γ ⊢L P : S and P≡ Q impliesΓ ⊢L Q :
S.

P. The proof proceeds by induction on the derivation ofP ≡ Q by distinguishing the last
structural rule applied. The most interesting case is when the scope extension rule is the last one.

SupposeP= (νx̃ : t̃;Φ)P1 |P2 andQ= (νx̃ : t̃; Φ)(P1 |P2), with x̃#P2.
By Γ ⊢L P : S and Proposition 2,Γ⊢NL P : T for someT ≡ S. By Γ⊢NL P : T and Lemma 4,

we deduce thatT = T1|T2 with Γ⊢NL (νx̃ : t̃;Φ)P1 : T1 andΓ⊢NL P2 : T2. Again by Lemma 4,
T1 = (νx̃ : t̃)S1, with Γ, x̃ : t̃ ⊢L P1 : S1 and S1 ↓x̃|= Φ. Moreover, byΓ ⊢L P2 : T2, by x̃#Γ
and Lemma B.1, we get ˜x#T2. Hence,T ≡ (νx̃ : t̃)(S1|T2). By Proposition B.1 (weakening and
contraction) andΓ ⊢L P2 : T2, we deduce thatΓ, x̃ : t̃ ⊢L P2 : T2. Hence, by (L-P), Γ, x̃ :
t̃ ⊢L P1|P2 : S1|T2. By Ok(Φ) and fn(T2 ↓x̃) = ∅, we get (S1|T2) ↓x̃|= Φ. Finally, by (L-R),
Γ ⊢L (νx̃ : t̃; Φ)(P1|P2) : (νx̃ : t̃)(S1|T2) and by (L-E), Γ ⊢L (νx̃ : t̃; Φ)(P1|P2) : S.

In caseP= (νx̃ : t̃; Φ)(P1 |P2) andQ= (νx̃ : t̃;Φ)P1 |P2 the proof proceeds similarly.

Proposition B.4 (substitution, Proposition 4). SupposeΓ, x̃ : t̃ ⊢L P : T, withΓ andΓ, x̃ : t̃ well-
formed. ThenΓ ⊢ b̃ : t̃ impliesΓ[b̃/x̃] ⊢L P[b̃/x̃] : T[b̃/x̃].

P. The proof is by induction on the derivation ofΓ, x̃ : t̃ ⊢L P : T. We proceed by distin-
guishing the last typing rule applied. As an example consider the case when (L-O) is the last
applied one. ByΓ, x̃ : t̃ ⊢L a〈c̃〉.P : a.(T[c̃/ỹ] |S) and the premise of the rule we get:

• Γ, x̃ : t̃ ⊢L a : (ỹ : t̃′)T (with ỹ#x̃, b̃ because they are bound in the type associated toa)

• Γ, x̃ : t̃ ⊢L c̃ : t̃′

• Γ, x̃ : t̃ ⊢L P : S

By applying the induction hypothesis toΓ, x̃ : t̃ ⊢L P : S, we getΓ[b̃/x̃] ⊢L P[b̃/x̃] : S[b̃/x̃]. More-
over, by definition,Γ[b̃/x̃] ⊢L c̃[b̃/x̃] : t̃′[b̃/x̃] and Γ[b̃/x̃] ⊢L a[b̃/x̃] : (ỹ : t̃′[b̃/x̃])T[b̃/x̃]. There-

fore, by (L-O), Γ[b̃/x̃] ⊢L a[b̃/x̃]〈c̃[b̃/x̃]〉.P[b̃/x̃] : a[b̃/x̃].(T[b̃/x̃][c̃[b̃/x̃]/ỹ] |S[b̃/x̃]), that isΓ[b̃/x̃] ⊢L
(a〈c̃〉.P)[b̃/x̃] : (a.(T[c̃/ỹ] |S))[b̃/x̃].

As expected, the proof of Proposition 5 relies mostly on the definition of↓x̃.
36

Proposition B.5 (Proposition 5). (i) If T
λ
−→ T′, withλ ::= 〈ǫ〉

∣
∣
∣ 〈a〉 and a∈ x̃, thenT ↓x̃

λ
−→ T′ ↓x̃.

(ii) If T
λ
−→ T′, withλ = 〈a〉 and a< x̃, thenT ↓x̃

〈ǫ〉
−−→

〈ǫ〉
−−→ T′ ↓x̃. (iii) If T

s
−→ T′ thenT ↓x̃

s′
−→ T′ ↓x̃,

with fn(s′) ⊆ fn(s). (iv) If T ↓x̃
λ
−→ T′, with λ ::= 〈ǫ〉

∣
∣
∣ 〈a〉 and theǫ-reduction originated by a

synchronization on a bound name or aτ prefix inT, thenT
λ
−→ S, with T′ = S ↓x̃.

P. It is sufficient to prove (i) and (ii), (iii) is a consequence of the two. The proof of (iv) is
along the line of that of (i) and is omitted.

Supposeλ = 〈a〉. The proof proceeds by induction on the derivation ofT
λ
−→ T′. The most

interesting case is when () has been applied. In the other cases the proof proceeds by applying
the inductive hypothesis. By ()

T =
∑

i∈I

µi .Ti |
∑

j∈J

µ′j .S j

µl = a, µ′k = a, for somel ∈ I andk ∈ J, andT′ = Tl |Sk.
Supposea ∈ x̃.

T ↓x̃=
∑

i∈I\{l}

(µi .Ti) ↓x̃ +a.(Tl ↓x̃) |
∑

j∈J\{k}

(µ′j .S j)+a.(Sk ↓x̃)

andT ↓x̃
λ
−→ Tl ↓x̃ |Sk ↓x̃= T′ ↓x̃. This proves (i) in caseλ = 〈a〉.

Supposea < x̃.

T ↓x̃=
∑

i∈I\{l}

(µi .Ti) ↓x̃ +τ.(Tl ↓x̃) |
∑

j∈J\{k}

(µ′j .S j)+ τ.(Sk ↓x̃)

andT ↓x̃
〈ǫ〉
−−→

〈ǫ〉
−−→ Tl ↓x̃ |Sk ↓x̃= T′ ↓x̃. This proves (ii).

Suppose nowλ = 〈ǫ〉. If the reduction originates by () the same rule can be applied to
T ↓x̃. If the reduction originates from a communication on a restricted name again the proof is by

induction on the derivation ofT
λ
−→ T′. The interesting case is when () is applied. In this case

T = (νã)S, T′ = (νã)S′ andS
λ′

−→ S′, for someλ′ such thatλ = λ′ ↑ã. T ↓x̃= (νã)(S ↓x̃,ã), hence

by applying the induction hypothesis toS
λ′

−→ S′ we getS ↓x̃,ã
λ′

−→ S′ ↓x̃,ã. Notice that ifλ′ = 〈a〉

for somea ∈ ã thena ∈ x̃, ã. Finally, by (), T ↓x̃
λ
−→ T′ ↓x̃. This proves (i) in caseλ = 〈a〉.

We now prove type subject reduction, the last theorem of Section 4. This result is in some
sense the inverse of the subject reduction property, indeedit guarantees the operational corre-
spondence between types and processes. Again, the proof proceeds without surprises by an
induction on the reduction rules.

Theorem B.1 (type subject reduction, Theorem 2).Γ ⊢L P : T andT
λ
−→ T′ implies that there

exists a P′ such that P
λ
−→ P′ andΓ ⊢L P′ : T′.

P. The proof proceeds by induction on the derivation ofT
λ
−→ T′ by distinguishing the last

reduction rule applied.
37

(). Assume for notational simplicity thatT = a((x̃ : t̃)S).U|a.T′
〈a〉
−−→ U|T′ (the general case of

arbitrary summations is similar). ByΓ ⊢L P : T and Lemma 5, we getP≡ a(x̃).R|a〈b̃〉.Q
with Γ, x̃ : t̃ ⊢L R : U|S, T′ ≡ S[b̃/x̃]|S′, Γ ⊢L Q : S′, x̃#U, Γ ⊢ a : (x̃ : t̃)S andΓ ⊢ b̃ : t̃.

By () and (), P
〈a〉
−−→ P′ ≡ R[b̃/x̃]|Q. Moreover, by Proposition B.4 (substitution)

and (L-P) we getΓ ⊢L R[b̃/x̃]|Q : (U|S)[b̃/x̃]|S′ = U|S[b̃/x̃]|S′. Hence, by (L-E), Γ ⊢L
R[b̃/x̃]|Q : U|T′, and by Proposition 3 (subject congruence)Γ ⊢L P′ : U|T′.

(-). The proof proceeds similarly to ().

(). By
∑

i∈I µi .Ti
〈ǫ〉
−−→ T j and the premise of the rule, we getµ j = τ. By Lemma 5,Γ ⊢L P :

∑

i∈I µi .Ti impliesP≡
∑

i∈I αi .Pi and for eachi ∈ I it holds thatΓ ⊢L αi .Pi : µi .Ti . Again by

Lemma 5 andµ j .T j = τ.T j we getα j = τ andΓ ⊢L P j : T j . Finally, by (),
∑

i∈I αi .Pi
〈ǫ〉
−−→

P j and by (), P
〈ǫ〉
−−→ P′ with P′ ≡ P j andΓ ⊢L P′ : T j by Proposition 3 (subject

congruence).

(). By S|U
λ
−→ S′|U and the premise of the rule, we getS

λ
−→ S′. By Γ ⊢L P : S|U and

Lemma 5, we getP≡Q|Rwith Γ ⊢L Q : S andΓ ⊢L R: U. Hence, by applying the induction

hypothesis, we getQ
λ
−→ Q′ andΓ ⊢L Q′ : S′. By (L-P), we getΓ ⊢L Q′|R : S′|U and by

(), Q|R
λ
−→ Q′|R . Moreover, by (), P≡ Q|R andQ|R

λ
−→ Q′|R, we getP

λ
−→ P′

with P′ ≡ Q′|R, and by Proposition 3 (subject congruence),Γ ⊢L P′ : S′|U.

(). By T
λ
−→ T′ and the premise of the rule, we getT≡ S, S

λ
−→ S′ andS′ ≡ T′. By (L-E),

Γ ⊢L P : T impliesΓ ⊢L P : S; hence, by applying the induction hypothesis, we getP
λ
−→ P′

andΓ ⊢L P′ : S′. Again by (L-E), Γ ⊢L P′ : T′.

(). By (νã : t̃)T
λ↑ã
−−→ (νã : t̃)T′ and the premise of the rule, we getT

λ
−→ T′. By Γ ⊢L P : (νã : t̃)T

and Lemma 5, we getP ≡ (νã : t̃;Φ)Q with Γ, ã : t̃ ⊢L Q : T andT ↓ã|= Φ. Hence, by

applying the induction hypothesis, we getQ
λ
−→ Q′ andΓ ⊢L Q′ : T′. By () we get

(νã : t̃; Φ)Q
λ↑ã
−−→ (νã : t̃; Φλ)Q′ and by (), P

λ↑ã
−−→ P′ with P′ ≡ (νã : t̃; Φλ)Q′.

We have to prove thatΓ ⊢L (νã : t̃;Φλ)Q′ : (νã : t̃)T′, in particular thatT′ ↓ã|= Φλ. We
consider two possibilities separately (recall that ˜a⊇ supp(Φ)).

1. λ = 〈a〉, with a ∈ ã, or λ = 〈ǫ〉. T′ ↓ã|= Φλ follows by T ↓ã|= Φ andT ↓ã
λ
−→ T′ ↓ã, a

consequence ofT
λ
−→ T′.

2. otherwiseΦλ = Φ〈ǫ〉 = Φ, by Ok(Φ). The communicationT
λ
−→ T′ has a free subject

not in ã. By Proposition 5, this reduction can be simulated by a pair of reductions that

consume the corresponding prefixes, thus, when hiding, we get T ↓ã
〈ǫ〉
−−→

〈ǫ〉
−−→ T′ ↓ã

and, by definition,T′ ↓ã|= Φ〈ǫ〉〈ǫ〉 = Φ〈ǫ〉 = Φλ = Φ.

In both cases, (L-R) can be applied for deducingΓ ⊢L (νã : t̃;Φλ)Q′ : (νã : t̃)T′. Hence,
by Proposition 3 (subject congruence),Γ ⊢L P′ : (νã : t̃)T′.

38

Concerning the local system, there is still to prove the structural correspondence between
types and their “hidden” versions.

Lemma B.3 (Lemma 6).

1. Suppose a∈ x̃. (T ↓x̃)ցa if and only ifTցa.
2. If T ↓x̃≡ T1|T2 then there areS1 andS2 such thatT ≡ S1|S2 andSi ↓x̃= Ti , for i = 1,2.
3. If T ≡ T1|T2 then there areS1 andS2 such thatT ↓x̃≡ S1|S2 andSi = Ti ↓x̃, for i = 1,2.
4. If T ↓x̃≡ (ν̃ã)S then there isV such thatT ≡ (ν̃ã)V, with V ↓x̃,ã= S.
5. If T ≡ (ν̃ã)S then there isV such thatT ↓x̃≡ (ν̃ã)V, with V = S ↓x̃,ã.

P. Point (1) follows by definition ofT ↓x̃ (Table 4). Points (2-5) can be proved by mutual
induction on the derivation of≡. As an example, consider (4) and suppose the last structuralrule
applied is scope extension. Hence

T ↓x̃≡ (ν̃ã)S1|S2 ≡ (ν̃ã)
(

S1|S2
) △
= (ν̃ã)S

with ã#fn(S2).
By applying the inductive hypothesis toT ↓x̃≡ (ν̃ã)S1|S2 we getT≡ T1|T2 with T1 ↓x̃= (ν̃ã)S1

andT2 ↓x̃= S2. Again by induction, fromT1 ↓x̃= (ν̃ã)S1 we getT1 ≡ (ν̃ã)U, with U ↓x̃,ã= S1.
Without loss of generality, assume ˜a#fn(T2). Notice thatã can always be renamed with some

b̃ such thatb̃#fn(T2). By scope extension, (˜νã)U|T2 ≡ (ν̃ã)(U|T2)
△
= (ν̃ã)V. By ã#fn(T2) and

T2 ↓x̃= S2, we getT2 ↓x̃,ã= S2. Hence, byU ↓x̃,ã= S1 we getV ↓x̃,ã= S. From this andT ≡ (ν̃ã)V
we get the result.

C. Proofs of Section 7

Before proving the basic properties of the global system some additional notations and some
preliminary results concerning properties of critical names are discussed. Definitions of cr(·) and
(·)[ỹ] are extended to channel types as follow:

cr(t) = cr(Gt) and t[ỹ] =Gt[ỹ]

and to tuples of channel typest̃ component-wise as expected.
The following lemma states a few properties of critical names that follows by definition of

cr(·). For the sake of completeness, we list all the properties wewill need in the following.

Lemma C.1.

1. cr(T|S) ⊇ cr(T)∪cr(S);
2. cr(a(t).T) ⊇ cr(T)∪cr(t);
3. cr(a.T) = cr(T);
4. cr(!a(t).T) = cr(a(t).T);
5. cr((νx̃ : t̃)T) ⊇

(

cr(̃t)∪cr(T)∪T[x̃]
)

\ x̃;
6. cr(

∑

i µi .Ti) ⊇
⋃

i cr(µi .Ti);
7. cr(T)#S andcr(S)#T implycr(T|S) = cr(T)∪cr(S);
8. T[x̃]#S implies(T|S)[x̃] = T[x̃];

9. T
λ
−→ T′ impliesT[x̃] ⊇ T′[x̃];

39

10. supposeT[x̃] , ∅; then a∈ ((!)a(t).T)[x̃] and a∈ (a.T)[x̃];
11. supposeT ≡ (ν̃d̃)

(∑

i Ui +a(t).S |V
)

(resp.T ≡ (ν̃d̃)
(∑

i Ui +a.S |V
)

or T ≡ (ν̃d̃)
(

!a(t).S |V
)

).
If a < T[x̃] thenfn(a(t).S)#T[x̃] (resp.fn(a.S)#T[x̃] or fn(!a(t).S)#T[x̃]);

12. supposẽa, b̃#cr(T); thencr(T) = cr(T[ã/b̃]).

P. (1-7) follow by definition of cr(T) and ofGT. (8) follows by definition ofT[x̃] and ofGT.
(9) follows by definition ofGT: it can be easily seen thatGT′ can be embedded intoGT. (10-11)
follow by definition ofGT andT[x̃]. In the rest of the proof we consider (12). For the sake of
simplicity, suppose that ˜a = a and b̃ = b. The proof can be easily generalized to the case of a
generic substitution. Note that bya,b#cr(T) we get cr(T) ⊆ cr(T[a/b]): indeed, sinceb < cr(T),
each critical path inGT is also found inGT[a/b] . Any other path inGT corresponds to one in
GT[a/b] with each occurrence ofb replaced bya. Suppose e.g.

π = x1→ ·· · → xn→ y• is a path inGT

where, for eachi, xi = (νỹ) impliesy < ỹ: thenπ is a path inGT[a/b] becauseb does not occur in
π. Concerning the reverse inclusion, consider anyf ∈ cr(T[a/b]). By definition, this means that
in GT[a/b] there exists a pathπ′ of the form

π′ = x1→ ·· · → x j(= f)→ ·· · → xn→ y•

where, for eachi, xi = (νỹ) implies y < ỹ. Clearly,b does not occur inπ′. If a does not occur
either, thenπ′ is also a path ofGT, hencef ∈ cr(T). Otherwise, letxk be the rightmost occurrence
of a in π′. In GT, we therefore have the subpathxk+1→ ·· · → y• and eithera→ xk+1 or b→ xk+1.
In the former case, we would geta ∈ cr(T), in the latterb ∈ cr(T), contradicting the assumption
in both cases.

Lemma 2 extends to the property-type simulation relation∝x̃ as expected.

Lemma C.2. LetΦ be a P-set such thatOk(Φ) and ã ⊇ supp(Φ). If Φ ∝ã T and T[ã]#S then
Φ ∝ã (T |S).

P. Define
R
△
=
{

(Φ,T|U)
∣
∣
∣ ã⊇ supp(Φ), Φ ∝ã T, Ok(Φ), T[ã]#U

}

.

We prove thatR ⊆∝ã. That is, for each pair (Φ,T|U) ∈ R we prove:

1. (T|U) ↓(T|U)[ã] |= Φ;
2. ∀V,γ such that (T|U) ≻γ(T|U)[ã] V it holds that (Φγ↓(T|U)[ã] ,V) ∈ R.

We prove separately the two points. First note that byT[ã]#U and Lemma C.1 (8) we get
(T|U)[ã] = T[ã] and fn(U ↓T[ã]) = ∅

1. By definition ofR we getΦ ∝ã T, henceT ↓T[ã] |= Φ. Therefore, by Ok(Φ), fn(U ↓T[ã]) = ∅
andT ↓T[ã] |= Φ, we getT ↓T[ã] |U ↓T[ã] |= Φ, hence (T|U) ↓T[ã] |= Φ, that is (T|U) ↓(T|U)[ã] |= Φ.

2. Take anyV ≺γ(T|U)[ã] T|U. By definition (page 21),γ ::= τ
∣
∣
∣ 〈a〉
∣
∣
∣ b
∣
∣
∣ b, with a ∈ (T|U)[ã] and

b < (T|U)[ã], such thatT|U
γ
−→ V. We distinguish the following cases.

• SupposeU
γ
−→ U′ and V = T|U′. Given thatT[ã]#U and (T|U)[ã] = T[ã] we get

(T|U)[ã]#γ. Hence,γ ↓(T|U)[ã]= 〈ǫ〉 and, by Ok(Φ), Φ〈ǫ〉 = Φ. Given that fn(U′) ⊆
fn(U) andT[ã]#U we get (Φ,T|U′) ∈R by definition. Finally, given thatΦγ↓(T|U)[ã] =Φ,
we get (Φγ↓(T|U)[ã] ,T|U

′) ∈ R.
40

• SupposeT
γ
−→ T′ and V = T′|U. By (T|U)[ã] = T[ã], by definition of≻γx̃ and by

T ≻γ(T|U)[ã] T′, it follows thatT ≻γT[ã] T′. Consequently, by Definition 9,Φγ↓T[ã] ∝ã T′.
Finally, given thatT[ã]#U, T[ã] ⊇ T′[ã] (Lemma C.1 (9)) and (T|U)[ã] = T[ã], we get
(Φγ↓(T|U)[ã] ,T

′|U) ∈ R by definition.

• Suppose now thatT andU interact and suppose the subject of the communication is

b. Given thatT[ã]#U we getb < T[ã] and eitherT
b
−→ T′, U

b
−→ U′ andT ≻b

T[ã] T′ or

T
b
−→ T′, U

b
−→ U′ andT ≻b

T[ã] T′. Given thatT[ã]#U, fn(U′) ⊆ fn(U) andT[ã] ⊇ T′[ã]
(Lemma C.1 (9)) we getT′[ã]#U′.

SupposeT
b
−→ T′ (the proof proceeds similarly in the opposite case). Then byDefi-

nition 9,Φb↓T[ã] ∝ã T′. From (T|U)[ã] = T[ã] andΦb↓T[ã] ∝ã T′ we getΦb↓(T|U)[ã] ∝ã T′.
Moreover, by Ok(Φ) we getΦb↓(T|U)[ã] = Φ〈b〉↓(T|U)[ã] = Φ. Finally, by definition ofR:
(Φ〈b〉↓(T|U)[ã] ,T

′|U′) ∈ R.

Property-type simulation is preserved by (non-interfering) substitutions.

Lemma C.3. Let Φ be a P-set such thatOk(Φ) and ã ⊇ supp(Φ). Φ ∝ã T and (dom(σ) ∪
ran(σ))#T[ã] implyΦ ∝ã Tσ.

P. Define

R
△
=
{

(Φ,Tσ)
∣
∣
∣ ã⊇ supp(Φ), Φ ∝ã T, Ok(Φ), (dom(σ)∪ ran(σ))#T[ã]

}

.

We prove thatR ⊆∝ã. That is, for each pair (Φ,Tσ) ∈ R we prove:

1. Tσ ↓Tσ[ã] |= Φ;
2. ∀V : V ≺γTσ[ã] Tσ it holds that (Φγ↓Tσ[ã] ,V) ∈ R.

We prove separately the two points.

1. By definition ofR we getΦ ∝ã T, henceT ↓T[ã] |= Φ. By (dom(σ)∪ ran(σ))#T[ã] and
Lemma C.1 (12) we getTσ[ã] = T[ã]. Therefore,T ↓T[ã]= Tσ ↓Tσ[ã] andTσ ↓Tσ[ã] |= Φ.

2. Take anyV such thatV ≺γTσ[ã] Tσ. By definition of≻γx̃ we get thatTσ
γ
−→ V for someγ ::=

〈ǫ〉
∣
∣
∣ 〈a〉
∣
∣
∣b
∣
∣
∣b, with a∈Tσ[ã] or b<Tσ[ã]. By (dom(σ)∪ran(σ))#T[ã] and Lemma C.1 (12)

it follows that Tσ[ã] = T[ã]. Moreover,Tσ
γ
−→ V implies T

γ′

−→ V′, with γ′σ = γ and
V′σ = V. Notice also that (dom(σ)∪ ran(σ))#T[ã] andγ ::= 〈ǫ〉

∣
∣
∣ 〈a〉
∣
∣
∣ b
∣
∣
∣ b, with a∈ Tσ[ã]

or b< Tσ[ã] imply γ′ ::= 〈ǫ〉
∣
∣
∣ 〈a〉
∣
∣
∣ c
∣
∣
∣ c with c < Tσ[ã]. By Φ ∝ã T and Definition 9 we get

Φγ′↓T[ã] ∝ã V′. In addition, (γ′ ↓T[ã])σ = γ ↓Tσ[ã] . Finally, byΦγ′↓T[ã] = Φγ↓Tσ[ã] , it follows
that (Φγ↓Tσ[ã] ,V) ∈ R.

Proposition C.1 (normal derivations, Proposition 7). Γ ⊢+G P : T implies that there are R≡ P
andS ≡ T such that R andS are in head normal form andΓ ⊢+NG R : S.

P. The proof proceeds by induction on the derivation ofΓ ⊢+G P : T by distinguishing the
last typing rule applied in the derivation:

41

(G-I). By Γ ⊢+G a(x̃).P : a((x̃ : t̃)T).T′ and the premise of the rule, we getΓ ⊢+G a : (x̃ : t̃)T and
Γ, x̃ : t̃ ⊢+G P : T|T′ and x̃#T′. By applying the induction hypothesis, we get that there are
R≡ P andS ≡ T|T′ such thatΓ, x̃ : t̃ ⊢+NG R : S. Hence, by applying (G-E) and (G-I) we
getΓ ⊢+NG a(x̃).R : a((x̃ : t̃)T).T′, with a(x̃).R≡ a(x̃).P.

(G-O), (G-T), (G-R), (G-S), (G-P+). The proof proceeds by applying the induction
hypothesis followed by the corresponding typing rule.

(G-R). The proof proceeds by applying the induction hypothesis. Itis enough to note that
T ≡ S implies S′ ↓d̃≡ T′ ↓d̃, by definition. The latter andΦ ∝ã T imply Φ ∝ã S (by rule
() and closure ofΦ with respect to structural congruence).

(G-E), (G-E-P). The proof proceeds by applying the induction hypothesis andrelies on tran-
sitivity of ≡.

The following two lemmas state some properties of normal derivations: both concern the
structural correspondence of processes and types.

Lemma C.4. Γ ⊢+NG P : T with P prime implies thatT is prime.

P. The proof proceeds by inspection of the last typing rule applied in Γ ⊢+NG P : T.

Lemma C.5. Γ ⊢+NG (νx̃1 : t̃1;Φ1) · · · (νx̃n : t̃n;Φn)(P1| · · · |Pk) : T, with P1, · · · ,Pk prime, implies

• T = (νx̃1 : t̃1) · · · (νx̃n : t̃n)(S1| · · · |Sk), with Γ, x̃1 : t̃1, · · · , x̃n : t̃n ⊢+NG Pi : Si, for i = 1, · · · ,k,

• andΦ j ∝x̃j (νx̃ j+1 : t̃ j+1) · · · (νx̃n : t̃n)(S1| · · · |Sk), for j = 1, · · · ,n.

P. If n= 0 takeS = T. Supposen> 0. By definition of normal derivation, the rule applied
in the lastn typing derivation must be (G-R) preceded by an application of (G-P). The result
then follows by the premise of the rules and Lemma C.4.

Lemma 9 follows as a corollary of the result above.

Corollary C.1 (Lemma 9). Γ ⊢+NG (ν̃ã : t̃)(νb̃ : t̃′;Φ)P : T impliesT = (ν̃ã : t̃)(νb̃ : t̃′)S, withΓ, ã :
t̃, b̃ : t̃′ ⊢+NG P : S andΦ ∝b̃ S.

As already seen for the local case, the weakening and contraction properties also hold for the
global case. This result is used in the proof of Proposition 8reported below.

Lemma C.6 (weakening and contraction).Supposẽx#fn(P), fn(T) andΓ is well-formed. Then
Γ, x̃ : t̃ ⊢+G P : T if and only ifΓ ⊢+G P : T.

P. The proof is straightforward by induction on the derivation of Γ, x̃ : t̃ ⊢+G P : T andΓ ⊢+G
P : T.

It is now possible to prove that the syntax directed system⊢+G is equivalent to⊢G .

Proposition C.2 (Proposition 8). Γ ⊢G P : T if and only ifΓ ⊢+G P : T.

P.
42

(⇐). Applications of rule (G-P+) to the parallel composition ofn prime processes can be
simulated byn applications of rule (G-P).

(⇒). The proof is by induction on the derivation ofΓ ⊢G P : T by distinguishing the last typing
rule applied. The most interesting case is when (G-P) is the last applied one. In this
caseP = Q1|Q2, T = T1|T2 andΓ ⊢G Q1|Q2 : T1|T2. By the premise of the rule, we get
Γ ⊢G Q1 : T1 andΓ ⊢G Q2 : T2. Moreover, cr(T1)#T2 and cr(T2)#T1. By applying the
induction hypothesis, we getΓ ⊢+G Q1 : T1 andΓ ⊢+G Q2 : T2.

By Proposition 7, there aren, k, m1, m2, andRi j (for i = 1,2 and j = i1, · · · , in) such that

• Q1 ≡ (νã1 : t̃1;Φ̃1) · · · (νãn : t̃n;Φ̃n)R1 with R1 = R11| · · · |R1m1

• Q2 ≡ (νb̃1 : t̃′1;Ψ̃1) · · · (νb̃k : t̃′k;Ψ̃k)R2 with R2 = R21| · · · |R2m2

with

1. Ri j prime for i = 1,2 and j = 1, · · · ,mi

2. ãi ⊇ supp(Φi), for i = 1, · · · ,n, andb̃ j ⊇ supp(Ψ j), for j = 1, · · · ,k (by well-formedness
of terms)

3. Γ ⊢+NG (νã1 : t̃1;Φ̃1) · · ·(νãn : t̃n;Φ̃n)R1 : S1 ≡ T1

4. Γ ⊢+NG (νb̃1 : t̃′1;Ψ̃1) · · ·(νb̃k : t̃′k;Ψ̃k)R2 : S2 ≡ T2.

By (3), (4) and Lemma C.5:

• S1 = (νã1 : t̃1) · · ·(νãn : t̃n)U with U=U1| · · · |Um1, andΓ, ã1 : t̃1, · · · , ãn : t̃n ⊢+NG R1i : Ui ,
for i = 1, · · · ,m1, andΦ j ∝ã j (νã j+1 : t̃ j+1) · · · (νãn : t̃n)U, for j = 1, · · · ,n;

• S2 = (νb̃1 : t̃′1) · · · (νb̃k : t̃′k)V with V = V1| · · · |Vm2, andΓ, b̃1 : t̃′1, · · · , b̃k : t̃′k ⊢+NG R2i :
Vi , for i = 1, · · · ,m2, andΨ j ∝b̃ j

(νb̃ j+1 : t̃′ j+1) · · · (νb̃k : t̃′k)V, for j = 1, · · · ,k.

By cr(T1)#T2 and cr(T2)#T1 it follows that cr(S1)#S2, cr(S2)#S1, hence cr(U)#V and
cr(V)#U. Therefore, by Lemma C.6 and (G-P+) it follows thatΓ, ã1 : t̃1, · · · , ãn : t̃n, b̃1 :
t̃′1, · · · , b̃k : t̃′k ⊢+NG R1|R2 : U|V.

By definition of critical names,U[ãn] ⊆ cr(S1)∪ ãn and by definition of free names fn(V) ⊆
fn(S2) ∪ b̃1 ∪ · · · ∪ b̃k. Therefore, cr(U)#V and ãn#V imply U[ãn]#V. Moreover,ãn ⊇

supp(Φn), hence by Lemma C.2 andΦn ∝ãn U it follows thatΦn ∝ãn (U|V) and, by (G-
R), Γ, ã1 : t̃1, · · · , ãn−1 : t̃n−1, b̃1 : t̃′1, · · · , b̃k : t̃′k ⊢+NG (νãn : t̃n;Φn)(R1|R2) : (νãn : t̃n)(U|V).

A similar reasoning can be applied to the remaining ˜an−1, · · · , ã1 and b̃k, · · · , b̃1 in order
to obtainΓ ⊢+NG (νb̃1 : t̃′1;Ψ̃1) · · · (νb̃k : t̃′k;Ψ̃k)(νã1 : t̃1;Φ̃1) · · · (νãn : t̃n;Φ̃n)(R1|R2) : (νã1 :
t̃1) · · ·(νãn : t̃n)(νb̃1 : t̃′1) · · · (νb̃k : t̃′k)(U|V).

Finally, by (G-E) and (G-E-P), it follows thatΓ ⊢+G P : T.

As usual, the subject reduction property relies on the substitution lemma, that can be proved
by means of a tedious, but not difficult, proof.

Lemma C.7 (substitution). SupposeΓ is well-formed. IfΓ, x̃ : t̃ ⊢+G P : T andΓ ⊢+G b̃ : t̃ and

b̃, x̃#cr(T) thenΓ[b̃/x̃] ⊢+G P[b̃/x̃] : T[b̃/x̃].

P. The proof proceeds by induction on the derivation ofΓ, x̃ : t̃ ⊢+G P : T.
43

(G-E), (G-E-P), (G-I). The proof relies on the induction hypothesis and on the fact that≡
is preserved by substitutions;

(G-R). The proof proceeds by applying the induction hypothesis andby noting that̃b, x̃#cr(T),
cr(T) = ∅ and Lemma C.1 (12) imply cr(T[b̃/x̃]) = cr(T) = ∅;

(G-P). The proof proceeds by applying the induction hypothesis andby noting that̃b, x̃#cr(T),
cr(Ti)#T j, for i, j = 1,2 with i , j, and Lemma C.1 (12) imply cr(Ti [b̃/x̃]) = cr(Ti)#T j [b̃/x̃],
for i, j = 1,2 with i , j;

(G-O). By Γ, x̃ : t̃ ⊢+G a〈c̃〉.P : a.(T[c̃/ỹ] |S) and the premise of the rule, we get:

• Γ, x̃ : t̃ ⊢+G a : (ỹ : t̃′)T, henceΓ[b̃/x̃] ⊢+G a[b̃/x̃] : (ỹ : t̃′[b̃/x̃])T[b̃/x̃] (note thatỹ#x̃, b̃ be-
cause names in ˜y are bound inT);

• Γ, x̃ : t̃ ⊢+G c̃ : t̃′, henceΓ[b̃/x̃] ⊢+G c̃[b̃/x̃] : t̃′[b̃/x̃];

• Γ, x̃ : t̃ ⊢+G P : S, hence by applying the induction hypothesis,Γ[b̃/x̃] ⊢+G P[b̃/x̃] : S[b̃/x̃];

• c̃#cr(T) moreover ˜y#cr(T) by well formedness of channel types, therefore by Lemma C.1(12)
cr(T)= cr(T[c̃/ỹ]). By b̃, x̃#cr(a.(T[c̃/ỹ] |S)) and Lemma C.1 (3,1) we getb̃, x̃#cr(T[c̃/ỹ]) =
cr(T). Hence, again by Lemma C.1 (12), cr(T) = cr(T[b̃/x̃]). Therefore, ˜c#cr(T[b̃/x̃])
andc̃[b̃/x̃]#cr(T[b̃/x̃]);

• cr(T[c̃/ỹ])#S. As previously shown, cr(T[c̃/ỹ]) = cr(T) = cr(T[b̃/x̃]) = cr(T[c̃/ỹ][b̃/x̃]).

Given thatỹ#x̃, b̃, it holds thatT[c̃/ỹ][b̃/x̃] =T[b̃/x̃][c̃[b̃/x̃]/ỹ] and cr(T[b̃/x̃][c̃[b̃/x̃]/ỹ])#S[b̃/x̃];

• T[c̃/ỹ]#cr(S). By Lemma C.1 (3,1), cr(S[b̃/x̃]) = cr(S) and, byỹ#x̃, b̃, cr(S[b̃/x̃])#T[c̃/ỹ][b̃/x̃] =

T[b̃/x̃][c̃[b̃/x̃]/ỹ].

Therefore, by (G-O), Γ[b̃/x̃] ⊢+G (a〈c̃〉.P)[b̃/x̃] : (a.(T[c̃/ỹ] |S))[b̃/x̃] = a[b̃/x̃].(T[b̃/x̃][c̃[b̃/x̃]/ỹ] |S[b̃/x̃]).

(G-R). By Γ, x̃ : t̃ ⊢+G (νã : t̃′;Φ)P : (νã : t̃′)T and the premise of the rule, we getΓ, x̃ : t̃, ã : t̃′ ⊢+G
P : T andΦ ∝ã T. Moreover,ã⊇ supp(Φ) by well-formedness of terms.

By applying the induction hypothesis toP, we get (Γ, ã : t̃′)[b̃/x̃] ⊢+G P[b̃/x̃] : T[b̃/x̃].

By b̃, x̃#cr((νã : t̃′)T) andb̃, x̃#ã it follows that b̃, x̃#T[ã] and, byΦ ∝ã T, ã⊇ supp(Φ) and
Lemma C.3, we getΦ ∝ã T[b̃/x̃].

Finally, by (G-R), Γ[b̃/x̃] ⊢+G (νã : t̃′[b̃/x̃]; Φ)P[b̃/x̃] : (νã : t̃′[b̃/x̃])T[b̃/x̃].

The following lemma is the equivalent of Lemma B.1 for the local system.

Lemma C.8. Γ ⊢G P : T impliesfn(P) ⊆ fn(T). Γ, x̃ : t̃ ⊢G P : T, Γ well-formed andx̃#P imply
x̃#T.

Finally, the lengthy proof of the subject reduction property relies mainly on Proposition 8 and
Proposition 7, which guarantee a syntax directed normal typing derivation, and on Lemma C.5,
which guarantees that processes and types share the same shallow spatial structure.

Theorem C.1 (subject reduction, Theorem 5).Γ ⊢G P : T and P
λ
−→ P′ implies that there exists

a T′ such thatT
λ
−→ T′ andΓ ⊢G P′ : T′.

44

P. By Proposition 8,Γ ⊢G P : T impliesΓ ⊢+G P : T, and by Proposition 7 there areQ ≡ P

andS ≡ T, with Q in head normal form, such thatΓ ⊢+NG Q : S. Given thatQ≡ P andP
λ
−→ P′

we get, by (), Q
λ
−→ Q′ ≡ P′. In the following we prove thatQ′ is well-typed with an

associated typeS′ such thatS
λ
−→ S′. This in order to deduce well typedness ofP′ by applying

rule (G-E-P);T′ will be chosen equal toS′.
Suppose for simplicity that there is only one top level blockof restricted names, thus

Q= (νd̃ : t̃;Φ)(R1| · · · |Rk)
△
= (νd̃ : t̃;Φ)R

with Ri prime process for eachi = 1, · · · ,k. The generalization ton≥ 0 top level restrictions is
obvious. ByΓ ⊢+NG (νd̃ : t̃;Φ)(R1| · · · |Rk) : S and Lemma C.5 we get

S = (νd̃ : t̃)(U1| · · · |Uk)
△
= (νd̃ : t̃)U (3)

with Γ, d̃ : t̃ ⊢+NG Ri : Ui , for eachi = 1, · · · ,k, andΦ ∝d̃ U. Moreover, by the proof of Lemma C.5,
we get cr(Ui)#U j for i , j. We distingush two cases.

• Supposeλ = 〈ǫ〉 and

R= R1| · · · |τ.R
′
l +
∑

i

αi .Qi

︸ ︷︷ ︸

Rl

| · · · |Rk
λ
−→ R1| · · · |R

′
l | · · · |Rk

△
= R′ .

By Γ, d̃ : t̃ ⊢+NG Rl : Ul and the premise of (G-T) and (G-S) we haveUl = τ.U′l +
∑

i µi .Wi

andΓ, d̃ : t̃ ⊢+NG R′l : U′l . Therefore,Ul = τ.U′l +
∑

i µi .Wi
λ
−→ U′l . Then

T ≡ (νd̃ : t̃)(U1| · · · |τ.U
′
l +
∑

i

µi .Wi | · · · |Uk)
λ
−→ (νd̃ : t̃)(U1| · · · |U

′
l | · · · |Uk)

△
= (νd̃ : t̃)U′

△
= T′ .

Hence, by (), T
λ
−→ T′.

Now, we show thatΓ, d̃ : t̃ ⊢G R′ : U′. By Proposition 8,Γ, d̃ : t̃ ⊢+NG R′l : U′l impliesΓ, d̃ : t̃ ⊢G
R′l : U′l . By definition, cr(Ul) ⊇ cr(U′l) (Lemma C.1 (6)) hence we can repeatedly apply (G-

P) and deduceΓ, d̃ : t̃ ⊢G R1| · · · |R′l | · · · |Rk : U1| · · · |U′l | · · · |Uk. Moreover,U
〈ǫ〉
−−→ U′ implies

U ≻〈ǫ〉U↓d̃
U′ and, by Definition 9,Φ〈ǫ〉 = Φ ∝d̃ U′.

Hence, by (G-R), Γ ⊢G (νd̃ : t̃;Φλ)R′ : (νd̃ : t̃)U′. Finally, by (G-E-P) andΓ ⊢G (νd̃ :
t̃;Φλ)R′ : (νd̃ : t̃)U′, it follows thatΓ ⊢G P′ : T′.

• Supposeλ ::= 〈a〉
∣
∣
∣ 〈ǫ〉 and there is a synchronization

R=R1| · · · |a(ỹ).R′l +
∑

i∈I

αi .Qi

︸ ︷︷ ︸

Rl

| · · · |a〈b̃〉.R′m+
∑

j∈J

α′j .Q
′
j

︸ ︷︷ ︸

Rm

| · · · |Rk
λ
−→ R1| · · · |R

′
l [b̃/ỹ]| · · · |R

′
m| · · · |Rk

△
=R′

and, for the sake of simplicity, take|I | = |J| = 0.

The last rules applied in the derivations ofΓ, d̃ : t̃ ⊢+NG a(ỹ).R′l : Ul andΓ, d̃ : t̃ ⊢+NG a〈b̃〉.R′m :
Um are, respectively, (G-I) and (G-O). By their premise, we deduce the following:

45

1. Γ, d̃ : t̃ ⊢+G a : (ỹ : t̃′)W, ỹ#cr(W) by well-formedness of channel types (note also that
ỹ#fn(Γ, d̃ : t̃));

2. Γ, d̃ : t̃, ỹ : t̃′ ⊢+G R′l : W|U′l , with ỹ#U′l ;
3. Ul = a(t′′).U′l ;

4. Γ, d̃ : t̃ ⊢+G b̃ : t̃′;

5. b̃#cr(W);
6. Γ, d̃ : t̃ ⊢+G R′m : V;

7. Um= a.(W[b̃/ỹ]|V);
8. cr(W[b̃/ỹ])#V and cr(V)#W[b̃/ỹ].

Now, byS ≡ T and (3), we have

T ≡ (νd̃ : t̃)U = (νd̃ : t̃)
(

U1| · · · |a(t′′).U′l
︸ ︷︷ ︸

Ul

| · · · |a.(V|W[b̃/ỹ])
︸ ︷︷ ︸

Um

| · · · |Uk
)

〈a〉
−→ (νd̃ : t̃)

(

U1| · · · |U′l | · · · |V|W[b̃/ỹ]| · · · |Uk
)

△
= (νd̃ : t̃)U′

△
= T′ .

Hence, by (), T
λ
−→ T′.

Now, we first show thatΓ; d̃ : t̃ ⊢G R′ : U′. We do so by using system⊢G and rule (G-P).
We show that the premise of the rule are fullfilled and more precisely thatR′l [

b̃/ỹ] is well
typed.

ConsiderW and splitỹ into two parts: ˜y = ỹ1∪ ỹ2 such that ˜y1 ⊆ fn(W) and ỹ2#W. As
a consequence,̃b = b̃1∪ b̃2 such thatb̃1 ⊆ fn(W[b̃/ỹ]) and b̃2#W[b̃/ỹ]. Hence,W[b̃/ỹ] =
W[b̃1/ỹ1]. Moreover, by cr(Ul)#Um andb̃1 ⊆ fn(Um) we getb̃1#cr(U′l). By the latter, and
points (1), (2) and (5) it follows that

b̃1, ỹ1#cr(W|U′l) . (4)

By Lemma C.8 and ˜y2#(W|U′l), we getỹ2#R′l , henceR′l [
b̃/ỹ] = R′l [

b̃1/ỹ1].

By point (1), and ˜y#fn(Γ, d̃ : t̃), we get (Γ, d̃ : t̃)[b̃/ỹ] = Γ, d̃ : t̃. Moreover, by equation (2),
point (4), and Lemma C.7 (substitution) we get

Γ, d̃ : t̃ ⊢+G R′l [b̃1/ỹ1] : (W|U′l)[b̃1/ỹ1] = U′l |W[b̃1/ỹ1]

that is
Γ, d̃ : t̃ ⊢+G R′l [b̃/ỹ] : W[b̃/ỹ]|U′l .

By (8), cr(Ui)#U j for i , j, and Lemma C.1 (2,7) we get cr(U′l)∪cr(W[b̃/ỹ]) = cr(W[b̃/ỹ]|U′l)#V

and vice-versa cr(V)#U′l |W[b̃/ỹ]. Therefore, we can apply repeatedly rule (G-P) and ob-
tain

Γ, d̃ : t̃ ⊢G R′ = R1| · · · |R
′
l | · · · |R

′
m| · · · |Rk : U1| · · · |U

′
l |W[b̃/ỹ]| · · · |V| · · · |Uk = U′ .

We have now to put the restriction oñd on top ofR′. We distinguish two cases.
46

1. Supposeλ= 〈a〉 anda<U[d̃]. ThenU
a
−→ U′′

a
−→ U′. with U′′ =U1| · · · |U′l | · · · |a.(V|W[b̃/ỹ])| · · · |Uk.

Hence, by definition,U ≻a
U[d̃]

U′′ ≻a
U[d̃]

U′. By Definition 9 anda ↓U[d̃]= 〈ǫ〉, this

means thatΦ〈ǫ〉 ∝d̃ U′′ andΦ〈ǫ〉〈ǫ〉 ∝d̃ U′. Therefore, by Ok(Φ) we getΦ = Φ〈ǫ〉 =
Φ〈ǫ〉〈ǫ〉 = Φ〈a〉 andΦλ ∝d̃ U′.

2. Supposeλ ::= 〈a〉
∣
∣
∣ 〈ǫ〉 with a ∈ U[d̃] (λ ↓U[d̃]= λ). In this case, by definition of≻λx̃ it

follows thatU ≻λ
U[d̃]

U′. Moreover, byΦ ∝d̃ U and Definition 9 we getΦλ ∝d̃ U′.

In both cases we can apply (G-R) and deduceΓ ⊢G (νd̃ : t̃; Φλ)R′ : (νd̃ : t̃)U′ and finally,
by rule (G-E-P) we getΓ ⊢G P′ : T′.

D. Proofs of Section 8

Proving Lemmas 10 and 11 requires some preliminary results on properties of “|=” with
respect to compositionality and hiding. Lemma D.1 guarantees that restricted names can be
opened without compromising satisfiability. Lemma D.2 and Lemma D.3 guarantee that non-
interfering parallel threads can be cut away, even if they appear under some top-level restrictions.

Lemma D.1. Considerφ ∈ Fx̃ not containing “¬”. SupposeT |= φ andT ≡ (ν̃d̃)(T1| · · · |Tn) with
Ti prime for each i. Then(ν̃b̃)(T1| · · · |Tn) |= φ for eachb̃⊆ d̃.

P. The proof proceeds by induction on the structure of the formulaφ. Note that (˜νd̃)(T1| · · · |Tn) |=
φ follows by definition of|= andT |= φ.

φ ::= T
∣
∣
∣ a
∣
∣
∣ a. Obvious.

φ = φ1∨φ2. The proof proceeds by applying the induction hypothesis.

φ = H∗ψ. (ν̃d̃)(T1| · · · |Tn) |= H∗ψ means that (˜νd̃)(T1| · · · |Tn) ≡ (ν̃d̃′)(ν̃d̃′′)(T1| · · · |Tn) with d̃′ ∪
d̃′′ = d̃ and (ν̃d̃′′)(T1| · · · |Tn) |= ψ.

Given thatb̃⊆ d̃ we getb̃= b̃′ ∪ b̃′′, for someb̃′ ⊆ d̃′ andb̃′′ ⊆ d̃′′, and (ν̃b̃)(T1| · · · |Tn) ≡
(ν̃b̃′)(ν̃b̃′′)(T1| · · · |Tn). Hence, by applying the induction hypothesis, we get (˜νb̃′′)(T1| · · · |Tn) |=
ψ and, by definition, (˜νb̃′)(ν̃b̃′′)(T1| · · · |Tn) |= φ, that is (ν̃b̃)(T1| · · · |Tn) |= φ.

φ = φ1|φ2. (ν̃d̃)(T1| · · · |Tn) |= φ1|φ2 implies

(ν̃d̃)(T1| · · · |Tn) ≡ (ν̃d̃1)(T1,1| · · · |T1,m1) | (ν̃d̃2)(T2,1| · · · |T2,m2)

with (ν̃d̃i)(Ti,1| · · · |Ti,mi) |= φi for i = 1,2.

Given thatb̃⊆ d̃ it follows that

(ν̃b̃)(T1| · · · |Tn) ≡ (ν̃b̃1)(T1,1| · · · |T1,m1) | (ν̃b̃2)(T2,1| · · · |T2,m2)

with b̃i ⊆ d̃i for i = 1,2. The result follows by applying the induction hypothesis to both
(ν̃b̃i)(Ti,1| · · · |Ti,mi).

φ = 〈a〉ψ. (ν̃d̃)(T1| · · · |Tn) |= φ implies (ν̃d̃)(T1| · · · |Tn)
〈a〉
−−→ U andU |= ψ. Obviously, forb̃ ⊆ d̃

we get (ν̃b̃)(T1| · · · |Tn)
〈a〉
−−→ U′. Moreover, ifU ≡ (ν̃d̃)(ν̃ã)(T′1| · · · |T

′
n), with T′i prime, then

U′ ≡ (ν̃b̃)(ν̃ã)(T′1| · · · |T
′
n), with b̃∪ ã ⊆ d̃∪ ã. Therefore the induction hypothesis can be

applied to inferU′ |= ψ. That is (ν̃b̃)(T1| · · · |Tn) |= φ.
47

φ = 〈ã〉∗ψ, φ = 〈−ã〉∗ψ. In both cases the proof proceeds similarly.

Lemma D.2. Supposeφ ∈ Fx̃ andφ does not contain¬. ConsiderT,S andd̃ such thatS[x̃]#T.

(ν̃d̃)(T|S)
s
−→ U |= φ implies(ν̃d̃)S

s′
−→ U′ |= φ, with |s′| ≤ |s| andn(s′) ⊆ n(s).

P. The proof proceeds by induction on|s|.

|s| = 0. (ν̃d̃)S |= φ is deduced by Lemma D.3.

|s| = n+1. s= λ · s′ and (ν̃d̃)(T|S)
λ
−→ (ν̃d̃)V

s′
−→ (ν̃d̃)U |= φ, with |s′| < |s| and obviously and

n(s′) ⊆ n(s). The proof proceeds by distinguishing the following casesdepending on the

reduction
λ
−→ :

1. supposeS
λ′

−→ S′, with λ′ ↑d̃= λ andV ≡ T|S′. By Lemma C.1 (9),T#S[x̃] ⊇ S′[x̃].

Therefore, by applying the internal induction hypothesis to (ν̃d̃)(T|S′)
s′
−→ (ν̃d̃)U |= φ,

we get (ν̃d̃)S′
s′′
−→ (ν̃d̃)U′ |= φ, with |s′′| ≤ |s′| andn(s′′) ⊆ n(s′). Hence (˜νd̃)S

λ
−→

s′′
−→

(ν̃d̃)U′ |= φ, with |λ · s′′| ≤ |s| andn(λ · s′′) ⊆ n(s).

2. SupposeT
λ′

−→ T′, with λ′ ↑d̃= λ andV ≡ T′|S. Again,S[x̃]#T′. Therefore, by apply-

ing the internal induction hypothesis to (˜νd̃)(T′|S)
s′
−→ (ν̃d̃)U |= ψ, we get (ν̃d̃)S

s′′
−→

(ν̃d̃)U′ |= φ, with |s′′| ≤ |s′| < |s| andn(s′′) ⊆ n(s).
3. SupposeS andT interact with each other

T≡ (ν̃ f̃)(
∑

i µi .Wi +a(t).W′|W′′)

S≡ (ν̃g̃)(
∑

j µ
′
j .V j +a.V′|V′′)

V≡ (ν̃ f̃)(W′|W′′) | (ν̃g̃)(V′|V′′) .

for somea < S[x̃] (the proof proceeds similarly in caseT contains the output, or in
case the input prefix ona is replicated). Given thatS[x̃] =

(

(ν̃g̃)(
∑

j µ
′
j .V j+a.V′|V′′)

)

[x̃]
anda < S[x̃] we getS[x̃]#a.V′ (Lemma C.1 (11)).
Now,

(ν̃d̃)V ≡ (ν̃d̃)
(

(ν̃g̃)
(

(ν̃ f̃)(W′|W′′) |V′ |V′′
))

≡ (ν̃d̃0)
(

T0 |V
′′)

with d̃0 = d̃g̃ andT0 = (ν̃ f̃)
(

W′|W′′|V′
)

. Moreover,

(ν̃d̃0)
(

T0 |V
′′) s′
−→ (ν̃d̃)U |= ψ

andT0#V′′[x̃] ⊆ S[x̃] ∪ g̃.
Since|s′| < |s| andn(s′) ⊆ n(s), by applying the internal induction hypothesis, we get

(ν̃d̃0)V′′
s′′
−→ (ν̃d̃)U′ |= φ, with |s′′| ≤ |s′|< |s| andn(s′′)⊆ n(s). Finally, by Lemma A.2

(1), (ν̃d̃)(ν̃g̃)
(∑

j µ
′
j .V j+a.V′|U′

)

|= φ, hence (˜νd̃)S= (ν̃d̃)
(

(ν̃g̃)(
∑

j µ
′
j .V j+a.V′|V′′)

) s′′
−→

(ν̃d̃)(ν̃g̃)
(∑

j µ
′
j .V j +a.V′|U′

)

|= φ, with |s′′| ≤ |s′| < |s| andn(s′′) ⊆ n(s).

Lemma D.3. Supposeφ ∈ Fx̃ and not containing “¬”. Suppose(ν̃d̃)(T|S) |= φ whereS[x̃]#T.
Then(ν̃d̃)S |= φ.

48

P. The proof proceeds by induction on the structure of the formulaφ.

φ ::= T
∣
∣
∣ a
∣
∣
∣ a with a ∈ x̃. Obvious.

φ = φ1∨φ2. The proof proceeds by applying the induction hypothesis.

φ = H∗ψ. By applying Lemma D.1 we first remove alld̃ and all top level restrictions inT andS.
Therefore, ifT ≡ (ν̃ã)(T1| · · · |Tn) andS ≡ (ν̃b̃)(S1| · · · |Sm), with Ti andS j prime for each
i, j, then we getT1| · · · |Tn|S1| · · · |Sm |= H∗ψ. Given that allTi andS j are prime, there are
no top-level restrictions to collect, henceT1| · · · |Tn|S1| · · · |Sm |= ψ. Then the proof proceeds
by applying the induction hypothesis in order to prove thatS1| · · · |Sm |= ψ. Finally, by
definition of |=, (ν̃d̃)(ν̃b̃)(S1| · · · |Sm) ≡ (ν̃d̃)S |= H∗ψ.

φ = φ1|φ2. (ν̃d̃)(T|S) |= φ1|φ2 implies (ν̃d̃)(T|S) ≡ U|V with U ≡ (ν̃d̃1)(T1|S1) |= φ1 and
V ≡ (ν̃d̃2)(T2|S2) |= φ2, for someTi andSi such thatT ≡ T1|T2 andS ≡ S1|S2 and d̃1d̃2

a permutation of̃d.

By x̃#T we get x̃#T1,T2. Similarly, given thatS[x̃] ⊇ S1[x̃] ∪S2[x̃] (Lemma C.1), by
S[x̃]#T, we getS1[x̃]#T1 andS2[x̃]#T2. Hence, by applying the induction hypothesis, we
get (ν̃d̃1)S1 |= φ1 and (ν̃d̃2)S2 |= φ2. Hence, (˜νd̃)S |= φ.

φ = 〈a〉ψ. (ν̃d̃)(T|S) |= φ implies (ν̃d̃)(T|S)
〈a〉
−−→ U andU |= ψ. Given thata ∈ x̃#T, the reduction

is originated byS; thereforeU = (ν̃d̃)(T|S′) whereS
〈a〉
−−→ S′. Given thatT#S[x̃] ⊇ S′[x̃]

(Lemma C.1 (9)), by applying the induction hypothesis to (˜νd̃)(T|S′) |= ψ, we get (ν̃d̃)S′ |=
ψ and (ν̃d̃)S |= φ.

φ = 〈ã〉∗ψ. The proof proceeds similarly.

φ = 〈−ã〉∗ψ. (ν̃d̃)(T|S) |= 〈−ã〉∗ψ implies (ν̃d̃)(T|S)
s
−→ U with U |= ψ andã#s. By Lemma D.2,

(ν̃d̃)S
s′
−→ S′ with n(s′) ⊆ n(s) andS′ |= ψ. Therefore ˜a#s′ and (ν̃d̃)S |= 〈−ã〉∗ψ by defini-

tion.

Lemmas 10 and 11 follow as corollaries of the result below. Itguarantees that non-critical
names can be masked without compromising satisfiability.

Lemma D.4. Supposeφ ∈ Fx̃ with negation not occurring underneath any〈−ỹ〉∗ in φ. Let w̃ ⊇
T[x̃]. T ↓w̃|= φ if and only ifT |= φ.

P. The proof proceeds by induction on the structure of the formulaφ. The most interesting
cases are dealt with below.

φ = H∗ψ.

(⇒). T ↓w̃|= H∗ψ implies T ↓w̃≡ (ν̃ã)V andV |= ψ. By Lemma 6 (4), we getT ≡ (ν̃ã)S,
for someS such thatS ↓w̃,ã= V. Moreover, by definition ofT[·] we getw̃∪ ã⊇ S[x̃].
Hence, by applying the induction hypothesis toS ↓w̃,ã, we getS |= ψ andT |= φ.

(⇐). T |= H∗ψ impliesT ≡ (ν̃ã)S andS |= ψ. By definition of↓w̃, we getT ↓w̃≡ (ν̃ã)S ↓w̃,ã
and by applying the induction hypothesis,S |=ψ impliesS ↓w̃′ |=ψ, for eachw̃′ ⊇S[x̃].
In particular this holds for ˜w′ = w̃∪ ã⊇ T[x̃] ∪ ã. Therefore,T ↓w̃|= H∗ψ.

49

φ = φ1|φ2.

(⇒). T ↓w̃|= φ1|φ2 implies T ↓w̃≡ T1 ↓w̃ |T2 ↓w̃ with Ti ↓w̃|= φi for i = 1,2. w̃ ⊇ T[x̃] ⊇
T1[x̃] ∪T2[x̃]. Hence,w̃⊇ Ti [x̃]. By applying the induction hypothesis, we getTi |=

φi . Moreover, by Lemma 6 (2), we getT ≡ T1|T2. Therefore,T |= φ1|φ2.

(⇐). T |= φ1|φ2 implies T ≡ T1|T2 with Ti |= φi for i = 1,2. By applying the induction
hypothesis, we getTi ↓w̃′ |= φi , for eachw̃′ ⊇ Ti [x̃]. Therefore, given thatT[x̃] ⊇ Ti [x̃],
this holds forw̃ ⊇ T[x̃]. Moreover, by Lemma 6 (3), we getT ↓w̃≡ T1 ↓w̃ |T2 ↓w̃.
Therefore,T ↓w̃|= φ1|φ2.

φ = 〈−ã〉∗ψ.

(⇒). T ↓w̃|= φ impliesT ↓w̃
s
−→ S andS |= ψ, with ã#s.

The proof proceeds by induction onl = |s|.

l = 0. In this caseT ↓w̃|= ψ and by applying the external induction hypothesis, we get
T |= ψ, thereforeT |= φ

l = n+1. s= λ · s′, ã#λ andT ↓w̃
λ
−→ U

s′
−→ S, with S |= ψ, |s′| = n andU |= φ. We

distinguish two cases, depending on the reductionT ↓w̃
λ
−→ U.

1. λ = 〈a〉 or λ = 〈ǫ〉 with theǫ-reduction originated by a synchronization on a

bound name or aτ prefix inT. By Proposition 5, we getT
λ
−→ V, for someV

such thatV ↓w̃=U. Given thatw̃⊇ T[x̃] ⊇V[x̃] (Lemma C.1 (9)) by applying
the internal induction hypothesis (|s′| = n< l) we getV |= φ, thereforeT |= φ.

2. λ = 〈ǫ〉 with theǫ-reduction originated by a prefix inT with subjecta not in
w̃. In this case

T ↓w̃≡
(

(ν̃d̃)((
∑

i∈I

µi .Si+µ.W) |W′)
)

↓w̃= (ν̃d̃)((
∑

i∈I

(µi .Si) ↓w̃,d̃ +τ.(W ↓w̃,d̃)) |W′ ↓w̃,d̃)

(5)
with µ ::= a(t)

∣
∣
∣ a for somea< w̃∪ d̃ (similar comments ifI = ∅ andµ =!a(t))

and

U ≡ (ν̃d̃)(W ↓w̃,d̃ |W
′ ↓w̃,d̃) =

(

(ν̃d̃)(W |W′)
)

↓w̃
s′
−→ S |= ψ .

Therefore,
(

(ν̃d̃)(W |W′)
)

↓w̃|= φ.
Given thata< w̃⊇ T[x̃], by Lemma C.1 (11) we deduce thatT[x̃]#W. There-
fore, T ↓w̃ [x̃]#W ↓w̃, and by (5)W′ ↓w̃ [x̃]#W ↓w̃. Given thatψ does not
contain negations, by Lemma D.3 we get

(

(ν̃d̃)W′
)

↓w̃|= φ. Moreover, by

Lemma D.2, ((˜νd̃)W′) ↓w̃
s′′
−→ S′ |= ψ, with |s′′| ≤ |s′| < |s|. By applying the

internal induction hypothesis, we get (˜νd̃)W′ |= φ. Finally, by Lemma A.2
(1), we deduceT ≡ (ν̃d̃)((

∑

i∈I µi .Si +µ.W) |W′) |= φ.

(⇐). T |= 〈−ã〉∗ψ impliesT
s
−→ S, with ã#s andS |= ψ. By Proposition 5,T ↓w̃

s′
−→ S ↓w̃,

with fn(s′) ⊆ fn(s). Moreover,w̃⊇ T[x̃] ⊇ S[x̃] (Lemma C.1 (9)). Hence, by applying
the induction hypothesis, we getS ↓w̃|= ψ; thereforeT ↓w̃|= φ.

Corollary D.1 (Lemma 10). Let φ ∈ Fx̃ be of the formφ = �∗
−ãψ with negation not occurring

underneath any〈−ã〉∗ in ψ. Then for anyT, T ⇓x̃|= φ impliesT |= φ.

50

P. Let w̃= T[x̃]. T ↓w̃|= φ means that for eachS such thatT ↓w̃
s
−→ S, with ã#s, it holds that

S |= ψ.

Take anyU such thatT
s
−→ U. By Proposition 5,T ↓w̃

s′
−→ U ↓w̃, with fn(s′)⊆ fn(s). Therefore,

U ↓w̃|= ψ. Moreover,w̃= T[x̃] ⊇ U[x̃] (Lemma C.1 (9)).
Negation does not occur underneath any〈−ã〉∗ in ψ, therefore by Lemma D.4 we getU |= ψ.

This holds for eachU such thatT
s
−→ U, with ã#s; thereforeT |= φ.

Corollary D.2 (Lemma 11). Supposeφ ∈ Fx̃ with negation not occurring underneath any〈−ỹ〉∗

in φ. T ↓w̃|= φ andw̃⊇ T[x̃] implyT ↓T[x̃] |= φ.

P. By T ↓w̃|= φ and Lemma D.4, we getT |= φ and again by Lemma D.4,T ↓T[x̃] |= φ.

51

