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Abstract

The impact of applying the testing approach to a calculus of processes with dynamic com-

munication topology is investigated. A proof system is introduced that consists of two groups of

laws: those for strong observational equivalence plus those needed to deal with invisible actions.

Soundness and completeness of this proof system w.r.t. a testing preorder are shown. A fully

abstract denotational model for the language is presented that takes advantage of reductions of

processes to normal forms.

1 Introduction

Process Algebras [Mil89, Hoa85, BK89] are generally recognized as a good formalism for describ-

ing and studying properties of distributed concurrent systems. A process algebra is often defined

by specifying its syntax and transitional semantics by means of Structural Operational Semantics

[Plo81]. By now, this approach has become a standard tool for specifying basic semantics of process

algebras, but it was early recognized that it does not yield extensional accounts of processes. Thus,

techniques have been developed to abstract from unwanted details in systems descriptions. Many

of these techniques are based on behavioural equivalences; two processes are identified if and only if

no observer can notice any difference between their external behaviours. Most of these equivalence

notions are based on bisimulation (see e.g. [Mil89]) or on testing (see e.g. [Hen88]). Complete

axiomatizations have been put forward which are of fundamental importance; they permit manip-

ulating process expressions by means of simple axioms and inference rules and are the theoretical

basis for a class of verification tools (see e.g. [DIN90, Hui92]).

‘Traditional’ process algebras, such as CCS [Mil89], can be used to describe systems whose

subparts can interact by performing pure synchronizations. Only lately, a language with value-
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passing has been investigated and a complete axiomatization of a testing-based equivalence has been

provided for it [HI91]. A further step toward improving the descriptive power of process algebras

has been performed by adding primitives for expressing exchange of more complex objects, such as

channel names or processes themselves, see e.g. ECCS of [EN86] and CHOCS, [Tho89]. Building

on ECCS, Milner, Parrow and Walker put forward another extension of CCS, named π-calculus

[MPW89]. This permits describing mobile systems, i.e. systems that may dynamically change

their communication topology by exchanging channel names (also called simply names). For these

languages only strong (i.e. not abstracting from internal moves) bisimulation-based theories have

been investigated [MPW89, PS93, San93].

The aim of this paper is to investigate applicability of the testing approach to a name-passing

process algebra. Its main contributions are an axiomatization of a weak (i.e. abstracting from

internal moves) testing-based behavioural relation over the π-calculus and a related fully abstract

denotational model. The new semantics is defined by following the general testing approach of

[DH84, De 87, Hen88], that requires formally defining a set of observers, a way of observing and a

general criterion for interpreting results of observations. If we call P the set of systems we want

to experiment upon, to apply the testing setting, we need to define a set of observers, say O, and

explain the evolution of pairs such as (P, o) ∈ P × O that will represent the interactions between

P and o. Interactions may be failing or successful, depending on whether particular states (which

report success) are reached. For specific process P and observer o, one might be interested in

knowing whether a successful interaction does exists, i.e. whether P may satisfy o, or whether all

interactions are successful, i.e. whether P must satisfy o. Two testing preorders over P, naturally

arise, associated with each of the above points of view, the may preorder and the must preorder:

• P <
∼may

Q if and only if for each o ∈ O: P may satisfy o implies Q may satisfy o;

• P <
∼must

Q if and only if for each o ∈ O: P must satisfy o implies Q must satisfy o.

These preorders can be combined to get a third one, called the testing preorder:

• P <
∼ Q if and only if P <

∼may
Q and P <

∼must
Q.

In [DH84], the above machinery is applied to CCS, and the view is taken that observers should be

processes themselves, which interact with other processes by communicating with them. This gives

rise to three testing preorders with simple axiomatic and denotational characterizations. Applying

this framework to the π-calculus is harder; difficulties are mainly due to the distinction between
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input and output actions and to the specific instantiation scheme of input actions. Additional

complications are also due to the presence of two distinct kinds of output actions. In particular,

a π-calculus process can export public names (free outputs actions), as well as private ones (bound

outputs actions) and thus it has, in general, different options when prompted for an output.

To fully discriminate between different behaviours, observers are needed which can test whether

two received names are the same or not. This has called for an extension of the experimenters lan-

guage; the original π-calculus has hence been enriched with a mismatch operator, that together with

the original match operator gives us the needed observational power. The relevance of mismatch to

the π-calculus is currently debated. Recently, it has been used in [PS93] to provide axiomatizations

for various bisimulation-based equivalences. Here, we establish the importance of mismatch from

an observational point of view. We will see that the new operator is necessary to obtain “reason-

able” testing equivalences: its omission from the calculus would affect in a counter-intuitive way

the testing power of our observers.

The rest of the paper is organized as follows. In Section 2, syntax and transitional semantics of a

finite variant of the π-calculus are introduced, together with a presentation of the testing approach

and its application to the π-calculus. Evidence is given of the importance of the mismatch operator

and the impact of testing on different variants of the transitional semantics is studied. In Section 3,

a sound and complete (w.r.t. a testing preorder) proof system for the finite calculus is introduced.

It consists of two groups of laws: one containing (essentially) the laws for the strong observational

equivalence of [MPW89], the other dealing with internal actions and nondeterminism. In Section 4,

a fully abstract denotational model for the finite π-calculus is presented. The model is based on an

algebraic cpo, whose compact elements are represented by (equivalence classes of) process normal

forms. The generalization to the full calculus is described in Section 5. There, the π-calculus with

recursion is presented and a complete proof system and a fully abstract denotational model are

worked out as extensions of those for the finite language. All detailed proofs are reported in Section

6. The concluding section contains a few remarks on related work and future research.

2 Applying Testing Equivalence to the π-calculus

2.1 The π-calculus

In this subsection we give a succinct presentation of the π-calculus, by introducing its syntax

and transitional semantics and some standard notation. The reader is referred to [MPW89] for
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motivations and additional definitions. We confine ourselves to finite agents, i.e. consider a language

without recursion, but, for reasons which will be clear in the sequel, add two extra operators:

mismatch [x 6= y] and divergence Ω. In spite of these changes, we shall continue to call this

language π-calculus.

Definition 2.1 (Syntax) The language of the finite π-calculus is built from the operators of in-

action, divergence, silent prefix, input prefix, output prefix, restriction, match, mismatch, sum and

parallel composition according to the following BNF-like grammar:

P ::= 0 | Ω | τ.P |x(y). P | xy.P | (y)P | [x = y]p | [x 6= y]P | P + P | P | P

where x, y, . . . range over an infinite set N of names, called also variables. We call P the set

of terms generated by the syntax above; the elements of P are called processes. Metavariables

P,Q,R, . . . range over P.

The language is essentially an extension of CCS [Mil80] which permits expressing communica-

tion of channel names and thus describing systems with a dynamically changing communication

structure. Indeed, some operators are essentially the same as in CCS; this is the case for 0, the

terminated process; [ . ]+ [ . ], the nondeterministic choice of two processes; and [ . ]|[ . ], the operator

for parallel composition.

Action prefix, α.[ . ], is only similar to that of CCS; here a distinction is introduced between

input and output actions. Restriction (y)[ . ] is similar in spirit to the corresponding CCS operator,

but its scope may change dynamically, when a process exports a restricted name. The meaning

of the match operator [x = y][ . ] is that [x = y]P behaves like P if x is syntactically equal to y

and like 0 otherwise. The operators we introduce are mismatch [x 6= y][ . ], and the divergence

constant Ω. The latter is used in the testing approach to represent those agents which perform

only infinite sequences of internal actions. The mismatch operator [x 6= y][ . ] is complementary to

match: [x 6= y]P behaves like P if x is different from y and like 0 otherwise. It is worth noticing

that match and mismatch, together with sum, permit easily expressing the if-then-else construct;

indeed [x = y]P + [x 6= y]Q corresponds to if x = y then P else Q. Finally, we use the bound

output prefix x(y).P, x 6= y, as a shorthand for (y)(xy.P ).

Definition 2.2 (Actions) Define:

• the set of input actions as IA = {x(y)|x, y ∈ N};
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• the set of output actions as OA = {xy|x, y ∈ N} ∪ {x(y)|x, y ∈ Nandx 6= y};

• the set of visible actions as Λ = OA ∪ IA;

• the set of all actions as Act = Λ ∪ {τ}. Symbols α, β will be used to range over Act.

If α = x(y) or α = xy or α = x(y), we let subj(α) = x and obj(α) = y. The π-calculus

has two kinds of name binders: input prefix x(y).P and restriction (y)P bind the name y in P ;

consequently, the notions of free names, fn(.), bound names, bn(.) and α-equality, ≡α, over both

process terms and actions, are the expected ones. We let n(.) = fn(.) ∪ bn(.).

Substitutions, ranged over by σ, ρ, are functions from N to N ; for any x ∈ N , σ(x) will be

written as xσ; Pσ denotes the result of applying the substitution σ to P , i.e. the expression

obtained from P by simultaneously replacing each x ∈ fn(P ) with xσ. As usual, we assume

that clashes of names are dealt with by means of renaming of bound names with fresh names.

Composition of substitutions is denoted by juxtaposition: given two substitutions σ1 and σ2, σ1σ2

denotes the substitution such that for all x x(σ1σ2) = (xσ1)σ2. A set {x1/y1, . . . , xn/yn} = {x̃/̃y},

with the xi’s pairwise distinct, will denote the following substitution σ: xσ = yi if x = xi for some

i ∈ {1, . . . , n}, xσ = x otherwise.

Definition 2.3 (Transitional Semantics) The transitional semantics of P is given as a Labelled

Transition System, specified in the SOS style by means of the inference rules in Table 1.

Notations

• We assume the following precedences among operators in agent expressions:

{ restriction, prefix, match, mismatch } > parallel composition > summation.

Moreover, substitutions will have the strongest precedence, thus e.g. α.Pσ will stand for

α.(Pσ);

• P [+R] denotes an agent expression where the summand R is optional;

• [P ] denotes an agent expression that may have a certain number (n ≥ 0) of restrictions at its

top level, i.e. [P ] stands for (y1)...(yn)P ;

• [y /∈ Y ][ . ] will be a shorthand for the context [y 6= y1] · · · [y 6= yk][ . ], where Y is a finite set

of names, Y = {y1, ..., yk}, k ≥ 0; if Y = ∅ , [y /∈ Y ] will denote the empty context [ . ];

• P =⇒ Q stands for P (
τ

−→ )∗Q; P
α

=⇒ Q, with α ∈ Λ, stands for: P =⇒
α

−→ =⇒ Q;
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Tau :
−

τ.P
τ

−→ P

Inp :
−

x(y).P
x(z)
−→ P{z/y} z /∈ fn((y)P )

Out :
−

xy. P
xy
−→ P

Sum :
P1

α
−→ P ′

1

P1 + P2
α

−→ P ′

1

Par :
P1

α
−→ P ′

1

P1 | P2
α

−→ P ′

1 | P2 bn(α) ∩ fn(P2) = ∅

Com :
P1

xz
−→ P ′

2 P2
x(y)
−→ P ′

2

P1 | P2
τ

−→ P ′

1 | P
′

2{z/y}
Close :

P1
x(y)
−→ P ′

2 P2
x(y)
−→ P ′

2

P1 | P2
τ

−→ (y)(P ′

1 | P
′

2)

Res :
P

α
−→ P ′

(y)P
α

−→ (y)P ′ y /∈ n(α)

Open : P
xy
−→ P ′

(y)P
x(y)
−→ P ′ x 6= y

Match :
P

α
−→ P ′

[x = x]P
α

−→ P ′
Mismatch :

P
α

−→ P ′

[x 6= y]P
α

−→ P ′ x 6= y

Table 1: SOS for P (symmetrical versions of rules Sum, Par, Com and Close omitted).
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• P |Q
c

−→ [P ′|Q′] denotes a communication between P and Q, i.e. a transition P |Q
τ

−→ [P ′|Q′]

whose derivation (from the inference rules) contains an application of the Com or Close rule

involving P and Q; we will write P |Q
c

=⇒ [P ′|Q′] for P |Q =⇒
c

−→ [P ′|Q′];

• The symbol ≡ denotes syntactic equality between agents.

2.2 Testing the π-calculus

In this subsection, we set up a few definitions that permit applying the testing machinery to the

π-calculus. In particular, we will first introduce observers, then experiments and finally testing

preorders. We will then use the word agent to mean either process or observer or experiment.

Definition 2.4 (Observers)

• The set O of observers is defined like P, but an additional distinct action ω /∈ Act is used to

report success.

• We let Act′ = Act ∪ {ω}, Λ′ = Λ ∪ {ω}, bn(ω) = fn(ω) = ∅ , subj(ω) = obj(ω) = −. The

actions xy (free output), τ and ω are free actions, the remaining ones are bound actions.

• The operational semantics for P extends to O by adding the obvious rule: ω.o
ω

−→ o.

• Unless otherwise stated, O is ranged over by the metavariables o, o′, ....

We recall that square brackets [ ] around a term indicate that it might be prefixed by some

restrictions.

Definition 2.5 (Experiments) The set E of experiments is defined as:

{[P |o]|P ∈ P, o ∈ O}.

Metavariables e, f, ... range over E .

Definition 2.6 (Interactions) Given an experiment [P |o], an interaction (or computation) from

[P |o] is a maximal sequence of τ transitions, i.e. a sequence of τ -transition:

[P |o]
τ

−→ [P1|o1]
τ

−→ ...
τ

−→ [Pk|ok]

with k ≥ 0 and [Pk|ok] 6
τ

−→ .
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It is worth noting that, since we are considering the finite sub-language, all computations are

finite.

The next definition formalizes the concept of partially divergent agent. Here, the term Ω

represents the ‘totally divergent’ or ‘totally undefined’ agent, i.e. it models the agent that computes

an infinite sequence of internal actions, without ever interacting with the external environment.

In spite of the fact that we have not yet considered recursion and infinitary behaviours, we have

already extended our language with Ω, because this will allow us to smoothly generalize our theory

to the full language in Section 6. Furthermore, Ω will be needed when giving the denotational

semantics to the finite fragment we are considering: it will represent the bottom of our model.

Definition 2.7 (Definedness and convergence predicates)

• ↓ is the least (postfix) predicate over O which satisfies:

– 0 ↓, (α.P ) ↓, ([x 6= x]P ) ↓, x 6= y implies ([x = y]P ) ↓;

– P ↓ and Q ↓ imply: ((y)P ) ↓, ([x = y]P ) ↓, ([x 6= y]P ) ↓, (P |Q) ↓ and (P + Q) ↓.

We write P ↑ if it is not the case that P ↓.

• ⇓ is the least (postfix) predicate over O which satisfies:

P ⇓ iff P ↓ and for every P ′, P =⇒ P ′ implies P ′ ⇓.

We write P ⇑ if it is not the case that P ⇓.

It is easy to prove that P ↑ if and only if P contains a unguarded occurrence of Ω; i.e. a Ω not

inside inside a context of the kind α.[ . ], or [x = y][ . ] with x 6= y, or [x 6= x][ . ].

Definition 2.8 (May and Must relations)

• P may o if and only if there exists an interaction P |o
τ

−→ ...
τ

−→ [Pk|ok] such that for some

i, 0 ≤ i ≤ k, oi
ω

−→ .

• P must o if and only if for each interaction P |o
τ

−→ ...
τ

−→ [Pk|ok] there exists j, 0 ≤ j ≤ k,

such that oj
ω

−→ and ∀i ≤ k, ((Pi|oi) ↑ implies i ≥ j).

Definition 2.9 (Testing preorders)

• P <
∼may

Q if and only if for every o ∈ O we have: P may o implies Q may o.

• P <
∼must

Q if and only if for every o ∈ O we have: P must o implies Q must o.
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• P <
∼ Q if and only if P <

∼may
Q and P <

∼must
Q.

The negations of P may o and P must o will be written as P m6 ay o and P m6 ust o, respec-

tively. As it might be expected, while <
∼may

is preserved by the + operator, <
∼must

(hence <
∼ ) is

not. A standard way of tackling this kond of problem is “closing” the <
∼must

relation with respect

to summation (see [DH84, Mil89]). An alternative characterization of the new testing preorders

can also be given in terms of the original preorders and the initial invisible actions of agents. This

leads to the following:

Definition 2.10 (Revisited testing preorders)

• P <
∼

+

must
Q if and only if (P <

∼must
Q and (P ⇑ or (Q

τ
−→ implies P

τ
−→ )));

• P <
∼

+
Q if and only if (P <

∼may
Q and P <

∼
+

must
Q).

It can be easily shown that the above preorders coincide with those generated by the closure

under + of the original preorders; i.e.:

• P <
∼

+

must
Q if and only if for each R, P + R <

∼must
Q + R;

• P <
∼

+
Q if and only if for each R, P + R <

∼
+

Q + R.

Thus, the above definition provides us with preorders which are substitutive for the sum oper-

ator; however, differently from CCS, we have that none of the relations <
∼may

, <
∼

+

must
, <

∼
+

is

a pre-congruence; indeed, they are preserved by all operators, but input prefix. The failure for the

latter operator is proved by the following counter-example.

Let x, y, u,w, z be distinct names in P ≡ [x = y]xw.0 and Q ≡ [x = z]xw.0. We have P <
∼may

Q,

because both P and Q are trivially equivalent to 0. On the other hand we have that u(y).P is not

equivalent u(y).Q. Indeed, if we take o ≡ ux.x(w).ω.0 we have:

(u(y).P )|o
τ

−→ [x = x]xw.0|x(w).ω.0
τ

−→ 0|ω.0
ω

−→ 0|0

thus u(y).P may o. Conversely, the only possible computation from (u(y).Q)|o is:

(u(y).Q)|o
τ

−→ [x = z]xw.0|x(w).ω.0 6
τ

−→

and thus u(y).Q m6 ay o.

Similar counter-examples can be exhibited for <
∼

+

must
and <

∼
+

. This kind of problem for

the input prefix arises also for strong ground bisimulation, the equivalence of [MPW89]. Like in
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[MPW89], also for our testing preorders a sort of congruence law for the input prefix operator can

be given. Equivalence of two given processes P and Q is preserved by prefix u(y).[ . ] provided that

it is preserved by all substitutions {w/y}, for any name w ∈ fn(P )∪ fn(Q)∪ {y}. Indeed, this will

be a rule of our proof system; since we have a finite number of names to test (as fn(P )∪ fn(Q) is

finite), this is still effective (although not very ‘efficient’).

2.3 Testing without mismatch

In this subsection we attempt an assessment of the testing power of observers when the mismatch

operator is discarded from the language. We will denote by <
∼

−

may
, <
∼

−

must
and <

∼
−

the testing

preorders obtained by permitting only observers without mismatch and by ≃−
may , ≃−

must and ≃−

the corresponding equivalences. We will see that each of these relations is different from those

of the previous subsection obtained by considering also observer that may contain the mismatch

operator. Pairs of processes will be exhibited that can be fully discriminated by using observers

with mismatch, but cannot be taken apart without mismatch. The counterexamples will make it

evident that the testing relations generated without mismatch are counter-intuitive.

We begin with exhibiting two pairs of processes that show that the two may and the two must

preorders are indeed different; this result is then extended to the equivalences. The key proposition

is:

Proposition 2.11 Let x, y and w be any three names. Then:

a. x(w).0 <
∼

−

may
xy.0.

b. x(w).Ω <
∼

−

must
x(w).0 + xy.Ω.

Proof: See Section 6, Proposition 6.23. 2

The above proposition holds essentially because, in absence of mismatch, all transitions that

can be performed by an agent upon receipt of a bound (hence ‘new’) name, can also be performed

upon receipt of any name. This is no more possible if mismatch is introduced; this operator permits

additional discriminations between free and bound names. Indeed, within the richer language, the

observer o ≡ x(z).[z 6= y]ω.0 , with z 6= y, permits concluding:

• x(w).0 6 <∼may
xy.0;

• x(w).Ω 6 <∼must
x(w).0 + xy.Ω.
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Now, we report below three pairs of processes that are (may, must, testing) equivalent when the

restricted language is considered and non-equivalent when observers with the mismatch operator are

used. When proving equivalence, we will freely use, both for <
∼

−

may
and for <

∼
−

must
, substitutivity

under + - contexts1, associativity and commutativity. We will also use the following laws, that can

be easily proven sound:

(L1) P ≃− P + P

(L2) P <
∼

−

may
P + Q

(L3) α.P + β.Q <
∼

−

must
α.P if α, β ∈ OA and subj(α) = subj(β).

• May: xy.0 ≃−
may xy.0 + x(w).0. Indeed:

1. xy.0 <
∼

−

may
xy.0 + x(w).0 (L2);

2. xy.0 + x(w).0 <
∼

−

may
xy.0 + xy.0 (Prop. 2.1.a)

≃−
may xy.0 (L1)

On the other hand it is easily seen that the observer o defined above suffices to take the two

processes apart within the richer language.

• Must: P ≃−
must P + xy.Ω, where P ≡ x(w).Ω + xy.0. Indeed:

1. P + xy.Ω <
∼

−

must
P (L3)

2. P ≃−
must P + x(w).Ω (L1)

<
∼

−

must
P + x(w).0 + xy.Ω (Prop. 2.1.b)

<
∼

−

must
P + xy.Ω (L3)

It is easily seen that the observer o′ ≡ x(z).([z = y]τ.ω.0 + [z 6= y]ω.0) suffices to take the

two processes apart within the richer language.

• Testing: P ≃− P + xy.Ω.

This follows from the fact that the two processes are both ≃−
may and ≃−

must equivalent.

These examples show that the omission of mismatch leads to identifications that do not corre-

spond to any operational intuition. The ≃−
may equivalence relates a process that may perform a

bound output to one that may not. The ≃−
must equivalence relates a process that after performing

a free output xy always terminates to one that after the same action may diverge.
1All processes under consideration cannot perform invisible initial actions; and it is easy to see that when this

condition holds, testing preorders are preserved by +-contexts.
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2.4 Testing and Early and Late Instantiations

In this subsection the testing approach is compared with the bisimulation approach of [MPW89],

especially for the differences induced by different, early and late, transitional semantics. The tran-

sitional semantics we have adopted is the late one proposed in [MPW89] that requires instantiating

the formal parameter y of an input prefix x(y). only when a communication is actually inferred (see

Inp and Com rules). The original transitional semantics of the value passing version of CCS [Mil89]

is instead based on an early instantiation schema, that requires instantiating the parameter when

inferring the input action.

In [MPW89], two versions of strong bisimulation for the π-calculus are introduced, on the top of

the late transitional semantics. They are called late and early strong ground bisimulations. Their

definitions differ in the input clause only. Late bisimulation is the largest symmetric relation ∼

over processes satisfying: P ∼ Q and P
α

−→ P ′ with bn(α) ∩ n(Q) = ∅ implies:

• if α is not an input action then ∃Q′: Q
α

−→ Q′ and P ′ ∼ Q′;

• if α = x(y) then ∃Q′: Q
x(y)
−→ Q′ and ∀z : P ′{z/y} ∼ Q′{z/y}.

The definition of early bisimulation is obtained from that above by replacing the second clause

with the following more liberal one:

• if α = x(y) then ∀z : ∃Q′: Q
x(y)
−→ Q′ and P ′{z/y} ∼ Q′{z/y}.

In [San93], another kind of bisimulation, called open, is defined and studied; it is based on a

lazy name-instantiation strategy where input formal parameters are instantiated as late as possible

(only when, and if, required). Open bisimulation is stronger than late bisimulation, that is in turn

stronger than the early one. Over finite, Ω-free processes, the latter is stronger than all of our

testing equivalences.

We would like to argue that this proliferation of equivalences, in the early, late and open

forms, is specific of bisimulation; it arises from the interplay between quantification over names

and processes in the input clauses of the definition. If only the original transitional semantics of

[MPW89] is considered, within the testing approach it does not make any sense to talk about late

or early equivalences.

The above claim holds even if one considers an early transitional semantics, that naturally leads

to early bisimulation. Actually, such a transitional semantics for the π-calculus has been introduced

in [MPW91]; there, besides the usual bound input transitions P
x(y)
−→ P ′, free input transitions are

12



introduced. These transitions are of the form P
xw
−→ P ′, that essentially states that P

x(y)
−→ P ′′

for some y and P ′′ such that P ′ ≡α P ′′{w/y}. The early transitional semantics is denoted by
α

−→e

to distinguish it from the late one. It is very easy to see that the testing preorders over processes

obtained from the early transition system (
α

−→e) and those obtained from the late one (
α

−→ ) do

coincide. 2. The key for the proof is the fact that the τ -actions of the late and the early transition

systems are the same, up to α-equivalence.

Lemma 2.12 P
τ

−→eP
′ if and only if there exists some P ′′ such that P

τ
−→ P ′′, with P ′′ ≡α P ′.

Proof: See [MPW91]. 2

Corollary 2.13 The testing preorders over P defined on the top of
α

−→e coincide with the corre-

sponding ones defined on the top of
α

−→ .

Proof: The previous lemma easily generalizes to sequences of τ -transitions (formally, this can be

done by induction on the length of the sequences, by using Lemma 6.1 of Section 6). From this

fact and from the definition of testing preorders, we easily obtain the thesis. 2

3 A Proof System for Finite π-calculus

In this section, we provide an inequational theory for one of the testing preorders, namely <
∼

+
.

The extensions to <
∼

+

must
and <

∼may
are only a matter of rephrasing the results. The axioms and

the inference rules of the proof system, which we call F , are shown in Table 2 and 3, respectively.

We freely use “P = Q” as an abbreviation for “P ⊑ Q and Q ⊑ P”.

Most of the axioms and rules in Table 2 are taken from [MPW89] and [DH84]. In particular,

the Restriction, Match and Expansion laws and the inference rules are from [MPW89]; the Omega

law and the τ -laws N1, N2 and N4 are from [DH84]; the τ - law N3 is a modification of the

corresponding law in [DH84] to take into account the fact that a process may have different options

when prompted for an output. The Mismatch laws are new. In the Expansion law, an empty

summation by convention denotes 0. By F ⊢ P ⊑ Q we mean that the relation P ⊑ Q is

provable by applying the axioms and the inference rules of system F . Sometimes, we abbreviate

this simply as P ⊑ Q.

2A similar result is proven in [Ing93] for a value-passing process algebra
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Sum Restriction

S0 P + 0 = P R0 (x)P = P, x /∈ fn(P )

S1 P + P = P R1 (x)(y)P = (y)(x)P

S2 P + Q = Q + P R2 (x)(P + Q) = (x)P + (x)Q

S3 P + (Q + R) = (P + Q) + R R3 (x)α.P = α.(x)P, x /∈ n(α)

R4 (x)α.P = 0, subj(α) = x

Match Mismatch

M0 [x = y]P = 0, x 6= y U0 [x 6= x]P = 0

M1 [x = x]P = P U1 [x 6= y]P = P, x 6= y

Expansion

Suppose P is
∑

i∈I αi.Pi[+Ω] and Q is
∑

j∈J βj .Qi[+Ω].

Suppose that no αi (resp. βj) binds a name free in Q (resp. P ).

P | Q =
∑

i∈I αi.(Pi | Q) +
∑

j∈J βj .(P | Qj) +
∑

αi comp βj
τ.Rij

[+Ω| Ω is a summand either of P or of Q]

where αi comp βj and Rij are defined as follows:

1. αi = xiz and βj = yj(y); then Rij = Pi | Qj{z/y}

2. αi = xi(y) and βj = yj(y); then Rij = (y)(Pi | Qj)

3. The “converse” of 1.

4. The “converse” of 2.

Omega

Ω Ω ⊑ P

τ − laws

N1 α.P + α.Q = α.(τ.P + τ.Q)

N2 P + τ.Q ⊑ τ.(P + Q)

N3 α.P + τ.(β.Q + R) = τ.(α.P + β.Q + R) subj(α) = subj(β) and (α, β ∈ IN or α, β ∈ OUT )

N4 τ.P ⊑ P

Table 2: Axioms of the proof System F .
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α − conv
P ≡α Q

P = Q

C0
P ⊑ Q

P ′ ⊑ Q′

with P ′ ⊑ Q′ either of: α.. P ⊑ α.Q (α /∈ IN), (x)P ⊑ (x)Q,

P + R ⊑ Q + R, [x = y]P ⊑ [x = y]Q, [x 6= y]P ⊑ [x 6= y]Q,P |R ⊑ Q

C1
∀z ∈ fn(P,Q, y). P{z/y} ⊑ Q{z/y}

x(y).P ⊑ x(y).Q

Table 3: Inference rules of the proof system F ; the usual rules for preorder reflexivity and transi-

tivity have been omitted.

The next two propositions state soundness of the inference rules and of the axioms; the actual

proofs (see Section 6) can be done along the lines of the corresponding ones for CCS. However,

specific care is needed when interactions between processes and observers are analyzed, due to

the exchange of names between them. Thus the proofs of the precongruence rules for parallel

composition and restriction of C0 are significantly harder than those for CCS; rule C1 was not

present in the proof system for CCS.

Proposition 3.1 (Soundness of the inference rules) The inference rules of Table 3 are sound

w.r.t. <
∼

+
.

Proposition 3.2 (Soundness of the axioms) The axioms of Table 2 are sound w.r.t. <
∼

+
.

The above propositions give us the following:

Theorem 3.3 (Soundness of F) F ⊢ P ⊑ Q implies P <
∼

+
Q.

The completeness proof is heavily based on the existence of certain standard forms for processes

called head normal forms (hnf). Similar forms were already used in [DH84] (though there the

completeness proof was based on normal forms). Head normal forms aim at presenting processes

as an internal non-deterministic choice among a set, possibly a singleton, of initial states (each

represented, in Definition 3.5, by a PA, A ∈ L). Each initial states is essentially described by a set

(A) of input or output channels through which the process can communicate with the environment,
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and by the corresponding initial actions (α’s) and their α-derivatives (Pα ’s). If there are several

initial states (this is the case of τ -hnf’s), the non-deterministic choice among them is made by

performing an internal (τ) action.

In the actual definition of hnf, a functional notation is used to make it explicit that each input

or output channel a is associated with a unique process g(a). In case a is an input channel, say x,

process g(a) has a unique initial input action with subject x, i.e. it is of the form x(y).P . In case

a is an output channel, say x, g(a) is a non-empty summation of the form
∑

z∈F xz.Pz[+x(w).P ′],

where square brackets enclose an optional summand. Head normal forms will enable us to provide

a syntactical characterization of the preorders that will be crucial when proving completeness (see

Section 6.4). This syntactical relation relies on a notion of set saturation; differently from [DH84],

this notion applies to set of input or output channels, not to set of actions.

Definition 3.4 (Saturation) Let IN = N , OUT = {x|x ∈ N}, Ev = IN ∪ OUT ; Ev is the set

of all events and is ranged over by the metavariables a, b.

• Given a set of sets of events L = {A1, ..., An}, define Ev(L) = A1 ∪ . . . ∪ An;

• A non-empty finite set of finite sets of events L is saturated if:

for each A ⊆ Ev: ( ∃B ∈ L : B ⊆ A ⊆ Ev(L) ) implies A ∈ L.

Definition 3.5 (Head normal forms)

• A partial function g : Ev −→ P is a normal function if for each a ∈ domain(g) we have:

a. a ∈ IN implies g(a) is of the form a(y).P , and

b. a ∈ OUT implies g(a) is a non-empty summation of the form
∑

z∈F az.Pz [+a(w).P ′], with

F ⊆fin N .

• Let A ⊆fin EV and let L be a saturated set of subsets of EV . An agent P is in head normal

form (hnf) if one of the following conditions holds:

i. (α-hnf) P ≡
∑

a∈A g(a), where g : A −→ P is a normal function;

ii. (τ -hnf) P ≡
∑

A∈L τ.PA, where PA ≡
∑

a∈A g(a) and g : Ev(L) −→ P is a normal

function.

In both cases, function g is referred to as the associated function of P .
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In the sequel, given a hnf P with associated function g, we will let Ev(P ) denote the domain

of g and Init(P ) denote the set of initial visible actions of P , i.e. the set {α ∈ Λ|P
α

=⇒}, up to α-

equivalence. It is evident that if P is a hnf then P ⇓. From the above definition, it should be also

evident that for each α ∈ Init(P ), there exists a unique Pα such that P =⇒
α

−→ Pα; this Pα is

called α-derivative of P . The following property of τ -head normal forms follows directly from the

functional notation used in the definition:

Property 3.6 Let P ≡
∑

A∈L τ.PA be a τ -head normal form and let A ∈ L. If Init(PA) contains

an output action with subject x, then Init(PA) contains also all output actions of Init(P ) with

subject x.

A few examples will clarify these points. Consider P ≡ x(y).0+x(z).α.0 , with y /∈ fn(α); P is

not a hnf because we cannot associate to the input channel x a unique term g(x); in particular, P has

not a unique x(y)-derivative, as P
x(y)
−→ α{y/z}.0 and P

x(y)
−→ 0. Next, consider Q ≡ τ.xy.0+ τ.xz.0

, with y 6= z; Q is not a τ -hnf, since Property 3.1 above does not hold for the output channel x;

indeed, it is not possible to define an associated normal function for Q. As an example of τ -hnf,

consider

τ.w(x).0 + τ.(xy.0 + xz.0) + τ.(w(x) + xy.0 + xz.0)

with x,w, y, z distinct; the associated function g is given by: g(w) = w(x).0 and g(x) = xy.0+xz.0;

notice that the set L = { {w}, {x}, {w, x}} is saturated.

The counterpart of head normal form for divergent agents (i.e. those P ’s such that P ⇑ holds)

is the notion of Ω-Head Normal Form (Ω-hnf).

Definition 3.7 (Ω-Head normal forms) An agent P is in Ω-Head Normal Form (Ω-hnf) if P ≡

(
∑

α∈A α.(Pα + Ω)) + Ω, for some A ⊆fin Λ, A not containing distinct α-equivalent actions.

Notice the double occurrence of Ω in the above definition; it, somehow, indicates that once the

process diverges at the top-level, it does so at each inner level. If P is an Ω-hnf we let Init(P ) and

Ev(P ) have the same meaning as for hnf.

We establish now a few facts about head normal forms. Their proofs (see Section 6) follow

the same lines as the corresponding ones for CCS in [DH84]; additional complications are again

introduced by the need of applying rule (C1) and, in the proof of Proposition 3.8, by the need of

reducicing P to a form satisfying Property 3.1.

Proposition 3.8 If P ⇓ then there exists a head normal form h(P ) such that F ⊢ P = h(P ).
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Proposition 3.9 If P ⇑, then there exists a Ω-head normal form Ω(P ) such that F ⊢ P = Ω(P ).

For the proof of completeness, we need a special induction parameter, namely the largest number

of communications that a process can perform with another agent. This parameter can be defined

as the length, in terms of number of visible actions, of the maximal among the observers which

are satisfied by the process. We remind the reader that here we have confined ourselves to finite

processes, thus this number is finite.

Definition 3.10 (Depth of communication) We define the depth of communication dpc as:

dpc(P ) = max{k|P may α1 · · ·αk.ω.0, with the αi, 0 ≤ i ≤ k, ranging over Λ }.

Theorem 3.11 (Completeness of F) P <
∼

+
Q implies F ⊢ P ⊑ Q.

Proof: (Sketch; See Section 6 for a detailed proof) The proof goes by induction on dpc(P ). It

relies on the fact that, in virtue of the above propositions, we can suppose that both P and Q are

either in hnf or in Ω-hnf and on the two following properties of α-derivatives of P and Q:

• if α ∈ OA then Pα
<
∼

+
Qα;

• if α = x(y) ∈ IA then Pασ <
∼

+
Qασ for any name z and any substitution σ = {z/y}.

By applying the induction hypothesis, the above relations still hold when substituting <
∼

+
by ⊑ .

Then, rules C0 and C1 and the τ -laws suffice to derive P ⊑ Q. 2

4 Denotational Semantics

In this section, we sketch a denotational semantics for the π-calculus and discuss its relationships

with the operational semantics of Section 2. We assume familiarity with the standard algebraic

semantics techniques as described, for example, in [Hen88] or [Gue81]. To avoid complications which

would not provide any additional insight, we confine ourselves in searching for a model which is

fully abstract w.r.t. the must preorder <
∼

+

must
(rather than <

∼
+

). A complete proof system can be

obtained for this preorder from the one presented in Section 3 by adding the following three laws:

• Ω + P = Ω

• τ.P + τ.Q ⊑ P

• α.P + β.Q ⊑ α.P if subj(α) = subj(β) and (α, β ∈ IA or α, β ∈ OA).
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We will indicate with ⊑must the corresponding proof-theoretic preorder. The proof of completeness

for this preorder is very similar to that of ⊑ presented in Section 6 and will be omitted. In fact,

due to the law Ω + P = Ω, that considers all divergent processes equivalent to Ω, the actual proof

is simpler than the one discussed in full detail.

We shall give the denotational model under the form of a natural interpretation, a slight variant

of the usual algebraic semantics, introduced in [HP80] to deal with languages with explicit value

passing. A natural interpretation (for the finite π-calculus) is a 4-tuple (D, Fop, inp, out), where:

• D is a cpo;

• Fop is a family of continuous functions of suitable arities, one for each operator different from

input and output prefixes;

• inp : (N × (N −→ D)) −→ D is a function continuous in its second argument, where

(N −→ D) inherits its ordering pointwise from D;

• out : (N ×N ×D) −→ D is a function continuous in its third argument.

Given a natural interpretation, we can define a semantic function: [[ . ]] : P −→ D as follows:

• [[op(P1, ..., Pk)]] = fop([[P1]], ..., [[Pk ]])

for each k-ary operator different from input and output, with k = 0, 1 or 2

• [[x(y).P ]] = inp(x, λz ∈ N .[[P{z/y}]])

• xy.P = out(x, y, [[P ]]).

Since the considered calculus does not permit describing infinite behaviours, one might ask

whether cpo’s and continuous functions are really needed to model it. To obtain a fully abstract

model, the partial ordering of the domain we use must properly reflect the testing preorder <
∼

+

must
.

Now, although we are only dealing with finite agents, we still have elements which are approx-

imable by infinite chains. Consider the process P = x(y).0 ; P is (syntactically) finite but can be

approximated by the infinite chain of processes

K = {x(y).Pi|Pi ≡
∑

z∈Fi

[y = z]0 + [y /∈ Fi]Ω, i ≥ 0}

where {Fi| i ≥ 0} is a strictly increasing chain of finite set of names such that for each j, y /∈ Fj .

Indeed, we have that x(y).P0
<
∼

+

must
x(y).P1

<
∼

+

must
... <

∼
+

must
x(y).0; these inequalities are clearly
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strict. We have here a kind of continuous breadth approximation; thus, we can expect every fully

abstract model be based on a cpo rather than a poset. In fact, the construction illustrated below

naturally leads us to a cpo. It is worth noting that exactly the same cpo is suitable for modelling

the full calculus with recursion (see Section 5).

The non-trivial task to face when constructing the model is defining function inp(., .). We

will take advantage of process strong normal forms (formally described below), that recursively

reproduce the top structure of head normal forms. We will first define a poset, PO, of equivalence

classes of “finite breadth” strong normal; this poset will represent the compact element of our

cpo. Over PO, monotonic functions can be easily defined in a syntax-driven way; moreover, the

elements of PO can be used to ‘approximate’ all processes. Thus, to get a natural interpretation, it

will be sufficient first to define monotonic functions fop, out and inp(x,−) over PO corresponding

to the opeators of the calculus and then to take the ideal completion of PO the unique continous

extensions of functions fop, out and inp over it. It is not hard to show that the natural interpretation

so obtained is fully abstract. Below, we sketch the actual construction of the model; it takes four

steps.

1. Strong Normal Forms for all processes are introduced.

Strong normal functions and Strong normal forms (snf) are defined by mutual recursion as follows:

• A partial function g : Ev −→ P , is a strong normal function if for each a ∈ domain(g) we

have:

a. if a = x ∈ IN , g(x) is of the form: x(y).(
∑

z∈F [y = z]Nz + [y /∈ F ]N), where:

1. F ⊆fin N , y /∈ F ;

2. for each z ∈ F, y /∈ fn(Nz);

3. N and all Nz, z ∈ F , are snf.

b. if a = x ∈ OUT , g(x) is a non-empty summation
∑

z∈F xz.Nz[+x(w).N ] where N and

each Nz are snf.

• Let A ⊆fin N and L be a saturated set of subsets of Ev. A process P is in strong normal

form if one of the following conditions holds:

i. P is Ω;

ii. (α-snf) P is of the form
∑

α∈A g(a), where g : A −→ P is a strong normal function;

iii. (τ -snf) P is of the form
∑

A∈L τ.
∑

α∈A g(a), where g : Ev(L) −→ P is a strong normal

function.
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We call SNF the set of all strong normal forms. It can be shown, by extending the existence proof

for head normal forms of Section 6, that each process P is provably equivalent to a snf. Differently

from CCS, each process has in general syntactically different strong normal forms that cannot be

reduced to each other by simply using associativity and commutativity of sum. As an example,

consider, the pair of terms below, where y,w and z are distinct names and N is a snf:

x(y).([y = z]0 + [yz]N) and x(y).([y = z]0 + [y = w]N{w/y} + [y /∈ {z,w}]N).

In general, to reduce two normal forms to each other, besides the above mentioned laws for sum, we

would certainly need the α-equivalence law and other laws to capture ‘conditional renaming’ like

the one described above. However, our construction does not rely on uniqueness of normal forms;

we work with their equivalence classes and simply assume existence of a function that associates

an arbitrary, and provably must-equivalent, snf to each process.

The compact elements of our cpo will be equivalence classes of finite strong normal forms (fsnf).

These can be described informally as the ‘finite-breadth’ snfs, i.e., as those snfs that, for almost

every name z, upon receipt of z become Ω. The formal definition is as follows.

A finite strong normal form is a snf N with associated function g, s.t.

a. N ≡ Ω, or

b. x ∈ domain(g) implies g(x) is of the form: x(y).(
∑

z∈F [y = z]Nz + [y /∈ F ]Ω), where each Nz is

a fsnf.

2. The set of finite strong normal form is turned into a poset.

To guarantee antisimmetry, PO is defined as the poset given by the set of equivalence classes of

fsnf’s w.r.t. the kernel equivalence =M of the preorder ⊑must (i.e. =M=⊑must ∩ ⊑must
−1); the

partial ordering � over PO is defined as follows: [N ] � [M ] iff N ⊑must M ; the bottom element

is [Ω]. A set of functions over PO, each corresponding to a different operator of the calculus, is

defined:

• For functions corresponding to operators different from input and output prefixes, this is done

via snf; for example, for a restriction (y), we define f(y) : PO −→ PO as:

f(y)([N ]) = [snf((y)N)].

• To define function inp, consider the poset of functions

FIN(N −→ PO) = {f : N −→ PO| only for finitely many x, f(x) 6= [Ω]}
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with the partial ordering pointwise inherited from PO. Function inp : N × FIN(N −→

PO) −→ PO is then defined as follows:

inp(x, f) = [x(y).(
∑

z∈F

[y = z]Nz + [y /∈ F ]Ω)]

where f(z) = [Nz], F = {x| f(x) 6= [Ω]} and y is fresh.

• Function out : N ×N × PO −→ PO is: out(x, y, [N ]) = [xy.N ].

It is easily checked that the above functions are well-defined and monotonic in PO (or FIN(N −→

PO) in the case of inp(x,−)).

3. PO and FIN(N −→ PO) are extended to algebraic cpo’s.

Ideal completion [Hen88] is used to obtain the algebraic cpo’s PO∞ and (FIN(N −→ PO))∞

and the unique continuous extensions of the above defined monotonic functions; for the sake of

simplicity, we will use for the countinous extensions the same names as the monotonic functions

they extend. The crucial point here is that, as easily seen, the algebraic cpo (FIN(N −→ PO))∞ is

isomorphic to (N −→ PO∞), thus they can be identified. The wanted domain is then D
def
= PO∞;

this together with the extended functions give a natural interpretation of P .

4. Full abstraction of our interpretation with respect to <
∼

+

must
is proven.

The proof relies on the existence, for each P , of a set of syntactical Finite-Breadth Approximants

FBA(P) (see Section 6), such that (we denote with sup the least upper bound in D):

a. if for each N ∈ FBA(P ) N ⊑must Q then P ⊑must Q;

b. [[FBA(P )]] = {[[N ]]|N ∈ FBA(P )} is directed in D and [[P ]] = sup [[FBA(P )]].

It is easy to show that for each N ∈ FSNF , [[N ]] = [N ]. By exploiting this fact, a. and b. above

and the algebraicity of D , it is not hard to show that for each P and Q: [[P ]] � [[Q]] iff P ⊑must Q,

and, hence, iff P <
∼

+

must
Q (see detailed proofs in Section 6).

5 Dealing with Infinite Agents

In this section we sketch the extensions of the equational and denotational characterizations de-

scribed in previous sections to the full calculus with recursive definitions. We will study the must

preorder only; the may case is trivial and the treatment of the testing preorder can be obtained by

“composing may and must. Most of what we are going to do is in fact standard algebraic semantics
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in the style of [Hen88] and [DH84]. Below we give all new definitions needed for extending the

testing framework:

• The syntax is extended by adding the following two clauses to the grammar of Section 2:

P ::= X | recX.P

where X ranges over a countable set AV of agents variables. The language generated by this

grammar will be referred to as RP (for Recursive P). The operator recX. is a binder for

the agent variable X, thus notions of bound and free occurrence of an agent variable arise

as expected. In the sequel we shall only consider closed agents, i.e. those agents without

occurrences of free agent variables. Furthermore, we impose the constraint that for each term

recX.P , no occurrence of X inside P is within the scope of a y-binder, for y ∈ fn(P ). This

ensures that no free name of P is bound when “unfolding” the term recX.P into P [recX.P/X]

([Y/X] denotes substitution of the agent variable X with the term Y ).

• Transitional semantics is extended by adding the following SOS rule:

Rec :
P [recX.P/X]

α
−→ P ′

recX.P
α

−→ P ′ .

• Extending the processes language requires, in the testing framework, extending observers

accordingly.

• The definition of predicate ↓ is extended with the clause:

P [recX.P/X] ↓ implies recX.P. ↓

This amounts to saying that P ↓ if and only if in P there are no unguarded occurrences of Ω

and agent variables.

• The definition of the convergence predicate (⇓) is restated as follows:

P ⇓ iff (P =⇒ P ′ implies P ′ ↓) and (not P
τω

−→ ) .

• An interactions is now either finite, as described in Definition 2.6, or an infinite sequence of

τ -transitions.
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• The definition of the must relation is extended to take into account the new infinite interac-

tions. Thus P must o if and only if for all interactions (finite or infinite):

P |o = e0
τ

−→ e1
τ

−→ e2
τ

−→ · · ·

∃j ≥ 0, such that: oj
ω

−→ and ∀i ≥ 0, ((ei ↑ implies i ≥ j).

Notice that now we have now another type of unsuccessful computations, namely the infinite

sequence of τ -transitions that never reaches a successful state:

P |o = e0
τ

−→ e1
τ

−→ e2
τ

−→ · · · and ei 6
ω

−→ for i ≥ 0 .

In this new setting, we will first show how to extend the proof system presented at the beginning

of Section 4 for the finite fragment to get a sound and complete (though infinitary) proof system

for the full language. Then we will show that the denotational model of Section 4 is fully abstract

for the full language as well.

All soundness proofs for the finite calculus easily extend to the infinite case (see Section 6). In

order to get a complete proof systems for closed agents, we add to that for finite agents, introduced

at the beginning of Section 4, a law and two inference rules to deal with recursion. The resulting

system will be referred to as A. In the sequel, we will let D range over finite processes:

REC1 P [recX.P/X] =M recX.P

REC2
P ⊑must Q

recX.P ⊑must recX.Q

ω − induction
∀D ∈ FIN(P )D ⊑must Q

P ⊑must Q

where FIN(P ) are the finite syntactic approximants of P ; we skip its actual definition, since it is

a standard construction of algebraic semantics and can be found in, e.g., [Hen88]. We wish only

to remind the reader that set FIN(P ) is exclusively concerned with the approximation in depth

of agent P : an element of FIN(P ) is in fact obtained from P by performing a finite number of

unfolding of its recursive definitions (subterms of the form recX.P ′) and then replacing them with

Ω. On the contrary, finite strong normal forms (FBA) provide a breadth approximation for finite

agents. These two kinds of approximation can be dealt with separately. We have already considered

the breadth one when considering finite agents; now, we indicate how to compose that treatment

with the depth one.
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Soundness of the above rules can be proved, again, along the same lines of [DH84]. Law REC2

is derivable from the other axioms in A (see [DH84]) and to prove soundness of REC1 it is sufficient

to define Derα(P ) = {P ′|P
α

−→ P ′}, and to exploit the following fact:

if for each α Derα(P ) = Derα(Q) and (P ↑ iff Q ↑) then P ≃ Q.

The only non-trivial task is proving soundness of ω − induction. Before proving it, it is useful

to show partial completeness of A− {ω − induction,REC2}, i.e: for each finite D and for each Q,

D <
∼

+

must
Q implies A− {ω − induction,REC2} ⊢ D ⊑must Q.

To prove this, minor modifications of the completeness proof for finite closed agents of Section 6

are needed. We list them below.

Provably (within A − {ω − induction,REC2}) equivalent head normal forms for convergent

agents still exist (see Proposition 6.14); however, this time the proof of the parallel composition case

is done by induction on mc(P ), the maximal number of internal communications P can perform;

this number is finite by a Koenigs lemma argument that relies on the fact that P ⇓. On the other

side, since we are concerned with the must preorder only, divergent agents all collapse to Ω (due to

P + Ω =M Ω). These considerations allow us to extend the proof of Theorem 6.22 to prove partial

completeness.

To prove soundness of ω−induction rule, it is also useful to have an alternative characterization

of the must preorder which is based on a smaller set of observers.

Lemma 5.1 The must testing preorder <M over RP obtained by considering the set of observers

without restriction coincides with <
∼must

.

Proof: See Section 6. 2

Now, soundness of ω − induction rule easily follows from the definition of FIN(P ) and from

the following crucial proposition, which relies on the soundness of A− {ω − induction,REC2}.

Proposition 5.2 For any process P and any restriction-free observer o, if P must o then there

exists D ∈ FIN(P ) such that D must o.

Proof: See Section 6. 2

We now come to show completeness of A. Suppose that for closed P and Q, P <
∼

+

must
Q; by

partial completeness, for each D ∈ FIN(P ), A ⊢ D ⊑must Q; now, apply ω − induction rule.

Thus we can state:
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Theorem 5.3 (Completeness of A) P <
∼

+

must
Q implies A ⊢ P ⊑must Q.

We are left with showing how to build a fully abstract denotational model for the must preorder.

Indeed the definition of the model remains unchanged, but that of the semantic function is extended

to deal with agent variables and with the recursion operator. Let ENV = (AV −→ D) be the set

of environments ranged over by the metavariable ρ; then the interpretation function

[[ . ]] : RP −→ (ENV −→ D)

is defined as as follows:

• [[X]]ρ = ρ(X)

• [[op(P1, ..., Pk)]]ρ = fop([[P1]]ρ, ..., [[Pk ]]ρ), for each k-ary operator different from input and

output, k = 0, 1 or 2

• [[x(y).P ]]ρ = inp(x, λz ∈ N .[[P{z/y}]]ρ)

• [[xy.P ]]ρ = out(x, y, [[P ]]ρ)

• [[recX.P ]]ρ = fix(λd ∈ D.[[P ]]ρ[d/X]).

It can be proved [HP80] that the above definition makes sense and that many of the usual

results of traditional algebraic semantics are still valid. The following fact will be essential:

{[[D]]ρ|D ∈ FIN(P )} is directed in D and [[P ]]ρ = sup{[[D]]ρ|D ∈ FIN(P )}

It permits concluding that the denotations of infinite elements are uniquely determined by those

of the finite ones. Therefore we state:

Theorem 5.4 (Full abstraction for the full calculus) [[P ]] � [[Q]] in D if and only if P <
∼

+

must
Q.

Proof: See Section 6. 2

6 Detailed Proofs

6.1 Additional Notations

In addition to that fixed in Section 2, we need some more notation for our proofs:

• Obj(P ) = {x ∈ fn(P )|x = obj(α) for some action α in P}.
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• fn(y1, ..., yn, α1, ..., αk , P1, ..., Ph) = {y1, ..., yn}∪fn(α1)∪ . . .∪fn(αk)∪fn(P1)∪ . . .∪fn(Ph);

similar notations hold for the functions bn( . ), n( . ) and Obj( . ).

• Sometimes, we will identify α-equivalent agents or actions. Formally, this means that α-

conversion (application of rule α-conv) will be implicitly used whenever it suffices to make

two agents identical.

• Given a hnf H with g as associated function, and x ∈ Ev(H), we write the generic g(x)

simply as a sum
∑

z∈Nx
xz.Hxz, with the convention that g(x) has a summand of the kind

x(w).Hx(w) (i.e. a bound output summand) if and only if a special item (w) belongs to Nx.

6.2 Basic Properties

In this subsection we establish some basic facts about the transition system of the π-calculus and

about the testing preorders and fix some terminology that will be extensively used in later proofs.

The following lemma is essentially borrowed from [MPW89]; only, here, P,P ′, ... stand for either

processes or observers, and actions α, β might be ω as well.

Lemma 6.1

1. If P
α

−→ P ′ then fn(α) ⊆ fn(P ) and fn(P ′) ⊆ fn(P ) ∪ bn(α).

2. If P
a(y)
−→ P ′, with a = x or a = x, and z /∈ n(P ) then P

a(z)
−→ P ′′ for some P ′′ ≡α P ′{z/y}.

3. If P
α

−→ P ′, bn(α)∩fn(P ′σ) = ∅ and σ is injective when restricted to fn(P ), then for some

P ′′ ≡α P ′σ, Pσ
ασ
−→ P ′′.

4. If P{w/z}
α

−→ P ′, with w /∈ fn(P ) and bn(α) ∩ fn(P,w) = ∅ , then for some Q and β with

Q{w/z} ≡α P ′ and βσ = α, P
β

−→ Q.

5. Suppose P ≡α Q. Then:

i. If α is a free action and P
α

−→ P ′ then for some Q′ ≡α P ′, Q
α

−→ Q′.

ii. If P
a(y)
−→ P ′, with a = x or a = x, then for every z /∈ n(Q) there exists a Q′ with

P ′{z/y} ≡α Q′ such that Q
a(z)
−→ Q′.

Proof: The proof of each item is an induction on the depth of the inference of P
α

−→ P ′ from

the rules (action induction), and is obtained from the proof in [MPW89] by simply adding the case

when the last applied rule is Mismatch. 2
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Item 3 above, which states a sort of ‘monotonicity’ of substitutions, contains an additional

hypothesis on σ, when compared to the corresponding item of [MPW89]: σ is required to be

injective on P . This restriction is due to the presence of the mismatch operator; in fact, if the

two distinct names x and y of [x 6= y]P are identified when applying a substitution, the resulting

process is blocked (indeed, it is equivalent to 0 ), and the property does not hold. Item 1 is very

intuitive, it will be often used without mentioning.

We introduce now the technical notion of equivalent experiments, that will be extensively used

in later proofs.

Definition 6.2 (Equivalent sequences of τ-actions) Given any two sequences of τ -transitions

s1, s2 of the same length (k ≥ 0):

s1 = (e1
τ

−→ ...
τ

−→ ek) and s2 = (f1
τ

−→ ...
τ

−→ fk)

we say that s1 and s2 are equivalent if and only if for all i, 0 ≤ i ≤ k, ν ∈ {ω, τ} (ei
ν

−→ if and

only if fi
ν

−→ ) and (ei ↑ if and only if fi ↑ ).

Definition 6.3 (Equivalent experiments)

• Given two experiments e1, e2, we set e1 ≤ e2 if and only if for each invisible sequence s1 from

e1 there exists an equivalent invisible sequence s2 from e2; ≤ is clearly a preorder.

• We say that e1 is equivalent to e2, if and only if e1 ≤ e2 and e2 ≤ e1.

Since computations are particular sequences of τ -actions, we can use the notion of equivalent

experiments to establish testing preorder relations between processes. Indeed, if e1 ≡ [P |o] and

e2 ≡ [Q|o] are two experiments, we have that:

• e1 ≤ e2 implies (P may o implies Q may o), and

• e1 ≤ e2 implies (P m6 ust o implies Q m6 ust o).

Thus, a possible technique for proving that P <
∼may

Q, would be proving that P |o ≤ Q|o for each

observer o. Analogously P <
∼must

Q can be proved by showing that Q|o ≤ P |o for each observer

o. It follows that if P |o is equivalent to Q|o for each o, we have P ≃ Q (i.e. P and Q are testing

equivalent). A useful result about sequences of invisible actions is reported below.

Lemma 6.4 If e2 ≡α e1{w
′

/w}, with w = w′ or w′ /∈ fn(e1), then e1 ≤ e2.
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Proof: An easy induction on the length of the sequences of invisible actions performable by the

two experiments; it relies on items 3 and 5 of Lemma 6.1. 2

The above lemma permits identifying α-equivalent experiments, since P |o ≡α P ′|o′ implies

P may o if and only if P ′ may o′ and P must o if and only if P ′ must o′. Next lemma states

some basic properties of our preorders, that will be used in later proofs.

Lemma 6.5 Given P,Q ∈ P and α ∈ Λ:

1. (P <
∼may

Q and P
α

=⇒ ) imply Q
α′

=⇒ , with α′ ≡α α;

2. (P <
∼

+

must
Q and P ⇓ and Q

α
=⇒ ) imply (Q ⇓ and P

α′

=⇒ , with α′ ≡α α);

3. (P <
∼

+

must
Q and P ⇓ and Q

τ
−→ ) imply P

τ
−→ .

Proof:

1. We first show that P may satisfy a certain observer o, whose form depends on the kind of

the performed action α, and which is defined as follows:

• if α = xy then o ≡ x(z).[z = y]ω.0, z 6= y;

• if α = x(y) then o ≡ xw.ω.0 , with w any name;

• if α = x(y) then o ≡ x(z).[z /∈ Obj(P,Q)]ω.0 (recall that Obj(P,Q) = {y ∈ fn(P,Q)| y is in

object position in P or in Q}) with z /∈ Obj(P,Q).

A simple case analysis on α shows that P
α

=⇒ implies P may o, which in turn implies Q may o.

But the latter, as easily seen (by another simple case analysis on α), implies that Q
α′

=⇒ , with

α′ ≡α α. Notice that in case α = x(y), we rely on the ability of P to send a fresh name to o.

2. First we show that P ⇓ implies Q ⇓: P ⇓ implies P must τ.ω.0 implies Q must τ.ω.0

implies Q ⇓. Next, suppose by contradiction that for no α′ ≡α α, P
α

=⇒ . Then we can exhibit an

observer o, depending on the kind of the performed α, such that P must o and Q m6 ust o, that

contradicts P <
∼must

Q. The observer o is defined as follows:

• α = xy implies o ≡ x(z).[z 6= y].ω.0 + τ.ω.0 , z 6= y;

• α = x(y) implies o ≡ xw.0 + τ.ω.0;

• α = x(y) implies o ≡ x(z).([z = y1]ω.0 + ... + [z = yk]ω.0) + τ.ω.0, with Obj(P,Q) =

{y1, ..., yk}, k ≥ 0 (if Obj(P,Q) = ∅ then the above summation reduces to 0 ) and with

z /∈ Obj(P,Q).

29



Then, since P ⇓ and P 6
α′

=⇒ for each α′ ≡α α, by a simple case analysis on α, we can show that

P must o, but Q m6 ust o, which is impossible. Thus there must exist some α′ ≡α α such that

P
α′

=⇒ . Notice that, this time in the proof of case α = x(y), we rely on the ability of Q to send a

fresh (hence not belonging to Obj(P,Q)) name to o and on the inability of P to do so.

3. Suppose Q
τ

−→ Q′ and P 6
τ

−→. Take x /∈ fn(P,Q) and o ≡ x(y).ω.0. Then P +xy.0 must o:

in fact P ⇓ and since P 6
α

−→ with α comp x(y) (in virtue of Lemma 6.1(1)) and P 6
τ

−→ , the only

possible computation is (P + xy.0)|o
c

−→ 0|ω.0, that is successful. But Q + xy.0 must o, due to

the unsuccessful computation starting as (Q+ xy.0)|o
τ

−→ Q′|o, (where we have exploited the fact

that, by Lemma 6.1(1), for no α such that α comp xy, Q′ α
=⇒ , and thus Q′|o 6

c
=⇒ ). But this

contradicts the fact that P <
∼

+

must
Q. 2

6.3 Soundness Proofs

We need some preliminary lemmata. The following two will be used to show that the restriction

operator preserves the testing preorder.

Lemma 6.6 For all P, o and y /∈ fn(o): (y)P |o and P |o are equivalent as experiments.

Proof: Recall from Definition 6.3 that we have to show that for each P, o and y /∈ fn(o), (i)

P |o ≤ (y)P |o, and (ii) (y)P |o ≤ P |o. Define e ≤k f iff for each sequence (of τ -actions) of length k

from e there exists an equivalent sequence from f ; clearly, e ≤ f iff for each k ≥ 0 e ≤k f . We now

come to the actual proof of (i) and (ii).

(i) We show by induction on k that for each sequence P |o =⇒ [Pk|ok] of length k there exists an

equivalent sequence from (y)P |o, i.e P |o ≤k (y)P |o. Suppose k > 0 and P |o
τ

−→ [P1|o1] =⇒ [Pk|ok].

It is easily seen that (P |o) ↓ iff ((y)P |o) ↓ and P |o
ω

−→ iff (y)P |o
ω

−→ . Thus it suffices to show,

by exploiting the induction hypothesis, that (y)P |o
τ

−→ e, where e is an experiment such that

[P1|o1] ≤k−1 e. This will be done by a case analysis on how transition P |o
τ

−→ [P1|o1], which we

call TR, is inferred.

1. The cases of the form:

Par :
P

τ
−→ P ′

TR ,
Par :

o
τ

−→ o′

TR ,
R :

P
α

−→ P ′ o
β

−→ o′

TR α comp β,

with R = Com or Close and y /∈ n(α, β), are obvious. In fact it is easily seen that a transition

(y)P |o
τ

−→ [(y)P1|o1] always exists such that y /∈ fn(o1), thus the thesis follows from the

30



inductive hypothesis 3.

2.

Com :
P

xy
−→ P ′ o

x(w)
−→ o′

P |o
τ

−→ P ′|o′{y/w} ≡ P1|o1 .

We can rename w into a fresh name w′ /∈ n(y, P ′, o′), thus:

Lemma 6.1(2) : o
x(w)
−→ o′

o
x(w′)
−→ o′′ ≡α o′{w

′

/w} .

Now, consider the following derivation:

Close :

Open : P
xy
−→ P ′

(y)P
x(w′)
−→ P ′{w

′

/y} o
x(w′)
−→ o′′

(y)P |o
τ

−→ (w′)(P ′{w
′

/y}|o′′) ≡ e

Since y /∈ fn(o), from Lemma 6.1(1) it follows w = y or y /∈ fn(o′), hence we have:

(P1|o1){w
′

/y} ≡ P ′{w
′

/y}|o′{y/w}{w
′

/y} ≡α P ′{w
′

/y}|o′′ ≡ e′

and from Lemma 6.4 we get P1|o1 ≤ e′. But e ≡ (w′)e′ is trivially equivalent as experiment

to e′ and thus P1|o1 ≤ e, and the thesis follows.

3.

Com :
P

x(y)
−→ P ′ o

xw
−→ o1

TR .

Rename y into a fresh y′ via Lemma 6.1(2), as done in the above case 1 with w.

4.

Close :
P

x(y)
−→ P ′ o

x(y)
−→ o′

TR .

Rename y into a fresh y′ via Lemma 6.1(2), as done in case 1 with w.

5. All remaining cases are such that:

R :
P

α
−→ P ′ o

β
−→ o′

P |o
τ

−→ Rαβ ≡ [P1|o1] = TR α comp β

3Given two equivalent experiments, prefixing by restrictions one or both of them does not affect their equivalence

as experiments
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where R = Com or R = Close and y ∈ n(β). It must be then y = bn(β): it cannot be

subj(β) = y due to the hypothesis y /∈ fn(o). The subcase β = x(y) and α = xw, w 6= y, is

trivial. Then the only remaining subcase is when β = x(y) and, hence, α = x(y). Therefore

it is R = Close and Rαβ ≡ (y)(P ′|o′). Taken a fresh name z we have the following derivation:

Close :

Res :

Lemma 6.1(2) : P
α

−→ P ′

P
x(z)
−→ P ′′ ≡α P ′{z/y}

(y)P
x(z)
−→ (y)P ′′

Lemma 6.1(

(y)P |o
τ

−→ (z)((y)P ′′|o′′) ≡ e

Now, (z)(P ′′|o′′) ≡α (y)(P ′|o′) ≡ [P1|o1] and P ′′|o′′ is equivalent to (z)(P ′′|o′′) as experiment.

Therefore, P ′′|o′′ is equivalent to [P1|o1]. By applying the inductive hypothesis, we have

P ′′|o′′ ≤k−1 (y)P ′′|o′′ ≡ e′, since y /∈ fn(o′′). Thus, it follows that also [P1|o1] ≤k−1 e′; but

e ≡ (z)e′ is trivially equivalent to e′, thus [P1|o1] ≤k−1 e, and the thesis follows.

(ii) This half is done in the same style of part (i). The only remarkable difference is, in the

inductive step, when the Close transition of (y)P |o given by:

Close :

Open : P
xy
−→ P ′

(y)P
x(w)
−→ P ′{w/y} o

x(w)
−→ o′

(y)P |o
τ

−→ (w)(P ′{w/y}|o′) ≡ [P1|o1]

with w /∈ fn((y)P ′), is emulated by P |o by the Com transition given by:

Com :
P

xy
−→ P ′ o

x(w)
−→ o′

P |o
τ

−→ P ′|o′{y/w} ≡ e .

Now, since w /∈ fn((y)P ′), it is e ≡ P ′|o′{y/w} ≡α (P1|o1){y/w} and thus, from Lemma 6.4,

P1|o1 ≤ e. But, being P1|o1 trivially equivalent to [P1|o1], it follows that [P1|o1] ≤ e, and thus the

claim follows. 2

Of course, a statement symmetrical to that of the previous lemma holds for P |(y)o and P |o, if

y /∈ fn(P ).

Lemma 6.7 Let w, y be two distinct names; P <
∼ Q and w /∈ fn(P,Q), y /∈ fn(o) imply:

i. P{w/y} may o implies Q{w/y} may o;

ii. P{w/y} must o implies Q{w/y} must o.
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Proof:

i. We have that (P{w/y}|o){y/w} ≡α (P |o{y/w}), with y /∈ fn(P{w/y}|o). Then by Lemma

6.4 we have P{w/y}|o ≤ (P |o{y/w}) and thus P may o{y/w}. This implies Q may o{y/w}. But

(Q|oyw){w/y} ≡α (Q{w/y}|o), with w /∈ fn(Q|oyw). Therefore from Lemma 6.4 we have Q|o{w/y} ≤

(Q{w/y}|o) and therefore the thesis follows.

ii. Suppose Q{w/y} m6 ust o. Then by a reasoning dual to i. (substituting ‘ may ’ with ‘ m6 ust ’

and interchanging ‘P ’ and ‘Q’ the above chain of implications still holds) we can show that it is

P{w/y} m6 ust o. 2

A relevant consequence of the above lemma is the following proposition, which asserts that our

preorder is preserved by substitutions under certain assumptions:

Proposition 6.8 P <
∼ Q and z /∈ fn(P,Q) imply P{z/y} <

∼ Q{z/y}.

Proof: Suppose P{z/y} may o. If y /∈ fn(o), we apply the previous lemma, otherwise take y′

fresh and suppose z 6= y. Consider then the following implications:

P{z/y} may o implies P{z/y} may o{y
′

/y} (Lemma 6.4,

since P{z/y}|o{y
′

/y} ≡α (P{z/y}|o){y
′

/y})

implies Q{z/y} may o{y
′

/y} (Lemma 6.7)

implies Q{z/y} may o{y
′

/y}{y/y′} (Lemma 6.4)

implies Q{z/y} may o (Lemma 6.4) .

By a dual reasoning (interchanging ‘P ’ and ‘Q’ and substituting ‘ may ’ with ‘ m6 ust ’ in the above

chain of implications) we can show that Q{z/y} m6 ust o implies P{z/y} m6 ust o. 2

The following lemma will be used to prove that our preorder is preserved by the parallel com-

position operator:

Lemma 6.9 Let P,R ∈ P, o ∈ O. Then:

i. P may R|o iff P |R may o;

ii. P must R|o iff P |R must o.

Proof: It suffices to show that P |(R|o) and (P |R)|o are equivalent as experiments. The structure

of the proof is very similar to that of Lemma 6.6. We proof only that (P |R)|o ≤ P |(R|o) half, the

other direction is perfectly symmetrical.
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Suppose (P |R)|o
τ

−→ [[P1|R1]|o1] =⇒ [[Pk|Rk]|ok], k > 0. It is obvious that (P |R)|o ↑ iff

P |(R|o) ↑ and that (P |R)|o
ω

−→ iff P |(R|o)
ω

−→. Thus it suffices to show that P |(R|o)
τ

−→ e, where

e is an experiment such that [[P1|R1]|o1] ≤k−1 e (recall the definition of ≤k from the proof of Lemma

6.6). This will be done with a case analysis on the proof of transition (P |R)|o
τ

−→ [[P1|r1]|o1];

later we will refer to this transition by calling it TR.

1. The cases of the form

Par :

Par :
P

τ
−→

P |R
τ

−→

TR ,
Par :

Par :
R

τ
−→

P |R
τ

−→

TR and
Par :

o
τ

−→
TR

are obvious, applying the inductive hypothesis.

2.

Par :

Close :
P

α
−→ P ′ R

β
−→ R′

P |R
τ

−→ (w)(P ′|R′)

(P |R)|o
τ

−→ (w)(P ′|R′)|o ≡ [[P1|r1]|o1]

where α comp β and bn(α) = bn(β) = w. We can suppose w /∈ fn(o) without loss of general-

ity, since, via Lemma 6.1(2), we can always rename w into a fresh w′ in the above derivation,

obtaining an experiment equivalent to [[P1|R1]|o1] as a result. Thus we can consider the

derivation:

Close :
P

α
−→ P ′

Par :
R

β
−→ R′

R|o
β

−→ R′|o

P |(r|o)
τ

−→ (w)(P ′|(R′|o)) ≡ e .

By applying the inductive hypothesis, we get (P ′|R′)|o ≤k−1 P ′|(R′|o) ≡ e′; but e′ is trivially

equivalent to e, and (P ′|R′)|o is equivalent to (w)(P ′|R′)|o ≡ [[P1|o1]|R1] in virtue of Lemma

6.6, since w /∈ fn(o), therefore we have [[P1|R1]|o1] ≤k−1 e.

All other cases are similar to, or easier than, case 2. The corresponding proofs are routine,

and are omitted.

2

We come to the actual soundness proofs for inference rules and axioms.

Proposition 6.10 (Proposition 3.1) The inference rules of Table 3 are sound w.r.t. <
∼

+
.
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Proof:

(α − conv). The soundness of α − conv is an obvious consequence of Lemma 6.4: in fact, for

every observer o, P ≡α Q implies P |o ≡α Q|o, and the latter are equivalent experiments.

(C0). We omit the proofs for the free actions prefixes (τ and free output) and summation cases,

which are much the same as for CCS [DH84].

• The match case is trivial if x 6= y, otherwise it is proven by showing that for each o, [x = x]P |o

and P |o are equivalent as experiments, which is easy. The mismatch case is analogous. Let

us see in more detail the next two cases, which are harder.

• Restriction. Suppose P <
∼

+
Q. Given any observer o, take y′ /∈ fn(P,Q, o) and P ′ ≡ P{y

′

/y},

Q′ ≡ Q{y
′

/y}. Then we have the following chain of implications:

(y)P may o implies (y′)P ′ may o (α-equivalence of experiments)

implies P ′ may o (Lemma 6.6)

implies Q′ may o (Proposition 6.8)

implies (y′)Q′ may o (Lemma 6.6)

implies (y)Q may o (α-equivalence) .

Thus (y)P <
∼may

(y)Q. Now, by a dual reasoning (substitute ‘ may ’ with ‘ m6 ust ’ and

exchange ‘P ’ and ‘Q’ in the above implications) we show that, for any o, (y)Q m6 ust o implies

(y)P m6 ust o, that is (y)P <
∼must

(y)Q. Moreover, if (y)P ⇓ then also P ⇓; thus we have that:

(y)Q
τ

−→ implies Q
τ

−→ implies P
τ

−→ (from the definition of <
∼

+

must
) implies (y)P

τ
−→ .

We have showed that (y)P <
∼

+

must
(y)Q.

• Parallel Composition. Suppose P <
∼

+
Q. Then, for any observer o, we have the following

chain of implications:

P |R may o implies P may R|o (Lemma 6.9)

implies Q may R|o (P <
∼may

Q)

implies Q|r may o (Lemma 6.9)

Thus P |R <
∼may

Q|R. By a similar reasoning, we show that P |R <
∼must

Q|R. Moreover, if

(P |R) ⇓ then it must be also P ⇓ and R ⇓; therefore, if Q|R
τ

−→ , a simple case analysis (on

why Q|R
τ

−→ ) shows that also P |R
τ

−→ . Thus P |R <
∼

+

must
Q|R.

• Finally, the soundness of the congruence rule for bound output prefix is an easy consequence

of the free output prefix and of restriction cases (recall that x(y).P stands for (y)(xy.P )).
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(C1). Suppose y(z).P may o. Besides the trivial case in which o
ω

=⇒ , it must be y(z).P |o =⇒

y(z).P |ok
c

−→ [Pk+1|ok+1], where Pk+1 may ok+1 and Pk+1 ≡ Pσ, for a suitable σ = {x/z}. Now,

if x ∈ fn(z, P,Q), from the hypothesis we have also Qσ may ok+1, from which it easily follows

that y(z).Q may o. Otherwise x /∈ fn(z, P,Q), and then from Proposition 6.8 we have again that

Qσ may ok+1 and hence y(z).Q may o.

Suppose y(z).Q m6 ust o. Besides the trivial case in which o =⇒ ok with ok ↑ and oi 6
ω

−→ for

0 ≤ i ≤ k, it must hold one of the following:

1. y(z).Q|o =⇒ y(z).Q|ok
c

−→ [Qσ|ok+1], where oi 6
ω

−→ for 0 ≤ i ≤ k and Qσ m6 ust ok+1,

for a suitable σ = {x/z}. Now, if x /∈ fn(z, P,Q), from Proposition 6.8 we have that it is also

Pσ m6 ust ok+1, and then it easily follows that y(z).P m6 ust o; otherwise, this result follows directly

from the hypotheses.

2. y(z).Q|o =⇒ y(z).Q|ok 6
τ

−→ , where oi 6
ω

−→ for 0 ≤ i < k. Then it is easily seen that an

equivalent computation from y(z).P |o exists, thus y(z).P m6 ust o. Furthermore, y(z).Q 6
τ

−→ , so

that it is y(z).P <
∼

+

must
y(z).Q. 2

Proposition 6.11 (Proposition 3.2) The axioms of Table 2 are sound w.r.t. <
∼

+
.

Proof:

• Define for each P and α, Derα(P ) = {P ′|P
α

−→ P ′}. The soundness of the laws in Sum,

Match, Mismatch, of laws R2, R4 and of Expansion follows from the following (easy to prove)

fact: if for each α, Derα(P ) = Derα(Q) and (P ↑ iff Q ↑ ) then P <
∼

+
Q and Q <

∼
+

P .

• (R0). The soundness follows from the following fact: for each o and each P , x /∈ fn(P )

implies (x)P |o and P |o are equivalent as experiments. If x /∈ fn(o), this fact follows from

Lemma 6.6; otherwise, first rename x into a fresh x′.

• (R1). Follows from the following fact: for each o, (x)(y)P |o and (y)(x)P |o are equivalent as

experiments. To prove this fact, consider x′, y′ /∈ n(P, o) and P ′ ≡ P{x
′

/x}{y
′

/y}. Then one

has, for each o: (x)(y)P |o ≡α (x′)(y′)P ′|o, which in turn is equivalent, by using twice Lemma

6.6, to P ′|o, which is equivalent, (Lemma 6.6 twice again, but in the opposite direction), to

(y′)(x′)P ′|o ≡α (y)(x)P |o.

• (R3). Consider first the case in which α is not a bound output; in order to prove soundness

of the law, we first show the following facts:

a) for each o, x /∈ n(α): α.(x)P |o
c

−→ [P ′|o′] implies (x)α.P |o
c

−→ [P ′′|o′′] ≡α [P ′|o′];
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b) for each o, x /∈ n(α): (x)α.P |o
c

−→ [P ′|o′] implies α.(x)P |o
c

−→ [P ′|o′].

a) is proven by a case analysis on why α.(x)P |o
c

−→ [P ′|o′]. The only non trivial case is

when α = z(y), z, y 6= x, and

Close :
α.(x)P

z(x)
−→ (x′)P{x

′

/x}{x/y} o
z(x)
−→ o′

α.(x)P |o
c

−→ (x)((x′)P{x
′

/x}{x/y}|o′) , z 6= x

(notice that here we have made explicit the α-renaming of x into a fresh x′ caused by the

substitution {x/y}). Then, from Lemma 6.1(2), we have that o
z(x′′)
−→ o′′ ≡α o′{x

′′

/x}, x′′ fresh,

so that we have the derivation:

Close :
(x)α.P

z(x′′)
−→ (x)P{x

′′

/y} o
z(x′′)
−→ o′′

(x)a.P |o
c

−→ (x′′)((x)P{x
′′

/y}|o′′) ≡α (x)((x′)P{x
′

/x}{x/y}|o′)

b) is trivial to prove. Statements a) and b) together are sufficient to prove that x /∈ n(α)

implies that α.(x)P |o and (x)α.P |o are equivalent as experiments when α is not a bound

output. Finally, if α is a bound output apply first law R1 then law R3.

• (Omega). Trivial.

• (τ -laws). The proofs for these laws are very similar to those of the corresponding ones for CCS

in [DH84]. As an example, we prove N3, confining ourselves to the ‘must’ part (the ‘may’ is

trivial). We deal with the three cases (α = β = τ , α, β ∈ IA and α, β ∈ OA ) uniformely. In

the sequel, ‘P moves-on o’ means ‘P |o
c

=⇒ or P
τ

−→ ’. Let T ≡ α.P + τ.(β.Q+R) and U ≡

τ.(α.P +β.Q+R). Suppose P m6 ust o. Then it is either α.P m6 ust o or τ.(β.Q+R) m6 ust o.

Let us exclude the trivial case in which o =⇒ ok, with ok ↑ and oi 6
ω

−→ for 0 ≤ i ≤ k. Suppose

α.P m6 ust o; then it is easily seen that if α.P moves-on o also U m6 ust o, otherwise (i.e.

not α.P moves-on o) it must be β.Q + R m6 ust o and hence also U m6 ust o. In the second

case, i.e. τ.(β.Q + R) m6 ust o, it is also β.Q + R m6 ust o. Now, if β.Q + R moves-on o,

then it is easily seen that also U m6 ust o; otherwise, if not β.Q + R moves-on o, then there

exists a computation (β.Q+R)|o =⇒ (β.Q+R)|ok 6
τ

−→ . But then, since subj(α) = subj(β),

a unsuccessful computation U |o =⇒ (α.P + β.Q + R)|ok 6
τ

−→ exists. Thus we have proven

that U <
∼must

T . The converse (U m6 ust o) is similar.

2
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D1 τ.P + Ω = P + Ω

D2 α.(
∑

i∈I τ.Pi) =
∑

i∈I α.Pi I finite non-empty set

D3 α.P + Ω = α.(P + Ω) + Ω

D4 P + τ.Q = τ.(P + Q) + τ.Q

D5 α.P + α.Q = α.P + α.Q + α.(P + Q)

D6 α.P + α.(P + Q + R) = α.P + α.(P + Q) + α.(P + Q + R)

D7 α.τ.P = α.P

D8 P + τ.(P + Q) = τ.(P + Q)

D9 α.(P + τ.Q) + α.Q = α.(P + τ.Q)

D10 Ω + α.(
∑

i∈I Pi + Ω) = Ω +
∑

i∈I α.Pi I finite non-empty set

Table 4: Derived Laws

6.4 Completeness proofs

We list in Table 6.4 a few derived laws, borrowed from [DH84], that will be useful in later proofs.

Their derivation from the axioms and the inference rules of F is the same as in [DH84], except

that each application of the action-prefix congruence rule has to be replaced by an application

of either C0 - output or C1; this presents no problem. We have now to proof some preliminary

lemmata about head normal forms. The first task is to show that each process has a provably

equivalent hnf or Ω-hnf.

Lemma 6.12 If P and Q are hnf’s then there exists a hnf H s.t. F ⊢ τ.P + τ.Q = H.

Proof: We have three different cases, according to the form of P and Q.

1. P ≡
∑

i τ.Pi and Q ≡
∑

j τ.Qj (we omit the ranges of the indeces to simplify notation). The

schema of the proof is like that of Lemma 4.2.6 in [DH84], but an extra step is needed to reduce

the resulting term into a form such that Property 3.6 of hnf’s holds; in this step the law N3 is used.

We only do in detail this part of the proof. By applying the laws D2, D8, N3 and N1 exactly like in

[DH84] (just taking care of reading ‘a’ as ‘α’), we can re-write τ.P + τ.Q into an equivalent agent

S such that:

τ.P + τ.Q = S ≡
∑

A∈L

τ.SA
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where L is a suitable, possibly not saturated, collection of events sets, and for each A ∈ L,

SA ≡
∑

α∈Λ(A) αSα, with Λ(A) ⊆ Λ a suitable set of actions, with the property that A = {a ∈

Ev| for some y, a(y) ∈ Λ(A) or ay ∈ Λ(A)}. Now, it is possible that Property 3.6 of hnf’s does not

hold for such a S, i.e. there exist SA and SB such that SA has a summand α.Sα and SB has a

summand β.Sβ, with α, β ∈ OA and subj(α) = subj(β), but such that α.Sα is not a summand of

SB. Then, for suitable terms T, S1, S2, we can write:

S = τ.SA + τ.SB + T

= τ.(α.Sα + S1) + τ.(β.Sβ + S2) + T

= α.Sα + τ.(α.Sα + S1) + β.Sβ + τ.(β.Sβ + S2) + T (D8)

= τ.(α.Sα + β.Sβ + S1) + τ.(α.Sα + β.Sβ + S2) + T (N3).

By applying systematically this re-writing for each SA and SB, we can re-write S into a term S′

for which the Property3.6 does hold, i.e., for a suitable normal fuction g : Ev(L) −→ P ,

S =
∑

A∈L

τ.
∑

a∈A

g(a) ≡ S′.

Now, it remains to see whether L is saturated. If it is not, we can apply to S′ the saturation

construction of [DH84], based on the laws D5 and D6. The construction apply exactly in our case

(only take care of reading ‘a.pa’ as ‘g(a)’).

Case 2. (P in α-hnf and Q in τ -hnf) and case 3. (P and Q in α-hnf) easily reduce to case 1.

via law D2 (see [DH84]). 2

Lemma 6.13 Let {Pi| 0 ≤ i ≤ k}, k ≥ 0, be a set of hnf’s; then there exists a hnf H s.t.

F ⊢
∑

0≤i≤k Pi = H.

Proof: Consider any couple of summands Pi, Pj of
∑

0≤i≤k Pi; we can reduce Pi + Pj to a hnf in

one of the following ways:

• if Pi, Pj are both in τ -hnf, we can apply first law D2 (with α = τ) and then the above lemma

to reduce Pi + Pj to a hnf;

• if Pi is in α-hnf and Pj is in τ -hnf, apply laws D4 and D7 to get: Pi +Pj = τ.(Pi +PjA)+τ.Pj ,

where PjA is any summand of Pj; by applying law N1, if needed, Pi + PjA is reduced to an

α-hnf; applying the previous lemma we get the wanted result;

• if both Pi and Pj are in α-hnf, apply law N1, if needed, to reduce Pi + Pj to a α-hnf.
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By repeatedly applying the above reductions, we can re-write
∑

0≤i≤k Pi into a hnf . 2

Proposition 6.14 (Proposition 3.8) For every P s.t. P ⇓, there exists a process h(P ) in hnf

s.t. F ⊢ P = h(P ).

Proof: (outline) The proof is by structural induction on P , and it is similar to the one for CCS

in [DH84] (Proposition 4.2.16), only in the cases of Restriction and Parallel Composition there

are some differences. In the former case (P ≡ (y)P ′), when distributing the restriction over a

summation g(a), a ∈ OUT (applying the law R2), an extra bound output summand may be

generated; then we have to apply the law N1 in this way: x(y).Pα + x(y).Pβ = x(y).(τ.Pα + τ.Pβ),

to eliminate the double occurrence of the bound output summands. The Parallel Composition case

(P ≡ P1|P2) is in turn an induction on dpc(P1|P2). Both the cases of Parallel Composition and the

Summation (P ≡ P1 + P2) rely on the two previous lemmata. 2

Proposition 6.15 (Proposition 3.9) For every P s.t. P ⇑, there exists an Ω-hnf Ω(P ) s.t.

F ⊢ P = Ω(P ).

Proof: An easy structural induction on P , which relies on the law D1, D3 and D10. 2

The following lemmata will be used in the proof of the completeness theorem.

Lemma 6.16 Let P, Q be in hnf and P <
∼ Q. Then:

i. for each α ∈ Init(P ) ∩ Init(Q) ∩ OA, Pα
<
∼ Qα, and

ii. for each α = x(y) ∈ Init(P ) ∩ Init(Q) ∩ IA and z ∈ fn(Pα, Qα, y), Pα{z/y} <
∼ Qα{z/y}.

Proof:

i. We first show the may part. Assume α = xy and Pα may o. Then, taken a fresh variable

z /∈ n(y, P,Q, o), let o′ ≡ x(z).[z = y]o. Since P |o′
c

=⇒ Pα|[y = y]o
ω

=⇒ , it is P may o′. It follows

Q may o′. But every successful computation for Q|o′ must begin like Q|o
c

=⇒ Qα|[y = y]o, from

which it follows that also Qα may o.

Suppose α = x(w). We can suppose, by α-renaming, that w /∈ fn(P,Q, o). Now, let o′ ≡

x(w)[w /∈ Obj(P,Q)]o and repeat the previous reasoning: we have that P may o′, which implies

Q may o′. But every successful computation from Q|o′ must be of the form (up to α-equivalence)

Q|o′
c

=⇒ (w)(Qα|[w /∈ Obj(P,Q)]o)
ω

=⇒ , because each different computation, having an initial

section of the form Q|o′
c

=⇒ Qα|[y /∈ Obj(P,Q)]o, with β 6= α and y ∈ Obj(Q), is unsuccessful.

This implies Qα may o. This suffices for the may part.
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Now, let us consider the must part. Assume that α = xy and Pα must o. Take z /∈ n(y, P,Q, o)

and let o′ ≡ x(z).([z = y]o + [z 6= y]ω.0) + τ.ω.0. It is easily seen that P must o′ and therefore

Q must o′. Since Q|o′
c

=⇒ Qα|([y = y]o + [y 6= y]ω.0), it follows that Qα must o. If α = x(w)

and Pα must o, the above reasoning can be repeated with the observer:

o′ ≡ x(z).([z /∈ Obj(P,Q)]o +
∑

y∈Obj(P,Q)

[z = y]ω.0) + τ.ω.0, z fresh.

Thus we have proven part i.

ii. Suppose α = x(y) and let z ∈ fn(Pα, Qα, y) and σ = {z/y}. Suppose Pασ may o. We

have to show that Qασ may o as well. Now, consider o′ ≡ xz.o. We have P may o′, since

P |o′
c

=⇒ Pασ|o
ω

=⇒ . Therefore Q may o′ and this implies in turn that Q|o′
c

=⇒ Qασ|o
ω

=⇒ ,

from which it follows Qασ may o.

Suppose Pασ must o; we have to show that Qασ must o as well. Let o′ ≡ xz.o + τ.ω.0. We

have that P must o′ which implies Q must o′. But, since Q|o′
c

=⇒ Qασ|o, it follows Qασ must o.

2

The following definition gives a syntactical relation for ‘comparing’ hnf’s at their top levels. It

is a trait d’union between the semantical relation <
∼

+
and the proof-theoretic one ⊑ .

Definition 6.17 Let P and Q be in hnf. Then P ≺ Q iff Init(P ) = Init(Q) and:

i. P ≡
∑

a∈A g1(a) and Q ≡
∑

a∈A g2(a), or

ii. P ≡
∑

A∈L τ.PA and Q ≡
∑

A∈K τ.QA, with K ⊆ L, or

iii. P ≡
∑

A∈L τ.PA and Q ≡
∑

a∈A g2(a), with A ∈ L.

The relationship between <
∼

+
and ≺ is given by the following:

Lemma 6.18 Let P and Q be in hnf and P <
∼

+
Q. Then P ≺ Q.

Proof: Since P <
∼may

Q, P ⇓ and P <
∼must

Q, from Lemma 6.5 it easily follows that Init(P ) =

Init(Q) (up to α-equivalence). Let us prove the second condition of Definition 6.17. There are

three cases, according to the form of P and Q.

i. P and Q are in α-hnf. Then, since Init(P ) = Init(Q), condition i. of the definition holds.

ii. Suppose that P and Q are like in case ii. of the definition. We show that K ⊆ L. Now since

Init(P ) = Init(Q), it is Ev(K) = Ev(L). Since L = {A1, ..., An} is saturated, it suffices to show
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that: for each B ∈ K there exists Ai ∈ L s.t. Ai ⊆ B (this suffices because Ai ⊆ B ⊆ Ev(K) =

Ev(L) implies B ∈ L). By contradiction, suppose there exists B ∈ K s.t. for each Ai ∈ L, Ai 6⊆ B,

i.e. for each i, 0 ≤ i ≤ n, there exists an ai ∈ Ai − B. Let A = {a1, ..., an} and define for each

a ∈ A: o(a) = xy.ω.0 if a = x ∈ IN , o(a) = x(y).ω.0 otherwise, where y is any name. Also,

define o ≡
∑

a∈A o(a). Now, it is clear that P must o, but Q m6 ust o, due to the unsuccessful

computation Q|o
τ

−→
∑

a∈B g(a)|o. Thus we arrived at a contradiction. Therefore K ⊆ L, and the

thesis follows.

iii. Suppose P and Q are like in case iii. of the definition. Suppose by contradiction that A /∈ L.

Then we can repeat the above construction with B = A. Finally, if P is in α-hnf, then P 6
τ

−→ .

But being P <
∼

+

must
Q, it is also Q 6

τ
−→ , thus Q as well needs to be in α-hnf and we fall in case i. 2

Lemma 6.19 Let P and Q be in hnf and P ≺ Q. Then P ⊑ Q if for each α ∈ Init(P ):

i. α ∈ OA implies Pα ⊑ Qα, and

ii. α = x(y) ∈ IA implies for each z ∈ fn(Pα, Qα, y), Pα{z/y} ⊑ Qα{z/y}.

Proof: Since Init(P ) = Init(Q), it is Ev(P ) = Ev(Q). Let g1 and g2 be the functions associated

with P and Q, respectively. By applying the rules C0 for α ∈ OUT and C1 for α ∈ IN , it is

straightforward to show that for each a ∈ Ev(P ) = Ev(Q), g1(a) ⊑ g2(a). Then we consider

the term R ≡ P [g2(a)/g1(a), a ∈ Ev(P )] (where P [Y/X] denotes the agent obtained from P by

replacing each (sub)term X in P with Y ), and using the rules in C0, we show that P ⊑ R. Now

the proof that R ⊑ Q proceeds, using τ -laws, exactly like proof of Lemma 4.3.6.i) in [DH84] (just

read ‘a.qa’ as ‘g2(a)’.) 2

Lemma 6.20 Suppose P is in Ω-hnf and Q is in hnf or Ω-hnf. If P <
∼ Q then for each α ∈

Init(P ) ∩ Init(Q):

i. α ∈ OA implies Pα + Ω <
∼

+
Qα + Ω, and

ii. α = x(y) ∈ IA implies for each z ∈ fn(Pα, Qα, y), Pα{z/y} + Ω <
∼

+
Qα{z/y} + Ω.

Proof: Similar to, but easier than, that of Lemma 6.16. 2

Lemma 6.21 Suppose P is in Ω-hnf and Q is in hnf or Ω-hnf. Then P ⊑ Q if Init(P ) ⊆ Init(Q)

and for each α ∈ Init(P ):

i. α ∈ OA implies Pα + Ω ⊑ Qα + Ω, and
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ii. α = x(y) ∈ IA implies for each z ∈ fn(Pα, Qα, y), Pα{z/y} + Ω ⊑ Qα{z/y} + Ω.

Proof: Similar to, but easier than, that of Lemma 6.19. 2

We can finally give the completeness proof:

Theorem 6.22 (Theorem 3.11) P <
∼

+
Q implies F ⊢ P ⊑ Q.

Proof: The proof is by induction on dpc(P ).

Basis. dpc(P ) = 0. If P ⇑ then Ω(P ) ≡ Ω exists (Proposition 3.9 and the thesis follows from law

Omega. Otherwise, P ⇓ and therefore hnf(P ) exists (Proposition 3.8). Then it is also Q ⇓ and thus

hnf(Q) exists. It must be hnf(P ) ≡ τ.0 or hnf(P ) ≡ 0 and, since Init(hnf(P )) = Init(hnf(Q)),

it is the same for hnf(Q). Now, if hnf(P ) ≡ τ.0 and hnf(Q) ≡ 0, the thesis follows from N4.

Otherwise it must be hnf(P ) ≡ hnf(Q) ≡ 0.

Inductive Step. dpc(P ) > 0. If P ⇑, Ω(P ) exists and Q has an (Ω-)hnf, say H. Since

Ω(P ) <
∼may

H, from Lemma 6.5 we get Init(Ω(P )) ⊆ Init(H). By applying Lemma 6.20, we

have that for each α ∈ Init(Ω(P )):

i. Ω(P )α + Ω <
∼

+
Hα + Ω, for α ∈ OA;

ii. Ω(P )ασ+Ω <
∼

+
Hασ+Ω, for each α = x(y) ∈ IA and each σ = {z/y} with z ∈ fn(Ω(P )α,Hα, y).

Since for each considered σ: dpc(Ω(P )ασ) < dpc(Ω(P )) = dpc(P ), we can apply the inductive

hypothesis to get that the above relations i. and ii. still hold when replacing <
∼

+
with ⊑ .

By applying Lemma 6.21, we obtain the claim. If P ⇓ then also Q ⇓ and hnf(P ) ≡ H1 and

hnf(Q) ≡ H2 both exist. Moreover, by possibly applying law D7 (α.X = α.τ.X), we can suppose

H1 is in a form s.t. for each α ∈ Init(H1), H1α is of the form τ.H ′, for some H ′. From Lemma 6.18,

we get H1 ≺ H2. Moreover, from Lemma 6.16, we obtain that for each α ∈ Init(H1) = Init(H2):

a. H1α
<
∼

+
H2α, α ∈ OA;

b. H1ασ <
∼

+
H2ασ, for α = x(y) ∈ IA and for each σ = {z/y} with z ∈ fn(H1α,H2α, y).

(Recall that H1α
τ

−→ ) By applying the inductive hypothesis, we obtain that relations a. and b.

still hold when replacing <
∼

+
with ⊑ . By applying Lemma 6.19 we then obtain the thesis. 2

We now prove a proposition about a variant of the testing theory not using the mismatch

operator. The significance of this result is discussed in Subsection 2.3.
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Proposition 6.23 (Proposition 2.1) Let be x, y and w be any three names. Then:

a. x(w).0 <
∼

−

may
x.y.0;

b. x(w).Ω <
∼

−

must
x(w).0 + xy.Ω.

Proof: To prove this proposition we need a stronger version of Lemma 6.1. More precisely, we

need to discard the hypothesis on the injectivity of σ in item 3 of the lemma. This is possible

because, when mismatch is not considered, we can directly apply Lemma 3 of [MPW89]. Formally,

we have:

a. Given a mismatch-free observer o, suppose P may o. We can assume, w.l.o.g., that w /∈

fn(o); then it must be, for some o′, that P |o =⇒ P |o′
c

−→ (w)(0|o1), where o1
ω

=⇒ and o
x(w)
−→ o1.

On the other side, we have Q|o =⇒ Q|o′
c

−→ 0|(o1{y/w}). Then, by (repeatedly) applying Lemma

6.1.3 with the hypothesis σ injective discarded4 it is easy to see that also o1{y/w}
ω

=⇒ and thus

also Q may o, and the thesis follows.

b. Let P ≡ x(w).Ω and Q ≡ x(w).0 + xy.Ω. Suppose, for any mismatch-free observer o, that

Q must o. We can assume w.l.o.g. that w 6= y and that w /∈ fn(o). We shall consider the possible

cases of unsuccessful computation for Q | o and in each case exhibit a unsuccesful computation for

P |o as well.

The non-trivial cases are those in which a communication between Q and the observer occurs

before the observer itself reaches a divergent state, i.e. those computations having an initial segment

of the kind:

Q|o =⇒ Q | ok
c

−→ [Q′ | ok+1]

where o
τ

−→ o1
τ

−→ ...
τ

−→ ok with oi 6
ω

−→ for 0 ≤ i ≤ k + 1 and Q′ m6 ust ok+1. Let us analyze

the possible cases for the communication Q | ok
c

−→ [Q′ | ok+1]. There are two possibilities:

1. Q synchronizes via the bound output x(w). In this case, also P |o has the failing computation

P |o =⇒ P |ok
c

−→ (w)(Ω|ok+1).

2. Q synchronizes via the free output xy. It is therefore ok
x(z)
−→ o′ for some z and o′ such that

ok+1 ≡ o′{y/z}. Therefore, P |o has the failing computation with the initial segment:

P |o =⇒ P |ok
c

−→ (w)(Ω|o′{w/z}) .

4This is essential, because we do not actually know whther y /∈ fn(o1), i.e. whether σ is injective on o1.
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To prove that this yields a failing computation, it suffices to show that o′{w/z} 6
ω

−→ . Suppose

the contrary, i.e. o′{w/z}
ω

−→ . Since w /∈ fn(ok+1) (this is proven by repeatdly applying

Lemma 6.1.1), it is ok+1 ≡ o′{y/z} ≡α (o′{w/z}){y/w}. In virtue of Lemma 6.1.3. with the

hypothesis σ injective discarded, it would hence be also ok+1
ω

−→ ; but this contradicts

Q′ m6 ust ok+1.

2

6.5 Denotational Semantics

Definition 6.24 (Finite-Breadth Approximants) For each P , define the set FBA(P ) ⊆ FSNF

inductively as follows:

• FBA(op(P1, ..., Pk)) = {snf(op(N1, ...,Nk))|Ni ∈ FBA(Pi), for i = 1, ..., k}

for each k-ary operator op different from input prefix, k = 0, 1 or 2.

• FBA(x(y).P ) = {x(w).(
∑

z∈F [w = z]Nz + [w /∈ F ]Ω)|F ⊆fin N , Nz ∈ FBA(P{z/w})

and w fresh }.

Notice that, by construction, N ∈ FBA(P ) implies N ⊑must P .

Proposition 6.25 Let P and Q be processes. Then:

a. N ∈ FBA(P ) implies [[N ]] = [N ];

b. [[FBA(P )]] is directed in D and [[P ]] = sup[[FBA(P )]];.

c. N ∈ FSNF and N ⊑must P implies there exists M ∈ FBA(P ) such that N ⊑must M ;

d. If for each N ∈ FBA(P ) N ⊑must Q then P ⊑must Q.

Proof: (outline) In the proof we use the notion of finite-breadth term, a term in which every input

prefix x(w). is followed by a subterm of the form (
∑

z∈F [w = z]Pz +[w /∈ F ]Ω), with w /∈ F . Fsnf’s

are of course particular cases of finite-breadth terms.

a. Show, by structural induction, that for each finite-breadth term P , snf(P ) ∈ FSNF and

[[P ]] = [snf(P )].
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b. The proof is a structural induction on P , which exploits the continuity of the functions fop, out

and inp. The only difficult case is when P ≡ x(y).R for some process R. We consider only

this case. Define for each z, Rz = R{z/y}; we have:

[[FBA(P )]] = {[x(w).(
∑

z∈F [w = z]Nz + [y /∈ F ]Ω)]|F ⊆fin N , Nz ∈ FBA(Rz), w fresh }

(Definition of FBA and part a.)

= {inp(x, f)| f ∈ K} (Definition of inp)

where K is the set of functions {f : N −→ PO| f is of the kind: λz. if z ∈ F then [Nz] else [Ω],

with F ⊆fin N and Nz ∈ FBA(Rz)}. Now it is easy to check that K is directed in (N −→ D):

this is an easy consequence of the fact that for each z, by inductive hypothesis [[FBA(Rz)]]

is directed in D. Therefore, due to continuity of inp(x,−), we have:

sup[[FBA(P )]] = sup{inp(x, f)|f ∈ K}

= inp(x, sup K).

On the other side:

[[P ]] = inp(x, λz.[[Rz ]])

= inp(x, λz.sup [[FBA(Rz)]]) (inductive hypothesis)

= inp(x, sup H)

where H = {f | f is a function of the form: λz.[Nz] with Nz ∈ FBA(Rz)}. We have K ⊆ H

and thus sup K � sup H. On the other side, it is easily seen that each function of H is

approximable by a chain of functions in K. In fact, given any f = λz.[Nz] in H, consider

the chain Cf = {fi| i ≥ 0} ⊆ K, with the functions fi, i ≥ 0, defined in this way: fixed any

infinite chain of finite sets F0 ⊆ F1 ⊆ F2 ⊆ ... s.t. ∪i≥0Fi = N , define fi = λz.if z ∈ Fi

then [Nz] else [Ω]; it is easy to check that sup Cf = f . Now apply the following fact from

cpo theory: given X,Y ⊆ D cpo, with sup’s sx, sy respectively, if for each y ∈ Y there exists

Ay ⊆ X s.t. sup Ay = y, then sy � sx. We obtain that sup H � sup K, and therefore

sup H = sup K; therefore inp(x, sup K) = inp(x, sup H) and the thesis follows.

c. It is sufficient to prove that for any finite-breadth term P and any process Q it holds that

P ⊑must Q implies there exists M ∈ FBA(P ) such that P ⊑must M . This is proved by

induction on the depth of the formal proof of P ⊑must Q within the proof system for ⊑must .

The relevant case is when C1 is the last applied rule. In that case, techniques similar to the

ones used in the above item b. can be employed.

46



d. The claim easily follows from Lemma 5.1 and from the following assertion: for any process P

and any restriction-free observer o, if P must o then there exists N ∈ FBA(P ) such that

N must o. Thus, it is sufficient to prove the latter assertion. Indeed, it holds that for any

process P and any restriction-free observer o, if P must o then there exists M ∈ FSNF

such that M must o (this can be proved by specializing the proof for the infinite case of

Proposition 6.29; only notice that, for this finite case, the proof of the latter can be re-

written without mentioning any recursion law). Now, since M ⊑must P , from part c. of this

proposition we get that there exists N ∈ FBA(P ), M ⊑must P , s.t. M ⊑must N ; therefore

N must o, and the assertion is proven.

2

Now we can prove:

Theorem 6.26 (Full abstraction for finite processes) For each P and Q, P ⊑must Q iff

[[P ]] � [[Q]].

Proof:

(If) We first prove that given any N ∈ FSNF , [[N ]] � [[Q]] implies N ⊑must Q. In fact,

[[FBA(Q)]] is directed in D and [[N ]] is compact in D; hence, due to Proposition 6.25, part b., there

exists N ′ ∈ FBA(Q) s.t. [[N ]] � [[N ′]], i.e. N ⊑must N ′ for part a. of Proposition 6.25. But

N ′ ⊑must Q, and thus N ⊑must Q. Now, [[P ]] � [[Q]] implies, for the previous proposition, part

b., that for each N ∈ FBA(P ) it is [[N ]] � [[Q]] and therefore N ⊑must Q. Applying part d. of

Proposition 6.25, we obtain then P ⊑must Q.

(Only If) In virtue of Proposition 6.25, part c., for each N ∈ FBA(P ), there exists a N ′ ∈

FBA(Q) s.t. N ⊑must N ′, i.e. [[N ]] � [[N ′]] in D, for part a. of the same proposition. From

this fact it follows that sup [[FBA(P )]] � sup [[FBA(Q)]], i.e. [[P ]] � [[Q]] in D, for part b. of

Proposition 6.7. 2

6.6 Dealing with Infinite Agents

All proofs given in the soundness subsection for the finite calculus easily extend to arbitrary agents

via the following lemma, that generalizes the assertions after Definition 6.3 to the infinite agents.

Essentially, it says that, even in the case of infinite agents, if two processes always generate finite

equivalent sequences of silent moves, when run in parallel with the same observer, then they are

must-equivalent.
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Lemma 6.27 Given P,P ′ processes and o, o′ observers, suppose P |o ≤ P ′|o′. Then P m6 ust o

implies P ′ m6 ust o′.

Proof: Consider the possible kinds of failing computation for P |o. By definition of ≤ between

experiments, if a finite failing computation exists for P |o, then it must also exist for P ′|o′.

The only remaining case is therefore P |o = e0
τ

−→ e1
τ

−→ e2
τ

−→ · · · and ei 6
ω

−→ for i ≥ 0.

Suppose by contradiction that P ′ must o′. Consider the computation tree from P ′|o′ (with τ -

actions only) where α-equivalent direct descendants of each node are identified, and with branches

pruned to obtain a tree whose leaves are all those nodes that can give rise to
ω

−→ transitions; call

this tree T≡αω. Since P ′ must o′, T has the property that for each non-leaf node e, e ↓. It is not

difficult to show that if e ↓ then e has a finitely many (up to α-equivalence) τ -derivatives; therefore

T is finitary. By definition of ≤ between experiments, for each k ≥ 0, there exists in T a path

(P ′|o′ = f0, f1, ..., fk) with the property that (e0
τ

−→ ...
τ

−→ ek) and (f0
τ

−→ ...
τ

−→ fk) are

equivalent sequences of τ -transitions. By applying Koenig’s lemma, there exists in T an infinite

path; but this contradicts P ′ must o′. 2

The following lemma, that provides a different characterization of the must preorder, is necessary

for proving the next proposition.

Lemma 6.28 (Lemma 5.1) The must testing preorder <M over RPobtained by taking the set of

observers without restriction coincides with <
∼must

.

Proof: Obviously P <
∼must

Q implies P <M Q.

To show the reverse implication, suppose that P <M Q and P must o, where o is any observer.

By possibly α-renaming o, we can suppose w.l.o.g. that each restriction (y) in o is such that

y /∈ fn(P,Q, o). Fixed a restriction (y) of o, consider now the observer r(o, y) where, intuitively,

all restrictions (y) have been discarded; more precisely r(o, y) is defined inductively in this way:

r(op(P1, ..., Pk), y) = op(r(P1, y), ..., r(Pk , y)), for any k-ary operator op, k = 0, 1 or 2, different from

(y), r((y)o′, y) = r(o′, y). It can be easily proved, by structural induction on o and by exploiting

Lemma 6.4 in case o = (y)o′, that R|o and R|r(o, y) are equivalent as experiments, where R is P

or Q. By repeatedly applying this result, we can eventually get rid of all the restrictions of o, i.e.

obtain a restriction-free observer o′, such that R|o and R|o′ are equivalent as experiments, where

R is P or Q.

Thus P must o′; but being P <M Q, we have Q must o′, and therefore, since Q|o′ is equivalent

to Q|o, also Q must o. 2
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Proposition 6.29 (Proposition 5.2) For any process P and for any restriction-free observer o,

if P must o then there exists D ∈ FIN(P ) such that D must o.

Proof: In this proof “X ⊑must Y ” will be used as a shorthand for “A−{ω− induction,REC2} ⊢

X ⊑must Y ”. It is a routine task of algebraic semantics (see [Hen88]) to show that, for any finite D

and any P , if D ⊑must P , then there exists D′ ∈ FIN(P ) such that D ⊑must D′. Thus, to prove

our claim, it suffices to show there exists a finite D s.t. D ⊑must P and D must o. Actually, we

will show a little stronger result, i.e.: if P must o then there exists a finite strong normal form N

s.t. N ⊑must P and N must o. Note that, by hypothesis, o cannot perform any bound output

action.

Suppose now that P must o and consider the computation tree T from P |o, defined like in the

proof of Lemma 6.27. Since P must o and T is finitary, it follows from Koenig’s lemma that T is

finite. The proof is by induction on the depth of communication of T , i.e. the maximal number of

communications between the process and the observer in a path from the root to a leaf in T≡αω. It

is not hard to show that this number does not change if we consider the computation tree generated

by a P ′|o, for any P ′ must-equivalent to P .

If P ⇑, then it must be o
ω

−→ , and we can take N ≡ Ω. If P ⇓, then we can suppose that P is

in hnf. There are two cases.

1. P ≡
∑

α∈A α.Pα. Agent N is built up out of the finite agents Nα, α ∈ A, defined as follows:

• α = x(y). Consider the set:

Pairs(α) = {(z, o′)| o
τ

−→ o1
τ

−→ · · ·
τ

−→ ok
xz
−→ o′, oi 6

ω
−→ for 0 ≤ i ≤ k} .

For each (z, o′) ∈ Pairs(α), we have P |o
c

=⇒ Pα{z/y}|o
′, thus Pα{z/y} must o′; therefore,

for each z such that some pair (z, o′) is in Pairs(α), Pα{z/y} must
∑

(z,o′)∈Pairs(α) τ.o′

and, by induction hypothesis, there exists a finite strong normal form N(α, z) ⊑must

Pα{z/y} such that N(α, z) must
∑

(z,o′)∈Pairs(α) τ.o′, i.e N(α, z) must o′, for each (z, o′) ∈

Pairs(α). Note that N(α, z) does not depend on y, thus, by possibly α-renaming y in

P , we can suppose y /∈ Π1(Pairs(α)) and y /∈ fn(N(α, z)) (Π1 is the projection on the

first coordinate). Finally, define Nα to be

∑

z∈Π1(Pairs(α))

[y = z]N(α, z) + [y /∈ Π1(Pairs(α))]Ω .

By applying Match and Mismatch laws it is easy to check that for each name w,

Nα{w/y} ⊑must Pα{w/y}.

49



• α = xy. If the set

S = {o′| o
τ

−→ o1
τ

−→ · · ·
τ

−→ ok and P |ok
c

−→ Pα|o
′, oi 6

ω
−→ for 0 ≤ i ≤ k}

is not empty, then Pα must
∑

o′∈S τ.o′; by induction hypothesis, there exists a fsnf

N ′ ⊑must Pα with the property that for each o′ ∈ S, N ′
α must o′; take Nα to be N ′

α. If

S = ∅ , take Nα to be Ω.

• α = x(y). We can suppose, by possibly α-renaming, that y /∈ fn(o). If the set

S = {o′| o
τ

−→ o1
τ

−→ · · ·
τ

−→ ok and P |ok
c

−→ (y)(Pα|o
′), oi 6

ω
−→ for 0 ≤ i ≤ k}

is not empty, then Pα must
∑

o′∈S τ.o′, and, by induction hypothesis, there exists a fsnf

N ′ ⊑must Pα with the property that for each o′ ∈ S, N ′
α must o′; take Nα to be N ′

α. If

S = ∅ , take Nα to be Ω.

Now define N to be the fsnf
∑

α∈A α.Nα. By using the rules C0 and C1, we see that N ⊑must P

and furthermore by construction N must o.

2. P ≡
∑

A∈L τ.
∑

α∈A α.Pα. For each A ∈ L,
∑

α∈A α.Pα must o; repeat the above construc-

tion, thus there exists a fsnf NA s.t. NA ⊑must

∑
α∈A α.Pα and NA must o; then take N to

be
∑

A∈L τ.NA.

2

Theorem 6.30 (Theorem 5.1) [[P ]] � [[Q]] in D if and only if P <
∼

+

must
Q.

Proof: Recall from [HP80] that:

{[[D]]ρ|D ∈ FIN(P )} is directed in D and [[P ]]ρ = sup {[[D]]ρ|D ∈ FIN(P )} . (1)

Define for each closed non-finite P , FBA(P ) = {N |N ∈ FBA(D) for some D ∈ FIN(P )}. From

Proposition 6.25, Theorem 6.26 and 1 above, it easily follows that:

[[FBA(P )]] = {[[N ]]|N ∈ FBA(P )} is directed in D and [[P ]] = sup {[[N ]]|N ∈ FBA(P )} . (2)

On the other side, it is easy to check that for each closed P and Q, we have P ⊑must Q if and

only if for each D ∈ FIN(P ) there exists E ∈ FIN(Q) such that D ⊑must E (to prove the ‘if’

part, exploit ω − induction rule; for the ‘only if’ part, see the proof of Proposition 6.29). From

Proposition 6.25, it therefore follows that:

P ⊑must Q iff for each N ∈ FBA(P ) there exists a M ∈ FBA(Q) s.t. N ⊑must M . (3)
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Recalling that [[FBA(P )]] is a set of compact elements in D, it follows from (2): [[P ]] � Q in

D if and only if for each N ∈ FBA(P ) there exists an M ∈ FBA(Q) such that [[N ]] � [[M ]] in D.

Since it has already been proved for finite agents N and M that [[N ]] � [[M ]] in D if and only if

N ⊑must M , we have from (3) that [[P ]] � [[Q]] in D iff P ⊑must Q, and the thesis follows from

the soundness and completeness of ⊑must w.r.t. <
∼

+

must
. 2

7 Conclusions

We have equipped the π-calculus with a complete proof system and a fully abstract denotational

model w.r.t. testing-based behavioural relations. Besides this, we have assessed the importance

of the mismatch operator from an observational point of view and the stability of the testing

approach w.r.t. different (early, late) underlying transition systems. The paper has been concerned

with a particular presentation of the π-calculus, that of [MPW89]; however, we think that the

constructions and the results presented here easily generalize to other variants of -calculus, such as

its polyadic version (that permits exchanging tuples of names and describes infinite behaviours by

means of a replicator operator) [Mil91].

It must be said that the construction of our denotational model is somehow syntax-dependent

and thus that it is not completely satisfactory. We would have preferred a more abstract presenta-

tion of the cpo, for example in terms of a domain equation; an attempt has been made of using a

variant of generalized acceptance trees as in [HI91], but we could not directly describe the restriction

operator as a binder in such a model.

Besides [MPW89], this paper relates mainly to [Hen91] and, in some respects, to [PS93]. In

[Hen91], independently, a testing-based axiomatization and a fully abstract denotational model

are worked out for a language slightly different from ours: Internal moves are replaced by a binary

internal choice operator and the match- mismatch pair is replaced by an if-then-else construct. The

actual completeness proof relies on the existence of head normal forms similar to ours. The different

selection of operators does not permit any assessment of the widely studied originalπ-calculus with

respect to the testing approach. It also prevents a precise comparison between the work described

in this paper and Hennessy’s. It can however be said that the main differences between the two

axiomatizations are essentially the same as those between the axiomatization of testing for CCS

[DH84] and that for TCCS [DH87]. The comparison becomes more significative when considering

the two denotational models: in [Hen91] no notion of normal form is introduced and the compact
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elements of the domain are defined as (the equivalence classes of) those finite terms which have a

“finite behaviour” on input actions. As a consequence a term-model is obtained.

In [PS93], four strong bisimulation-based equivalences over the π-calculus are axiomatized,

namely early and late ground bisimulations (which we considered in Section 2.4) and the congru-

ences they induce. The latter can be defined as the closures under substitutions of the former.

The axiomatizations of the ground equivalences contain an input prefix inference rule similar to

our C1 and to that used in Hennessy’s work. In the proof systems for congruences, the input

prefix rule is replaced by a simpler one that exploits the fact that congruences are fully preserved

by substitutions. All axiomatizations of [PS93], but that of late ground equivalence, heavily rely

on the presence of the mismatch operator. The authors pose the interesting problem of formally

establishing the necessity of this operator for axiomatizing bisimulation-based equivalences. In this

paper we have seen that mismatch has a fundamental role in the definition of testing preorders; its

omission would lead to a theory that does not correspond to any operational intuition.

We have not tackled the problem of the input prefix congruence rule. The presence of this rule

in a proof system leads in general to inefficient derivations, in that multiple checks are required

whenever a (sub-)proof of the form a(x).P ⊑ a(x).Q is needed. A possible solution to this problem

would consist in devising a proof system with guarded statements of the form φ ⊢ a(x).P ⊑

a(x).Q, where φ is a boolean condition over names; this would permit making assumptions over

names explicit via φ and avoiding case analysis on input by inspecting φ. For bisimulation-based

equivalences, a similar approach has been developed in [HL93] for a static value-passing language

and in [BD94] for the π-calculus; it would be interesting to extend the approach to the theory of

testing.
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