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Abstract

We present a framework that combines ideas from spatiat$ogind behavioural type systems.
Type systems for the pi-calculus are proposed where nevdiads (restricted) names are an-
notated with spatial process properties, predicating osglmames, that are expected to hold in
the scope of the declaration. Types are akirdoterms and account for the process abstract
behaviour and “shallow” spatial structure. Type checkielies on spatial model checking, but
properties are checked against types rather than agaotgmes. Type soundness theorems en-
sure that, for a certain class of spatial properties, wgdetl programs are also well-annotated, in
the sense that processes in the scope of any restrictiortidfy $he corresponding annotation at
run-time. The considered class of properties is rathermgn@ifferently from previous propos-
als, it includes both safety and liveness ones, and is n@tlihto invariants. We also elaborate a
distinction between locally and globally checkable projgst
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1. Introduction

In the past few yearspatial logicg[13, 10] have emerged as a promising tool for analyzing
properties of concurrent systems. These logics aim at itdésgrthe spatial structure of pro-
cesses, hence at expressing properties related to digiritand concurrency. An easy to grasp
example is the race freedom property, stating that at ang, tmwhere in the system there are
two output actions ready on the same channel. The spectrpnopérties that can be expressed
by combination of simple spatial and behavioral connestigevery rich (see e.g. [10]). This
richness is rather surprising, given the intensional mabfrsuch logics: the process equiva-
lences they induce coincide with, or come very close tocstinal congruence (see e.g. [9]), a
fine equivalence that only permits elementary rearrangéswéithe term structure.

A by now well-established trend in the field of process cal@ithe use ofbehavioural
type systemw simplify the analysis of concurrent message-passingraros [18, 16, 12]. Be-
havioural types are abstract representations of progegsestuticiently expressive to capture
some interesting properties. In lgarashi and Kobayasliseegc type systems [16], the work
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that pioneered this approach, processes are pi-calcuhas tevhile types are akin tacs terms.
The crucial property enjoyed by the system is type soundniegssence, for a certain class of
properties (expressed in a simple modal logic), it holds ifh@ property is satisfied by a type
then it is also satisfied by processes that inhabit that tiResults of this sort can in principle be
used to &ectively combine type checking and model checking. Thahispme cases it is pos-
sible to replace (expensive) model checking on messag@rgagrocesses by (cheaper) model
checking on types. The paper [12] further elaborates orettiesmes.

A limitation of behavioural type systems proposed so fareons the kind of properties that
can be tackled this way. In [16, 12], properties for which aggyal type soundness theorem works
are safety invariants — that is, properties of the form “imagtbad will ever happen”. Moreover,
compositionalitymay be an issue. Ideally, the type system should provide asrtegerforming
model checking on types compositionally. In other wordsdeia@hecking on the global types
corresponding to entire programs should be avoided as nmaipbssible.

In the present paper, we try to combine the expressivenegsatifal logics with the fec-
tiveness of behavioural type systems. Building on Igarasii Kobayashi’'s work on generic
type systems, we present two distinct type systems for toalpulus where newly declared (re-
stricted) names are annotated with properties that pred@athose names. A process in the
scope of a restriction is expected to satisfy the restriétiannotation (property) at run-time. We
shall focus on properties expressible in a spatial logice-Stmallow Logic- which is a fragment
of Caires and Cardelli's logic [10]. Types are akincs terms and account for the (abstract)
behaviour and the “shallow” spatial structure of proces3d® type system relies on (spatial)
model checking: however, properties are checked agaipsstsather than against processes. A
general soundness theorem is proven stating that, for aicatass of properties, well-typed
programs are also well-annotated, in the sense that ailomdare satisfied as expected at run-
time. The considered class of properties is rather genardike previous proposals [16, 12],
it includes both safety and (weak) liveness ones, and isimited to invariants. Several exam-
ples of such properties — including race freedom, deadl@@diom and many others — are given
throughout the paper.

As another contribution of the paper, we elaborate a distinbetweerocally andglobally
checkableproperties. Informally, a locally checkable property idhat can be model-checked
against any type by looking at the (local) names it pred&ateout, while hiding the others; a
globally checkable one requires looking also at names tiguiskated to the local ones, hence in
principle at names declared elsewhere in the process. Tives#dasses of properties correspond
in fact to two distinct type systems, exhibitingiéirent degrees of compositionality anfdlee-
tiveness (with the global one less compositigeféctive). To sum up, we make the following
contributions:

e we establish an explicit connection between spatial logicsbehavioural type systems. In
this respect, a key observation is that processes and tte@wvipural types share the same
“shallow” spatial structure. This fact allows us to provetgprecise correspondences
between processes and types and strong type soundnesntiseor

e we syntactically identify classes of formulae for whichéygoundness is guaranteed;

e unlike previous proposals, our type soundness resultsarémited to safety properties,
nor to invariant properties;

o the verification process resulting from the system is contiposl, in the sense that global
checks on the type of the whole program are not necessanneraje
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e we investigate a distinction between locally and globaligakable properties.

Structure of the paperin Section 2 we introduce the language of processes, a sthpdlyadic
pi-calculus. In Section 3 we introduce both spatial prapsrand the Shallow Logic, a simple
language to denote them. In Section 4 the first type systatored to “local” properties, is
presented and thoroughly discussed. Type soundness $osythiem is discussed in Section 5
and a few examples are discussed in Section 6. A “global'imes the type system is presented
and discussed in Section 7, followed by a soundness resli#t faw examples in Section 8 and 9.
A detailed comparison with Igarashi and Kobayashi’s systeim Section 10. A few remarks on
further and related work conclude the paper in Section 1&.mbst technical or lengthy proofs
have been confined to Appendices A-D.

2. A process calculus

2.1. Types

Types areccs terms with annotations on input prefixes and restrictionsl, iaput-guarded
replication in place of recursion. As usual, we presupposeumtable setv of names We let
lowercase letterg,b, ..., x,y, ... range over names, adb;. . ., X,¥,... range over tuples of names.
The set7” of typesT, S, U, ... is generated by the following grammar:

Prefixes u:=a(t)|a|r
Channeltypes t::=(X:)T  (with % a tuple of distinct names;, fn(T) and>#t)
Process types T = 3. Ti | TIT| (v&: )T | la(t).T

wherex# means thak fn(t) = 0. In a channel typex(“1)T, we stipulate thaty 1) is a binder
with scopeT, wherex'andt represent, respectively, the formal parameters and typelsjects
that can be passed along the channel, while a process type prescribing a usage of those
parameters. Note that, i ()T, it might in general be f{) \ X # 0: the usage of received
parameters prescribed by a channel type can depend on fresnBlerea(t).T is a process type
wherea can transport names of channel tytpén what follows, we shall writé® for the empty
summation and we shall often omit traili®g and the channel type@)writing e.g. €)X instead

of (x: ()0)X and sometimes short@n|---[Tn by []i=1.... n Ti-

Notion of free and bound names arise as expected and typddeartfied up to alpha-
equivalence. Notice that annotations contribute to thefsfeée names of types, e.g. &{().T) =
{ayufn(t) Ufn(T) and in(K: H)T) = fn(t) Un(T) \ X. This ensures that scope extrusion hence
structural congruence work properly on types, as discussedin Remark 3.

2.2. Processes

The language we consider is a synchronous polyadic pi-ee¢@1] with guarded summa-
tions and replications. Terni3Q, R, ... are defined by the grammar below

Prefixes « ::=a(b) |ab) |«
Processes P= Y ai.Pi| PIP | (vb: )P |!a(b).P.



PO=P (PIQIR= P|(QR) PQ=QP (vX:1)PIQ = (vX:)(PIQ) if 3#Q

Table 1: Laws for structural congruenseon processes

In the input prefixa(b). and in the restriction/ : T) the names in the tupkeare assumed distinct.
In the restriction clausé,is a tuple of channel types such tfitat= |b|. Note that restriction acts
on tuples of named, rather than on individual names. Indeed, the foffris equivalent to
vby ---vby, from an operational point of view. When we will introduce atations (Section 4),
however, the formvb will allow us to specify properties that should hold of a goaaf names.
Notions of free hames ff( of bound names and of alpha-equivalence arise as expanted
terms are identified up to alpha-equivalence. In particwaret fn(¢b: H)P) = (fn(P) ufn(®) \ b.
To avoid arity mismatches in communications, we shall owlysider terms that are well-sorted
in some fixed sorting system (see e.g. [21]), and®alie resulting set gbrocesses

Notation. Inthe sequelPy|---|Pn will be sometimes shortened Bl ... , Pi. Givenn> 0 tuples
of nameshy, ..., b, we abbreviateyp; : 1) --- (vby : th)P as ¢ : t)i—1... nP, or simply as ¢b)P,
with b = (by,---,bn), when the identity of the; is unimportant. When writing down process
terms, channel type annotation®ay be omitted if not relevant for the discussion.

2.3. Structural congruence and reduction semantics
Over P, we definestructural congruencandreduction semanticas the least congruence

1 . . .
= and as the least relatior> generated by the axioms in Table 1 and Table 2, respectively.
Reductions are annotated with labglhat carry information on the (free) subject name involved
in the corresponding synchronization, if any:

A = (@) |(e).

Thus, either the subject of the reduction is a free name optbeessa, or € is used to indicate
that either the subject is restricted or the reduction oetgs from a-prefix. We shall need the
piece of information represented lywhen defining process properties such as “a synchroniza-
tion ona will eventually take place”. We define a hiding operator obels, writtend 15, as
follow: A Tp=(a)if A=(a) and a¢ b, A T5= (€) otherwise.

Remark 1. Concerning Table 1, note that, similarly to [16], we drop taws for restrictions:
(DY )P = () : P)(v&: )P and ¢¥ : )0 = 0. The first law is dropped because, on the
left-hand side, %) might bind names occurring it that would become free in the right-hand
side. The second law becomes problematic once restrictimsgecorated with formulae (see
Example 5in Section 4). Also note the absence of a strudawefor replication: this is replaced
by an explicit reduction rule.

Over 7, we define notions of structural congruence and reductiatioa similar to those
introduced above for processes. Indeed, type annotatiomspait prefixes play no role in the
reduction rules, where types are treated basically as®gadcesses. As an example, we have

C.Tic(t).S A T|S. Recall that annotations contribute to the set of free nathesigh: hence
annotations doféect structural congruence.
4



(com) 2=2%) Bon=ab) lel nel (ma0) jel aj=1
N anPi Y 81.Q) 2 PIBRIQy >aipi Py
iel jed iel

—_ A ,
(REP-COM) Pn= a<t<2> neJ = (PAR) —FP=F 7 P
1a(%).Pl > ;.Qj — 'a(%).PIP[Y/R]Qn PIQ 5 P'Q
jed
P= A / =P’ 1 ’
oy PEQ Q2 Q Q= (kes) PP

PL P o HP 25 vz HP

. . A
Table 2: Rules for the reduction relatior on processes.

. Pl P
Notation. In the sequel, for any sequense A7 ----- An, We letP 3 Q meanP AN Q,

andP — Q (resp. P —»* Q) meanP 4 Q (resp. P 5 Q) for someaA (resp. s). Moreover,
we say that a proces? has abarb a (resp. @), written P \,a (resp. P ), wheneverP =
(vb)(Z ai.Pi +a(X).QIR) or P = (vh)('a(X).QIR) (resp.P = (vb)(3; @i.P; + a(€).QIR)), with a ¢ b.
Similar notations are defined for types.

3. Properties

We first take a general view of propertiesRsets sets of processes and types, subject to
certain conditions. Then we introduSlallow Logi¢a simple language to denote an interesting
class of such properties. Although processes and typemldieferent worlds, for the purposes
of this section it is possible and convenient to deal wittmthia a uniform manner. In what
follows, we letA, B,... range over the s&if £ PUT. Elements ofi will be generically referred
to asterms The proofs not reported in this section can be found in AgpeA.

3.1. P-sets

Following [10, 9], a property set, P-set in brief, is a set@ifns closed under structural
congruence and having a finite support: the latter intuitiveeans that the set of names that
are “relevant” for the property is finite (somewhat analog¢a the notion of free names for
syntactic terms). In the following, we I¢a < b} denote thd@ranspositionof a andb, that is, the
substitution that assigresto b andb to a, and leaves the other names unchangeddFori{, we
let AE ® mean thaiA € @, and®{a < b} denote the sgiA{a < b}|AE ®}.

Definition 1 (support, P-set, least support [10]).Let ® C U andN C N.

1. N is asupportof @ if for eacha,b ¢ N, it holds thatd{a < b} = ©.
2. Aproperty se(P-se) is a set of term® C U thatis closed under and has a finite support.

3. Theleast supporbf @, written supp®), is defined as sup@ = (N support ofo N-

In other words,N is a support ofd if renaming namesutside Nwith fresh names does
not dfect®. P-sets have finite supports, and since countable intéyeeaft supports is still a
support, they also have a least support.



In the rest of the paper we will deal with properties that neetbe invariant through reduc-
tions. This calls for a notion of-derivativeof a P-set®, describing the set of terms reachable
via A-reductions from terms i:

®, 2 (BIA st. AED and A 5> B},

The following property ensures thataderivative of a P-se® is a P-set itself, provided
involves a name in the support ®f

Proposition 1. Let® be a P-set. Ift = (a) with ac supp(D) thend, is a P-set ancupp(D,) C
supp().

The Ok() predicate introduced below identifies P-sets that enjaaedesirable conditions. (1)
requires a P-set to be closed under parallel compositidntefins not containing free names. (2)
demands a P-set to be invariant under reductions that davalve names in its support. Finally,
(3) requires preservation of (1) and (2) under derivativllsese requirements will be essential
for guaranteeing the subject reduction property of our ymems. Note the coinductive form
of the definition.

Definition 2 (OK(-) predicate). We define Ok{) as the largest predicate on P-sets such that when-
ever Ok(D) then:

1. foranyA,.Be® s.t. fnB) = 0: AE @ if and only if AB = @; similarly for A,Be 7,
2. if = (e) or A = (b) with b ¢ supp() thend, = @;
3. for eac, Ok(®,) holds.

Note that, by virtue of Proposition 1, if O] then eachd, is guaranteed to be a P-set.

3.2. Shallow Logic

The logic for the pi-calculus we introduce below can be rdgdras a fragment of Caires
and Cardelli's Spatial Logic [10]. We christen this fragrh&mallow Logi¢ as it allows one to
speak about the dynamics as well as the “shallow” spatiatstre of processes and types. In
particular, the logic does not provide for modalities tHedva one to “look underneath” prefixes.
Another relevant feature of this fragment is that the basidatities focus on channsubjects
ignoring the object part at all. This selection of operatsrsuficient to express a variety of
interesting process properties (race freedom, uniquetieeaess [23], deadlock freedom, re-
sponsiveness [5], to mention a few), while being tractatdenfthe point of view of verification
(see also Caires’ [9]). Another important property of Shallogic will be discussed later in
this section (see Lemma 2 below).

Definition 3 (Shallow Logic). The setF of Shallow Logicformulaeg,y, ... is given by the fol-
lowing syntax, whera e N anda Ciin N-

¢ u=T|ove|-¢|@0e| @ ¢ |(-a)¢|a|a|slp|H .

The free names of a formulg, written fn(p), are defined as expected. We &t = {¢ €
F . fn(p) € X}. The set of logical operators includes spat@la(|,H*) as well as dynamic
((a),(&",(-&™) connectives, beside the usual boolean connectives,dimgwa constant for
“true”. The interpretation off over the set of processes is given in Table 3. Connectives are
6



[Tl=u [H*¢l ={A|35,B: A= (78)B, &#¢, Be [¢]}
[p1Vv @2l =[41] Vg2l [ palg2ll ={AFAL A2 s A= AgfAo, Are[[¢a]l. Az [ 4201}
[-¢1 =2\ [4] [@d¢l={A[3B: A % B Belol)
[al ={A|AN\a) [&¢]={A|3sB: A > B, se ((bbe &), Be[¢]}
[l ={A|A\a) [(-8)°¢] ={A[3sB: A > B, &#s Be[4])

Table 3: Interpretation of formulae over terms.

interpreted in the standard manner. In particular, coniogrepatial modalities, the barb atom
a (resp. @) requires thatA has an input (resp. output) barb angly requires thatA can be
split into two independent threads satisfyin@ndy; H*¢ requires thaf satisfiesp, up to some
top level restrictions. Concerning the dynamic part, folan@)¢ requires an interaction with
subjecta may leadA to a state where is satisfied{a)*¢ requires any number, including zero,
of reductions with subject ia fnay leadA to a state where is satisfied{—a)*¢ is similar, but it
requires that the subjects of the reductions leading to aisthte ar@otin 4. We write A = ¢ if

A €[ ¢]. Interpretations of formulae are P-sets, as stated helow

Lemma 1. Letg € F. Then[¢] is a P-set and f() 2 supp([¢]) -

Notation. In what follows, when no confusion arises, we shall oftenade® = [[¢]] just as

¢. We abbreviate~(—X)"~¢ asn’ ;¢. Moreover(-0)"¢ ando’ ¢ are abbreviated as'¢ and
O*¢, respectively. Note that* ando* correspond to the standard “eventually” and “always”
modalities as definable, e.g., in the mu-calculus.

Example 1 (some properties).The following formulae define properties depending on agene
channel name. They will be reconsidered several times throughout theepap

Race freedom: NoRacéa) £ o -H*(aa)
Unique receptiveness: UniRec¢a) S o (aAn—-H*(ala))
Responsiveness: Resfia) = o, 0" (@)
Deadlock freedom: NoDeada) = |:|*( (@a—-H*(@¢*a)) A (a— H*(alo* 5))).

NoRacéa) says that it will never be the case that there are two corentiutputs competing
for synchronization oa. UniReda) says that there will always be exactly one receiver ready on
channela. Resjfa) says that, until a reduction antakes place, it is always possible to reach a
reduction ora. If ais a return channel passed to some service, this means theeseill, under
a suitable fairness assumption, eventually respond (sed%]). Finally,NoDeada) says that
each active outp@ will eventually have a chance of synchronizing with an inputd vice-versa
for each active inpug.

It is worth to notice thaNoRacéa) andUniReda) belong to the class of safety and liveness
properties, respectively. On the other haRdsga) andNoDeada) might be classified as “weak
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liveness”, in the sense that they combine liveness andysgfetrantees. (“No state is reachable
from which a good state is unreachable”, see Appendix A.A8f for the definitions and more
insights on the dference between weak and strong liveness.)

A further motivation for our specific selection of modalgtiis that satisfaction of any formula
of Fis, so to speak, invariant under parallel composition. Irtipalar, whetherA satisfies or
not a propertyy of a bunch of nameg, Should not depend on the presence ofasedparallel
contextB. This will be important to guarantee soundness of the scepasion law, hence of
the subject congruence property, in our system. Formul&aodelli and Caires’ Spatial Logic
outside¥ do not, in general, meet this requirement. As an examplegethairement obviously
fails for —(=0|-0), saying that there is at most one non-null thread in theesystAs another
example, take the formukal', where¢ is the one-tau-step modality, saying that one reduction is
possible, no matter about the subject: the reduction mighgrbvided by the conteX® and not
by A. This explains the omission of this modality from Shallowgi@ The following lemma
formally states this property of Shallow Logic (this is ircfa rephrasing of condition 1 of the
Ok predicate).

Lemma 2. Let A be a term ang € Fx. For any term B such that|B is a term andn(B) = 0 we
have that A= ¢ if and only if AB [ ¢.

We shall sometimes need to be careful about the placemdre aiodalit—a)* with respect
to negation-. To this purpose, it is convenient to introduce two subskfisronulae, positive and
negative ones.

Definition 4 (positive and negative formulae).We say a formula® is positive(resp.negativé
if each occurrence of modalitg-a)* in ¢ is in the scope of an even (resp. odd) number of

negations =",

We letF* (resp.F ~) denote the subset of positive (resp. negative) formulae imhe sets
¥y andfy are defined as expected.

Example 2. Formulae not involving the operatg+&)* are both positive and negative. As an
examplea, (a)T, =(a)T, (-a)la are both negative and positive. On the other hanep) a is
negative but not positive, while-b)*-a is positive but not negative. Concerning the formulae
introduced in Example 1, note thilibRacéa) andUniRedca) are negative, whilé&kesga) and
NoDeada) are neither positive nor negative, as in both of them theatitydo* occurs simulta-
neously in negative and in positive positions.

Remark 2. Note that our definitions of “positive” and “negative” are radiberal than the ones
considered by lgarashi and Kobayashi [16], where the posdf all spatial modalities — includ-
ing the analogs of a anda — w.r.t. negation must be taken into account. For instancigjue
receptiveness would not be considered neither as negaiivasnpositive in the classification
of [16]. This difference has influential consequences on the generality df/pgesoundness
theorems of the type systems.

In the rest of the paper, we shall mainly focus on formulae sehdenotations are Ok P-sets.
We write Okg) if OK([[ ¢]]) holds. The following lemma provides aficient syntactic condition
for a formula to be Ok (note that condition (1) of @(s a direct consequence of Lemma 2).
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Lemma 3. Let¢ be a Shallow Logic formula of the form eithes* -y or =(-a)*—=o*y’, where
¥’ does not contaim. ThenOKk(g).

Example 3. formulae in Example 1 are in the format of Lemma 3, hence theyOk.

4. A“Local” Type System

We present here our first type system. The adjective “locféns to the controlled way
P-set membership (that is, model checking, in practicaé®ais checked within the system.
Specifically, as we will see later on, in the restriction roldy the part of a process type
that depends on the restricted names is considered. We argaing to introduce a decorated
version of the syntax, the typing rules and the basic prggeeof the system. Proofs not reported
in this section can be found in Appendix B.

4.1. Annotated processes

As anticipated in Section 2, the type system works on anedtatocesses. Each restriction
introduces a property, under the form of an Ok P-set, tha¢dép on the restricted names and
is expected to be satisfied by the process in the scope ofdtrection. For annotated processes,
the clause of restriction is

P = .| (vA:1; ®)P with &2 supp(®) and Ok() .

For brevity, when no confusion arises we shall omit writinglécitly channel types and prop-
erties in restrictions, especially wher ()0 and® = [[T]]. The reduction rule for restriction of
annotated processes takes into accounfitterivative of® in the continuation process. Hence
the rule for restriction on annotated processes is

pAp

(RES) pr .
(vt DP 5 (vX:it; DY)P

Note that, by removing property annotations from reswitsi one gets back exactly the syntax
and the reduction relation of plain processes. For an atettaroces®, we take P E ¢” to
mean that the plain process obtained by erasing all propanptations fronP satisfiesp. A
“good” process is one that satisfies its own annotations attiwe position. Formally:

Definition 5 (well-annotated processes)A processP € # is well-annotatedf wheneverP =
(vb)(v&; @)Q thenQ | @.

4.2. Typing rules

Judgements of the type system are of the férmP : T, where:Pe P, Te 7 andT is
a context that is, a finite partial map from name¢ to channel types. We writE+ a: t if
ae dom(’) andI'(a) = t. We say that a context igell-formedif wheneverT + a: (X: )T then
fn(T,t) € Xudom(). In what followswe shall only consider well-formed contexts the type
system, we make use of a “hiding” operation on typess, which masks the use of names not
in X (as usual, in the definition we assume that all bound nam€&saimdt are distinct from each
other and disjoint from the set of free names and foQnT | 5 is formally defined in Table 4.
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.(Tlg) IifagXx T(tlg).(Tlg) ifag¢gXx
a(tlg).(Tlg) otherwise
(T1lT2) Lx=(T1 )I(T2 L) (.T) Ix=7(T lx) (b T) Lg=(vb: Tlgp)(T Uxp)

(CimiTi) be=2i (@i T) Lx)  (a@).T) lx=1((a).T) Ix) (@:OT) lx=F  tlgy)T Izg

a(Tlg) otherwise

@m lx= { (@t).T) lx= {

Table 4:T |x.

Fra: (0T LXtEP:TIT ST

(Lolne) Tra®.P:a(X:0T).T (LTa) recpieT
Fra:(X:HT I'rb:fT I'+P:S CFP:T T=S

L-O ) L-Eq :

(L-Owr) T+ ab).P:a(T[bK|S) (LE I'+Pos
#1 Viel:TraiPi:iu.T 'ralX).P:a(t).T

L-S L-R X

(L-Sum) rl—za’i.Pi:Z#i.Ti (L-Rep)  FraR Pral) T

i i
(L-Res) LA TrP:T TlsE® (L) LEPIT TrQ:S

F'r(Aa:t; o)P: (va: )T I'rPIQ:TIS

Table 5: Typing rules for the local system.

As an example, we have that

(va: t)(a(t)-b(t)la(t).c(t")[Cf@) b= (va:tlap)(alt lap)-b(t" lap)lalt lap).-7(t" lap)it@) -

Notice that terms produced by the hiding operator are in gg¢m®t in 7. Consider e.g. the
T(t"” Lap) prefix above or @(t).c) lc=!7(t lc).C. Formally,T | belongs to the set of terms defined
by the grammar for types extended as follows:

T o= [ 1e@).T | 7(0.T.

Note, however, that, by the rules of the type system, suchg@mly arise when checking the
premise of the restriction rule (L#). They cannot appear as types assigned to processes.
The rules of the type system are shown in Table 5. The striafithe system is along
the lines of [16]; the main dierences are discussed in Section 10. The key rules aner)L-|
(L-Our), (L-Res) and (L-E&). By and large, the system works as follows: given a proégss
it computes an abstraction & in the form of a typeT. At any restriction {a: t; ®)P (rule
(L-Res)), the abstractiom obtained forP is used to check tha®'s usage of namea fulfills
property® (T |z @): in practical cases) is a shallow logic formula and this is actually spatial
model checking. Note that ® might be undecidable, however significant decidable fragme
have recently been identified (this is further discussedeictiBn 11). Also note that, thanks to
ls, this is checked without looking at the environment: only gart of T that depends oa, that
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isT la, is considered, the rest is masked. In particulaf iz, any masked parallel component
at top-level can be safely discarded (a consequence oftommdiof Ok). In this sense the type
system is “local”.

Similarly to [16], rules for input and output are asymmetiicthe sense that, when typing a
receivera(X).P, the type information o that depends on the input parameteis moved to the
sender side. The reason is that the transmitted nénaes statically known only by the sender
(rule (L-Our)). Accordingly, on the receiver’s side (rule (kv#)), one only keeps track of the part
of the continuation that does not depend on the input paemighat isT’. More precisely, the
type of the continuatio® is required to decompose — modulo structural congruenceHTas
whereT is the type prescribed by the contéxfor a, andT’, which does not mention the input
parameters,is anything else. In essence, in well typed processesedivers ora must share
a common part that deals with the received namas prescribed by the tyge

Finally, rule (L-R) is related to sub-typing. As mentioned in the Introductiarkey point
of our system is that types should reflect the (shallow) apatructure of processes. When
considering sub-typing, this fact somehow forces us to dbampreorders in favor of an equiv-
alence relation that respects P-sets membership, whids teastructural congruence. Further
discussion on this pointis found in Section 10.

The judgements derivable in this type system are writtdnas P : T.

Example 4. Consider the formula = o*-H*(a|b) saying that it is not possible to reach a
configuration where both an output barb arand one orb are available at the same time.
Ok(¢) holds by Lemma 3. Consider the proce®s (va,b : t,t; ¢)Q, where: t = ()0, Q =
((d(ay + d(by)|!a.b|!b.a)|d(x).X and a context’ s.t. ['+d: (x:t)X=t. By applying the typ-
ing rules for input, output, summation and parallel composi

Fa:tb:tr Q : (da+db)|'at).b/!bt)ad{t) = T.

T lap= (ra+ r.b)|!a(t).b|!b(t).a| 7 E ¢; hence, by (L-Rs), T . P: (va,b:t,)T. This exam-

ple shows clearly that the structural correspondence lestwyges and processes is shallow: it
breaks down as soon as we look underneath prefixes. In@eaddT have the same number

of parallel components and thefter the same barbs, regardless of the communication objects.
But, as soon as we look at a deeper level, this correspondere&s down: e.g. the output
d(a) in Q has no continuation, while the outptTilin T has the continuatioa. In this sense the
correspondence is shallow.

Example 5. The following examples further illustrate the reasons foypghing the two rules
(va)0 = 0 and ga)(vb)P = (vb)(va)P from structural congruence (as discussed in Section 2).
Concerning the first rule, note that the procésis well typed in any context (by (L31)),
while e.g. ¢y: t;¢)0, with ¢ = (y)T requiring a communication oy, obviously is not. Con-
cerning the second rule, the procesis (()0; T)(va: ()0;¢*(ala@))(a.b|ab) is well typed, while
(va: ()0;¢*(a@)(vb: ()0;T)(a.bjab) is not. In other words, the presence of either rules would
violate the subject congruence property (see the next stibse

Despite the absence of lawa](vb)P = (vb)(va)P, swapping of two top level restrictions is
still possible providedP can be split into two parts, each of them not containing retpaly a
andb.This swapping can be achieved by repeated applicatiofsedadope extrusion structural
law. For instanceg, b andc are assumed of type;)annotations omitted for brevity):

(vb)(va)(b.c|b|a|c.a) = (vb)(b.C|b)| (va)(@|c.a) = (va)(vb)(@|b|b.c|c.a)
11



where at each step the scope extrusion rule is applied twice.

Remark 3 (on type annotations).We are now ready to motivate the annotations on types in-
troduced at page 3. Basically, type annotations on bothtippafixes and restrictions guarantee
that the correspondence between the spatial structurmoégses and types is preserved by the
scope extrusion law. Consider the process

P = (va;¢)Q where Q = (vb)(vc: (X)b.X)(a.c(X).b.x|a.b)

and the formula = o* ,¢*(ala), which is Ok according to Lemma 3. Under a suitable context,
the type system assigns @a type that, once annotations are removed, looks like

T = (vb)(vc)(a.ciab).

Note that, according to the typing rules, the continuatibais discarded when going froR to
T. Now, since inT nhames andc occur in distinct threads, we can split T |5 in two, thus

T=T la=(vc)ac|(vb)abE¢.

Hence, ignoring annotations leads to concluding, by ¢}Rthat P is well typed. The prob-
lem is thatP is not well-annotated according to Definition 5. In fa®,cannot be split in two
independent threads, due to the sharing of the restricted ba

Q¥ ¢

so that the soundness result presented in the next sectidd e violated. This shortcoming is
avoided thanks to the presence of annotations in typesethde

a: ()0 +. Q: (vh)(vc: (X)b.x)(a.c((x)b.x)|ab)
where the type on the right cannot be split in two, since namseshared by two threads. Hence
(vb)(ve: (b.X)(a.c((x)b.x)[ab) La= (vb)(vc : ()b.X)(a.c((x)b.X)|a.b) b ¢

which entails, correctly, tha® is not well typed. Note that, to guarantee the proper workihg
scope extrusion, it would be ficient to annotate restrictions and input prefixes by setseef f
names, rather than by whole channel types. We have preféreddtter form, which makes the
structural correspondence between types and processesrcle

Finally, note that, in the above example, the addition ofé&striction operator Hto ¢ would
solve the problem: botfl andQ satisfy¢’ = o ,¢*H*(@la). This points to the expressiveness
of the Shallow logic. Indeed, in the logic considered in [16F satisfaction of1|¢» is defined
up-to restrictions, hence it cannot logically distingu@bove fromR = a.c(x).b.x|a.b.

4.3. Basic properties

We state here the basic properties of the type system pesbenthe preceding subsection.
Let us writeI'rn P : T if there exists anormal derivation ofl" +. P : T, that is, a derivation
where rule (L-k&) can only be found immediately above rule (kr). Modulo=, every judgment
derivable in the type system admits a normal derivation.

Proposition 2 (normal derivation). If I" +| P: T thenl'ry_ P: S for someS=T.
12



Normal derivations are syntax-directed, that is, process® their types share the same
shallow structure. This is formally stated in the two lemrakw.

Lemma 4. Suppose thadtry, P: T, thatl'+ b:tand thatl' r a: (X: t)U. Then for any QQ1, Qo,
andq;.Q; (i € 1), it holds that:

1. P=a().Q impliesT = a((X: )U).S for someS such thaf, X +. Q: S|U and %#S;_

. P=ab).Q impliesT = a(S|S’) for someS andS’ such thafFy. Q: S’ andS = U[P/A];

. P=7.Q impliesT = 7.S for someS such that"rn_ Q: S;

. P=(&:t; ®)QimpliesT = (+v&: t')S for someS such thafl,&: t +n. Q: S andS LeE @;

P = Q1|Q2 impliesT = S4|S, for someS; andS; such thal ry. Q1 : Sy andTy Q2 So;

. P=la(X).Q impliesT =!a((X: t)U).S for someS such thal -y a(%).Q: a((X: HU).S;

. P =3¢ @i.Q impliesT = Y ui.Si for someS; andy; such thatl'ry @;.Q; : p;.Sj, for
eachiel.

No oA WD

Proor. The proof is straightforward by induction on the derivataf '+ P : T. It proceeds by
considering the last typing rule applied. All cases are obsi(recall that in a normal derivation,
rule (L-EqQ) cannot be the last applied one).

Lemma 5. Suppose that . P: T, thatI'r b:tand thatl'r a: (X: t)U. Then for anys,S1,S»,
andy;.S; (i € 1), it holds that:

1. T=a((%: )U).S implies P= a(%).Q for some Q such that %:tr. Q:U|S and %#S;

2. T=aSimplies P= b).Q for some Q an&’ such that” | Q: S’ andS = u[b|s’;

3. T=7.Simplies P=7.Q for some Q such thdt+_ Q:S;

4. T=(v&:7)S implies P= (v&: t; ®)Q for some Q and such thatl’,&:t . Q:S and
S lekE O;

. T=S1|Sz implies P= Q1|Q2 for some Q and @ such thafl" +| Q1:S1, T F. Q2: Sy;

. T=la((%: H)U).S implies P=!a(X).Q for some Q such that - a(%).Q: a((X: H)U).S;

7. T=Yiq 1i-Si, || #1, implies P= Y «;.Q; for some Qande; suchthal + «;.Q; : y.Si,

foreachie I.

(o2&

Subject reduction relies on a few intermediate results. usefirst introduce some more
terminology. In the remainder of the paper we define: E}[T)[B/R] = (y: T[B/R])T[B/R], for any
X and b, with implicit alpha renaming of bound names to avoid cagsur This definition is
generalized td such thal'+ %:tandl'+b:t as~f0IIows:l"~[b/>~<](a) = I:(a)[b/f(], foranyae dom().
Notice thaf + X:tandI"+ b: timply that (i) T[R/x] + %: TR/, (i) T[E/K] + b: T[byx] and (iii) TTb/]
is well-formed. Finally, let fn() = Uaedomr) fN(T'(a)).

Proposition 3 (subject congruence)I +. P: S and P=Q impliesI" +. Q: S.

Proposition 4 (substitution). Supposé’, X :tr. P: T, withI andT, X: t well-formed, and™ +
b:t. ThenITb/q v P[] : T[b/X.

The following result establishes the operational corresigace betweem andT |x. This
correspondence is strict as long as reductions involve &mah a bound name oraprefix (in
T). Otherwise, a single step fromcan be mimicked by twee) reductions fronT | .

13



Proposition 5 (operational correspondence betweefiand T [g). (i) If T 4 T, with 2 ;=

(€) | (a) and ac X, thenT |g 4 T g (i) If T A T/, with 2 = (a) and a¢ X, thenT |x ﬁ) ﬁ

T lg (i) If T S T thenT Ug ENEY lg, withfn(s) c fn(s). (iv) If T % 4 T, with 1= (a) or
A = (e) and the reduction originates from a synchronization on aritbname or a—prefix inT,
thenT 5 S, with T’ = S 5.

Theorem 1 (subject reduction).T +_ P: T and P 4 p implies that there exists#® such that
T4 Tandrr P/: T

Proor. The proof proceeds by induction on the derivatiorPof> P’, where the last reduction
rule applied is distinguished. We examine the most intergstases below. Recall that by
Proposition 2, a normal derivation for-. P: T exists, say +y. P: Swith T=S.

(sTruct). By P 2 P’ and the premise of the rule, we get= Q, Q 4 Q andQ =P'. By
Proposition 3 (subject congruencE}n. P: S impliesT +. Q: S; hence, by applying the
induction hypothesis, we g& 4 s andr’ L Q 1 S, Finally, by (truct), S=T 4
S’ = T’ and by Proposition 3 (subject congruende), P’ : T’.

(com). Assume for notational simplicity th& = a(X).Rab).Q 2, R[b/K1Q = P’ (the general
case with arbitrary guarded summations is similar).IBy. P : S and Lemma 4, we get
S=aVaU[KIV)withT r. Q:V/, T, %:1tr. R:V|Uwith &V, wherel +_ a: (X: t)U
andl +_ b:t. We can also assume thal"

By (com) and grruct), S~ VUKV andT <2 viuBgv £ 17 By %4 it fol-
lows thatITb/x] =T'. Moreover, by Proposition 4 (substitution) and (krPwe getl”

RID/AIQ : (VIU)P/AIV'. Finally, by XV we get ¥|U)[/K]|V’ = VIU[P/R]|V' = T” and by
(L-Eq), we getl’ v P’ : T".

I MNa , .~ . 1
(res). By P=(va:t; ®)Po — (va:t; ®,)P, = P" and the premise of the rule, we dg&f — P,
By I'tn (vA: t; @)Pg : S and Lemma 4, we g&& = (va: t)U, withT,a:t +_ Py : U and

U laE ®. Hence, by applying the induction hypothesis, wetgeﬁ U andl,a:t . Py:
U’. By (res) we get ¢&: YU 5 (va:HU’ 2 T and by frruct), T -5 T/,

We have to prove that the premise of the rule (ks)Rs fulfilled. We already know that
I,a:tr Py U, thus it sdfices to show that)’ 3= ®,. We consider two possibilities
(recall thata™2 supp)):

1. 1=(a), withae & or A= (e). U |s= @, follows byU |z ® andU |5 > U’ |s a
consequence af 4 U and Proposition 5.

2. otherwised, = @, = ®, by Ok(®). The reductior 4 U has afree subject notin

a. By Proposition 5, this reduction can be simulated by a plaér@ductions ol |5

that consume the corresponding prefixes, thi$s ﬁ ﬁ U’ |5. By definition of

@, and by Ok), we have that)’ |z O yey = Dy = D = D,

14



In both cases (L-R) can be applied to deduder,. P’ = (va:t; )Py : (va: U =T

The systenm+| enjoys a sort of “inverse subject reduction” property gn&eaing that pro-
cesses simulate their types.

Theorem 2 (type subject reduction).T" v P: T andT 4 implies that there exists & Buch
that P A PPandl'+. P : T.

5. Type Soundness for the Local System

In this section we prove a general type soundness resulufosystem: we study classes of
properties for which well-typed-ness implies well-annetaness. We first identify the general
class of properties for which, at least in principle, modelaking on processes can be reduced to
a type checking problem whose solution requires only a (Jacse of model checking on types.
We do so by the following coinductive definition.

Definition 6 (locally checkable properties). We let Lc be the largest predicate on P-sets such
that whenever Lap) then Ok(D) and:

1. wheneverl +_ P: T andX2 supp() andT |gE= @ thenP = ©;
2. Lc(@,) holds for eacht.

If Lc(@) then we sayD is locally checkable

A formula ¢ € ¥ is said to be locally checkable iff]] is locally checkable. The following
theorem is quite expected.

Theorem 3 (type soundness)Supposd™ +. P: T and P is decorated with locally checkable
P-sets only. Then P is well-annotated.

Proor. Supposé +_ P: T andP = (vb)(va: ®)Q. The P-seth is locally checkable by hypothe-
sis. We have to prove th = ©.

By Proposition 3 (subject congruenc&)y. P: T andP = (7b)(va: ®)Q, we deduce that
I+ (7D)(vA: ®)Q: T. A normal derivation of this judgment exists (Propositigniz-n. (¥b)(va:
®)Q:S=Tand, by Lemma 4$ = (¥b)(v&)T’ withT,b:T,a: ¥ r. Q: T’ andT’ |5= ®. By Def-
inition 6, part 1, it follows thaQ E ©.

The following corollary is a consequence of type soundnedssabject reduction.

Corollary 1 (run-time soundness). Suppose thdt . P: T and that P is decorated with locally
checkable P-sets only. Then-B* P’ implies that P is well-annotated.

Our task is now providing gficient syntacticconditions on a formula that guarantee
Lc([¢]). In the following, we will write T +x P : T if well-typedness ofP can be derived
from the rules in Table 5 by omitting the chetk|z= @ in the premise of rule (L-&). The
systemrk can be seen as the kernel iaf: its only purpose is to extract abstractions out of
processes, without performing any check. The followingppition guarantees that processes
and the corresponding types satisfy the same Shallow lognaiflae.

15



Proposition 6. Supposé& rx P: T and lety € ¥. ThenT E ¢ if and only if PE ¢.

Proor. First, notice thal ¢ P: Tifandonlyifl’ + P’ : T, with P’ obtained fronP by replacing
each P-set annotation withT]]]. Therefore, all basic properties of the systemintroduced in
Section 4.3 carry over tex provided that allbs are replaced byT]].

The proof is straightforward by induction on the structufre oT he cases of the boolean con-
nectives easily follow from the induction hypothesis. Thatfal connectives are accommodated
relying on the structural correspondence between prosesgktheir types (by Lemma 4 and 5).
The dynamic connectives are accommodated relying on Thetrand Theorem 2. Below, we
cover in detail the two most interesting cases.

¢ = ¢1ld2.

(=). T E ¢1l¢2 implies thatT = T1|T2 with T; | ¢; fori =1,2. By rule (L-), I’ +x P:
T1|T2, hence by Lemma 3 = P1|P2, with T ¢ P1: T1 andl rx P2 : To. Therefore,
by applying the induction hypothesis, we daatE ¢1 andP; = ¢o, that iSP E ¢.

(). The proof proceeds in a similar way, by applying Proposi®and Lemma 4 in
place of Lemma 5.

¢ =(-b)"y.

(=). T E ¢ implies thatT S T andT E  for someT’ andb#s. By Theorem 2 (type
subject reduction), we gé&t S P andr rk PP T
FromT E ¢, I' v P’ : T/ and the induction hypothesis, we gtk . Hence,
Pl (-b)"y.

(<). The proof proceed in a similar way; Theorem 1 (subject raduayts applied instead
of Theorem 2.

We still miss two ingredients to obtain our main result. Thstfone relates the hiding
operator to structural congruence. The second one is abewfect of the hiding operator on
satisfiability. (The proof of Lemma 6 can be found in Appen#ix

Lemma 6.

1. Suppose & X. (T |x) \aif and only if T \ya.

. If T [g= T1|T2 then there are51 and S, such thafl = S1|S, andS; [¢=Tj, fori=1,2.
. If T=T4|T2 then there areS1 and S, such thafl |s= S1|S» andS; =T |g, fori=1,2.
. If T lx= (v8)S then there i3/ such thatl = (v&)V, withV |z5=S.

. If T = (v&)S then there i3/ such thafl |x= (v&)V, withV =S [gx.

a b~ wWDN

Lemma 7. (a) If ¢ € 7y andT |xk= ¢ thenT £ ¢. (b) If ¢ € FyandT k= ¢ thenT |z ¢.

Proor. The two statements and () are proven by mutual induction on the structure of formula
#. We show only the most interesting cases:and(—b)". Barb and parallel composition cases
follow from Lemma 6, while the others from the induction hyipesis. Notice that the mutual
induction comes into play in the cage= —.
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¢ = H*y. Suppose (hencey) is a negative formulaT |g= H*y implies thatT |g= (V&)U with
U E y. By Lemma 6 (4), it follows thaT = (va)V, for someV such thaV |z5=U. Hence
by ¢ € ¥ € F35 and by the induction hypotheslg = y andT = (V&)V E H*y = ¢.
Supposep (hencey) is positive. T | H*y impliesT = (v&)V, with V E . By Lemma 6
(5), T lx= (&)U with U =V |x5. By applying the inductive hypothesid, = ¢ and, by
definition, ¢a)U E H*y, henceT |z ¢.

¢ =(-b)y'y. By definition of positive formulae, both andy are positive.T ¢ implies that
T S s, b#sands E y for someS. By Proposition 5T |« s, S lx, with fn(s’) € fn(s),
and by applying the inductive hypothesss| = v. Therefore, by definitionl | x= (—b) .
Theorem 4. Any negative formula of the formi‘¢ is locally checkable.

Proor. Each formula of the given form is Ok (Lemma 3). Notice thatlwgedness in-_
implies well typedness irk , hence by Lemma {a) and Proposition 6, each (denotation of a)
negative formula satisfies condition 1 of the definition of IMoreover, [B*¢]] = [o*¢] . for
eachl. This shows that[o*¢] | ¢ € ¥~} C Lc.

The above result provides us a type soundness result fotenedting class of formulae, that
includes both safety and liveness properties. Some examjilebe given in the next section.

6. Examples in the Local System

The formulaeNoRacé¢a) andUniReda) fit in the format given by Theorem 4, hence they are
locally checkable. As an example, consider

P=(va,b,c:()0,t,t; UniReda))(c(a) | a+ b(x).x c(y).(xy)d(y))1d(2).22)

wheret = (x)b.x andt’ = (y)y. Assume thal" +_ d:t”, with t” = (2Zz By the typing rules, we
easily derive

Ia:()0,b:t,c:tr. @ |a+b(x).xlcy).(bydy)|d@).zz: T
with o
T2¢.(badaa)|a+b(t)]ct) | d(t”).
Since 3
T lapc=C.(b.alr.aa) | a+b(t') | c(t) | 7(t”) E UniReda)
we can apply (L-Rs) and get

'+ P:(vab,c: ()0,t',1)T.

For another example, consider the following access poticg shared resourae Before
using the resource, a lo¢knust be acquired; the resource must then be used immediately
the lock must be released immediately after that. If we idg@ain available resource with an
input barbc, a use ofc with a synchronization oo and the availability of with an output barb

[, the above policy can be described by the following formwlaere E] stands for-(c)-:

SafeLocl,c) =o*(( —c) A [d]l).
17



Herel — ¢ = =l v ¢ means that presence of the lock implies presence of thenasoumhile ]l
guarantees that after using the resource the lockst be made immediately available. This is a
negative formula fitting the format of Theorem 4, hence ibically checkable. As an example
of use of this formula, the process

Q= (vc,|;SafeLocld, o)) (l|cladl, c)) |a(x, y).! x.(V.yi%)

is well typed under & s.t. T+ a: (xy)!x(Y.yX). A more flexible version oSafeLock not
requiring an immediate release of the lock after using theuece, will be examined in Section 9.

Note that neither (the analog d¥niReda), norSafelLocl, c) are covered by the type sound-
ness theorem of [16].

Finally, note thaResp§a) andNoDeada) do not fit the format of Theorem 4. Indeed, these
formulae are not locally checkable. E.g., consier (va; Resf§a))(c.a/@). This process is easily
seen to be well-typed under. ()0, simply because theblockinga is masked (turned inte) in
(L-Res). Howeverc.ala clearly fails to satisfijResa).

7. A“Global” Type System

TheResyfa) example at the end of the preceding section makes it clasit ik not possible to
achieve type soundness for properties like responsivemdsss we drop the “locality” condition
in the restriction rule, represented by the use of the hidipgrator|x in T |gx= ®. Similar
considerations apply to the case of deadlock-freedom. & pogperties are inherently global,
that is, they can be checked by looking also at names decdtdsedhere in the environment to
make sure that they do not interfere with the property belmerked. More precisely, it appears
that one must also consider the part of the type involvingesmon which the local (restricted)
ones causally depend. In the previous example, whete.aa, this means checkinBesya)
againstl |ac= T, rather than againdt |4, thus detecting the failure of the property. This can be
regarded as an implicit form of assume-guarantee reasdtiiirgypoint of view will be further
discussed in the concluding section).

Below, we introduce a new type system that pursues this idlege that dropping locality
implies some loss of compositionality anffextiveness. However, that is done in a somewhat
controlled way: not all names, but only some of them, caysallated to the restricted ones,
are considered when checking the validity of the properhe fype system relies on the use of
normal forms and dependency graphs, two technical devitesduced in the next subsection
which help to keep track of causal dependencies among nanaetype. Proofs omitted in this
section can be found in Appendix C.

7.1. Dependency graphs and (head) normal forms

Lety range over the sat= {¢, o, o} of annotationsForl C N, we let a set of annotated names
I be a total function froni to a; by slight abuse of notation, we writ& € [ rather thari(a) = y.
The informal meaning of annotations is:= free namep = input-bound names = restricted
name. Adependency graph @ a pair(V, E), where:V = [ UW, with W C {(vX) | XC N}, is aset
of annotated names and restrictions, representingices andE C V x V is a set ofedges

A dependency grapB = (V,E), with V = [ UW ranged over by, v, ..., encodes causal rela-
tions among (free or bound) nameslinVertices of the formyX) are introduced for delimiting
the scope of restricted namesl, \{) € E is also written as1 »¢ v. Each edged,b) encodes a
direct causal dependencelofrom a. The reflexive and transitive closure efg, written — 7.,
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encodes indirect causal dependenciesoét of G is a vertexu € V such that for nov, v —g u;
the set ofG’s roots is denoted by roots. Given a dependency gragh= (V,E), withV=1uW,
a hamaais critical in G with respect td, if it belongs to the set of namé&x(b) defined below.

G(B)é{x|xferAax—>Gv1—>G---—>Gvn=be6s.t.v1gi<n: vi = (v§) impliesb ¢ §} (1)

The set ofritical namesn G, written cr(G), is defined as c) = Upe<i G(b). Finally, we define
G[b] asG(b)ub. In order to associate dependency graphs to types, we udeddur auxiliary
operations on graphs:

(i) unionG1UG:; is defined componentwise as expected, provided the setstafes/; andVs
agree on annotations of common names (otherwise union afioied);

(i) x-updateG 1% changes intg the annotation of all names inotcurring inV;

(iii) a-rooting is defined aa —» G 2 (Vu{a‘}, Eu{(ab)|beroots@G)} ), whereG = (V,E),
provideda does not occur itV with annotations dferent frome (otherwisea-rooting is
not defined);

(iv) (vX)-rooting is defined as/&k) —» G = (V,EU{((vX),b)|b e rootsG)} ).

We are interested in grapl&; that correspond to typebin normal form which are defined
below.

Definition 7 ((head) normal forms). A type isprimeif it is either of the form}};c, . T; with
| #0 orla(t).T. Atype is inhead normal fornif it is of the form (F&)(T4|---|Tn) with n> 0 and
theT;’s prime.

A type is innormal formif it is in head normal form and each term occurring undermest
ery prefix is, recursively, in normal form. Processes in hemrmal form are defined similarly.

Every type (and every process) is easily seen to be equivalene in normal form, as stated
by the lemma below.

Lemma 8. For eachT € 7 there exists & € 7 in normal form such that = S. For each Pc P
there exist a ¢ # in normal form such that B Q.

In what follows, we assume the existence of a function-Nthat maps each typgerocess

to a structurally congruent one in normal form. For changpes, we set NFE HT) = (X:
NF()) NF(T). Note that the normal forms are unique modulo reorderingavéllel components
and swapping of top-level restrictions originated by agations of the scope extrusion law.

For anyT andt in normal form, the dependency grapBs andG; are defined by mutual
induction on the structure af andt as follows (it is assumed that ih andt bound names are
distinct from each other and from free names):

Gat = a— (GUGy) Gt = Gag1 Gazr = a—> Gy
Gyigutmi =Uia Gum %1 Gy = UiGr

Gixpr = (V%) = (GrU Ui Go) 1) G = (GrUUiGo) 15 -
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In essenceGt encodes potential causal dependencies among — free or bousuthes off, as
determined by the nesting of prefixesTn Note thatGr is not expressive enough to describe
conflictsbetween causes, e.g.conflicts withb as a cause d in (a.c+ b.c)[c.d. Anyway, such
degree of accuracy is not necessary for our purposes. Iretheel given any arbitrary typg

we shall writeGr for Gngr) (similarly for channel types) and abbreviate@fj andG+[b], for
anyb c fn(T), as cr{) andT[b], respectively.

Example 6 (a dependency graph).Consider

T=Tf.clf((z: 00)2.(b: (})d.X)(ab((y)dy)|b.de+d.a((w: (0)Ww)).

Gt can be graphically represented as the directed graph betawr(otations are omitted for the
sake of notation).

7 ey el )
0 47 e

It is easy to compute the following sets: TyE {a,d}, T[e] = {f,a,d,e} andT[c] = . Notice
thatf ¢ cr(T) = Gr(b). Intuitively, this is the case becausés generated only afte‘rls consumed,
as shown by the path— (vb) — b* (recall the definition of5(b) in (1)).

7.2. Typing rules

We need a more liberal definition of well-annotated procésat allows re-arranging of
top-level restrictions before checking annotations. T® why this is necessary, considge
o*(¢*al¢*a), a typical property one would like to check in the new systebonsider the pro-
cessed = (vb)(va;¢)RandQ = (va;¢)(vb)R, with R=b.t|b.d|b|b|c.ald.a. We observe that
(vb)R I ¢, so thatQ is not well-annotated according to Definition 5. On the othend,Q = P
andRE ¢, which suggests th&, henceQ, could be considered as well-annotated up to a swap-
ping of (va) and ¢b) obtained by applying the scope extrusion structural laigéwRecall that
in general it is not possible to swap restrictiong)(and ¢¥) in (vX)(v§)P, as already discussed
on Section 4, Example 5.

Definition 8 (globally well-annotated processes)A processP € # is globally well-annotated
if wheneverP = (vb)(va D)(¥C)Q, with Q a parallel composition of prime processes, then there
is a permutatiof’ & of b& such thaP = (7b')(v&; ®)(7&)Q and ¢¢)Q k= ®.

A channel type X~ 1)T is said to bavell-formedif %#cr(T); in what follows, we only consider
contextsl” containing well-formed channel types. E.g. we discard aehtypes of the form
(x: t)(vc)(X.c|S). For any typeT we letT |x denoteT |15 (note that fnT Ux) U X = T[X] by
definition). Intuitively, inT |}z, we keep the names dhd those that are causesxah'T; the
others are masked.

The global type systemis reported in Table 6. Recall thaagheule the contextis assumed
to contain only well-formed channel types as discussed ebdhe type system makes use of
an auxiliaryproperty-type simulatiorelatione«g among P-sets and types, defined coinductively

20



Fra:(%: 0T OX:trP:TIT ST
I'+a(X).P:a((X:)T).T

(G-Inp) (G-Tav) rr"#

FT.P:7T

[LA:tFP:T ®oyT

N#1 Viel: TraiPi:y.T;
e Ik 2aiPic X Ti (G-RES)FF(vé:t;CD)P: (va:nT
ey DFAR).Pa((X:HT).T cr@((X:H1).T) =0 e o [FP:T P=Q
(G-Rer) T Hla(R).P 1a((X: D1).T’ (C-EeP)—TrgrT
(G-Px) F'eP:T r}? i3|SQ:(':I'r|g)#S Cr(S)#T (G-EQ)F E I]?‘:}—TP:EE S
(G-our Lrai(X: DT reb:T TrP:s ber(n) cr(T[b)4s TIB/"#Cr(S)

I'+aby.P:a(T[b/x|S)

Table 6: Typing rules for the global system.

below (the use of this relation will be explained in the sdjjué/e first need some additional
notations. A labeled transition relation on types is definstexpected: we writ& ST

T = (FA)(Zii.Ti +a®).T71S) or T = (FA)('a(t). T7IS) andT > T if T= (FA)(Zwi.Ti +ATIS),
where in both caseF = (vd)(T”|S). In the following, we lety range oveKe), (a), a anda, and
definea |g=a |x= () if a¢ X. Moreover, we writel >§ T if

e eitherT 5 T/ with v =€) | (ay, for somea e 2
o OrT 5 T withy = alaandag¢z
Intuitively, T >§ T’ means thal can move tor” with a r-action after hiding names in ~

Definition 9 (property-type simulation, «x). We letproperty-type simulationxg, be the largest
relation between P-sets and types such that wherewgrT then Ok() and:

1. Tl @;

2. for eachy, T’ such thafr >¥[)~(] T’ we haved, | ., ocx T

In the type system, we note the presence of a new structuefauprocesses, (G<=P)
forcing subject congruence: this is not derivable from ttreorules of the system. As an exam-
ple, whileP = (va: t; Res|ga))(b.allja) canbe typed without using rule (Ge&P), the structurally
congruent processd : t; Resffa))(b.ald)|b cannotbe typed without using that rule. The con-
dition on critical names in rule (GaR) ensures that an@ put in parallel toP will not break
well-annotated-ness &f (and vice-versa). In other words, the condition ensurets@haill not
interfere with properties decorating restrictiom&)(inside P, asQ does not contaim-critical
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names. As an example, the condition prevents us from puptingessQ = b in parallel with
P above: indeed, the resultiRjb = (va : t; Resia))(b.albiab) is not well-annotated. A similar
remark applies to the rules for output and replication. le (G-Res), the property-type simula-
tion relationecy ensures that each derivativebiatisfies the corresponding derivativedafand
this will be crucial in the proof of the substitution lemmadanf the subject reduction theorem.
It is worth noticing that checking «z T might be undecidable, given that in genefamight
be infinite-state: at the end of the next section, howevemvillédentify a class of formulae for
which checking ]| «<5 T can be done by checking the validity Bi}s}= ¢ (Proposition 10).

The judgements derivable in the new type system are wrigéh-g P: T.

Example 7. Consider the property = o*(¢*aj¢*a) and the procesB defined at the beginning
of this subsection (for the sake of readability we omit ch&rppes in annotations, which are

always (P): L
P = (vb)(va; )R with R=b.C|b.d|b|b|c.a|d.a.

Assume thaf r c,d : ()0. It follows thatI" +g P : (vb)(va)T, with T = b.c|b.d|b|b|c.ald.a.
Indeed, by applications of typing for prefixes followed byphgations of rule (G-kR), it can

be deduced thdf,a: ()0,b: ()0 +¢ R: T. Then by (G-Rs) andT |Ja=T E ¢ it follows that
I,b: ()0 +g (va; ¢)R: (va)T. Finally, by applying (G-Rs) again,I" g P: (vb)(va)T.

7.3. Basic properties

The basic properties of the local type system carry overeagthbal one. In particular, we
have a form of normal or syntax-directed derivations. Thprtg rules introduced in Table 6 are
not syntax-directed. E.g. well-typedness of prodess((va: t;T)a)lb underT + b: ()0 can be
derived either by applying the typing rules as dictated leydtiucture ofP or by applying the
rules as dictated by the structure o&( t; T)(alb) followed by an application of rule (G<P).
This is the case because applications of (&} and (G-RRr) can be freely intertwined. We get
syntax-directed derivations by disciplining the way thages are used. Consider the rule

P=P4]---IP, n>1 P;prime foreach
foreachi: T+ P;: Ty foreachi # j: cr(Ti)#T;
C+P:Tq--[Th

(G-PrY)

Letus denote by +; P: T judgments that can be derived by applying the typing rulé&isie 6
with (G-Pr) replaced by (G-R*). We next prove the existence of normal derivations in

A normalderivation ofl" 5 P : T is one where (G-& can only be found immediately above
(G-Inp), and (G-m-P) can only be applied with a process in head normal form énpttemise
and onenot in head normal form in the conclusion. We write-{; P : T for judgments that
can be derived in the new system with a normal derivation. féHewing proposition asserts
that, modulo= on both processes and types, every judgment derivable isystemr; admits

a normal derivation.

Proposition 7 (normal derivation). T' +5 P: T implies that there are R P andS = T such that
R ands are in head normal form anfl +5; R: S.

22



Reconsidering the example at the beginning of this sulisgotie see that the only normal
derivation in+§ for deducing well-typedness of a normal formRofthat is ofP = ((va: t; T)a)|b)
is the second one described at the beginning of this subsecti

g -derivations are syntax-directed, in the sense that gRjethere is at most an instance
of one rule wherd® can appear in the conclusion. This fact can be again exgltitshow that
processes and their types share the same shallow strudthiseis expressed by the following
lemma, saying that it is possible to infer the structure ofpetfrom that of the process (a dual
of this result can also be proven but is not necessary for oypgses).

Lemma9. T v, (Fa:)(vD:T;®)P: TimpliesT = (7&:f)(vb:V)S, with[L&:1,b: T +/,; P: S
and® o, S.

Itis an easy matter to prove that systerasand+§ are equivalent.
Proposition 8. I' +g P: Tifand only if" +5 P: T.

Finally, we have subject reduction. The proof of the theoremot completely standard. In
particular, it is convenient to reason witff, rather than withtg, as the existence of normal
derivations+{,; makes the reasoning simpler. The idea is to consider a natenaationl”

Q: S for a Q in head normal form and congruent to the origialand S congruent toT.
Lemma 9 ensures th§ and the associated tyjgeshare the same shallow spatial structure, thus
any reduction fronQ can be simulated by one frogh

Theorem 5 (subject reduction).T +g P: T and P 4 p implies that there exists® such that
T4 T andl rg P': T

8. Type Soundness for the Global System

Similarly to the local case, we firstly identify a generalssdaf properties for which, at least
in principle, model checking on well-typed processes caretdaced to a type checking problem
whose solution requires only model checking on types. Themiwe sificient syntactic con-
ditions for global-checkability. Proofs not reported iristBection can be found in Appendix D.
The definition ofglobally checkable propertidés the same as the local one, except that the local
hiding operator 15" is replaced by {5

Definition 10 (globally checkable properties).We let Gc be the largest predicate on P-sets
such that whenever Gbj then Ok(D) and:

1. whenever +g P: T andX2 supp) andT [x= @ thenP E @;
2. Gc(@,) holds for eacht.

If Ge(®) then we sayd is globally checkable

Aformulag € Fis said to be globally checkable if] is globally checkable. The following
result is quite expected. The subsequent corollary is astprence of type soundness and of
subject reduction.

Theorem 6 (type soundness)Supposéd” +g P: T and P is decorated with globally checkable
P-sets only. Then P is globally well-annotated.
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Proor. Assumel ¢ P: T andP = (¥b)(va: T, ®)(5&)Q, with Q a parallel composition of prime
processes. The P-sétis globally checkable by hypothesis. We have to prove thettetlis a
permutatiorb’@ of bé such thaP = (7b')(va: t; ®)(7&)Q and ¢¢)Q k= ®.

By Proposition 8I" +& P : T and by Proposition 7, there aR= P andS = T such thaR is
in head normal form andl +{; R: S.

P=(¥b)(va: t; ®)(7€)Q andP = RandRin head normal form implR = (7b')(va : t; @) &) Q,
with b/, & permutations ob, & andQ’ parallel composition of prime processes such @at Q.
By Lemma 9,S = (#0')(v& : YU with [,b : 7,4: 1+ (¥)Q : U and ® oz U. Therefore
U |zF @. By Definition 10, it follows that{€")Q’ @, hence (T)Q E .

Corollary 2 (run-time soundness). Suppose thdt +g P: T and that P is decorated with glob-
ally checkable P-sets only. Then-B* P’ implies that P is globally well-annotated.

Like inthe local case, we can give syntactic conditions flmrenula to be globally checkable. We
need some intermediate results. First we note that weldgpss in-¢ implies well-typedness
in the kernel systenr .

Proposition 9. T +g P: T impliesI" +x P: T.

Proor. This result can be proved by an easy inspection of the typites of . Notice that
in case (G-k-P) is the last rule applied, one exploits the's version of Proposition 3 (subject
congruence). Indeed, if the premis®is Qandl’ +¢ Q: T, by induction one caninfdr rx Q: T
and by Proposition 8 +¢ P: T.

Proposition 6 carries over to the global system as a coyodithe previous result.
Corollary 3. Supposé& +¢ P: T and¢ € F. ThenT k ¢ if and only if PE ¢.

Lemma 10. Let ¢ € 75 be of the formp = O” . with negation not occurring underneath any
(=by" iny. Then for anyT, T Ux= ¢ impliesT k ¢.

As a consequence of Lemma 3, Lemma 10 and Corollary 3 we gétltbeing result.

Theorem 7. Let ¢ be one of the following forms: (a)*y with negation not occurring under-
neath any-&)" in y, or (b) O*,0"y’, with negation not occurring iny’. Theng is globally
checkable.

Proor. Each formula of the given forms is Ok (Lemma 3). Assumes P: T. By Lemma 10
and Corollary 3 we geT g ¢ impliesP | ¢. That is, condition 1 of the definition of Gc is
satisfied by formulae of the forifa) or (b). It remains to show that Ggf) holds for eachl. We
distinguish the two case&) or (b).

(@). [#ll.=[¢] for eacha. This, together with the above considerations, entails[iif € Gc.

(b). If[ O 50"yT =0 then [0 ,0"y'] 2 = 0. Otherwise, [b” 0" y'] = [0 y0*¥'] 1 for eachi#a
and [[o* 50"yl 1 = U otherwise (see the proof of Lemma 3, Appendix A, for the de}tai
This shows that

{0, UyU{[a 50"y T | ' does not contain negatigns Gc.
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The following proposition guarantees that for formulag getisfy the hypotheses of Theo-
rem 7 checking ]| o<z T reduces to checking |z ¢.

Lemma 11. Suppose € Fx with negation not occurring underneath atyy)* in ¢. T lgxE ¢
andw 2 T[X] imply T L1z ¢

Lemmal12. T 5 T/ impliesT[X] 2 T'[X].

Proposition 10. Let ¢ € Fx be of the form (a) or (b) as specified in Theorem 7T |fg= ¢ then
[¢] .

Proor.

(a). o*y, with negation not occurring underneath gma)* in . Define

RE(([¢1.T) |¢ = 0"y with negation not occurring underneath am@)* in ¥, T U= [¢1}-

Itis enough to prove tha Cocg. We have to prove that for eacth(T) € R it holds that
1. T UxE @ (this holds by definition oR);
2. for eachy, T’ such thafl >¥[)~(] T" it holds that 0, ;. T') € R.
By definition, for eacht, ®, = ® because ff*¢]] = [¢] =@. By T >¥[)~(] T we get
T L T with eithery ::= (¢) | (by, for somebe T[X] ory ::=cC | ¢, for somec ¢ T[X].
Hence, by Proposition 5,

vitm .,
Tl — Tl -

By T Iy © we haveT’ |yyk DOy iy = @ By Lemma 11 andr[X] 2 T'[X]
(Lemma 12) we get’ [rixk @y 15 = - Therefore, @, T7) e R.
(b). 40"y, with negation not occurring ig’.
Define

R={([4].T)|¢ =0 50"y with negation not occurring i, T Ug= [¢1}U{(U.T)| TeT}.

It is enough to prove thaR Cecg. We have to prove that for eacth(T) € R it holds that
1. T JgE @ (this holds by definition oR);
2. for eachy, T’ such thafl >7,5, T" it holds that @, T') € R.
By definition of [, @y, = ® for eachy ::=(e) | (y) | b| b, withy ¢ dandb ¢ T[X].
Moreover, byT >¥[)~(] T we getT L. Hence, by Proposition 5,

it _,
Tl — T g -

By the latter andT |1y © we getT’ lryk ‘Dlem = ® and by Lemma 11 and
T[X] 2 T'[X] (Lemma 12) we geT’ /gl @y |5 = @. Therefore, @,T77) e R.
Now, suppose = (y), for somey € & C X. As shown in the proof of Lemma 3 in
Appendix A, @, = U =[T] and (I{,T’) € R by definition.
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9. Examples in the Global System

All the properties defined in Example 1 fit the format of Thenrg hence they are globally
checkable. As an example, considet (va: Resiia))(c(a))|Q, whereQ =!c(X).(X|x)[c(b). Under
a suitabld", we derivd” g T(a)|Q: E.(ﬁ]a)l!clt‘:.(ﬁlb) 2T. SinceT 4= C.(ala)|!c[C.(1]r) E Respa),
by (G-Res), we gefl” g (va: Resifa))(c(a)|Q) : (va)T, hence we can conclude tiatg P: (va)T
using (G-&-P).

For another example, consider a somewhat more realistiantasf the SafeLoclkproperty
introduced in Section 6. The new properBafeLockExtdefines an access policy for a shared
resourcec. Before using the resource, a locknust be acquired; resourcanust then be used
immediately, and the lock must be released (not necessawhediately) after that:

SafeLockExt,c) 2 0*((T—¢) A [c]o™).

This is a formula fitting the format of Theorem 7, hence it islillly checkable. As an example
of use of this formula, the process

Q= (vc,d,l; SafeLockEXxt, c))(T|c|d|§<I, c.dyla(x,y,2).(t.XxZ+ . x.y.‘z(Ylylz)))

is well typed under & s.t.T +a: (XY, 2(r.X.Z+ 7.XY.Z(Xly|2).

It is worth to notice that (the analogs of) responsivenesisdiadlock freedom are not cov-
ered by the type soundness theorem of [16]. In the case ofatdedeedom, though, a soundness
result can still be proven by ad-hoc reasoning on certaiit lpasperties of the system.

10. Discussion

We discuss here some limitations, and possible workarquridsir approach, and contrast
them with the generic type system approach of [16]. Genesakkaking, these limitations arise
from design choices that, on the one hand, reduce the fliyibflthe systems and, on the other
hand, allow to gain in precision and to widen the class of prtgs for which type soundness
can be proven (e.g., the class includes interesting lisepesperties).

A first point is the uniform behavior of input continuatiomsposed by our systems, which
is somehow reminiscent of uniformity in Sangiorgi's redegmess work [23]. Indeed, a process
like R = a(x).x|a(x).x.x|a(b) is discarded in both our systems, but is well typed in [16}, fo
example assumingof type (X)(x& x.x), which says that the input continuationaan be either
of type x or x.x. The absence of union types in our system is a design choitieated by our
search of type abstractions spatial correspondent to gseseIndeed, suppose we could assign
type X)(x&x.X) to a. This would lead to assigning the typea|a|a.(b+ b.b): here the spatial
correspondence breaks down after one reduction.

A second pointis that, in [16], the subtyping relation matkegssential use of a “sub-divide”
law, T=T 7% |T |%. This rule allows one to splanytype into a part depending only on T |5,
and a part not depending oq T T%x. As an example, one hasb.X = a.b.7jr.7.X. This law
enhances the flexibility of the input rule, hence of the tyystem.

An example of a process that cannot be handled in our typersgdbecause of the absence
of the “sub-divide” law is

P = a(x).b(y).xy.
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Here,y causally depends or this makes the type df depend on a bound name which
cannot be expressed in our system. With a sub-divide lavtypieeofb’s continuatiorx.y can be
decomposed a&1|r.y, thus allowing one to assignthe type §)7.y that ignores the dependency
on x. Note that this specific problem does not arise in the sututizd enforcing input locality
and asynchronous outputs, which is considered to be relblyomgpressive. E.g. the process
a(x).b(y).(Xy) is typable in our systems. For another, subtler examplesider the process

Q =1a(x).(r0)(b(y)-(VAEx 2123) (%, D.(X) .

Here,a can be viewed as a service invocation chanrels a formal invocation parameter and
y as an acknowledgement channel, introduced by another (opud). It appears thay and x
are related (via), which makes the type df dependent on the bound namewhich cannot be
expressed in our system. This dependency could be discasitegithe sub-divide law. Process
Q cannot be dealt with by our type systems, for reasons simailrose discussed above.

To sum up, as shown in the examples above, union types andtibhdidde law of [16] make
their system more flexible than ours: that is, when restiicto the class of properties handled
by [16] (i.e. the properties expressed by negative forminldbe sense of [16]), then the set of
processes typable in the system of [16] is larger than thefggbcesses typable in our systems.
However, union types and the sub-divide law do not preséreapatial structure of terms, even
if this is partially mitigated by the presence of tags thatké&ack of certain correlations among
names. In our system, we stick to spatial-preserving lalmss trading & some flexibility for
precision.

Let us now reconsider the two examples above. Suppose thaethice invocation oais
intended to trigger an interaction between two partiesdaysession): then the very dependency
of y from x suggests a way to re-write the process into a conceptualiya&gnt one that can be
dealt with in our systems. In particular, there appears todeeason why should be received
at a moment later thax E.g.,P can be re-written as(x,y).Xy, andQ as

la(x.Y).(r0)( (2)(E(x.2)129) | 6(x. 2 .(XD))

Both of these processes are typable in our local system. @§epthis sort of rewriting does not
make sense when the sessions triggered by invocati@aratmultiparty, e.g. when it is a third
party, and not the invoker, which sends a messade on

11. Conclusion, further and related work

We have defined and investigated a framework that incorpsriateas from both spatial
logics and behavioural type systems, drawing benefits froth.bOur main results are: type
soundness theorems that, for interesting classes of pgregdrasically reduce model checking
on pi-processes to (local or global) model checkingcanprocesses, via type-checking; and
the definition of syntactic conditions identifying sets pfdresting formulae belonging to such
classes.

Implementation issues are not in the focus of this paper aade& for future work. The
normal derivation property already provides us with syrdaected systems. Of course, imple-
menting the model checksk ¢ is still an issue. In this respect, it is important to remdétf
for a large class of properties, checkifigr ¢ might be decidable in spite of the fact tHaE ¢
is not. For instance, Busi et al.'s have shown [6] that “wela&fbso*a are decidable incs with
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replication, while they ar@ot in the pi-calculus. In [1], we have recently proved decitigbi
of a subclass of Shallow logic formulae, expressive enoaglescribe interesting safety proper-
ties. As in the case of [6], the proofs rely on well-structutensition system techniques [11].
Another possibility would be re-using existing work on salatnodel checking: Caires’ work [9]
seems to be a promising starting point. Also, approximatafrpossibly infinite-statecs types
with finite-state automata, in the vein of [19], seem usedudéasign &ective tools.

Inference systems and their implementation are left fahrwork. Certain decidability re-
sults about structural congruence [15, 14] suggest thagilbdity. It would also be interesting to
cast our approach in more applicative scenarios, like tidtmuservice-oriented computing [3].

Our work has been mainly inspired by Igarashi and Kobaygsdper on generic type sys-
tems [16]. The main diierences between this work and ours have been already désidhissugh-
out the paper. Some recent work by Kobayashi and collabaratas pointed out the intrinsic
limits of behavioural type systems based on the use of siioulas a subtyping relation [20].

Also related to our approach are some recent proposals bg<Caln [8, 7], a logical se-
mantics approach to types for concurrency is pursued. Bpaby, in [8], a notion of spatial-
behavioral typing suitable to discipline concurrentiatgions and resource usage in a distributed
object calculus is defined. Types, that can be viewed as enfragof a spatial logic for concur-
rency, express resource ownership. The proposed systerange@s the availability of services
and (resource access) race freedom. Closest to our work igtiére a generic type system for
the pi-calculus - parameterized on the subtyping relatisnproposed. The author identifies a
family of types, the so called shared types, which allow talmiarly and safely compose spatial
and shared (classical invariants) properties and to s&detgrize spatial properties.

Our dependency graphs are reminiscent of Yoshida's grgmst{24]. The main idea is the
same, to trace the nesting ordering among prefixes. Howgeshida’'s graphs are meant to be
quite more precise abstraction of the behavior of procegbes makes their derivation more
complex than dependency graphs’. Indeed, graph types dr&éypmeans of several operations:
prefixing, parallel composition and hiding. Intuitivelyhile prefixing is conceptually very sim-
ilar to ours, parallel composition in [24] is a sort of mergehich “consumes” the possible
communications by removing synchronizing nodes, whiléngjdrestriction) removes all nodes
(and the corresponding arcs) mentioning the hidden namedé€pendency graphs, instead, are
meant to over-approximate dependencies and can be easilipyinspection of types. Indeed,
parallel composition of two types corresponds to the unibthe sets of nodes and arcs of the
two original graphs.

The side conditions on critical names in the typing rule<d@&) and (G-Rr) can be consid-
ered as giving rise to an assume-guarantee system allowmgasitional reasoning at the level
of types. l.e., in (G-Or), the assumption concerning disjunction of critical hargearantees
that e.g. any well-typed environment that might becomeyeadeceive the output will not in-
terfere with the sender by creating new dependencies aaffingewell-annotated-ness. Related
papers using assume-guarantee techniques in a somehovexpicit way are [17, 12]. In the
already mentioned [12], the authors integrate the subtypdhation with an assume-guarantee
rule for ccs with respect to open simulation. In [17], Kobayashi and $@myjpropose a hybrid
type system for lock-freedom combining deadlock-freedtammination and confluence analy-
sis. The relation of the proposal in [17] to assume-guagargasoning is clear: capability and
obligation annotations on channel usages represent tasgdgassumptions on the environment
and consequent guarantees. The so called hybrid typing aflgl7] discard those processes
that rely on the environment in order to fulfill their obligai. Hence well-typed processes are
lock-free without making any assumption on the environment
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A preliminary investigation of the ideas presented in ttapgr, in a much simpler setting, is
in [4].
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A. Proofs of Section 3

This section reports the proofs omitted in Section 3, aloith wome intermediate results
that will be useful here and in the rest of the paper. The faglig lemma introduces a some-
what expected result concerning substitutions and trasitspies. It is needed in the proof of
Proposition 1.

LemmaA.l. A A B implies Ax &y} M B{x < vy}.

Proor. The proof is straightforward by induction on the derivataf A 4B

Proposition A.1 (Proposition 1). Let ® be a P-set. I1f2 = (a) with a< supp() then®, is a
P-set andsupp(,) < supp().

Proor. We first prove thalN = supp(D) is a support ofd,. This, together with definition of least
support, is enough to ensure that supp(C supp(D).
Consider a ternB £ @, with A = (a), for somea € supp(p). By definition, there is ar  ®

such tha®d 5> B. Take anyx,y ¢ N. By definition of support, it holds tha&{x < y} E ®. Given

thata € supp(), we geti{x & y} = 1 and, by Lemma A.1A{X & Y} 2 B{x « y}. Hence, by
definition of®, we getB{x « y} E ®,. Thus,N is a support ofD,.
Finally, @, is a P-set because it has a finite support and, by suke¢r), @, is closed under

Let us now point out some properties of formulae that will seful more than once in the
sequel.

Lemma A.2. Assume/ does not contaim. Consider any PQ € £, anyT,S € 7 and a sets of
fresh name& andw of appropriate sort.

1. PP E yw implies(vR)(P| Q) E v and(¥X)T [ ¢ implies(¥X)(T|S) E ¢.

2. PE o*y impliesa@)|(a(W).Q + 7.P) E ¢*y. T E o*y impliesal(a.S + 7.T) E o*y.

3. PE O 40"y impliesaW)|(a(2).Q + 7.P) = 0" 10"y, for every ac a. T | 0 0"y implies
al(aS +1.T) E o’ 0"y, forevery a a.

Proor. In (1), the proofis straightforward by induction on theustiure of the formula. For (2)
the proof relies on (1) withk = 0, Q = a(2) (resp.S =a) and on the definition of {]] while for
(3) the proof relies on (2) and on the definition off ][

Lemma A.3 (Lemma 1). Letgp € F. Then[¢] is a P-set and @) 2 supp([#]).

Proor. The proof is straightforward by induction on the structofe. For the base cases= a
and¢ = a it is obvious. In the other cases it proceeds by applying tigeiétive hypothesis.
Consider the casg = (—a)"y and suppose that there li¢ fn(¢) such thatb € supp([#]]), we
prove that this assertion leads to a contradiction.

Take anyA € [[¢]]. By definition, A= ¢ and for eactB s.t. A S B, with &#s, we getB |- y.
By applying the induction hypothesis tbh we get bothA{b « ¢} E ¢ andB{b « c} E v, for

anyb,c#fn(y) C fn(¢). Moreover, by Lemma A.1A 3B implies A{b & ¢} ﬂ“’.‘i B{b < c}.

Hence, by choosing arg#fn(¢) we getA{b < ¢} E ¢. This holds for anyA € [[ ¢]], therefore we
have a contradiction angtsupp([ip]]), for any b#fn(g).
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As expecteda’s contained in the support of (the denotation of) any nonatrformula
containingd” .

LemmaA.4. Let® =[O ,0"¢]], where¢ does not contairr. Then® # U and ® # @ imply
a c supp).

Proor. Supposeb # U and® # @ and take anyA and B such thatA|B is a term, Al ® (A}
07 50"¢) andB | @ (B 07 50"¢). Note thatA £ © impliesA{x < y} £ @ for any x,y ¢ supp(D).
SupposeA andB are processes and consider the t€m a(?)|(a(?).A + 7.B), for anyac a
and some fresh 6f suitable sort. By Lemma A.2 (3 = 07 4¢*¢, thereforeC € .
Suppose by contradiction thatz supp(b). By definition of support, we get{a « b} E ©
(that isC{a < b} = 0" 40"¢) for eachb ¢ supp(), and in particular this holds for sonte¢ a.

ThereforeC{a < b} = b(Z{a < b})|(b(W).A{a < b} + 7.B{a < b)) LA Afa & b}, and it must be
Afa < b} E O0740"¢, henceAfa < b} E @, andA E ®, by definition of support: contradiction.
Thereforea supp().

The following proof enhances compositionality of spatialdal checking. Indeed, it guar-
antees that satisfiability does not depend on non-integgrarallel threads. This result allows
us to cut away some subterms when checkiaty “

Lemma A.5 (Lemma 2). Let A be a term ang € 5. For any term B such that|B is a term
andfn(B) = 0 we have that A= ¢ if and only if AB k= ¢.

Proor. We prove that for any terrB such thatA|B is a term A#B andx#B we have thaf | ¢ if
and onlyA|B  ¢. By this and fnB) = 0 we get the result.

The proof proceeds by induction on the structur@ofCasesp = T, ¢ = aand¢ = @, with
ac X, are obvious. Let us consider the other cases:

¢ = _|lﬁ_
(=) AE - impliesA - . By applying the induction hypothesia|B i y and by defini-
tion AIB | —w.
(<) In this case the proof proceeds similarly.
¢=Hu.

(=) AE ¢ impliesA = (VA)A’ with A’ E  anda#B. By induction hypothesis¥'|B .
Moreover,A|B = (v8)(A'|B), andA|B [ H*y by definition of “[H*y]".

(<) ABE ¢ means that\B = (¥8)(7b)(A'|B’), with A = (FA)A’ (&#B,B'), B = (¥b)B’
(b#A, A') and A'|B’ k= y. From A#B, &#B', b#A’ and x#B, we getA'#B’ and X#B’,
hence by applying the induction hypothes#s,= . Finally, by A = (va)A” and
definition of “[H*y]", we getAE ¢.

¢ =¢1V ¢2. In both cases, the proof proceeds by applying the inductypothesis.

¢ = ¢1ld2.

(=) AE ¢ implies A= Aq|Ay, with Aj E ¢1 and Az E ¢2. By applying the induction
hypothesis, we ge&;|B E ¢1 (similarly Az|B = ¢2). Hence, by definition of §1|¢2]],
we getA;|B|A2 E ¢, and given thaf\|B = A1|B|Ay, by definition of “[-]", AIBE ¢.
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(&) ABE ¢ implies AIB = A1|A2|B1|B2, with A = A1|A2, B = BB, A1]B1 E ¢1 and
Ao|Bz E ¢o. From A#B and x#B we getBi#A;, andX#B;, for i = 1,2. By apply-
ing the induction hypothesis, we gai = ¢1 andA; = ¢2. Hence, by definition of
[o1le2]l, we getAq|Az = ¢, and given thah = Aq|Ap, by definition of “[-]", AE ¢.

¢ = (@y.

(=) AE ¢ impliesA & A with A E y. By applying the induction hypothesis, we get
A'|B E . Moreover, by ¢ar), AIB @) A’|B, henceAB E (ayy.

(&) ABE ¢ implies AIB &, ¢ with C E ¢. From #B, the reduction with subject
a originates fromA and A|B @, C has been deduced by applyingg). Hence,

A& A andc= A’|B. Moreover,B#A’ and x#B hold, hence by applying the

induction hypothesis, we gét = . Therefore A | (ayy.

¢ = (@, with aC X. this case can be proved as a generalization of the previcusoon> 0
reductions with subjects iaC X.

¢ = (-b)"y, with bc .

(=) AE ¢ impliesA 3 A, with A =y andb#s. By B#A', andx#B and by applying
the induction hypothesis, we gét|B = . Moreover, by far), AIB S A’|B and
AB= (-b)"y.

(&) AIBE ¢ impliesAlB S C,withCEvy andbt#s. From A#B, we getC = A’'|B” with
A =, A, B Y B’ andsis some shfile of s; ands,. Again from A#B and x#B,

we getA’#B’ andx#B’. Hence, by applying the induction hypothesis, it followatth
A Ey andAE (-b)'y.

Recall that the following lemma syntactically identifiesrfaulae that are guaranteed to be
Ok. Lemma A.4 is used in the second part of its proof.

Lemma A.6 (Lemma 3). Let¢ be a Shallow Logic Formula of the form eithety, or o* 0"y,
wherey’ does not contaim. ThenOKk(¢).

Proor. We examine the two cases separately.

¢ =0O*y. We prove thaf[[o*y]} € Ok, by showing this set satisfies points (1), (2) and (3) in
Definition 2.
(1). It follows by Lemma 2.
(2). By definition, [[¢]] = [o*#]l, therefore [p]] = [#]] 1 for eachaA.
(3). Itfollows by [[¢]] = [¢] 1 for eacha, as shown above.

We have proved thdffo*y] } € Ok.

¢ =07 ,0"y" forsomey’ that does not contain. As before, we prove thdl ¢]|, U, 0} < Ok, by
showing this set satisfies points (1), (2) and (3) in Defini@o If [¢]] = 0 or [¢] = U this
is obvious. Assume the contrary, then, by Lemma A.2,supp([])-
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(1). It follows by Lemma 2.

(2). By definition, [0 50*y'] = [0 40" 5¢*¢'] and [[¢]l 1 = [#] for A notof the form(a)
with a€ a.

(3). As already seendf]| , = [[¢]] for A of the form(a) with a ¢ a.
The proof proceeds by showing that][[, = U for A = (a) with ac &. Indeed, take any

A e U andBE [¢] such thatA|B is a term (such 8 must exists becauses]| # 0).
DefineC = &?)|(a(?).A + 7.B), for a € a and some fresk 6f appropriate sort. By

Lemma A.2 (3), we hav€ [ [[¢]] andC 2, A. This proves that §]l . = U, with
A = (ay for someac & Of courseid, = U andd, = 0 for anyA. This proves point

3).
We have proved thdf ]|, U, 0} € Ok, hence Okf).

B. Proofs of Section 4

The proofs of the basic properties of the local system onhitt&Subsection 4.3 can be found
here. Some additional results are also proved along the way.

The following lemma guarantees that, as already discussedmark 3, annotations on input
prefixes and restrictions on types aréfigient to guarantee that the scope extrusion law preserves
the spatial correspondence between processes and typpsovEpthis, it is necessary to prove
that each free name in a process is also free in the corresuptyge.

Lemma B.1. If T +_ P: T thenfn(P) C fn(T) andfn(T) cdom(). f I, %X:t . P: T and#P,T
thenS#T.

Proor. The proof is straightforward by induction on the derivated " + P: T.
The usual weakening and contraction properties hold folabe system.

Proposition B.1 (weakening and contraction).If I' v P : T, I well-formed and#P.I" then
[LX:tr, P:T.f,X:t+. P: T, I well-formed and&#P,I" thenT" +| P: T.

Proor. The proof is straightforward by induction on the derivataf I' - P: T andl',%:t r
P : T; it proceeds by distinguishing the last typing rule applied

Recall that a normal derivation is a derivation where &) applied only before (Tnp).
Proposition 2 can be proved by an easy induction on the tygémiyation.

Proposition B.2 (normal derivation, Proposition 2). Supposé& + P: T. Thenl'+y. P: S for
someS =T.

Proor. The proof proceeds by induction on the derivatiolfef P : T by distinguishing the last
typing rule applied.

(L-INe). By T+ a(®).P: a((%: )T).T” and the premise of the rule, we get-| a: (X: 1T,
[,%:t . P:T|T and3@T’. By applying the induction hypothesisFo%:t . P: T|T’, we
derive that there is a8’ = T|T’ such thaf’, % : try. P: S’. By applying (L-E&) and then
(L-Inp) to this normal derivation, we deduce thiaty, a(X).P: a((%: ) T).T’.
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(L-Eq). ByTI' . P: T and the premise of the rule, we et P: S with S=T. By applying the
induction hypothesistd' +| P: S, we getl'ry P: S’ foranS’ = S, and, by transitivity
of=,8 =T.

(L-REs). In this case the proof relies on the induction hypothesisandiosure of P-sets with
respect tce.

(L-Ovur), (L-Tav), (L-Sum), (L-Par), (L-REep). Inthese cases the proof proceeds by applying the
induction hypothesis, for deriving a normal derivation floe premise, followed by appli-
cation of the corresponding typing rule.

In what follows we writel’ I—IE P:Tif I' v, P: T can be deduced with a derivation of height
< k. This additional annotation is necessary in order to guaemhemma 5, which comes as a
corollary of the result below.

Lemma B.2. Suppose that v P: T, thatl'+ b:Tand thatl + a: (%: f)U. Then for anys,S1,So,
andy;.S; (i € 1), it holds that:
1. T=a((X: )V).S implies P= a(%).Q for some Q such that X: t +} Q:UIS, | <k andX#S.
2. T=aSimplies P=a(b).Q for some Q ang’ suchthal’ +| Q:S’,I<kandS = u[bsIs’.
3. T=7.S implies P= 7.Q for some Q such that I—IL Q:Swithl<k.
4. T=(v&:t)S implies P= (v&: t'; ®)Q for some Q such that&:t' +! Q:S,'S lg= @ and

I <k.

5. T = S1|S; implies P= Q1|Q2 for some Q and @ such thatr" I—ILl Q1:S,, T I—:_z Q:S)
and |;|_,|2 < k;

6. T =!a((X:1)U).S implies P=!a(%).Q for some Q such that +| a(%).Q: a((X:t)U).S and
I <k;

7. T=Yiq ui-Si, |11 # 1, implies P= Y @i.Q; for some Qande; such thal l—ILi @i.Qi : 1. Si
and | <k, for each ie I.

Proor. The proof proceeds by induction on the derivatiorfof[ P : T by considering the last
typing rule applied.

Cases (L4p), (L-Our), (L-Tav), (L-Res), (L-Par), (L-Rep) and (L-Ssm) are obvious.

Let us suppose that (Le}is the last applied. By its premise we get S andl’ r'ﬁ‘l P:S.

By applying the induction hypothesis and By‘t‘l P: S, we know that

points(1-7)hold for S andP. (2)

The proof proceeds by induction on the derivationTo S, i.e. by considering the last
structural rule applied. Notice that in the following we sater not only the rules reported in
Table 1 but also the standard ones for transitivity, symynetflexivity and contexts.

Let us consider first the rules in Table 1. Notice how the hisiglii the typing derivations
comes into play in each case.

S=510=S"=T. By (2) we know thatP = P1|P, with P; and P, such thaf" I—:_l P1:S" and
r I—:_z P, : 0, withI1,l2 <k—1. HenceP, = 0, and, by applying the structural ruldd= Py
with T I—:_l P, : T. By l1 < kand external induction, poin{4—7)hold for P; andT.

The proof for the converse is similar.
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S = S1|S2 = S2|S1 = T. By (2) we know thaP = P1|P, with P; andP, such thal I—:_l P::S;and
r I—:_Z P2 : S, with 14,12 < k—1. By applying the structural rules for processes Py|P;.
The proof for the converse is similar.

S =(S1/S2)IS3 = Sl|(Sz|S3) T. By (2) we know thatP = Q|P3 with Q andP3 such thaf I—Il

Q:(S1IS2) andrl k- I3 P3: S3, with 1,13 < k—1. By external inductior; I—Il Q (S1/S2) and

l1 <k—1imply Q = P1|P2 with P; andP, such thal’ I—E]l Py :S;andl’ I— P, : Sy, with

my, Mp < 1. Hence P = (P1|P2)|P3 and by transitivity of ", P = P1|(P2|P3). Moreover,
by (L-Par), T' ]! (P2|P3) : (S2/S3) with n = max(m, I3) + 1< k.

The proof for the converse is similar.

S = (v&:1)S1IS2 = (vX: 1)(S1/S2) = T with §#S,. By (2) we know thaP = P1|P, with P; andP;
such thal’ I—:_l Py (vX: T)Sl andl’ I—Iz Ps : Sy, with I1,I2 <k-1. By %S, and Lemma B.1
we deduce thak#P,. By external induction] L p, (v%:1)S1 andly < k—1 imply

P1 = (vX t; ®)P] with P! such thafl’, % : t I—Tl P’ S; with my < I and51 lsE @, for
somet. HenceP = (vX:t; ®)P}|P2 and by transmwty of &, P=(vX:t; ®)(P}IP2). By
Ok(®), S1 Iz @ and fn§S; LX) 0, we get 51|32) lgE ®. Moreover, by (L Rr) and
Proposition B.1 (weakening and contractidn)x : t H (P1IP2) : (S1lS2), with m< k.

The proof for the converse is similar.

Suppose now the last structural rule applied is one of théegbnules. We distinguish the
following cases.

C[-] = a((X: YU).[-]. SinceS 2 C[S’] we know thatS = a((X: H)U).S’ and by (2)P = a(X).Q for
aQ such that", X : t I—IL Q:UIS, I <k—-1 andx#S’. Given thatS = T andT = C[T’], we
getS’ = T’. Hence, given that2” is preserved by parallel composition, we diek : t I—|L+l
Q: U|T, by (L-Eq), with | + 1 < k and>#T’.

Cll= a,[ 1. SmceS C[S ] we know thatS = a.S’” and by (2)P = aby).Q for someb such that
I+b:% T r Q:9”,I<k-1ands’ = U[b/x]|S” if T+a:(%:t)U. The result follows
from S T and transitivity of ‘=”.

C[-] =[] SinceS = C[S’] we know thatS = 7.5’ and by (2)P = .Q for a Q such that
I'H Q:S', 1<k-1. GiventhatS = T andT = C[T’], we getT’ = S" and by (L-k) we
getl H™ Q: T/, with I +1<k.

C[-] =[]lU. SinceSs = C[S’] we know thatS = S’|U and by (2)P = P4|P, T I—:_l P;:S and
r I—:_Z P2 :U, forly,lo <k—1. ByS=TandT = C[T’], we getT’ = S’. Hence, by (L-k),
I H P T, with 1+ 1<k,

Cl-] = Zier, ji»14i-Si +p.[-]. Sinces 2 C[S’] we know thatS = ¢ »14i-Si +¢.S” and by (2)
P=Yic. ip1@i-Pi+a.QT I—:i @i.Pi 1 pi.Siandrl H @.Q: u.S’, forli,I < k—1. The proof
proceeds as already seen &jf] = p.[-], with 1= §| b(t) | 7, for proving that" I—:_+1 a.Q:
w1, withl+1<kandT=C[T'].
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C[-] =ta(t).[-]. SinceS = C[S’] we know thatS =!a(t).S’ and by (2) we geP =!a(X).Q for some
a(X).Q such thal’ l—:_ a(X).Q:a(t).s’, for anl < k—1. The proof proceeds as already seen
for C[-] = a((X: t")U).[-].

C[] = (vd: D[] SinceS 2 C[S’] we know thatS = (vd : 1)S” and by (2) we geP = (vd : T; ®)Q
for someQ such that,d: T +| Q: &, for anl <k-1, andS’ |g¢ ®. By T=S and
T=C[T’]we getS’ =T’. By definition,S’ | 5= T’ |5 and, by closure of P-sets with respect
to=, T lgE @. Finally, by (L-Eo), T’ H" Q: T/, with | + 1 < k.

Concerning the cases of the rules for transitivity, symgnaiid reflexivity the proof proceeds
by applying the induction hypothesis.

The subject congruence and substitution properties halthfo local system as expected.
Notice that, for subject congruence, the existence of nbderdvations is a key point in order to
guarantee the structural correspondence between precasdeypes.

Proposition B.3 (subject congruence, Proposition 3)I" +. P: S and P= Q implieslI' +. Q:
S.

Proor. The proof proceeds by induction on the derivatiorPog Q by distinguishing the last
structural rule applied. The most interesting case is wherstope extension rule is the last one.
Suppose® = (vX: t; ®)P1|P2 andQ = (vX : t; ®)(P1|P2), with #P;.
By I +_ P: S and Proposition Z'+y. P: T for someT =S. By 'ty P: T and Lemma 4,
we deduce thal = T1|T2 with T'ry (vX: t; ®)P; : T1 andIl'ry P2 : To. Again by Lemma 4,
Ty = (V% :1)Sy, with I,%:t r_ Py : S1 and Sy |z ®. Moreover, byl' F P, : T, by S
and Lemma B.1, we ge#T,. Hence,T = (v%: 1)(S1/T2). By Proposition B.1 (weakening and
contraction) and” ri P : T2, we deduce thaF,%:t . Py : To. Hence, by (L-Rr), T, X:
t kL Py|P2: Sq|T2. By Ok(®) and fn(T2 |x) = 0, we get 81|T») lx= ®@. Finally, by (L-Res),
[ (v%: T ©)(P1|P2) : (v&: 1)(S1/T2) and by (L-E), T +L (v&: T, ®)(P1|P2) : S.
In caseP = (vX: t; ®)(P1|P2) andQ = (vX : t; ®)P; | P the proof proceeds similarly.

Proposition B.4 (substitution, Proposition 4). Suppos&, X:t . P: T, withT" andT, % : t well-
formed. Thed + b: timpliesI (/%] +. P[o/%] : T[D/K.

Proor. The proof is by induction on the derivation Bf%:t v, P: T. We proceed by distin-
guishing the last typing rule applied. As an example condiuie case when (L-@) is the last
applied one. By, X:t + &&).P:a.(T[%]|S) and the premise of the rule we get:

o I%: T+ a:(y: )T (with J#%, b because they are bound in the type associate) to

o I'X: t kL C: t

o ['X 't kL P:S
By applying the induction hypothesis IpX tHL P .S, we gegl"[B/)?] FL PLB/X] : §[5/X]. More-
over, by definition,[[b/1] i &) : V[b/x] and T[P/5] + &[] @ (V: U[0/R) (/K. There-
fore, by (L-Qur), TTB/] . alB/<IER/R0). PIE/A] - 2P/ (TIRIE] 1S[BK), that isTTR/R
(@@).P)[b/ - (A (TIE5 1 SHIPA.

As expected, the proof of Proposition 5 relies mostly on teinition of | z.
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Proposition B.5 (Proposition 5). (i) If T 4 T, with 1 ::= (€) | (ay and ac X, thenT igi T lx.
() If T 5 T/, with A = (a) and a¢ %, thenT [z~ % T/ 15 (i) If T > T/ thenT Jx > T Iz,
with fn(s’) € fn(s). (iv) If T |x 4 T, with 2 ::= (e) | (a) and thee-reduction originated by a

L o 2 )
synchronization on a bound name ot @refix inT, thenT — S, withT’ =S |x.

Proor. It is suficient to provei) and {i), (iii) is a consequence of the two. The proof i} (s
along the line of that ofif and is omitted.

Supposel = (a). The proof proceeds by induction on the derivatiomof> T’. The most
interesting case is whendwm) has been applied. In the other cases the proof proceedpbyrap

the inductive hypothesis. By¢m)
T= Z/li-Ti | Z#]-Sj

i€l jed

w =2a, =3, forsome el andk e J, andT’ = T;|Sk.
Supposea € X.

Tlg= Z (ui-Ti) Iz +a.(Ti L)l Z (1}-Sj) +a(Sk %)

ien(l) jed\ik)

andT | 4 T Lz Sk Ix= T’ lg. This provesi( in casel = (a).
Supposea ¢ X.

T lg= Z (i Ti) Lg +7(T1 1%) | Z (,u].Sj)+T.(Sk %)

ien(l) jed\ik)

andT 13<% X% 1) g ISk L= T’ Ix. This provesi().
Suppose now = {¢). If the reduction originates byr{u) the same rule can be applied to
T . If the reduction originates from a communication on a ietgd name again the proofis by

induction on the derivation of A The interesting case is whexef) is applied. In this case
T=(&sS, T = (va)S’ andS L S’, for somed’ such thal = 2’ T5. T lx= (v&)(S lxa), hence
by applying the induction hypothesis&‘o—l; S’ we getS |xa LR S’ lxa. Notice that ifd’ = (a)
for someac athenae X & Finally, by ®es), T |x A lg. This provesi() in casel = (a).

We now prove type subject reduction, the last theorem ofi@edt This result is in some
sense the inverse of the subject reduction property, indegthrantees the operational corre-

spondence between types and processes. Again, the pramfegi® without surprises by an
induction on the reduction rules.

Theorem B.1 (type subject reduction, Theorem 2)I" v P: T andT A implies that there
exists a Psuch that P> P’ andT’ b PIT

Proor. The proof proceeds by induction on the derivatioof> T’ by distinguishing the last
reduction rule applied.
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(com)

. Assume for notational simplicity that= a((%: )S).UaT’ 2, U|T’ (the general case of

arbitrary summations is similar). By +. P: T and Lemma 5, we geR = a(%).Rab).Q
With[,%: T R:UIS, T/ =S[0R]|S’, T+, Q: S/, &#U,T'+a: (X:)Sandl'+b:1t.

By (com) and §trucr), P <—a>~> P = R[B/R]|Q. Moreover, by Proposition B.4 (substitution)
and (L-Rr) we getl' v RIP/R(Q: (UIS)[P/K]IS” = UIS[YK]|S’. Hence, by (L-R), T L
R[b/X]|Q: U|T’, and by Proposition 3 (subject congruentce). P’ : U|T’.

(rep-com). The proof proceeds similarly tegm).

(TAv).

(PAR).

By Xie ti-Ti ﬁ) T; and the premise of the rule, we ggt=7. By Lemma 5T +_ P:
i 4i-Ti impliesP = 3, @i.P; and for each € | it holds thafl” +_ «;.P; : ;. Ti. Again by

Lemma5 ang:j.Tj =7.T; we getej = 7 andl’ - Pj: Tj. Finally, by (av), 3¢ ai.Pi “,

P; and by §rrucrt), P 9, P’ with P’ = P; andI" . P’ : Tj by Proposition 3 (subject
congruence).

By S|U 4 S’|U and the premise of the rule, we géti S’. ByT'+. P:S|Uand
Lemmab, we geP=QRwithI' +| Q:Sandrl +. R:U. Hence, by applying the induction

hypothesis, we gep 4 Q andl' . Q' : S’. By (L-Par), we gefl’ +| Q'|R: S’|U and by

(raR), QR 5 Q'|R. Moreover, by ¢rruct), P = QRandQR - QIR we getP 5> P’
with P’ = Q’|R, and by Proposition 3 (subject congruende), P’ : S’|U.

(sTruct). By T 4 1 and the premise of the rule, we ge£ S, S 4 s’ ands’=T. By (L-Eq),

(RES).

'+ P:TimpliesI' - P:S; hence, by applying the induction hypothesis, We@eﬁ P
andl' - P’:S’. Againby (L-R), T+ P : T".

By (va:1)T Al (va: )T’ and the premise of the rule, we gets T/. By . P: (va: DT
and Lemma 5, we gée=(va:t;®)QwithT,a:t+. Q: T andT 3= ®. Hence, by

applying the induction hypothesis, we g@ti Q andTl v, Q : T'. By (res) we get
0t ®)Q 13 (va:t d)Q and by grruct), P 415 P with P = (va: T @,)Q'.

We have to prove thaf +. (vA:t, ®;)Q : (vA: )T, in particular thafl’ |z ®;. We
consider two possibilities separately (recall taat Supp(D)).

1. 2=(a),withaecd ord={(e). T |aF ©, follows by T |z ® andT |5 i T la, a
consequence daf A

2. otherwised, = . = @, by Ok(®). The communicatioi . has a free subject

notin&. By Proposition 5, this reduction can be simulated by a daieductions that

consume the corresponding prefixes, thus, when hiding, W& g@ﬁ AGA T la

and, by definitionT’ s ®<5><5> = (D<5> =0, =0.

In both cases, (L-B) can be applied for deducidgr. (va:t @,)Q : (vA: )T’ Hence,
by Proposition 3 (subject congruencB);. P’ : (va: t)T’.

38



Concerning the local system, there is still to prove thecstmal correspondence between
types and their “hidden” versions.

Lemma B.3 (Lemma 6).

1. Suppose & X. (T |x) \a if and only if T \ya.

. If T [g= T1|T2 then there are51 and S, such thafl = S1|S, andS; [¢=Tj, fori=1,2.
. If T=T4|T2 then there areS1 and S, such thafl |= S1|S» andS; =T |g, fori=1,2.
. If T lx= (v8)S then there i3/ such thatl = (v&)V, withV |z5=S.

. If T = (v&)S then there i3/ such thafl |x= (v&)V, withV =S [gx.

g b~ WN

Proor. Point (1) follows by definition ofl |x (Table 4). Points (2-5) can be proved by mutual
induction on the derivation af. As an example, consider (4) and suppose the last structleal
applied is scope extension. Hence

T lg= (78)S1IS; = (78)(S1/S2) = (78)S

with &#fn(Sy).
By applying the inductive hypothesisTal s= (v4)S1|S2 we getT = T1|To with T1 | x= (v&)S1
andT; |x= S2. Again by induction, fronT1 |x= (v&)S1 we getT; = (&)U, with U | ga= S1.
Without loss of generality, assuragfh(T2). Notice thaican always be renamed with some
b such thatb#fn(T,). By scope extensiony&U|T, = (¥a)(U|T2) = (Va)V. By a#fn(T,) and
T, lx= S2, we getT> |xa= S2. Hence, byJ |x3= S1 we getV |g5= S. From this andl = (v&)V
we get the result.

C. Proofs of Section 7

Before proving the basic properties of the global systemesadditional notations and some
preliminary results concerning properties of critical r@mare discussed. Definitions of-¢nd
()[¥] are extended to channel types as follow:

cr() =crG) - and 5] =Gl

and to tuples of channel typesomponent-wise as expected.
The following lemma states a few properties of critical narttet follows by definition of
cr(-). For the sake of completeness, we list all the propertiewiV@eed in the following.

Lemma C.1.

1. cr(T|S) 2 cr(T)ucr(S);
2. cr@(t).T) 2 cr(T) ucr(t);
3. cr@T ) =cr(T);
4. cr(!a(t).T) = cr(a(t).T);
5. cr(pX:DT) 2 (cr@ uer(MUTIX)\ X;
6. cripi-Ti) 2 Uicr(ui.Ti);
7. cr(M#S andcr(S)#T imply cr(T|S) = cr(T) U cr(S);
8. T[X#S implies(T|S)[X] = T[X];
9. T & T impliesT[%] 2 T'[X;
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10. supposd|[X] # 0; then ac ((Ha(t).T)[X] and ae (a NIX;

11. suppos€ = (vd)(ZIU +a(t).S|V) (resp.T = (vd)(ZIU +aS|V)orT= (vd)('a(t) S|V)).
If a ¢ T[X] thenfn(a(t).S)#T[X] (resp.fn(@.S)#T[X] or fn('a(t).S)#T[X]);

12. supposé, 5#cr(‘|’); thencr(T) = cr(T[&/b]).

Proor. (1-7) follow by definition of cr(T) and ofGr. (8) follows by definition ofT[X] and ofGr.

(9) follows by definition ofGrt: it can be easily seen th&; can be embedded inr. (10-11)
follow by definition of Gt andT[X]. In the rest of the proof we considet?). For the sake of
simplicity, suppose tha = a andb = b. The proof can be easily generalized to the case of a
generic substitution. Note that ayb#cr(T) we get cr{l) C cr(T[&hb]): indeed, sinceé ¢ cr(T),
each critical path irGr is also found inGyap,;. Any other path inGr corresponds to one in
Grap) With each occurrence dfreplaced bya. Suppose e.g.

T=XL > > Xy > Y is apathinGy

where, for each, x; = (v§) impliesy ¢ §: thenr is a path inGyap; becauséd does not occur in
7. Concerning the reverse inclusion, consider areycr(T[3/b]). By definition, this means that
in Grapy; there exists a pathf of the form

ﬂ/:Xl—)-..—)Xj(: f)_)_)xn_)y'

where, for each, x; = (V) impliesy ¢ §. Clearly,b does not occur im’. If a does not occur
either, themt’ is also a path o&t, hencef € cr(T). Otherwise, lek be the rightmost occurrence
ofainn’. InGr, we therefore have the subpagh; — --- — y* and eithelm — xx;1 0rb — Xy 1.

In the former case, we would gate cr(T), in the latterb € cr(T), contradicting the assumption
in both cases.

Lemma 2 extends to the property-type simulation relasigias expected.

Lemma C.2. Let ® be a P-set such thadk(®) and a 2 supp(). If ® «z T and T[a]#S then
D ocy (T|S).

Proor. Define
R 2 {(®,T|U) | &2 supp(d), ® o<z T, O(®), T[&J#U} .

We prove thaR Cecy. That is, for each paird, T|U) € R we prove:

1. (M) Lz E ©;

2. VV,y such thatT|U) >(T‘U) [ V itholds that ©y . V) € R.

We prove separately the two points. First note thalTBj#U and Lemma C.1 (8) we get
(TIV)[A = T[&] and fnU 1[z) =0
1. By definition ofR we getd oz T, henceT |1z = ©. Therefore, by Okd), fn(U |1[z) =0
andT |1z ®, we getT L1z U Lz @, hence [1U) L1zl @, thatis TIU) d(ruy a]|= .
2. Take anyv <! TIU. By def|n|t|on (page 21)y =7 | (a)| b| b, with ae (TIU)[3] and
b ¢ (T|U)[3], such thafT|u v, We distinguish the following cases.
e SupposeJ % U andv = T|U'. Given thatT[a]#U and (T|U)[3] = T[3] we get
(TIV)[AJ#y. Hence,y |(ru)a= (€) and, by Ok{), @, = ®. Given that fny’) C

fn(U) andT[a]#U we get (@, T|U ) € R by definition. Finally, given thad =0,
we get @y - TIV) € R.

rimua
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e SupposeT L T andv = T|U. By (T|U)[3] = T[&], by definition of >§ and by

T_>2/T\U)["a]_T/’ it follows thatT >¥[a] T'. Consequently, by Definition @y, ., oca T'.
Finally, given thaff[a]#U, T[&] 2 T’'[a] (Lemma C.1 (9)) andT|U)[3] = T[], we get
(Dy1ruy» T'1V) € R by definition.

e Suppose now that andU interact and suppose the subject of the communication is
b. Given thafT[&]#U we getb ¢ T[3] and eitherT 5 rud uandr >$[é] T or

T2 T,U 2 U andT >§a T’. Given thafT[a]#U, fn(U") C fn(U) andT[a] 2 T’[&]
(Lemma C.1 (9)) we ge‘[’[?:lt]#u’.

Supposer 5 T’ (the proof proceeds similarly in the opposite case). ThebDéfy-
nition 9, @y oz T'. From (TU)[3] = T[&] and Py, oca T we getdp 0 oca T
Moreover, by Ok@) we getdp ;4 = Pvyi e = - Finally, by definition ofR:
((D<b>l(T|U)[é] TV eR.

Property-type simulation is preserved by (non-interfgysubstitutions.

Lemma C.3. Let @ be a P-set such thaDk(®) and & 2 supp®). @ «z T and (dom) U
ran(e))#T[d] imply ® ocz To.

Proor. Define
R 2 {(@,To) | a2 supp), ® x5 T, Ok(®), (dom(r) Uran())#T[d]} .

We prove thaR Cecy. That is, for each paird, To) € R we prove:

1. To lroakE ©;

2. YV 1V <] o Toitholds that ;4. V) € R.

We prove separately the two points.

1. By definition of R we get® oz T, henceT |tz ®. By (dom() Uran))#T[d] and
Lemma C.1 (12) we gelio[a] = T[a]. Therefore,T |1z= To l1o andTo L1o(akE .

2. Take any/ such thav 40[5] To. By definition of>§ we get thallo 2 vior somey ;=

()| (@ |b|b, withae To[a] or b¢ To[3]. By (dom(r) Uran())#T[a] and Lemma C.1 (12)
it follows that To[a] = T[a]. Moreover,To Lv implies T 5 V', with y'o- = y and
V' = V. Notice also that (donaf) Uran())#T[&] andy ::= (e} | (@) | b| b, with a€ To{3]
orb¢ To[a]imply ' ::= (e} | (a) | c| T with c ¢ To[a]. By ® oz T and Definition 9 we get
Dy iy a V' Inaddition, ¢’ Lvjay)o =y lrofa. Finally, by®y o = @, 5 ), it follows
that @y, V) €R.

Proposition C.1 (normal derivations, Proposition 7).T" +5 P : T implies that there are R P
andsS =T such that R an& are in head normal form anl +{; R: S.

Proor. The proof proceeds by induction on the derivatiofaf; P : T by distinguishing the
last typing rule applied in the derivation:
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(G-Inp). By I' +§ &(X).P: a((%:Y)T).T” and the premise of the rule, we detg a: (X:1)T and
[LX:t+g PITIT andX#T’. By applying the induction hypothesis, we get that there are
R=PandS =T|T" such thal’,X: t Fug R:S. Hence, by applying (G-@ and (G-kp) we
getl’ H{g a(X).R:a((X: )T).T’, with a(X).R = a(X).P.

(G-Our), (G-Tav), (G-Rep), (G-Sum), (G-Par™). The proof proceeds by applying the induction
hypothesis followed by the corresponding typing rule.

(G-REs). The proof proceeds by applying the induction hypothesidgs &nough to note that
T=S impliesS’ lg= T lg, by definition. The latter and oz T imply @ «z S (by rule
(struct) and closure ofb with respect to structural congruence).

(G-Eq), (G-Eq-P). The proof proceeds by applying the induction hypothesisraligls on tran-
sitivity of =.

The following two lemmas state some properties of normaivelgons: both concern the
structural correspondence of processes and types.

Lemma C.4. T+ P: T with P prime implies thal is prime.

Proor. The proof proceeds by inspection of the last typing ruldiedpn " 5 P T.

Lemma C.5. T kg (V& 1 ty;@1) -+ (v&a : tn; @n)(Pal-+-|P) : T, with P, -, Py prime, implies
o T=(Xy:t)  (vXn 1 Tn)(Sal-+ISK), With T, Ry 111, &n 1t Hjg Pit S, fori=1,--- K,
o and®; ocg; (vXjia : tjpa) - (Vo D ta)(Sal-++[Sk), for j=1,--- ..

Proor. If n=0 takeS = T. Supposer > 0. By definition of normal derivation, the rule applied
in the lastn typing derivation must be (G+R) preceded by an application of (G#8. The result
then follows by the premise of the rules and Lemma C.4.

Lemma 9 follows as a corollary of the result above.

Corollary C.1 (Lemma 9). T+, (7&:T)(vb:¥;®)P: TimpliesT = (7&: f)(vb: T')S, with I, &:
th:t ry; P:Sand® o S.

As already seen for the local case, the weakening and cdiotmgroperties also hold for the
global case. This result is used in the proof of Propositioegrted below.

Lemma C.6 (weakening and contraction).Supposéd# fn(P), fn(T) andI"is well-formed. Then
[X:t+§ P:Tifandonlyifl v P:T.

Proor. The proof is straightforward by induction on the derivatif I', % : t b PiTandl v§
P:T.

Itis now possible to prove that the syntax directed systénis equivalent ta-c .
Proposition C.2 (Proposition 8). T +g P: T ifand only ifl" +5 P: T.

Proor.
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(). Applications of rule (G-kr*) to the parallel composition afi prime processes can be
simulated byn applications of rule (G-&).

(=). The proof is by induction on the derivation Bfrg P : T by distinguishing the last typing
rule applied. The most interesting case is when §&)#s the last applied one. In this
caseP = Q1|Q2, T =Tq|T2 andT +g Q1|Q2 : T1|T2. By the premise of the rule, we get
I'+tg Q1: Ty andrl’ +g Q2 : T2. Moreover, crf1)#T, and cr{[2)#T1. By applying the
induction hypothesis, we gétr§ Qp: Ty andl +§ Qz: Ta.

By Proposition 7, there amg k, my, mp, andR;; (fori=1,2 andj =iy,---,in) such that

o Qu=(vAy:ty; @) (vn : Tn; Dn)Ry With Ry = Ry |-++[Ry,,
o Qo= (vby:ty; W) - (vbi: Pl PR: With Ry = Ry, |-+ IRy,
with
1. R@i prime fori=1,2andj=1,---,m
2. & 2 suppf;), fori=1,---,n, andBJ- D supplj), forj=1,--- k(by well-formedness
of terms)
3.T '_KIG (V?.l : t};qil)---(vé:] : trl; (DE)Rl :S$1=T
4. T '_?\—IG (vbr:t'1;W1)---(vby : Vi; W)R2 - S2 = To.

By (3), (4) and Lemma C.5:

o S1=(vA1:11) - (v&n: th)Uwith U= Uy| - |Up,, andl, & : Ty, - an th Hi Ry 1 Ui,
fori=1,---,m, and®; oy (v&j+1 i tjr) - (vn - tn)U forj = -, n;

o Sp=(vby:t1)--- (vby: TV WithV = Vq|--- [V, andl“,bl:t’l,--- ,bk:f’k Hic Ra
Vi, fori=1,---,mp, and¥; ocp, (Vbj+1:f'j+l)"'(vbk : t7k)V, forj=1,---,k

By cr(T1)#T2 and cr{T2)#T it follows that crS1)#S, cr(S2)#S1, hence cig)#Vv and
cr(V)#U Therefore, by Lemma C.6 and (G#) it follows thatT’,a; : t, 80 th, by
g, b FHig RilRz - UIV.

By definition of critical names,)[an] € cr(S1) Ua, and by definition of free names i) C
fn(S2)Ubg U ---Uby. Therefore, cl)#V and a,#V imply U[a,]#V. Moreover,d, 2
supp(Dn), hence by Lemma C.2 anﬁn g, U it follows that @y ocz, (UIV) and, by (G-
Res), [, 1 f1, L 8ne1 D tnen byt a0 Ui Hig (VB 2 T @n) (RuIR2) £ (v To) (UIV).
A similar reasoning can be applied to the remain#g.*--,& and lgk ,by in order
to obtainl"fﬁG ~(Vb1~: t’1;‘¥’£) . L(ka (VPR (vag  tg @) - (VB | th @) (R1IR2) : (vag :
t) - (van D tn)(vby 1 1) (Vi Vi) (UIV).

Finally, by (G-k) and (G-k-P), it follows thatl" -5 P: T.

As usual, the subject reduction property relies on the gutish lemma, that can be proved
by means of a tedious, but nofidtult, proof.

Lemma C.7 (substitution). Supposd” is well-formed. Ifl,%:t FS P T andT v§ b:tand
b, s#cr(T) thenI'[b/g] +& P[P/ : TP/

Proor. The proof proceeds by induction on the derivatio gt : t FE P
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(G-EQ), (G-EqQ-P), (G-Inp). The proof relies on the induction hypothesis and on the featt=
is preserved by substitutions;

(G-Rep). The proof proceeds by applying the induction hypothesisgmbting thab, s#cr(T),
cr(T) = 0 and Lemma C.1 (12) imply cF{¥/5]) = cr(T) = 0;

(G-Par). The proof proceeds by applying the induction hypothesisymbting thab, x#er(T),

cr(Ti)#Tj, fori, j = 1,2 withi # j, and Lemma C.1 (12) imply cF([%/x]) = cr(Ti)#T; [P/,
fori,j=1,2withi # j;

(G-Our). By I,X:t +& &®).P:a(T[5A1|S) and the premise of the rule, we get:

o T,X:T+E a: (7:7)T, hencel [0/ +& a[b/s] : (7: ¥[B/x) TIB/Y (note thaty#x, b be-
cause names ipare bound irT);

o I,X: T+ &:7, henca (B4 & e[b/m: T[B/N;

o IX:1 +& P:S, hence by applying the induction hypotheﬂ[sf’,/i] FS P[B/R]: 8[5/7(];

o Ctcr(T) moreoverdcr(T) by well formedness of channel types, therefore by Lemmd T2}
cr(T) = cr(T[EM1). By b, X#tcr@. (T[S411S)) and Lemma C.1 (3,1) we gbt#cr(T[E]) =
cr(T). Hence, again by Lemma C.1 (12), Ty cr(T[b/x)). Therefore cier(T[Y/X])
anddb/s#er(T[b/X);

o cr(T[EA)#S. As previously shown, cT{&#]) = cr(T) = cr(T[P/X]) = cr(T[ES[P/).
Given thaw#s, b, it holds thatl[E5[ /%] = TIE/K[ /% 5] and crr (o[ E2/R ) #sTb/A;

o T[EHl#cr(S). By Lemma C.1(3,1), c&[D/K) = cr(S) and, byy#%, b, cr(S[O/)# T[S B/" =
TR/

Therefore, by (G-0r), T[B/%] + (&(¢)-P)[B/x] : ((TI55]1))[B/x] = a[B/x) (TIP3 S[B/).
(G-Res). ByT,X:t+§ (va:t;®)P: (va:1)T and the premise of the rule, we ge& : t,a: 1 +§

P: T and® oy T. Moreoverd2 supp(p) by well-formedness of terms.

By applying the induction hypothesis By we get (', a: f’)[B/f(] FS P[5/>”<] : T[5/>”<].

By b, %#cr((/a: V)T) andb, %# it follows thatb, %#T[] and, by® oz T, &2 supp(p) and

Lemma C.3, we geb oz T[b/A].

Finally, by (G-Res), T[B/x] +& (va: V[/gg; @)P[B/K : (va: T [BR) T[BA.

The following lemma is the equivalent of Lemma B.1 for thedbsystem.

Lemma C.8.T rg P: Timpliesfn(P) c fn(T). I, X:t +g P: T, T well-formed and@#P imply
KHT.

Finally, the lengthy proof of the subject reduction progeelies mainly on Proposition 8 and
Proposition 7, which guarantee a syntax directed normahgygerivation, and on Lemma C.5,
which guarantees that processes and types share the sdiow sppatial structure.

. . A, .
Theorem C.1 (subject reduction, Theorem 5).I' +¢ P: Tand P— P’ implies that there exists
aT suchthaff 5 T andT rg P : T'.
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Proor. By Proposition 8" +¢ P: T impliesT" +§ P: T, and by Proposition 7 there a@= P
ands =T, with Q in head normal form, such that+{; Q:S. Given thatQ = P andP 2 P
we get, by §rruct), Q 4 Q =P’. In the following we prove tha@’ is well-typed with an

associated typ8’ such thats % 5. This in order to deduce well typednessRifby applying
rule (G-&-P); T” will be chosen equal t&’.
Suppose for simplicity that there is only one top level blo€kestricted names, thus

Q=(vd:EO)(Ril-IR) = (vd: TR
with R prime process for eadh= 1,--- k. The generalization ta > O top level restrictions is
obvious. BYI' +{5 (vd: t;®)(Ry|---|R) : S and Lemma C.5 we get
S=(vd:D)(Uq)---UW) 2 (vd : HU (3)

with T,d : T I—NG R : Uj, foreach =1,--- ,k, and® «; U. Moreover, by the proof of Lemma C.5,
we get cry;)#U; fori # j. We distingush two cases.

e Supposel = (e) and

R=Ril-[tR + ) ai.Qil-[R 2 Ryl IR RER

—_———
R

ByI.d:t Fug R - U and the premise of (GAT) and (G-$m) we havel) = 7.U| + 3 ui. Wi
andl,d:t Fug R - U[. Thereforel; = z.U] + 3 ui. Wi 4 U;. Then

T= (vd:f)(u1|---|T.u|’+zm.wi|---|uk) 2 (A : (Ul Y]] U = (vd s DU = T
i

Hence, by {rrucrt), T A

Now, we show thaF,d : T +g R : U’. By Proposition 8I",d: T+, R : Uj impliesI,d:t+g

R 1 UJ. By definition, cr(J;) 2 cr(U;) (Lemma C.1 (6)) hence we can repeatedly apply (G-
Par) and deducE,d:t rg Ral---IR|--+[R¢ 1 Ug|--+|U[|---|Uk. MoreoverU ﬁ) U’ implies

u >Sia U’ and, by Definition 9y = ® ocg U'.
Hence, by (G-Rs), T rg (vd: §,@,)R : (vd : HU’. Finally, by (G-E&-P) andr +¢ (vd:
t;®))R : (vd: t)U’, it follows thatl" +g P : T’.

e Supposel ::=(a) | (€) and there is a synchronization

R

R=Ryl-[a§) R+ Y 0i.Qil &R+ 0] Qf 1+ IRe = Rl IR+ IRl IR

iel jed

R Rm

and, for the sake of simplicity, takg = |J| = 0.

The last rules applied in the derivationdotl : T+, a(§).R : Uy andl,d: T v, a&b).R,:
Unm are, respectively, (Gub) and (G-Qut). By their premise, we deduce the following:
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1.I,d:1 Fgan(y: )W, F#cer(W) by well-formedness of channel types (note also that
Y#in(,d : 1));

LAyt g R WU, with §#U7;

U =at”).u;;

LT d:Trg b7

. brter(w);

.Id: fl—G R,V

- U =2 (WBAIIV);

. crw[Big])#v and criy)#w(bs].

©ON OO A WN

Now, by S =T and (3), we have

T

(vd:HU = (d: (UL at”).Uj |- | E(VIWIBR)) |- Uk
0] Um
&, d DUl U VIWBR]L-- Uk

S (vd: DU ET .

<

Hence, by {rrucrt), T 4 T.

Now, we first show thak;d : T rg R : U’. We do so by using systerg and rule (G-Rr).
We show that the premise of the rule are fullfilled and moreigedy thatRi’[b/y] is well
typed.

Considerw and spllty into two parts: Y= §1U¥2 such thatyy € fn(W) andy>#W. As
a consequencdy = by U b, such thath; ¢ fn(w[bs]) and bz#W[b/y] Hence, W[b] =
W[bl/yl]. Moreover, by cr{)#Un, andb; € fn(Um) we getbl#cr(Ul’). By the latter, and
points (1), (2) and (5) it follows that

by, fr#crw|uy) . (4)

By Lemma C.8 angs#(W|U)), we gety>#R, hencﬂ[B/V] = R,’[Bl/yl].
By point (1), andy#fn(C,d : 1), we get [,d : H[B5] = I,d : T. Moreover, by equation (2),
point (4), and Lemma C.7 (substitution) we get
r.d:Trg RPyyl : (WIUDBsa] = UjW[Byyi]
that is o B B
rd:trg RIS WBsIL; .

By (8), cr(Ui)#Uj fori # j, and LemmaC.1 (2,7) we get &) ucr(W[B/y]) = cr(W[B/y]lul')#V
and vice-versa c¥()#U; |W[b54]. Therefore, we can apply repeatedly rule (&Pand ob-
tain

[d:Trg R = Ry |R|- Ryl IR - Ugl-+[U/W[BF]| -+ V] [Ug = U

We have now to put the restriction dron top ofR’. We distinguish two cases.
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1. Supposé = (a)anda¢ U[d]. ThenU 3 U” 3 U’ withU”” = Uil U{- [ (VIWIBR])! - - -|Uk.

Hence, by definitionJ >E[&] u” >3[&] U”. By Definition 9 anda |g= (e), this
means thatby g U” and® ) ocg U’. Therefore, by Okp) we getd = &, =
(D(e)(e) = (D(a) and®, g v'. .

2. Supposéa ::=(a) | (e) with a€ U[d] (1 Lyg=4)- In this case, by definition ofé it

follows thatU >6[&] U’. Moreover, byd o5 U and Definition 9 we ged, ocg U’.

In both cases we can apply (Gefand deduc® rg (vd: T, @R : (vd : H)U’ and finally,
by rule (G-k-P) we gefl" +¢ P’ : T".

D. Proofs of Section 8

Proving Lemmas 10 and 11 requires some preliminary resultproperties of =" with
respect to compositionality and hiding. Lemma D.1 guarsithat restricted names can be
opened without compromising satisfiability. Lemma D.2 arnma D.3 guarantee that non-
interfering parallel threads can be cut away, even if th@deapunder some top-level restrictions.

Lemma D.1. Considerg € Fx not containing “=". SUPPOSET k ¢ andT = (Fd)(T1l---[Tn) with
T; prime for each i. Theiwb)(T4|---|Tn) E ¢ for eachb c d.

Proor. The proof proceeds by induction on the structure of the tdam. Note that ¢8)(T4|---[Tn) E
¢ follows by definition of= andT [ ¢.

¢ :=T|a|a Obvious.
¢ = ¢1V ¢2. The proof proceeds by applying the induction hypothesis.
¢ =H"y. (Fd)(Tal--:[Tn) E H*y means thaty@)(T1|---[Ty) = (Fd')(Fd”)(Ta|--+[Tn) with d’ U
d” =dand ¢d”)(T4|---|Tn) E ¥.
Given thath ¢ d we getb = b’ ub”, for someb’ c d andb” c d”, and ¢b)(T1|--Tn) =
(W)(0”)(T1l---Tn). Hence, by applying the induction hypothesis, we get{(T1|---|Tn) E
¥ and, by definition, ¢B")(¥b”)(T1|---|Tn) E ¢, thatis ¢b)(T1|---[Tn) E ¢.
¢ = dilga. (FA)(T1l--[Tn) E p1l¢2 implies
(FA)(Tal--[Tn) = FA)(Toal- - [T1m) | (7 (T2] - [T2m,)
with (7)) (Tial---[Tim) I ¢i fori = 1,2.
Given thatb c d it follows that
(FD)(T1l-+Tn) = (PD1)(T1al- [TLmy) | (7D2) (T2l [T2my)
with bi c d; fori = 1,2. The result follows by applying the induction hypothesisbth
(Vbi)(Tial-+[Tim)-
¢ = @uy. (GA)(T1l---|Tn) E ¢ implies GA)(T1l--[Tn) ~2 U andU k ¢. Obviously, forb c d
we get ¢B)(T1l--[Tn) > U’. Moreover, ifU = (vd)(78)(T4 |-+ |Tp), with T/ prime, then
U’ = (7b)(78)(Ty|---IT}), with buac dua Therefore the induction hypothesis can be

applied to infet)’ |= w. Thatis ¢b)(T1|---[Tn) E 6.
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¢ =@y, ¢ = (-& . In both cases the proof proceeds similarly.

Lemma D.2. Suppos@ € Fx and¢ does not contair. ConsiderT,S andd such thaS[X]#T.
GA(TIS) > U E ¢ implies@d)S = U’ ¢, with|] < |5 andn(s) € n(s).

Proor. The proof proceeds by induction ¢si
IS = 0. (¥d)S k ¢ is deduced by Lemma D.3.

IS=n+1 s=4.5 and GA)TIS) &> GV = FAU E ¢, with 3| < |3 and obviously and
n(s’) ¢ n(s). The proof proceeds by distinguishing the following cadepending on the

reductioni :
1. suppos& > ', with X’ 14= A andV = T|S". By Lemma C.1 (9)T#S[7(] > S'[.
Therefore, by applylng the internal induction hypothesigt))(T|S’) s, (vd)U E ¢,

we get (/d)S’ (FA)U’ E ¢, with |s”| < |s| andn(s”) € n(s). Hence (d)S 45,
(d)V’ E ¢, Wlth [1-8”| < |9 andn(1-s”) € n(s).

2. Suppos& 4 T, with 2’ 74=2andV =T’|S. Agaln S[X#T’. Therefore, by apply-

ing the internal induction hypothesis ted)(T’ |S) (Fd)U E ¢, we get ¢d)S —>
(vd)U’ ¢, with |S”| <|9'| < |9 andn(s”) € n(s).
3. Suppose& andT interact with each other

T=F0)( Wi +at).Ww”)

S=(O(Z;}-V) +aVIV7)

V=EHWIW) I FEVIVY) .
for somea ¢ S[¥] (the proof proceeds similarly in cagecontains the output, or in
case the input prefix omis replicated). Given tha&[X] = ((17@)(21- M-V +?aV'|V"))[>~<]
anda ¢ S[X] we getS[X]#a.V’ (Lemma C.1 (11)).
Now,

FAV = GA(FB)(EHW W)V V7)) = (7o) (Tol V")

with do = dg andTo = (7 f)(W/|W”|V’). Moreover,

(Fdo)(TolV") = (AU E u
andTo#V”[X] € S[X] UG.
Since|s| < |3 andn(s’) € n(s), by applying the internal induction hypothesis, we get
(vdo)V” (FA)U E ¢, with |87 < || < |5 andn(s”) € n(s). Finally, by Lemma A. 2
(1)~, (ﬁd)(vg)(zj uiVi+aVviJ )E ¢, hence (d)S = (vd)((T/g)(Zj HiVi+aV’ V")) s,
(;d)(;g)(Zj/l].Vj +aV/|V) E ¢, with |s”| <|s'| < |9 andn(s”) € n(s).

Lemma D.3. Suppose € x and not containing %" Suppose(7d)(TIS) E ¢ where S[X]#T.
Then(vd)S E ¢.
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Proor. The proof proceeds by induction on the structure of the tdam.
¢ =T |a|awith ae X Obvious.
¢ = ¢1V ¢2. The proof proceeds by applying the induction hypothesis.

¢ = H*y. By applying Lemma D.1 we first remove aland all top level restrictions ifi ands.
Therefore, ifT = (&)(Tal---[Tn) andS = (¥b)(S1l---|Sm), with T; andS; prime for each
i,j, then we geflq|---|TnlS1|---ISm E H*y. Given that allT; andS;j are prime, there are
no top-level restrictions to collect, hentg---|Tp|S1|- - |Sm E ¢. Then the proof proceeds
by applying the induction hypothesis in order to prove 8t --|Sy E . Finally, by
definition of iz, (¥d)(¥D)(S1l---1Sm) = (¥d)S E H*y.

¢ = p1lg2. (VA)(TIS) E ¢1lg2 implies (7d)(TIS) = UV with U = (vd1)(T1lS1) F ¢1 and
V = (vd2)(T2|S2) E ¢2, for someT; andS; such thafl = T1|T2 andS = S1|S; anddidy
a permutation ofl.
By S#T we getx#T1,To. Similarly, given thatS[X] 2 S1[X] U S[X] (Lemma C.1), by
S[X#T, we getSi1[X]#T1 andSo[X]#T2. Hence, by applying the induction hypothesis, we
get (’d1)S1  ¢1 and ¢d2)S2 = ¢2. Hence, (4)S E ¢.

¢ = (@u. FA)(TIS) E ¢ implies FA)(TIS) -2 U andU k y. Given thata e 4T, the reduction

is originated byS; thereforeU = (¥d)(T|S’) whereS @, S’. Given thatT#S[X] 2 S'[X]
(Lemma C.1 (9)), by applying the induction hypothesisud)(TIS’) k ¢, we get ¢(0)S’ =
Y and ¢d)S  ¢.

¢ = (8)"y. The proof proceeds similarly.

¢ = (-&)"y. (FA)(TIS)  (-&)"y implies ¢d)(T|S) - U with U E ¢ anda#s. By Lemma D.2,
d)s = S’ with n(s) € n(s) andS’ = y. Thereforeafs’ and §d)S k (~&)"w by defini-
tion.

Lemmas 10 and 11 follow as corollaries of the result belovguklrantees that non-critical
names can be masked without compromising satisfiability.

Lemma D.4. Suppose € Fx with negation not occurring underneath atwy)* in ¢. Letw 2
T[X. T lakE ¢ if and only if T = ¢.

Proor. The proof proceeds by induction on the structure of the tdam. The most interesting
cases are dealt with below.

b=H.

(=). T lgE Hy impliesT |g= (v&)V andV E . By Lemma 6 (4), we geT = (va)S,
for someS such thasS | 5= V. Moreover, by definition of[-] we getwu a2 S[X].
Hence, by applying the induction hypothesisSt¢g , we getS E ¢ andT E ¢.

(). TEH*y impliesT = (¥8)S andS E . By definition of |y, we getT [g= (v&)S lwa
and by applying the induction hypothesis: v impliesS |w E v, for eachw” 2 S[X].
In particular this holds fow™=Wwu &2 T[X] U& ThereforeT |gxE H*y.
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¢ = ¢1ld2.

(=). T lwkE ¢1l¢2 implies T |g= T1 lw T2 o with T laE ¢i fori=212. W2 T[X] 2
T1[X] UT2[X]. Hence w2 T;[X]. By applying the induction hypothesis, we get=
¢i. Moreover, by Lemma 6 (2), we g&t= T1|T2. ThereforeT  ¢1|¢2.

(). T E ¢1l¢p2 implies T = T1|T2 with T; | ¢; for i = 1,2. By applying the induction
hypothesis, we géti lw E ¢i, for eachw” 2 T;[X]. Therefore, given thaf[X] 2 T;[X],
this holds forw 2 T[X]. Moreover, by Lemma 6 (3), we gét 4= T1 lw T2 lw-
ThereforeT |wE ¢1l¢2.

¢=(-ay.
(=). T Lk ¢ impliesT g — S ands k y, with a#s.
The proof proceeds by induction g |.

I = 0. Inthis caseT | gk ¥ and by applying the external induction hypothesis, we get
T E ¢, thereforeT E ¢

l=n+1 s=1.9, &1andT lg=> U > S, with SE y, |$] = nandU E ¢. We
distinguish two cases, depending on the reducTlig® 24 u.

1. 2 =(ay or A = ({e) with the e-reduction originated by a synchronization on a

bound name or a prefix in T. By Proposition 5, we gett 4 V, for somev
such thav |g= U. Given thatw2 T[X] 2 V[X] (Lemma C.1 (9)) by applying
the internal induction hypothesis( = n < 1) we getV = ¢, thereforeT | ¢.

2. A = (e) with the e-reduction originated by a prefix ifi with subjecta not in
W. In this case

T L= (GO i Si+W) W) L= G (11.51) L +7.W L @) IW L)

iel i€l
» (5)

with u ::= a(t) | afor somea¢ wud (similar comments if = 0 andu ='a(t))
and

~J ’ ~q ’ s

U= ()W lgg IW Lgg) = (()WIW)) la — SE Y.

Therefore((¥d)(W|W)) Lak 6.
Giventhata¢ W2 T[X], by Lemma C.1 (11) we deduce thgt]#W. There-
fore, T lw [X#W lw, and by ()W’ | [XI#W lg. Given thaty does not
contain negations, by Lemma D.3 we ¢6td)W’) |wkE= ¢. Moreover, by
Lemma D.2, ((B)W’) lw <, S’ E ¢, with |s”| < |S] < |sl. By applying the
internal induction hypothesis, we get{W’ |- ¢. Finally, by Lemma A.2
(1), we deducd = (vd)((Ziel 4i-Si +p.-W) W) [ .

(). TE(-&"y impliesT 5 S, with 8#sandS E y. By Proposition 5T |y s, S lw,
with fn(s") € fn(s). Moreoverw 2 T[X] 2 S[X] (Lemma C.1 (9)). Hence, by applying
the induction hypothesis, we g8tk v; thereforeT | gk ¢.

Corollary D.1 (Lemma 10). Let ¢ € ¥x be of the formp = 0” .y with negation not occurring
underneath any-&)" in . Then for anyl, T |z ¢ impliesT k ¢.
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Proor. LetWw=T[X]. T lwE ¢ means that for each such thafl | 5 s, with &#s, it holds that
SE .

Take anyJ such thaf S By Proposition 5T |w i U lw, with fn(s") C fn(s). Therefore,
U lwkE . Moreoverw'= T[X] 2 U[X] (Lemma C.1 (9)).

Negation does not occur underneath &A§)* in y, therefore by Lemma D.4 we g&tkE .
This holds for eaclv such thafr > U, with a#s; thereforeT = ¢.

Corollary D.2 (Lemma 11). Suppos@ € Fx with negation not occurring underneath atwy)*
ing. T lwkE ¢ andW 2 T[X] imply T |1z = ¢.

Proor. By T lwkE ¢ and Lemma D.4, we gédtl= ¢ and again by Lemma D.4, | 1[3E ¢.
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