
A Symbolic Semantics for the π-calculus∗

Michele Boreale and Rocco De Nicola
Dipartimento di Scienze dell’Informazione

Università di Roma “La Sapienza”
E-mail: michele@dsi.uniroma1.it, denicola@vm.cnuce.cnr.it

Abstract

We use symbolic transition systems as a basis for providing the π-calculus with an alternative
semantics. The latter is more amenable to automatic manipulation and sheds light on the
logical differences among different forms of bisimulation over algebras of name-passing processes.
Symbolic transitions have the form P

φ, α7−→ P ′, where φ is a boolean combination of equalities on
names that has to hold for the transition to take place, and α is standard a π-calculus action.
On top of the symbolic transition system, a symbolic bisimulation is defined that captures
the standard ones. Finally, a sound and complete proof system is introduced for symbolic
bisimulation.

1 Introduction

The π-calculus [MPW92] is a widely studied process description language with primitives for ex-
pressing the exchange of channel names (or simply names) among processes. The exchanged names
can also be tested for identity. These features permit a natural description of systems with dynamic
linking.

Like traditional process algebras, the π-calculus has undergone severe scrutiny and different
semantics for it have been proposed, relying on the standard notions of bisimulation [MPW92, PS93]
and testing [Hen91, BD92]. However, theoretical studies to support equivalence checking have just
begun. In [San93], with efficiency motivations, a new form of π-calculus bisimulation equivalence,
called open, is studied. In particular, a kind of conditional transition system is introduced to
efficiently characterize the equivalence.

In this paper, we build on previous work by Hennessy and Lin on value-passing process algebras
[HL92, HL93] and extend the work on open bisimulation of [San93] to capture the (early and
late) bisimulations originally proposed in [MPW92]. For these equivalences, our framework yields
alternative, more efficient characterizations and complete proof systems to reason about them. An
additional advantage of the proposed framework is that it sheds light on the conceptual differences
among the different forms of name-passing bisimulation. Our attention will be confined to strong
bisimulations, but we do not see any serious obstacle in extending our results to the weak ones.

The basic theory of bisimulation for the π-calculus has been introduced in [MPW92]. The
fundamental notion is that of ground bisimulation; it has the same conceptual simplicity as in
CCS and suggests a natural strategy for equivalence checking. However, due to name passing,
this definition-based verification technique runs into serious efficiency problems. On input actions,
a case analysis on the received names is needed to check that receiving equal names leads to

∗An extended abstract of this paper appears in: B. Jonsson and J. Parrow (eds.), Proceedings of CONCUR ’94,
Lectures Notes in Computer Science 836, Springer-Verlag, 1994. Work partially supported by Progetto Finalizzato
Sistemi Informatici e Calcolo Parallelo Contract n. 93.01599.69, by Istituto di Elaborazione dell’Informazione of
C.N.R. at Pisa and by the EXPRESS project within the HCM program of EEC.

1

“equivalent” states. To see this, consider the processes P = a(y).P ′ and Q = a(y).Q′; here the
input prefix operator a(y).R is used to describe receipt of a name at channel a and its substitution
for the formal parameter y within R. To check that P and Q are ground bisimilar, following the
definition we would have to verify that P ′ and Q′ are bisimilar for all possible instantiations of y
with a name occurring free in P and Q or with a fresh name. Of course, performing multiple checks
for each input action very often leads to a combinatorial explosion.

Input prefix also introduces another problem: it does not preserve the ground equivalence. This
leads to considering the maximal congruence included in the ground equivalence, obtained by closing
the latter under name substitutions [MPW92]. Checking for congruence of two terms by relying
on the original definition would require performing several (one for each “relevant” substitution)
ground equivalence checks.

Indeed, results obtained by Parrow and Jonsson [JP93], show that the problem of deciding
bisimilarity for (even very simple) message-passing process algebras is NP-hard. Thus, combi-
natorial explosions are difficult to avoid in general. Nonetheless, a simple example is sufficient
to appreciate that, when verifying π-calculus bisimulation with the above mentioned techniques,
many performed checks are indeed useless.

Consider the two processes

P1 = a(y).P and P2 = a(y).([y = z]P + [y 6= z]P)

where y and z are distinct and the operator + stands for external choice. Both match [z = y], and
mismatch operators [z 6= y], are used; [z = y]P stands for a process that behaves like P if z and y
are syntactically equal and is blocked otherwise, while [z 6= y]P has exactly the opposite meaning.

It should be immediate to establish that P1 and P2 are equivalent. But, checking their equiv-
alence by directly relying on its definition, requires checking that P and [y = z]P + [y 6= z]P are
bisimilar when y is replaced by z or by each of the free names of P or one fresh name. This could
be very costly; it is however evident that, beside y, z is the only name that matters.

Therefore, a significant gain in efficiency could be obtained by finding a systematic way to prune
non-essential cases when performing the case analysis. To this aim, the idea pursued in this paper,
and originally proposed by Hennessy and Lin for value-passing processes, is that of setting up a
framework where case analysis can be performed incrementally. First, a new symbolic transition
system for the π-calculus is introduced, where logical conditions (equalities and inequalities among
names) that make a transition possible are made explicit. Then, a new bisimulation, which we
refer to as symbolic, is defined, that performs the case-analysis directly on these conditions. It will
be proved that symbolic bisimulation can be used to establish the standard ones.

The symbolic transitions are of the form P
φ, α7−→ P ′, where φ is a boolean formula over names

that has to hold for the transition to take place, and α is a standard π-calculus action. A typical

symbolic transition is [x = y]α.P
[x=y], α7−→ P , saying that action α can be performed under any

interpretation of names satisfying x = y. A boolean formula is in general built from the basic
formulae [x = y] via the standard boolean connectives.

Symbolic bisimulation is defined on the top of the symbolic transition system. This leads to
a family of distinct symbolic equivalences 'φ, depending on the boolean formula φ (equivalence

under φ). Informally, to verify P 'φ Q, it is required to find, for each symbolic move P
ψ, α7−→ P ′

of P , a case-partition of the condition φ ∧ ψ, such that each subcase entails a matching symbolic
move for Q, and vice-versa for Q and P . As an example, the equivalence under true of the
previously defined processes P1 and P2, P1 'true P2, is readily verified by partitioning condition
true as {[z = y], [z 6= y]}; this is sufficient because each of these two conditions entails that
[y = z]P + [y 6= z]P is equivalent to P .

Symbolic equivalences are related to the standard ones by the following ‘consistency and ade-

2

quacy’ theorem:

P 'φ Q if and only if for each name substitution σ satisfying φ, Pσ is ground equivalent to Qσ

where a name substitution σ satisfies φ if the result of applying σ to φ is a tautology; here, Pσ
denotes the result of applying σ to P .

The above statement tells us that the symbolic equivalence 'φ is the closure of the ground
equivalence under all name substitutions satisfying φ. Thus, for example, the congruence (i.e.
the closure w.r.t. all substitutions) will be recovered as the symbolic bisimulation 'true. Ground
equivalence of two specific processes P and Q will be instead recovered as a symbolic equivalence
P 'φ(P,Q) Q, where φ(P,Q) is a condition imposing that all free names in P and Q be distinct.

In the paper, we also present a proof system to reason about symbolic bisimulation. The
statements derivable within the system are of the form φ � P = Q and, for finite processes, the
system is sound and complete in the sense that φ � P = Q is derivable if and only if P 'φ Q.
By taking advantage of the symbolic transitional semantics, the proof of completeness is, by and
large, a symbolic version of the classical proof for strong bisimulation over CCS [Mil89]. Additional
complications are however introduced by the fact that the boolean condition φ may also constrain
the communication capabilities of processes.

The symbolic characterization of the standard equivalences has an additional advantage; it
sheds new light on the conceptual difference between different forms of bisimulations for the π-
calculus. In [MPW92], two forms of ground bisimulation (each inducing a different congruence)
were introduced, the early form and the late one. Intuitively, they correspond to two different
instantiation strategies for the formal parameter of input actions: in the first strategy (early), the
instantiation is performed at the moment of inferring the input action, while in the other (late) it
is performed later, when a communication is actually inferred. In open bisimulation [San93], the
instantiation may be delayed arbitrarily long; this yields an equivalence stronger than the early and
late ones. Our symbolic formulation indicates that each of the mentioned strategies corresponds to
a different degree of generality in performing case-analysis. This will be discussed in the concluding
section.

Our work has strong connections with the papers [San93], [HL92], [HL93] and [PS93]. In
[San93], conditional transition system was first used for the π-calculus. In [HL92], the notion of
symbolic bisimulation was introduced within a syntax-free framework, where symbolic transition
graphs are considered; a verification algorithm is also proposed. In [HL93], for a version of CCS
with value-passing, an adequacy result and a sound and complete proof system similar to ours are
presented. In [PS93], for the same name-passing language considered here, late and early ground
equivalences and the induced congruences are equipped with four distinct algebraic proof systems;
efficiency considerations are absent.

The present paper may be viewed as the extension of [HL92] and [HL93] to a name-passing
calculus, for which more efficient characterizations of different bisimulation-based equivalences are
obtained. A more detailed comparison with these and other mentioned papers is deferred to Section
7. Here we want only to point to what makes this extension non-trivial: the blurring of values and
channel names. This is a distinctive feature of the π-calculus, that allows names to appear both in
the actions, in the processes and in the boolean formulae; it gives rise to a subtle interplay between
name-scoping and boolean formulae. This interplay is best revealed in the symbolic structural
operational rules for one of the name-binders of the π-calculus, the restriction operator (ν y). In
(ν y)P , the name y is declared to be new, i.e. different from any other name. Therefore, when

we have P
φ, α7−→ P ′ as a premise of an inference rule for (ν y)P , we have to discard from φ in the

conclusion every assumption requiring y to be equal to other names, thus obtaining a new formula,
Ry(φ), not containing y.

The rest of the paper is organized as follows. In Section 2, after introducing the π-calculus
and the standard notions of bisimulation equivalences, the symbolic transitional semantics and

3

symbolic bisimulation are presented. In Section 3, some basic properties relating substitutions to
boolean formulae, transitional semantics and bisimulation are established; these properties will be
used in later sections. In Section 4, the main theorems, i.e. consistency and adequacy of symbolic
equivalence w.r.t. standard equivalences, are proven. Section 5 presents the proof system and the
corresponding theorems of soundness and completeness. In Sections 2 - 5 only early bisimulation is
considered, while late bisimulation is treated in full detail in Section 6. The final section contains
conclusions, comparisons with related work and suggestions for future research.

2 Symbolic Semantics

In this section the π-calculus [MPW92] and the standard bisimulation equivalences will be briefly
reviewed; then the new symbolic semantics will be introduced.

2.1 The π-calculus and its standard bisimulation semantics

Definition 2.1 (Syntax) Let N be a countable set and x, y range over it, let φ range over the
language BF of Boolean Formulae:

φ ::= true | [x = y] | ¬φ | φ ∧ φ
and let α range over actions silent move, input and free output:

α ::= τ | x(y) | xy.
Let X range over a countable set of agent variables. The language of agent terms is built by
means of agent variables, inaction, action prefix, summation, boolean guard, restriction, parallel
composition and recursion in the following way:

P ::= X | 0 | α.P | P + P | φP | (ν y)P | P |P | recX.P .

Note that, contrary to the original definition of the π-calculus [MPW92], our grammar does not
allow name parameters in recursive definitions (recX.P). This is not due to particular difficulties
in dealing with parameters. We keep the language as simple as possible, in order to focus on the
relevant new concepts.

We fix now some basic notations. We shall use false for ¬true, [x 6= y] for ¬[x = y] and
φ1 ∨φ2 for ¬(¬φ1 ∧¬φ2). The evaluation of a boolean formula φ, Ev(φ), into the set {true, false}
is defined inductively as expected, once we set that Ev(true) = true, Ev([x = x]) = true and
Ev([x = y]) = false, for distinct names x and y. n(φ) will denote the set of names occurring in φ.

We use the bound output prefix x(y).P, x 6= y, as a shorthand for (ν y)(xy.P). Bound output
actions are of the form x(y) with x 6= y. If α = x(y) or α = xy or α = x(y), we let subj(α) = x
and obj(α) = y. The π-calculus has two kinds of name binders: input prefix x(y).P and restriction
(ν y)P bind the name y in P ; consequently, the notions of free names, fn(.), bound names, bn(.) and
α-equality, over agent terms, formulae and actions are the expected ones (we define fn(φ) = n(φ)
for a boolean formula φ). We let n(.) = fn(.) ∪ bn(.).

A process is an agent term such that: (i) each occurrence of any agent variable X lies within the
scope of a recX. operator, and (ii) for each subterm of the form recX.P and for each y ∈ fn(P),
no occurrence of X inside P lies within the scope of a binder for y. The requirement (ii) ensures
that no occurrence of a free name becomes bound when “unfolding” recX.P into P [recX.P/X].
We let P denote the set of processes. In the rest of the paper we confine ourselves to agent terms
denoting processes.

Substitutions, ranged over by σ, ρ, are functions from N to N ; for any x ∈ N , σ(x) will be
written as xσ. Given a substitution σ and V ⊆ N , we define:

• V σ = {xσ|x ∈ V }

• dom(σ) = {x|xσ 6= x}

4

• range(σ) = dom(σ)σ

• n(σ) = dom(σ) ∪ range(σ)

In the rest of the paper we confine ourselves to finite substitutions, i.e. those σ s.t. n(σ) is
finite. If t is either an action, a formula or a process, tσ denotes the expression obtained by
simultaneously replacing in t each x ∈ fn(t) with xσ, with renaming of bound names possibly
involved. Composition of substitutions is denoted by juxtaposition: given two substitutions σ1 and
σ2, σ1σ2 denotes the substitution such that t(σ1σ2) = (tσ1)σ2. The set {y1/x1, . . . , yn/xn} = {ỹ/̃x},
with the xi’s pairwise distinct, will denote the following substitution σ: xσ = yi if x = xi for some
i ∈ {1, . . . , n}, xσ = x otherwise. We also extend fn to substitutions and let fn(σ) to be n(σ); in
this way, the function fn(.) is defined over names, actions, processes, formulae and substitutions.
Notations such as fn(P, α, σ) will be used to indicate fn(P) ∪ fn(α) ∪ fn(σ).

Unless otherwise stated, we will let x, y, . . . range over N , α, β, . . . over the set of actions
(including bound output), φ, ψ, . . . over BF , P,Q, . . . over P and ρ, σ, . . . over substitutions.

The standard “concrete” transitional semantics of P is given in Table 1(a). Following [PS93] we
shall work up to α-equivalence; indeed α-equivalent agents are deemed to have the same transitions.

The definition of (standard) early ground bisimulation equivalence .∼ and early bisimulation
congruence ∼ can be given as follows:

Definition 2.2 (Early bisimulation)

• A symmetric relation R ⊆ P ×P is a ground early bisimulation iff (P,Q) ∈ R and P α−→ P ′

with bn(α) ∩ fn(P,Q) = ∅ , imply

– if α is not an input action, then ∃ Q′: Q α−→ Q′ and (P ′, Q′) ∈ R.

– if α = x(y), then ∀z ∈ fn(P,Q, y) ∃ Q′ : Q α−→ Q′ and (P ′{z/y}, Q′{z/y}) ∈ R.

• .∼ = ∪{R |R is a ground early bisimulation }.

• P ∼ Q iff ∀σ : Pσ .∼Qσ.

The late version of the above definition is obtained by replacing the input-clause (the second
clause of the first item) by the stronger:

• if α = x(y), then ∃Q′ : Q α−→ Q′ and ∀ z ∈ fn(P,Q, y) : (P ′{z/y}, Q′{z/y}) ∈ R.

It has been shown [MPW92] that late bisimulation is strictly finer than early bisimulation.

2.2 Symbolic semantics

Before introducing the symbolic semantics, we need to fix some additional notation for boolean
formulae and substitutions.

Definition 2.3 (Basic definitions)

• σ |= φ stands for Ev(φσ) = true;

• φ |= ψ stands for ∀ σ: σ |= φ implies σ |= ψ;

• [α = β] stands for

[x = z] if for some y: (α = x(y) and β = z(y)) or (α = x(y) and β = z(y));
[x = z] ∧ [y = w] if α = xy and β = zw;
true if α = β = τ ;
false otherwise.

5

Act
−

α.P
α−→ P

Sum
P1

α−→ P ′
1

P1 + P2
α−→ P ′

1

Par
P1

α−→ P ′
1

P1 | P2
α−→ P ′

1 | P2

bn(α) ∩ fn(P2) = ∅

Com
P1

xz−→ P ′
1, P2

x(y)−→ P ′
2

P1 | P2
τ−→ P ′

1 | P ′
2{z/y}

Close
P1

x(y)−→ P ′
1, P2

x(y)−→ P ′
2

P1 | P2
τ−→ (ν y)(P ′

1 | P ′
2)

Res
P

α−→ P ′

(ν y)P
α−→ (ν y)P ′

y /∈ n(α) Open
P

xy−→ P ′

(ν y)P
x(y)−→ P ′

x 6= y

Guard
P

α−→ P ′

φP
α−→ P ′

Ev(φ) = true Rec
P [recX.P/X]

α−→ P ′

recX.P
α−→ P ′

a) Standard SOS for P; the symmetric rules for Sum, Par, Com and Close are omitted.

S− Act
−

α.P
true, α7−→ P

S− Sum
P1

φ, α7−→ P ′
1

P1 + P2
φ, α7−→ P ′

1

S− Par
P1

φ, α7−→ P ′
1

P1 | P2
φ, α7−→ P ′

1 | P2

bn(α) ∩ fn(P2) = ∅

S− Com
P1

φ1, xz7−→ P ′
1, P2

φ2,w(y)7−→ P ′
2

P1 | P2
φ1∧φ2∧[x=w], τ7−→ P ′

1 | P ′
2{z/y}

S− Close
P1

φ1, x(y)7−→ P ′
1, P2

φ2, w(y)7−→ P ′
2

P1 | P2
φ1∧φ2∧[x=w], τ7−→ (ν y)(P ′

1 | P ′
2)

S− Res
P

φ, α7−→ P ′

(ν y)P
Ry(φ), α
7−→ (ν y)P ′

y /∈ n(α) S− Open
P

φ, xy7−→ P ′

(ν y)P
Ry(φ), x(y)
7−→ P ′

x 6= y

S− Guard
P

ψ, α7−→ P ′

φP
φ∧ψ, α7−→ P ′

S− Rec
P [recX.P/X]

φ, α7−→ P ′

recX.P
φ, α7−→ P ′

b) Symbolic SOS for P; the symmetric rules for S− Sum, S− Par, S− Com and S− Close are omitted.

Table 1: Standard and Symbolic SOS for P

6

•
∨
D, where D = {φ1, . . . , φn} ⊆fin BF , n > 0, is the boolean formula φ1∨ . . .∨φn. A similar

notation will be used for
∧
D. Furthermore, we let

∨
∅ denote false and

∧
∅ denote true.

• For each name y, the function Ry() : BF −→ BF is defined by structural induction on φ as
follows:

Ry(true) = true
Ry([w1 = w2]) = [w1 = w2] if y /∈ {w1, w2}
Ry([y = y]) = true
Ry([y = w]) = Ry([w = y]) = false if y 6= w

Ry(¬φ) = ¬Ry(φ)
Ry(φ1 ∧ φ2) = Ry(φ1) ∧Ry(φ2)

The symbolic transitional semantics of P is presented in Table 1(b). Each symbolic rule is the

counterpart of a concrete one. Intuitively, the boolean formula φ in P
φ, α7−→ P ′ collects the conditions

on the free names of P necessary for α to take place. E.g., rule S− Act says that α.P can perform α
unconditionally. In S− Com and S− Close, the condition of matching channels ([x = w]) is moved
into the boolean condition of the resulting symbolic transition; this is necessary to infer symbolic
transitions such as:

(x(y).0) | (wy.0)
[x=w], τ7−→ 0 | 0 .

Rule S− Res reveals the interplay between name-scoping and boolean formulae: in (ν y)P , the
name y is declared to be new, i.e. different from any other name; thus the rule says that, given
a symbolic transition P

φ, α7−→ P ′ as a premise, under the assumption that y is new, every positive
assumption about the identity of y has to be discarded from φ in the conclusion; as a result, the
new formula Ry(φ) that does not contain y is obtained. An example of derivation using this rule
is:

S− Res
P

[y=z]∨[z=w], τ7−→ P ′

(ν y)P
false∨[z=w], τ7−→ (ν y)P ′

where z and w are different from y (note that false ∨ [z = w] is equivalent to [z = w]). A
similar comment holds for S− Open. The other inference rules should be self-explanatory.

We are now set to introduce symbolic bisimulation for the π-calculus. For a variant of CCS
with value passing, symbolic bisimulation has already been introduced in [HL92]. The underlying
intuition is that of establishing equivalence of, say, P and Q under a condition φ, by matching
symbolic transitions of P , P

ψ,α7−→ P ′, by sets of symbolic transitions of Q. More precisely, the
condition φ∧ψ, is partitioned into a set D of subcases, each of which entails a matching transition
for Q. Due to the treatment of restricted names in the π-calculus, here we have to take into account
the case when the performed action is a bound output x(y) which introduces a new name y. In
that case, for subsequent reasoning, we also impose that y be logically different from any name
known until that moment.

Before defining symbolic bisimulation, we introduce φ-decompositions.

Definition 2.4 (φ-decomposition) Given φ and a finite set of formulae D = {φ1, . . . , φn}, we
say that D is a φ-decomposition iff φ |=

∨
D.

A similar concept (φ-partitions) was already present in [HL93]. The only difference is that the
disjunction of a φ-partition is required to be equivalent to φ, whereas a φ-decomposition is just
implied by φ.

Definition 2.5 (Symbolic early bisimulation)

7

• A family F = {Rφ |φ ∈ BF} of symmetric binary relations over P, indexed over the set BF
of boolean formulae, is a family of symbolic early bisimulations (FSEB) iff ∀ φ ∈ BF and

(P,Q) ∈ Rφ, P
ψ,α7−→ P ′, with bn(α) ∩ fn(P,Q, φ) = ∅ , implies:

there exists a χ-decomposition D, such that for all φ′ ∈ D, there is a

transition Q
ψ′, β7−→ Q′ with φ′ |= (ψ′ ∧ [α = β]) and (P ′, Q′) ∈ Rφ′, where:

χ =

{
φ ∧ ψ ∧

∧
z∈fn(P,Q,φ)[y 6= z] if α is a bound output action x(y)

φ ∧ ψ otherwise.

• P 'φ Q iff there exists a FSEB {Rψ|ψ ∈ BF} such that (P,Q) ∈ Rφ.

We now discuss informally the reason why symbolic bisimulation is more amenable to efficient
automatic verification than the concrete one, leaving for future work a precise complexity analysis.
Note that, on input actions, no multiple instantiation of the formal parameter is required; instead, a
single instantiation with a fresh name suffices (the “freshness” condition is bn(α)∩fn(P,Q, φ) = ∅1).
The case analysis on the received value is now embodied in the decomposition D; by choosing this
decomposition in an appropriate way, the number of cases to deal with can be significantly smaller
than that arising with the original definition. This is shown in the following example.

Example 2.6 Consider the processes P1 and P2 given in the Introduction:

P1 = x(y).P and P2 = x(y).([y = z]P + [y 6= z]P)

where y and z are different. P1 ∼ P2 can be established by showing P1 'true P2, or by relying on
the original definition. Below, we make use of both methods.

P1 'true P2 can be established as follows. Let P ′ = [y = z]P + [y 6= z]P and Id denote the
identity relation. It is easy to see that the family of relations below :

Rtrue = {(P1, P2), (P2, P1)}
R[y=z] = {(P, P ′), (P ′, P)}
R[y 6=z] = {(P, P ′), (P ′, P)}

Rφ = Id for φ /∈ {true, [y = z], [y 6= z]}

is an FSEB, corresponding to decomposing true into {[z = y], [z 6= y]}. Note that, formally, we
have to exhibit infinitely many relations (one for each φ ∈ BF); but it turns out that only finitely
many are different from Id.

To establish P1 ∼ P2 relying on the definition, we should prove that for each substitution σ,
P1σ

.∼P2σ; the relation to exhibit for each σ is (here we assume for the sake of simplicity that
y /∈ n(σ)):

R = {(P1σ, P2σ)} ∪ {(Pσ{w/y}, P ′σ{w/y})|w ∈ fn(P ′σ, Pσ)} ∪ Id .

Actually, decompositions can be determined automatically for a large class of processes. In
[HL92], an algorithm is presented to check symbolic bisimulation between two finite standard sym-
bolic transition graphs. A symbolic graph is standard if the bound names of any transition does
not occur free in its ancestor-nodes. Given two finite standard graphs G1 and G2, the algorithm
calculates the most general boolean expression under which G1 and G2 are equivalent, i.e. it cal-
culates a formula φ such that if G1 'ψ G2 then ψ |= φ. Therefore, the equivalence problem for
graphs is reduced to the implication problem for boolean formulae.

1fn(ψ) need not to be considered because, as it will turn out (Lemma 3.6), n(ψ) ⊆ fn(P).

8

By introducing minor modifications (that take into account the extra conditions due to bound
output), Hennessy’s and Lin’s algorithm can be used to calculate the most general boolean ex-
pression of two π-calculus processes represented by finite standard symbolic transition graphs. If
we consider, e.g., finite (i.e. rec-free) processes, it is sufficient to generate their symbolic graphs
by considering one transition for each equivalence class of transitions and to use fresh names for
input and bound output actions. We want also to point out that, as we shall see in Section 3, the
implication problem between formulae is decidable for the considered language (BF).

3 Basic Properties of Substitutions

In this section, some basic facts about substitutions will be proved. The section is divided in
two parts, where substitutions are related to properties of boolean formulae and of operational
semantics, respectively. The most relevant results of this section are Lemma 3.2 and Lemma
3.10. The former enables us to verify the satisfaction relation |= by only checking finitely many
substitutions; an easy consequence of this (Corollary 3.3) is that |= is decidable. The latter relates
concrete and symbolic transitional semantics, and is crucial for proving both the consistency and
the adequacy theorems.

3.1 Substitutions and boolean formulae

Lemma 3.1 states some elementary properties of substitutions and boolean formulae.

Lemma 3.1

1. If t is a name, a boolean formula or a P-term, w̃ is a vector of pairwise distinct names and
w̃ ∩ fn(t) = ∅ , then for any z̃: t = t{w̃/̃z}{z̃/w̃}.

2. If Ev(φ) = true and σ is injective over n(φ), then also Ev(φσ) = true.

3. Let σ be a substitution such that y /∈ n(σ). Then σ |= φ if and only if σ |= Ry(φ).

Proof: By structural induction on t and φ. 2

The next lemma is the core of the adequacy proof. Its essential meaning is that it enables us
to verify the logical implication between any two formulae, φ |= ψ, by testing a finite set S of
substitutions. These are essentially the substitutions whose names range in n(φ, ψ) plus a reserve
of fresh names F . The intuitive reason this works is that, given any substitution ρ over φ and ψ,
the names of range(ρ) can be injectively renamed to names in F , to obtain a new substitution in
S, satisfying exactly the same formulae (with names in n(φ ∧ ψ)) as ρ. The actual statement of
the lemma is complicated by the presence of a distinct name y: in the completeness proof, it will
represent the input or bound output formal parameter. In order to define injective renamings, set
F has to be chosen large enough2.

We adopt, in the sequel, the following notation: given a substitution σ, σ|V denotes the
restriction of σ to V , i.e. the substitution defined as follows: for each x ∈ N , if x ∈ V then
x(σ|V) = xσ, x(σ|V) = x otherwise.

Lemma 3.2 Let y ∈ N , V ⊆fin N − {y} and Vy = V ∪ {y}; moreover let n(φ, ψ) ⊆ Vy, where
φ, ψ ∈ BF . Fix F ⊆fin N − Vy such that |F | > 2 ∗ |Vy| and consider the set of substitutions:
S = {σ|n(σ) ⊆ V ∪ F and σ |= φ}. We have φ |= ψ if:

2We have used here a lower-bound of two times the number of all the other involved names; we could have
considered a set F just as large as the involved names, at the cost of complicating the proof.

9

a. y /∈ n(φ) implies that σ{z/y} |= ψ, for each σ ∈ S and for each z ∈ Vyσ, and

b. y ∈ n(φ) implies that φ |=
∧
x∈V [x 6= y] and σ |= ψ, for each σ ∈ S.

Proof: Let ρ be any substitution such that ρ |= φ. We have to show that ρ |= ψ. Let
V = {x1, . . . , xn}, with the xi’s pairwise distinct and n ≥ 0. For each i ∈ {1, . . . , n}, define
zi = xiρ. Thus

V ρ = {z1, . . . , zn}
(where the zi’s, 1 ≤ i ≤ n, are not necessarily pairwise distinct). Furthermore define z0 = yρ.

Fix now a set of names w̃ ⊆ F , s.t. |w̃| = |V ρ| and w̃ ∩ Vyρ = ∅ : such a w̃ does exist because
F has been chosen big enough. Clearly it holds that y /∈ w̃, since y /∈ F . Let w̃ = {w1, . . . , wn}
(where the wi’s are not necessarily pairwise distinct). Define

σ0 = {w1/z1, . . . , wn/zn}

in such a way that wi = wj iff zi = zj : this is possible because |w̃| = |V ρ|. Thus σ0 is an injective
substitution over Vyρ. Therefore, since Ev(φρ) = true, it also holds that (Lemma 3.1(2)):

Ev(φρσ0) = true. (1)

Now, it is easily checked that:

∀x ∈ Vy : xρσ0 = x(ρσ0)|V {z0σ0/y}. (2)

Letting w0 = z0σ0 and σ = (ρσ0)|V , we have now two cases:

• z0 ∈ V ρ. Thus ρ 6 |=
∧
x∈V [x 6= y]. Recalling that ρ |= φ, we have then that φ 6 |=

∧
x∈V [x 6=

y], and this in turn implies y /∈ n(φ) (condition a. of the hypotheses). Let us now check
that σ ∈ S. Indeed, from y /∈ n(φ), it follows φσ = φρσ0, hence (from (1)): Ev(φσ) = true;
furthermore we have n(σ) = V ∪ w̃ ⊆ V ∪ F . Thus we are in case a. of the statement of
the lemma. From z0 ∈ V ρ, it follows w0 ∈ V σ. Therefore, by hypothesis, it holds that
σ{w0/y} |= ψ. But, since n(ψ) ⊆ Vy, from (2) it follows that:

Ev(ψρσ0) = Ev(ψσ{w0/y}) = true.

Therefore, since σ−1
0 = {z1/w1, . . . , zn/wn} is injective over Vyρσ0 = V ρσ0 = w̃, also it holds

that (Lemma 3.1 (1) and (2)):

Ev(ψρ) = Ev(ψρσ0σ
−1
0) = true.

which is the thesis for this case.

• z0 /∈ V ρ. Hence w0 = z0 and, from (1) and (2), we have

Ev(φσ{z0/y}) = Ev(φρσ0) = true.

Recall now that z0 /∈ w̃, thus either z0 = y or z0 /∈ Vyσ = w̃ ∪ {y}. From these facts, relation
above and Lemma 3.1 (1) and (2), it therefore follows:

Ev(φσ) = Ev(φσ{z0/y}{y/z0}) = true.

Therefore, since n(σ) ⊆ V ∪F , it holds that σ ∈ S. From the hypotheses it follows that σ |= ψ
and hence (Lemma 3.1(2)) also σ{z0/y} |= ψ. But from (2) we get that ψσ{z0/y} = ψρσ0. Let
σ−1

0 be defined as in the previous case and note that σ−1
0 is injective over Vyρσ0 = w̃ ∪ {z0};

therefore it also holds that (Lemma 3.1 (1) and (2)):

Ev(ψρ) = Ev(ψρσ0σ
−1
0) = true

which is the thesis for this case. 2

10

As a corollary of the above lemma, we obtain the decidability of the relation |= .

Corollary 3.3 The relation |=⊆ BF ×BF is decidable.

Proof: An easy application of the previous lemma. 2

Next definition is useful to express the fact that a substitution is a variant of another one, i.e.
that they are the same up to some injective renaming of names; ρ |= χ(σ, V) formalizes the fact
that ρ is a variant of σ over the set V .

Definition 3.4 (Characteristic boolean formula) Given V ⊆fin N and a substitution σ, we
define the characteristic boolean formula of σ over V as:

χ(σ, V) =
∧

x,y∈V
mxy

where mxy = [x = y] if xσ = yσ, mxy = [x 6= y] otherwise.

Lemma 3.5 below asserts that variant substitutions “behave the same” w.r.t. |= .

Lemma 3.5 Let σ, ρ be substitutions, V ⊆fin N and suppose ρ |= χ(σ, V). If σ |= φ and
n(φ) ⊆ V then ρ |= φ.

Proof: Let V = {x1, . . . , xn}, with the xi’s pairwise distinct, and n ≥ 0 and let χ(σ, V) =∧
xi,xj∈V mxixj . For each i ∈ {1, . . . , n} define yi = xiσ and zi = xiρ. We will show that, given any

i, j ∈ {1, . . . , n}, it holds that zi = zj iff yi = yj . Indeed: zi = zj iff xiρ = xjρ iff (recalling that
ρ |= χ(σ, V)) mxixj = [xi = xj] iff xiσ = xjσ iff yi = yj .

Therefore the set σ0 = {z1/y1, . . . , zn/yn} is a substitution, and furthermore:

1. for each x ∈ V , xρ = xσσ0

2. σ0 is injective over V σ.

From 1 it follows that φρ = φσσ0, and since from 2 σ0 is injective and Ev(φσ) = true, it follows
from Lemma 3.1 that also Ev(φρ) = true. 2

3.2 Substitutions and operational semantics

The following elementary property of the two transitional semantics will prove useful in the sequel.

Lemma 3.6

1. If P α−→ P ′ then: fn(α) ⊆ fn(P) and fn(P ′) ⊆ fn(P) ∪ bn(α).

2. If P
φ, α7−→ P ′ then: n(φ) ⊆ fn(P), fn(α) ⊆ fn(P) and fn(P ′) ⊆ fn(P) ∪ bn(α).

Proof: An easy transition induction on P α−→ P ′ and P
φ, α7−→ P ′. 2

Next two lemmata will give us some freedom in renaming names in transitions, both standard
and symbolic. Lemma 3.7 asserts that transitions are preserved by injective substitutions. Lemma
3.8 allows us to α-rename bound names with fresh names in transitions. Furthermore, in both
cases, the renamed transitions have derivations just as complex as the original ones.

In what follows, we will use the following terminology (borrowed from [MPW92], part II).

Sentences such as “if P α−→ P ′ then Q
β−→ Q′ is derivable with the same depth as P α−→ P ′”

will be abbreviated as “if P α−→ P ′ then equally Q
β−→ Q′”. A similar terminology will hold for

symbolic transitions as well.

11

Lemma 3.7 Let σ be an injective substitution over fn(P) and suppose bn(α) ∩ n(σ) = ∅ .

1. If P α−→ P ′ then equally Pσ ασ−→ P ′σ.

2. If P
φ, α7−→ P ′ then equally Pσ

φσ, ασ7−→ P ′σ.

Proof: By transition induction. 2

Lemma 3.8

1. If P
x(y)−→ P ′ (resp. P

x(y)−→ P ′) and y0 /∈ fn(P), then equally P
x(y0)−→ P ′{y0/y} (resp.

P
x(y0)−→ P ′{y0/y}) .

2. If P
φ, x(y)7−→ P ′ (resp. P

φ, x(y)7−→ P ′) and y0 /∈ fn(P), then equally P
φ, x(y0)7−→ P ′{y0/y} (resp.

P
φ, x(y0)7−→ P ′{y0/y}) .

Proof: By transition induction. 2

Remark 3.9 The assumption of identifying α-equivalent processes and the above two lemmata
allow us to assume w.l.o.g. that bound names, both in processes and in transitions, are always
fresh. In particular, we shall assume that given a bound name y and a substitution σ, y is fresh
w.r.t. σ, i.e. y /∈ n(σ). A completely formalized argument would require, in each case, to rename
y to a fresh y0, by α-converting transitions (using Lemma 3.8) or processes. The latter could in
turn imply using Lemma 3.7 to rename y throughout the part of a derivation in which y occurs
free (e.g. when the last rule applied is a Res on y).

The main result of this part is Lemma 3.10, which relates symbolic to standard transitional
semantics via substitutions. It will be crucial for the proof of both the consistency and the adequacy
theorems of symbolic bisimulation.

Lemma 3.10 (Correspondence between symbolic and concrete SOS)

1. If P
φ,α7−→ P ′, with bn(α) ∩ fn(P, σ) = ∅ and σ |= φ, then Pσ

ασ−→ P ′σ.

2. If Pσ α−→ P ′, with bn(α)∩ fn(P, σ) = ∅ , then there exists a symbolic transition P
φ,β7−→ P ′′,

with σ |= φ, βσ = α and P ′′σ = P ′.

Proof: The proof of each of the two statements goes by transition induction.
1. We only deal with the cases when the last rule applied is S− Res or S− Open. The other

cases are easier or can be handled similarly.

• (S− Res)

S− Res
P

φ, α7−→ P ′

(ν y)P
Ry(φ), α7−→ (ν y)P ′

y /∈ n(α) .

By hypothesis we have σ |= Ry(φ) and bn(α)∩fn((ν y)P, σ) = ∅ . By Remark 3.9, we assume

y /∈ n(σ). To apply the inductive hypothesis to the transition P
φ, α7−→ P ′, we have to check

that bn(α) ∩ fn(P, σ) = ∅ and that σ |= φ. By hypothesis, bn(α) ∩ fn((ν y)P, σ) = ∅ ; since
fn(P, σ) ⊆ fn((ν y)P, σ, y) and y /∈ n(α), it also holds that bn(α) ∩ fn(P, σ) = ∅ . We now

12

check that σ |= φ. Indeed, from σ |= Ry(φ), y /∈ n(σ) and Lemma 3.1 (3), it follows that
σ |= φ. Thus, the inductive hypothesis gives us:

Pσ
ασ−→ P ′σ .

Since y /∈ n(α, σ), it also holds that y /∈ n(ασ). We can therefore apply Res with y to the
above transition:

(ν y)Pσ ασ−→ (ν y)P ′σ.

Since ((ν y)P)σ = (ν y)Pσ and ((ν y)P ′)σ = (ν y)P ′σ, we have the thesis.

• (S− Open)

S− Open
P

φ, xy7−→ P ′

(ν y)P
Ry(φ), x(y)7−→ P ′

y 6= x .

By hypothesis σ |= Ry(φ) and y /∈ n(σ). Thus, it holds that ((ν y)P)σ = (ν y)Pσ; fur-
thermore, from Lemma 3.1 (3), we have that σ |= φ. Since bn(xy) = ∅ , we can apply the
inductive hypothesis to get:

Pσ
xσy−→ P ′σ.

Since x 6= y and y /∈ n(σ), it holds that xσ 6= y. We can therefore apply the Open rule with
y to obtain:

(ν y)Pσ
xσ(y)−→ P ′σ.

Since ((ν y)P)σ = (ν y)Pσ, we have the thesis for this case.

2. Again, the only non-trivial cases are those concerning the restriction operator. We show
only the Res case, since the Open can be handled in a similar way.

• (Res) Consider the term ((ν y)P)σ; we assume by Remark 3.9 that y /∈ n(σ), so that
((ν y)P)σ = (ν y)Pσ. Therefore we have:

Res
Pσ

α−→ P ′

(ν y)Pσ α−→ (ν y)P ′
y /∈ n(α)

where, by hypothesis, bn(α) ∩ fn((ν y)P, σ) = ∅ . Since fn(P, σ) ⊆ fn((ν y)P, σ, y) and
y /∈ n(α), it holds that bn(α)∩fn(P, σ) = ∅. We can therefore apply the inductive hypothesis,
obtaining that for some φ:

P
φ, β7−→ P ′′

with σ |= φ, βσ = α and P ′′σ = P ′. Now, y /∈ n(α, σ) implies y /∈ n(β). Therefore we can
apply the rule S− Res to the above transition obtaining:

(ν y)P
Ry(φ), β7−→ (ν y)P ′′ .

Since y /∈ n(σ) and σ |= φ, from Lemma 3.1 (3) we get σ |= Ry(φ); furthermore ((ν y)P ′′)σ =
(ν y)P ′′σ = (ν y)P ′; this is the thesis for present case.

2

We come now to two lemmata about bisimulation. The following one says that ground bisimu-
lation .∼ is closed under injective substitutions.

13

Lemma 3.11 If P .∼Q and σ is injective over fn(P,Q), then also Pσ .∼Qσ.

Proof: Routine, exploiting Lemma 3.7 (See also [MPW92]). 2

Next lemma asserts that variant substitutions “behave the same” w.r.t. .∼ .

Lemma 3.12 Let σ, ρ be substitutions, V ⊆fin N and suppose ρ |= χ(σ, V). If Pσ .∼Qσ and
fn(P,Q) ⊆ V then Pρ

.∼Qρ.

Proof: Let V = {x1, . . . , xn}, with the xi’s pairwise distinct, and n ≥ 0 and let χ(σ, V) =∧
xi,xj∈V mxixj . For each i ∈ {1, . . . , n} define yi = xiσ and zi = xiρ. Proceeding exactly like

in the proof of Lemma 3.5, we show that the set σ0 = {z1/y1, . . . , zn/yn} is a substitution, and
furthermore:

1. for each x ∈ V , xρ = xσσ0,

2. σ0 is injective over V σ.

From 1 it follows that Pρ = Pσσ0 and Qρ = Qσσ0. Furthermore, from Pσ
.∼Qσ, from 2 above

and from Lemma 3.11, we get that Pσσ0
.∼Qσσ0, from which our claim follows. 2

4 Consistency and Adequacy of Symbolic Bisimulation

For stating both the consistency and the adequacy theorems, it is useful to fix the following defin-
ition:

Definition 4.1 (Closing .∼ under φ) For each φ ∈ BF , let the relation ∼φ be defined as follows:

P ∼φ Q iff ∀σ: σ |= φ, Pσ .∼Qσ.

Theorem 4.2 (Consistency of symbolic bisimulation) P 'φ Q implies P ∼φ Q.

Proof: We will show that the relation:

R = {(Pσ,Qσ)| ∃φ. σ |= φ and P 'φ Q}

is a ground bisimulation. Suppose P 'φ Q and σ |= φ. Let us see how the moves of Pσ are
matched by Qσ. Suppose that Pσ α−→ P ′, with bn(α) ∩ fn(Pσ,Qσ) = ∅ ; by Remark 3.9, we
assume that bn(α) ∩ fn(P,Q, φ, σ) = ∅ , as well. We distinguish the possible cases for α (α silent,
input, free output or bound output action) and confine ourselves to the input and the bound output
cases, since the others are easier.

• α = x(y). It suffices to show that for each z ∈ fn(Pσ,Qσ, y) there exists Q′ such that
Qσ

α−→ Q′ and (P ′{z/y}, Q′{z/y}) ∈ R. Thus fix z ∈ fn(Pσ,Qσ, y). From Pσ
α−→ P ′ and

Lemma 3.10 we deduce that there is a symbolic transition:

P
ψ,w(y)7−→ P ′′

where σ |= ψ, wσ = x and P ′′σ = P ′. Since P 'φ Q, there exists a φ ∧ ψ-decomposition
D = {φ1, . . . , φn} s.t. for each i ∈ {1, . . . , n} there exists a symbolic transition:

Q
ψi, wi(y)7−→ Qi

14

where φi |= ψi∧ [w = wi] and P ′′ 'φi Qi. Now, σ |= φ∧ψ. But, since n(φ∧ψ) ⊆ fn(P,Q, φ)
(Lemma 3.6) and y /∈ fn(P,Q, φ), we have that (φ ∧ ψ)σ{z/y} = (φ ∧ ψ)σ, hence σ{z/y} |=
(φ ∧ ψ). Therefore, it holds that σ{z/y} |= φj , for some j ∈ {1, . . . , n}. Applying again

Lemma 3.10 to transition Q
ψj , wj(y)7−→ Qj , we get the matching transition for Qσ:

Qσ
x(y)−→ Qjσ.

Now, define Q′ = Qjσ. We have P ′{z/y} = P ′′σ{z/y} and Q′{z/y} = Qjσ{z/y}. Recall that
σ{z/y} |= φj and P ′′ 'φj Qj ; thus, by definition, (P ′{z/y}, Q′σ{z/y}) ∈ R.

• α = x(y). We will show that there exists Q′ s.t. P α−→ Q′ and (P ′, Q′) ∈ R. From Pσ
α−→ P ′

and Lemma 3.10, we deduce that there exists a symbolic transition:

P
ψ,w(y)7−→ P1

where σ |= ψ, wσ = x and P1σ = P ′. Since P 'φ Q, there exists a φ∧ψ∧
∧
z∈fn(P,Q,φ)[y 6= z] -

decomposition D = {φ1, . . . , φn} s.t. for each i ∈ {1, . . . , n} there exists a symbolic transition:

Q
ψi, wi(y)7−→ Qi

with φi |= ψi ∧ [w = wi] and P1 'φi Qi. Now, since y /∈ fn(P,Q, φ, σ), it holds that σ |=∧
z∈fn(P,Q,φ)[y 6= z]; hence, since σ |= φ∧ψ, also σ |= φ∧ψ ∧

∧
z∈fn(P,Q,φ)[y 6= z]. Therefore

there exists φj ∈ D s.t. σ |= φj . Applying Lemma 3.10 to the transition Q
ψj , wj(y)7−→ Qj , we

get the matching transition for Qσ:

Qσ
x(y)−→ Qjσ.

Now, define Q′ = Qjσ; recall that P ′ = P1σ, that P1 'ψj Qj and that σ |= ψj ; thus by
definition (P ′, Q′) ∈ R and we are done.

2

We now come to prove that symbolic bisimulation is adequate for expressing concrete bisimula-
tions, i.e. to prove that whenever P ∼φ Q then P 'φ Q. To prove this adequacy theorem, we shall
rely on the fact that only a suitable finite set of name-substitutions is “relevant” when working
with a fixed collection of processes and formulae. All other substitutions are, in fact, variants of
the considered ones, i.e. they can be obtained by injective renaming. This is a distinctive property
of the π-calculus, since it relies on the absence of functions and predicates on names, apart from
boolean combination of equalities.

An informal account of the proof might be the following. We show that {∼φ |φ ∈ BF} is a

family of symbolic bisimulations. Thus, given P,Q with P ∼φ Q and P
ψ, α7−→ P ′, we have to find a

decomposition of φ ∧ ψ (here for the sake of simplicity we assume that α is not a bound output),
such that each subcase entails a matching symbolic transition for Q. Letting V = fn(P,Q, φ),
the idea is to determine a finite set of substitutions, S = {σ1, . . . , σk}, such that each substitution
satisfying φ∧ψ is a variant over V ∪bn(α) of some σi. By relying on Lemma 3.2, φ∧ψ is decomposed
into a set D = {φ1, . . . , φk}, where we have one subcase for each σi ∈ S. Each φ′ ∈ D is chosen to
entail a symbolic matching transition for Q.

Theorem 4.3 (Adequacy of symbolic bisimulation) P ∼φ Q implies P 'φ Q.

15

Proof: We will show that the the family of relations

F = {∼φ |φ ∈ BF}

is a family of symbolic (early) bisimulations. Thus let φ ∈ BF and P ∼φ Q and suppose P
ψ, α7−→ P ′

with bn(α) ∩ fn(P,Q, φ) = ∅ . If α = x(y), define χ =
∧
z∈fn(P,Q,φ)[y 6= z], otherwise define

χ = true. We have to find a φ ∧ ψ ∧ χ-decomposition D = {φ1, . . . , φn} s.t. for each i ∈ {1, . . . , n}
there exists a symbolic transition Q

ψi, βi7−→ Qi with φi |= ψi ∧ [α = βi] and furthermore P ′ ∼φi Qi.
Let V = fn(P,Q, φ) and Vy = V ∪ bn(α). Take F ⊆fin N − Vy such that |F | > 2 ∗ |Vy|. Define

the set of substitutions:

S = {σ|n(σ) ⊆ F ∪ V and σ |= φ ∧ ψ ∧ χ} .

S is clearly finite. We now distinguish the possible alternatives for α (α equal to τ , x(y), xy or
x(y)) and stick ourselves to α = x(y) and α = x(y), since the others are easier.

• α = x(y). We let D = {χ(σ{z/y}, Vy)|σ ∈ S, z ∈ Vyσ}. The fact that this is a φ ∧ ψ ∧ χ-
decomposition follows from Lemma 3.2, case a. (read the “φ” of the statement of the lemma
as φ∧ψ ∧χ and the “ψ” as

∨
D). We now come to show that each χ(σ{z/y}, Vy) ∈ D entails

a matching symbolic transition for Q. Thus fix σ ∈ S and z ∈ Vyσ and consider the following
chain of implications:

P
ψ, α7−→ P ′ implies, in virtue of Lemma 3.10 and σ |= ψ and y /∈ n(σ), that

Pσ
γ−→ P ′σ with ασ = γ; since P ∼φ Q and σ |= φ, for some Q′ it holds that

Qσ
γ−→ Q′ with P ′σ{z/y} .∼Q′{z/y}. By Lemma 3.10, there exists a symbolic transition

Q
ψ′, β7−→ Q′′ with σ |= ψ′ ∧ [β = α] and Q′′σ = Q′ .

We check now that that χ(σ{z/y}, Vy) |= ψ′ ∧ [β = α] and that P ′ ∼χ(σ{z/y},Vy) Q′′.

We prove the former fact. It holds that n(ψ′ ∧ [β = α]) ⊆ fn(P,Q) ⊆ V (Lemma 3.6) and
y /∈ n(σ); furthermore σ |= ψ′ ∧ [β = α]; these facts imply σ{z/y} |= ψ′ ∧ [β = α]; hence,
from Lemma 3.5, given any ρ with ρ |= χ(σ{z/y}, Vy), we have ρ |= ψ′ ∧ [β = α].

We show now that P ′ ∼χ(σ{z/y},Vy) Q′′. Consider any substitution ρ s.t. ρ |= χ(σ{z/y}, Vy);
we have to show that P ′ρ

.∼Q′′ρ. From above, we know that P ′σ{z/y} .∼Q′′σ{z/y}. But
fn(P ′, Q′′) ⊆ Vy (Lemma 3.6), thus from Lemma 3.12, P ′ρ

.∼Q′′ρ.

• α = x(y). Define D = {χ(σ, Vy)|σ ∈ S}. The fact that this D is a φ ∧ ψ ∧ χ-decomposition
follows from Lemma 3.2, case b. (read the “φ” of the statement of the lemma as φ∧ψ∧χ and
the “ψ” as

∨
D). We now come to show that each χ(σ, V) ∈ D entails a matching symbolic

transition for Q. Thus fix σ ∈ S and consider the following chain of implications:

P
ψ, α7−→ P ′ implies, in virtue of Lemma 3.10 and σ |= ψ, that

Pσ
γ−→ P ′σ with ασ = γ; from P ∼φ Q and σ |= φ, for some Q′ it holds that

Qσ
γ−→ Q′ with P ′σ

.∼Q′. From Lemma 3.10, there exists a symbolic transition

Q
ψ′, β7−→ Q′′ with σ |= ψ′ ∧ [β = α] and Q′′σ = Q′.

We now show that χ(σ, Vy) |= ψ′ ∧ [β = α] and that P ′ ∼χ(σ,Vy) Q′′. Consider any ρ s.t.
ρ |= χ(σ, Vy); since σ |= ψ′ ∧ [β = α] and n(ψ′ ∧ [β = α]) ⊆ V (Lemma 3.6), from Lemma
3.5 we have ρ |= ψ′ ∧ [β = α] as well.

We show now that P ′ ∼χ(σ,Vy) Q′′. Consider any substitution ρ s.t. ρ |= χ(σ, Vy); we have to
show that P ′ρ

.∼Q′′ρ. From above, we know that P ′σ
.∼Q′′σ. But fn(P ′, Q′′) ⊆ Vy (Lemma

3.6) and by hypothesis ρ |= χ(σ, Vy), thus from Lemma 3.12, P ′ρ
.∼Q′′ρ.

16

2

We end the section by showing that also ground bisimulation .∼ can be characterized in terms
of the symbolic one.

Theorem 4.4 P
.∼Q iff P 'φ Q, where φ =

∧
x,y∈fn(P,Q), x,y distinct [x 6= y].

Proof: The theorem follows immediately from the consistency and adequacy theorems for symbolic
bisimulation and from the fact that .∼ is closed under injective substitutions (Lemma 3.11). 2

5 The Proof System

Let us now consider the finite fragment of the calculus, i.e. the calculus without the recX. operator
and discuss an equational axiomatization of symbolic bisimulation over it. It is well known that
decidable axiomatizations cannot exist for the full language.

The statements derivable within the proof system are guarded equations of the form φ�P = Q,
to be read as “under φ, P equals Q”. In the sequel, we will write simply φ� P = Q to mean that
the equation φ � P = Q is derivable within the proof system. Furthermore, we will abbreviate
true � P = Q simply as P = Q. In this section, symbol ≡ will be used for identity (up to
α-conversion), in order to distinguish it from the proof-theoretic equality (=).

The inference rules of the system are presented in Table 2 (the standard inference rules for re-
flexivity, symmetry and transitivity have been omitted), while the axioms are in Table 3. Note that
the new relevant axioms are Subst, Res2 and Exp, while the laws for Summation and Restriction
are the usual ones, that we have borrowed from [MPW92].

Our proof system can be viewed as the result of merging that of [HL93] and [PS93]. More
precisely, all of the inference rules, but the Res rule, are taken from [HL93], while the axioms
are taken from [PS93]. In particular, our Res2 rule corresponds to rule RC5 of [PS93], once we
interpret our Ry(.) as their Removey(.).

The Cut rule permits case analysis on φ: it says that if φ can be split into two subcases φ1 and
φ2, and for each subcase we can prove P = Q, then P = Q is derivable under φ. The Res and
Res2 rules exhibit the same kind of logical “hiding” of the bound name y as the rules S− Res and
S− Open of symbolic transitional semantics. The other rules and axioms should be self-explanatory;
anyway, we refer the reader to [PS93, HL93] for explanations on their intuitive meaning.

We give below some derived inference rules and axioms that will be useful to manipulate terms.

Lemma 5.1 (Derived laws)

1. (Guard2) φ |= ψ implies φ� ψP = P .

2. (Guard3) φ |= ¬ψ implies φ� ψP = 0.

3. (Guard4) φ(ψP) = (φ ∧ ψ)P .

4. (Guard5) φ |= ψ and ψ |= φ imply φP = ψP .

5. (Guard6) φ |= false implies φP = 0.

6. (Subst2) φ |= [x = y] implies φ� α.P = α{y/x}.P .

7. (Cons) ψ |= φ and φ� P = Q imply ψ � P = Q.

8. (Sum1) φ(P +Q) = φP + φQ.

17

(Congr)
φ� P = Q

φ� P ′ = Q′
where P ′ = Q′ stands for either of: τ.P = τ.Q,

xy.P = xy.Q, ψP = ψQ,P +R = Q+R, P |R = Q|R.

(Res)
φ� P = Q

Ry(φ) � (ν y)P = (ν y)Q

(Inp)
φ�

∑
i∈I τ.Pi =

∑
i∈I τ.Qi

φ�
∑
i∈I x(y).Pi =

∑
i∈I x(y).Qi

y /∈ n(φ)

(Guard)
φ ∧ ψ � P = Q, φ ∧ ¬ψ �Q = 0

φ� ψP = Q

(False)
−

false� P = Q

(Cut)
φ1 � P = Q, φ2 � P = Q

φ� P = Q
φ |= φ1 ∨ φ2

(Axiom)
−

true� P = Q
for each axiom P = Q

Table 2: Inference Rules of the Proof System

18

Summation Laws
(S0) P + 0 = P
(S1) P + P = P
(S2) P +Q = Q+ P
(S3) P + (Q+R) = (P +Q) +R

Restriction Laws
(R0) (ν x)P = P, if x /∈ fn(P)
(R1) (ν x)(ν y)P = (ν y)(ν x)P
(R2) (ν x)(P +Q) = (ν x)P + (ν x)Q
(R3) (ν x)α.P = α.(ν x)P, if x /∈ n(α)
(R4) (ν x)α.P = 0, if x = subj(α)

Axioms from [MPW92]

(Subst) [x = y]α.P = [x = y]α{x/y}.P

(Res2) (ν y)(φP) = (Ry(φ))(ν y)P

(Exp)
If P ≡

∑
i∈I φiαi.Pi and Q ≡

∑
j∈J ψiβi.Qi and

no αi (resp. βj) binds a name free in Q (resp. P).

P |Q =
∑
i∈I φiαi.(Pi |Q) +

∑
j∈J ψjβj .(P |Qj) +

∑
αi opp βj (φi ∧ ψj ∧ [xi = yj])τ.Rij

where αi opp βj and Rij are defined by:
1. αi = xiz and βj = yj(y); then Rij = Pi |Qj{z/y}
2. αi = xi(y) and βj = yj(y); then Rij = (ν y)(Pi |Qj)
3. The converse of 1.
4. The converse of 2.

New Axioms

Table 3: Axioms of the Proof System

19

9. (Sum2) φP + ψP = (φ ∨ ψ)P .

Proof: Routine. As an example, we prove Guard2. Since φ∧¬ψ |= false∨ false and, by False,
false � P = 0, applying the Cut rule we obtain: (a) φ ∧ ¬ψ � P = 0. On the other hand, by
Axiom, it holds that true�P = P and hence, by Cut: (b) φ∧ψ�P = P . By (a) and (b), applying
Guard we get φ� ψP = P , which is the wanted statement. The other cases are proven by similar
techniques (see also [HL93], Proposition 2.2). 2

Before proving its soundness and completeness, we give an elementary application of the proof
system.

Example 5.2 We show that x(y).P = x(y).([y = z]P + [y 6= z]P):

P = trueP Guard2
= ([y = z] ∨ [y 6= z])P Guard5
= [y = z]P + [y 6= z]P Sum2.

From the latter equation, applying Congr − τ , we get τ.P = τ.([y = z]P + [y 6= z]P); finally
applying Inp the wanted result follows.

Soundness is straightforward to prove by exploiting consistency and adequacy of symbolic bisim-
ulation.

Theorem 5.3 (Soundness of the proof system) φ� P = Q implies P 'φ Q.

Proof: Relying on the definition of ∼φ, check soundness of the inference rules. All the cases
are straightforward. As an example we consider Res. Suppose P ∼φ Q; we have to show that
(ν y)P ∼Ry(φ) (ν y)Q as well. Let σ |= Ry(φ); we show that ((ν y)P)σ .∼ ((ν y)Q)σ.

By Remark 3.9, we assume that y /∈ n(σ); from Lemma 3.6 we get that σ |= φ as well. From
P ∼φ Q it follows that Pσ .∼Qσ; hence, from the fact that restriction preserves .∼ , we have:

((ν y)P)σ = (ν y)(Pσ) .∼ (ν y)(Qσ) = ((ν y)P)σ

that is the wanted claim. 2

The actual proof of completeness relies on a “customized” notion of head normal form.

Definition 5.4 (Head normal forms) A process P is in head normal form (HNF) if it is of the
form

∑
i∈I φiSi, where:

• {φi| i ∈ I} is a true-decomposition such that φi ∧ φj |= false for each i, j ∈ I with i 6= j;

• each Si, i ∈ I, is of the form
∑
j∈Ji αj .Pj.

Lemma 5.5 For each process P , there exists a HNF H s.t. P = H.

Proof: The proof is by structural induction on P . The most interesting case is when P = P1 +P2.
We check this case only. By the inductive hypothesis, there exist HNF’s H1 ≡

∑
i∈I φiSi and

H2 ≡
∑
j∈J ψjTi that are provably equivalent to, respectively, P1 and P2; hence P = H1 + H2.

Now, for each I ′ ⊆ I and J ′ ⊆ J , define the formula

χI′J ′ =
∧

i∈I′,j∈J ′
(φi ∧ ψj) ∧

∧
i∈I−I′,j∈J−J ′

(¬φi ∧ ¬ψj) .

It is easy to see that the set
D = {χI′J ′ | I ′ ⊆ I, J ′ ⊆ J}

20

is a true-decomposition and furthermore that for any two distinct χ1, χ2 ∈ D, χ1 ∧ χ2 = false.
Now we have

H1 +H2 = true (H1 +H2) Guard2
= (

∨
D)(H1 +H2) Guard5

=
∑
χI′J′∈D(χI′J ′(H1 +H2)) Sum2 .

(3)

Now observe that, from Guard4, Guard5 and Guard6, it follows that χI′J ′φiSi = χI′J ′Si if i ∈ I ′,
χI′J ′φiSi = 0 otherwise. From this, it follows that

χI′J ′H1 =
∑
i∈I χI′J ′φiSi Sum1

=
∑
i∈I′ χI′J ′Si from the above fact and Summation laws

= χI′J ′(
∑
i∈I′ Si) Sum2 .

In a similar manner, one shows that χI′J ′H2 = χI′J ′(
∑
j∈J ′ Tj). Hence, applying Sum1, we have:

χI′J ′(H1 +H2) = χI′J ′(
∑
i∈I′ Si) + χI′J ′(

∑
j∈J ′ Tj)

= χI′J ′UI′J ′

where UI′J ′ is defined as
∑
i∈I′ Si +

∑
j∈J ′ Tj . From (3) it follows H1 +H2 =

∑
χI′J′∈D χI

′J ′UI′J ′ ;
the latter process is a HNF. 2

We need some other notions about substitutions. The next definition introduces the concepts
of completeness for formulae and of equivalence relation induced by a formula. The former can
be explained by saying that if φ is complete over V then under φ names in V can, in a sense, be
treated as constants. The definition of the latter is self-explanatory.

Definition 5.6 Let V ⊆fin N and φ ∈ BF .

1. We say that φ is complete over V if for each x, y ∈ V , either φ |= [x = y] or φ |= [x 6= y].

2. We define R(φ, V), the equivalence relation induced by φ over V , as: for each x, y ∈ V
xR(φ, V)y iff φ |= [x = y].

In the sequel we adopt the following notation: given a term P of the form
∑
i∈I αi.Pi and a set

V ⊆fin N , PV is
∑
i|i∈I, subj(αi)∈V αi.Pi.

Lemma 5.7 Suppose that P ≡
∑
i∈I αi.Pi 'φ

∑
j∈J βj .Qj ≡ Q and that φ is complete over V =

{subj(αi) | i ∈ I}∪ {subj(βj) | j ∈ J}. Then, for any equivalence class C of R(φ, V), we have
PC 'φ QC .

Proof: As a direct consequence of the fact that φ is complete over V , we have that for each
x, y ∈ V :

not xR(φ, V)y implies φ |= [x 6= y]. (4)

Fix an equivalence class C ofR(φ, V) and any σ s.t. σ |= φ; it is sufficient to show that PCσ
.∼QCσ.

Indeed, since Pσ .∼Qσ, for any summand (αi.Pi)σ of PCσ, there must exist a “matching” summand
(βj .Qj)σ of Qσ; but it must be that subj(βj) ∈ C, because of (4), i.e (βj .Qj) is a summand of QC .
By symmetry we conclude that PCσ

.∼QCσ. 2

We now define a measure that will be used as induction parameter in the proof of the theorem.

Definition 5.8 (φ-depth) Given P and φ, we define the φ-depth of P as:

depth(φ, P) = max{k| for some σ |= φ, n ≥ 0 and α1, · · · , αn different from τ ,
(P |α1. · · · .αn.0)σ = R0

τ−→ R1
τ−→ · · · τ−→ Rk }.

21

This parameter has been defined so as to satisfy the three properties stated in the following
lemma:

Lemma 5.9

1. depth(φ, P) < depth(φ, α.P), for any action prefix α;

2. P ∼φ Q implies depth(φ, P) = depth(φ,Q);

3. φ |= ψ implies depth(φ, P) ≤ depth(ψ, P).

Proof: Straightforward from the definition. 2

We are now set for proving the main theorem of the section, i.e. that P 'φ Q implies φ�P = Q.
Our proof combines two major technical ideas: splitting the global condition φ into a set of complete
sub-conditions and applying a symbolic variant of the classical proof by Milner [Mil89]. The latter
idea comes entirely from [HL93]. The first one is present in [PS93]; there, head normal forms similar
to ours are introduced, but it is required that the outermost formulae of summands be complete
over the set of free names of the given processes. Here, the Cut rule permits using this concept at
the proof system level, making it more explicit.

We give now an informal account of our proof, which goes by induction on depth(φ, P). We can
assume that both P and Q are in HNF, in virtue of Lemma 5.5. The condition φ can be split into
a decomposition D such that for each subcase ψ ∈ D:

1. ψ � P =
∑
i∈I αi.Pi and ψ � Q =

∑
j∈J βj .Qj , that is under φ, P and Q are equal to some

head normal form in the sense of [Mil89];

2. ψ is complete over the set V of names occurring in subject position in the αi’s and βj ’s.

By Lemma 5.7, we have that for each equivalence class C ofR(φ, V), (
∑
i∈I αi.Pi)C 'ψ (

∑
j∈J βj .Qj)C .

Exploiting the symbolic transitional semantics and the inductive hypothesis, one easily shows that
the latter two terms are provably equivalent under ψ; the proof is a symbolic version of the classical
one of [Mil89]. From this it easily follows that also P and Q are provably equivalent under ψ. Since
the latter holds for each ψ ∈ D, we can conclude that φ� P = Q by applying the Cut rule.

Theorem 5.10 (Completeness of the proof system) P 'φ Q implies φ� P = Q.

Proof: The proof goes by induction on k = depth(φ, P) = depth(φ,Q). The base case (k = 0) is
easy and thus we omit it. Suppose k > 0; thus we can assume that the thesis holds for each P ′, Q′

and φ′ s.t. P ′ 'φ′ Q′ and depth(φ′, P ′) < k.
In virtue of Lemma 5.5, of the correctness of the proof system and of Lemma 5.9(2), we can

suppose w.l.o.g. that both P and Q are in HNF.
Therefore it holds that:

P ≡
∑
i∈K

φiRi and Q ≡
∑
j∈H

ψjSj .

Since φ |=
∨
i,j φ ∧ φi ∧ ψj (recall that by definition of HNF both {φi| i ∈ K} and {ψj | j ∈ H} are

true-decompositions), it will suffice to show that for each i ∈ K and j ∈ H

φ ∧ φi ∧ ψj � P = Q (5)

and then to apply the Cut rule. Thus fix i ∈ K, j ∈ H and let χ = φ ∧ φi ∧ ψj . Recall that (by
definition of HNF) for i′ 6= i it holds that φi |= ¬φi′ , and, for j′ 6= j, ψj |= ¬ψj′ ; thus applying
repeatedly Guard2, Guard3 and the Summation Axioms, we can write:

χ� P = Ri and χ�Q = Sj . (6)

22

Thus it will suffice to show that:
χ�Ri = Sj . (7)

By definition of HNF, for suitable non-negative integers M,N it holds that:

Ri ≡
M∑
l=1

αl.Pl and Sj ≡
N∑
l=1

βl.Ql.

Define Γ = { τ , input, free-output, bound-output } and for each γ ∈ Γ

Rγ =
∑
{αl.Pl|αl is of kind γ} and Sγ =

∑
{βl.Ql|βl is of kind γ}.

Thus
Ri =

∑
γ∈Γ

Rγ and Sj =
∑
γ∈Γ

Sγ .

To show (7), it will suffice to show that, for each γ ∈ Γ

χ�Rγ = Sγ . (8)

Now, we can write, for suitable I and J :

Rγ ≡
∑
i∈I

αi.Pi and Sγ ≡
∑
j∈J

βj .Qj .

Define V = {subj(αi) | i ∈ I}∪ {subj(βj) | j ∈ J} and assume V = {x1, . . . , xk}, with the xi’s
distinct. For each x ∈ V and V ′ ⊆ V , define the formula:

η(x, V ′) =
∧
y∈V ′

[x = y] ∧
∧

y∈V−V ′

[x 6= y].

Now, given k sets V1, . . . , Vk ⊆ V , define

ξ(V1, . . . , Vk) =
∧
xi∈V

η(xi, Vi) .

and let
Ξ = {ξ(V1, . . . , Vk)|with V1, . . . , Vk ⊆ V }.

It is easy to see that each ξ ∈ Ξ is complete over V and that Ξ is a true-decomposition; the latter
implies

χ |=
∨
{ξ ∧ χ| ξ ∈ Ξ} . (9)

Thus, to show (8), it will suffice to show that for each ξ ∈ Ξ:

ξ ∧ χ�Rγ = Sγ (10)

and then to apply the Cut rule.
We will now show (10). Consider the equivalence relation R(ξ ∧ χ, V): it will consist of t

non-empty equivalence classes C1, . . . , Ct, thus, abbreviating RγC as RC , we can write:

Rγ = RC1 + · · ·+RCt and Sγ = SC1 + · · ·+ SCt .

We will now prove that for each equivalence class C:

ξ ∧ χ�RC = SC (11)

23

and this will establish (10) and hence the theorem. Fix C. Note that, since ξ is complete over V ,
so is ξ ∧ χ. From P ∼φ Q, it follows P ∼χ Q; from this, (6) and from the correctness of the proof
system we get Ri ∼χ Sj ; this in turn implies Rγ ∼χ Sγ ; hence Rγ ∼ξ∧χ Sγ . From the latter fact
and Lemma 5.7, it follows:

RC ∼χ∧ξ SC . (12)

At this stage, we have to distinguish the possible cases for γ; we only deal with the case γ =
bound-output, since it is the most interesting. For other cases, from now on the proof parallels
that of [HL93]. By α-equivalence, we can assume w.l.o.g. that for each i ∈ I and j ∈ J , bn(αi) =
bn(βj) = y, with y fresh. Choose now w ∈ C. Since χ∧ ξ |= [x = w] for each x ∈ C, by repeatedly
applying Subst2, we can write

χ ∧ ξ �RC =
∑

i∈I| subj(αi)∈C
w(y).Pi

def
= F and χ ∧ ξ � SC =

∑
j∈J | subj(βj)∈C

w(y).Qj
def
= G. (13)

Now it is easy to show (11). We will show now that for each summand w(y).Qj of G, it holds that

χ ∧ ξ � F = F + w(y).Qj . (14)

From this, applying the congruence laws, it will follow that χ ∧ ξ � F = F +G; symmetrically, it
will also be the case that χ∧ ξ�G = F +G, from which it will follow χ∧ ξ�F = G, that, together
with (13), establishes (11).

We will now show (14) for an arbitrary w(y).Qj . Observe that G
true, w(y)−→ Qj and F 'χ∧ξ G

(the latter is implied by (13) and (12)) imply, by the definition of symbolic bisimulation, that there
exists a (χ∧ξ∧

∧
z∈fn(F,G,χ∧ξ)[y 6= z])-decomposition D s.t. for each ζ ∈ D there exists a transition

F
true, w(y)−→ Pij with

Pij 'ζ Qj
hence also

Pij 'ζ∧χ∧ξ Qj .
Observe that ζ ∧ χ ∧ ξ |= χ ∧ ξ, thus exploiting Lemma 5.9:

depth(ζ ∧ χ ∧ ξ, Pij) ≤ depth(χ ∧ ξ, Pij) < depth(χ ∧ ξ, w(y).Pij) ≤ k

thus by the induction hypothesis:
ζ ∧ χ ∧ ξ � Pij = Qj

and hence:
ζ ∧ χ ∧ ξ � wy.Pij = wy.Qj .

Let F ′ def=
∑
i∈I| subj(αi)∈C wy.Pi. Applying the congruence laws and the axioms for +, we obtain:

ζ ∧ χ ∧ ξ � F ′ = F ′ + wy.Qj .

Since the above relation holds for each ζ ∈ D and {ζ∧χ∧ξ | ζ ∈ D} is a (χ∧ξ∧
∧
z∈fn(F,G,χ∧ξ)[y 6= z])-

decomposition, an application of the Cut rule yields:

χ ∧ ξ ∧
∧

z∈fn(F,G,χ∧ξ)
[y 6= z] � F ′ = F ′ + wy.Qj .

Applying the Res inference rule with y and the law R3, we obtain

Ry(χ ∧ ξ) ∧Ry(
∧

z∈fn(F,G,χ∧ξ)
[y 6= z]) � F = F + w(y).Qj . (15)

Now, since y /∈ fn(χ ∧ ξ), it holds that Ry(χ ∧ ξ) = χ ∧ ξ; furthermore Ry(
∧
z∈fn(F,G,χ∧ξ)[y 6= z])

is equivalent to true; from these facts, Cons and (15) the desired (14) follows. 2

24

6 Dealing with Late Bisimulation

We report in this section the definition of symbolic late bisimulation and the related theorems of
consistency and adequacy. After that, we discuss a symbolic characterization of ground bisimulation
and a proof system for symbolic late bisimulation.

In the sequel, .∼l will denote the standard ground late bisimulation and ∼φl the closure of .∼l
under φ. We will only deal with the input case of each theorem, since the other cases are formally
the same as early bisimulation.

Symbolic late bisimulation is obtained by simply adding the condition bn(α)∩n(
∨
D) = ∅ to the

first item of the Definition 2.5: this amounts to imposing that no alternative of the decomposition
depends on the “value” of the formal parameter bn(α), i.e. to forbidding case-analysis on the actual
value of bn(α).

Definition 6.1 (Symbolic late bisimulation)

• A family F = {Rφ |φ ∈ BF} of symmetric binary relations over P, indexed over the set BF
of boolean formulae, is a family of symbolic late bisimulations (FSLB) iff ∀ φ and (P,Q) ∈ Rφ,
P

ψ,α7−→ P ′, with bn(α) ∩ fn(P,Q, φ) = ∅ , implies:

there exists a χ-decomposition D, with bn(α) ∩ n(
∨
D) = ∅ , such that for

all φ′ ∈ D, there is a transition Q
ψ′, β7−→ Q′ with φ′ |= (ψ′ ∧ [α = β]) and

(P ′, Q′) ∈ Rφ′, where:

χ =

{
φ ∧ ψ ∧

∧
z∈fn(P,Q,φ)[y 6= z] if α is a bound output action x(y)

φ ∧ ψ otherwise.

• P 'φl Q iff there exists a FSEB {Rψ|ψ ∈ BF} such that (P,Q) ∈ Rφ.

Theorem 6.2 (Consistency of symbolic late bisimulation) P 'φl Q implies P ∼φl Q.

Proof: We will show that the relation:

R = {(Pσ,Qσ)| ∃φ. σ |= φ and P 'φl Q}

is a ground late bisimulation. Suppose P 'φl Q and σ |= φ. Let us see how the moves of Pσ are
matched by Qσ. Suppose that Pσ α−→ P ′, with bn(α) ∩ fn(Pσ,Qσ) = ∅ ; by Remark 3.9, we
also assume y /∈ n(σ). We analyze the case when α is an input, α = x(y). It suffices to show that
there exists Q′ such that Qσ α−→ Q′ and for each z ∈ fn(Pσ,Qσ, y) (P ′{z/y}, Q′{z/y}) ∈ R. From
Pσ

α−→ P ′ and Lemma 3.10, we deduce that for some ψ and some w, it holds that:

P
ψ,w(y)7−→ P ′′

where σ |= ψ, wσ = x and P ′′σ = P ′. Since P 'φl Q, there exists a φ ∧ ψ-decomposition
D = {φ1, . . . , φn} s.t. y /∈ n(

∨
D) and for each i ∈ {1, . . . , n} there exists a symbolic transition:

Q
ψi, wi(y)7−→ Qi

where φi |= ψi ∧ [w = wi] and P ′′ 'φil Qi. Now, σ |= φ ∧ ψ implies that for some j ∈ {1, . . . , n},

σ |= φj . Applying again Lemma 3.10 to the transition Q
ψj , wj(y)7−→ Qj , we get the matching

transition for Qσ:

Qσ
x(y)−→ Qjσ.

25

Fix any z ∈ fn(Pσ,Qσ, y) and letQ′ = Qjσ
′. We have P ′{z/y} = P ′′σ{z/y} andQ′{z/y} = Qjσ{z/y}.

Recall that σ |= φj ; since y /∈ n(φj , σ), it also holds that φjσ{z/y} = φjσ hence σ{z/y} |= φj as
well. Recall also that P ′′ 'φj Qj . Thus, by definition, (P ′{z/y}, Q′{z/y}) ∈ R. 2

We come now to the adequacy theorem. Lemma 3.11 and Lemma 3.12 extend of course to the
late case (i.e., they still hold if replacing .∼ with .∼l).

Theorem 6.3 (Adequacy of symbolic late bisimulation) P ∼φl Q implies P 'φl Q.

Proof: We will show that the the family of relations

F = {∼φl |φ ∈ BF}

is a family of symbolic late bisimulations. Thus let φ ∈ BF and P ∼φl Q and suppose P
ψ, α7−→ P ′

with bn(α) ∩ fn(P,Q, φ) = ∅ . We deal only with the case when α is an input. Thus we have to
find a φ∧ψ-decomposition D = {φ1, . . . , φn} s.t. for each i ∈ {1, . . . , n} y /∈ n(φi) and there exists

a symbolic transition Q
ψi, βi7−→ Qi with φi |= ψi ∧ [α = βi] and furthermore P ′ ∼φil Qi.

Let V = fn(P,Q, φ) and Vy = V ∪ bn(α). Take F ⊆fin N − Vy s.t. |F | > 2 ∗ |Vy| and define
the set of substitutions:

S = {σ|n(σ) ⊆ F ∪ V and σ |= φ ∧ ψ} .
S is clearly finite. We define D as {χ(σ, V)|σ ∈ S}. The fact that D is a φ ∧ ψ-decomposition
follows from Lemma 3.2, case a. (read the “φ” of the statement of the lemma as φ ∧ ψ and the
“ψ” as

∨
D)3. We now prove that each χ(σ, V) ∈ D entails a matching symbolic transition for Q.

Thus fix σ ∈ S and consider the following chain of implications:

P
ψ, α7−→ P ′ implies, in virtue of Lemma 3.10, since σ |= ψ and y /∈ n(σ)

Pσ
γ−→ P ′σ with ασ = γ; from P ∼φl Q and σ |= φ, for some Q′

Qσ
γ−→ Q′ where for each z ∈ fn(Pσ,Qσ, y) : P ′σ{z/y} .∼lQ′{z/y}.

By Lemma 3.10, there exists a symbolic transition:

Q
ψ′, β7−→ Q′′ with σ |= ψ′ ∧ [β = α] and Q′′σ = Q′ .

We now prove that χ(σ, V) |= ψ′ ∧ [β = α] and that P ′ ∼χ(σ,V)
l Q′′.

Consider any ρ s.t. ρ |= χ(σ, V); we have to show that ρ |= ψ′ ∧ [β = α]; in virtue of Lemma
3.6, n(ψ′ ∧ [β = α]) ⊆ V ; since σ |= ψ′ ∧ [β = α], by Lemma 3.5 we get ρ |= ψ′ ∧ [β = α] as well.

We show now that P ′ ∼χ(σ,V)
l Q′′. Consider any substitution ρ s.t. ρ |= χ(σ, V); we

have to show that P ′ρ
.∼lQ′′ρ. From above, we know that for each z ∈ fn(P ′σ,Q′′σ, y), it is

P ′σ{z/y} .∼lQ′′σ{z/y}. Taken any w ∈ V (note that V 6= ∅ , in that x ∈ V), it follows that
(w(y).P ′)σ .∼l (w(y).Q′′)σ. Since fn(w(y).P ′, w(y).Q′′) ⊆ V and by hypothesis ρ |= χ(σ, V), it
follows by Lemma 3.12 that (w(y).P ′)ρ .∼l (w(y)Q′′)ρ. From the latter it follows that P ′ρ

.∼Q′′ρ. 2

The discussion of Section 2 on automatic verification extends to the late case as well, by con-
sidering the late version of Hennessy and Lin’s algorithm.

Also ground late bisimulation .∼l can be characterized in terms of the symbolic late one.

Theorem 6.4 P
.∼lQ iff P 'φl Q, where φ =

∧
x,y∈fn(P,Q), x,y distinct [x 6= y].

A sound and complete proof system for late bisimulation can be obtained by replacing the Inp
rule of the system considered in Section 5 with the simpler rule:

(Inp− L)
φ� P = Q

φ� x(y).P = x(y).Q
y /∈ n(φ).

3Observe that in this case y plays essentially no role.

26

The corresponding provability relation is denoted by �l. The proofs of soundness and completeness
can be obtained by slightly modifying those for the early case. In particular, the notion of head
normal form remains the same, and, in the completeness part, only the case of input prefixes needs
to be changed; this can be done along the same lines of [HL93]. We omit the proof and state:

Theorem 6.5 φ�l P = Q iff P 'φl Q.

7 Conclusions and Related Work

A symbolic transitional semantics for the π-calculus has been introduced and, on top of it, a notion
of symbolic bisimulation has been defined, amenable to efficient checking. A sound and complete
proof system for symbolic bisimulation has also been provided. Symbolic bisimulation has been
related to the standard bisimulations of the π-calculus; this lays the basis for designing more efficient
strategies for checking early and late bisimulations.

The symbolic characterization of the bisimulations has another major benefit: it sheds new light
on the logical difference between π-calculus bisimulations based on different instantiation strategies,
such as early, late and open. It is not difficult to see that different instantiation strategies correspond
to different degrees of generality in the case analysis. Indeed, early bisimulation is the most general
equivalence, since no restriction is imposed on the case decomposition D. Late bisimulation is
obtained by requiring that the formal parameter of the input action is not in D, i.e. by forbidding
case analysis on the actual value of the formal parameter.

It is strongly conjectured that, for the sublanguage without negation and disjunction over
which open bisimilarity is defined, we can recast open bisimulation equivalence in our framework
by simply omitting case analysis. Referring to Definition 2.5, this amounts to requiring that χ itself
entails a matching transition for Q. In this case our symbolic formulation reduces essentially to
the symbolic characterization of open bisimulation obtained by Sangiorgi ([San93], Definition 5.1).
The main difference is that, in [San93], only the equivalence corresponding to true is considered;
the condition χ on the derivative processes resulting from matching the transitions is encoded as
a particular substitution σχ, applied to these processes. This technique permits avoiding explicit
parameterization of bisimulations over boolean formulae. A formal proof of equivalence between
the definition we sketched and that by Sangiorgi should not be too difficult.

The original idea of symbolic bisimulation has been presented in [HL92]. There, a verification
algorithm is proposed for a class of symbolic transition graphs and a theorem relating symbolic
bisimulations to concrete bisimulations over a version of CCS with value-passing is presented. In
[HL93], the same language has then been equipped with a sound and complete proof system. The
results obtained by Hennessy and Lin are the direct inspiration of our work, but they cannot be
directly extended to the π-calculus for two main reasons:

1. the lack of distinction between variables, values and channels proper of the π-calculus;

2. the absence of a specific language for boolean formulae in the work by Hennessy and Lin.

It is easier to deal with a static value-passing process algebra, because channel names are neatly
separated from the exchanged values and thus channels do not appear in the boolean formulae. Of
course, this is no longer true in a name-passing calculus, where a subtle interplay between name-
scoping and boolean formulae is present. An example of such interplay is offered by the symbolic
structural operational rules for the restriction operator:

S− Res
P

φ, α7−→ P ′

(ν y)P
Ry(φ), α7−→ (ν y)P ′

y /∈ n(α).

27

The symbolic framework of [HL92] and [HL93] is parameterized on the language of boolean
formulae, in other words they do not have a specific language for them. In order to establish the
relationship between symbolic and concrete bisimulation, they just assume existence of an extremely
expressive language, capable of describing any given collection of environments (associations of
variables with values). This is admittedly [HL92] a very strong requirement. It is at least not
obvious, in the presence of non-trivial value types, that such a language exists. Here, we had
to consider a specific language (BF) and had to deal with name substitutions rather than with
environments. Indeed, it must be said that our solution heavily depends on the specific features
of the π-calculus: only finitely many substitutions are important when dealing with a fixed set of
formulae and processes. This property does not hold for languages that, besides names, permit
exchanging other kinds of values (e.g. integers) and make use of predicates (e.g. ≤) over them.

In [PS93], the ground equivalence and the corresponding congruence, for the early and late cases,
are separately axiomatized, via four distinct algebraic proof systems. If we confine ourselves to one
specific form of bisimulation (be it early or late), the main differences between our proof system
and theirs can be summarized as follows. In [PS93], the ground equivalence and the congruence
are considered separately; in our framework, all equivalences obtainable as substitution-closures of
the ground one (including, as particular cases, the ground equivalence itself and the congruence)
are considered at once. As a consequence, it is possible to reason about each such equivalence,
just by selecting the appropriate φ (though proof systems for different φ’s depend on each other).
Furthermore, in many cases, the symbolic formulation makes it possible a gain in efficiency. As
an example, if it has to be proven that x(y).P is ground bisimilar to x(y).Q, within the symbolic
framework it just suffices to derive φ� P = Q, for some φ not containing y and not stronger than
the formula corresponding to our symbolic characterization of .∼ . Within the proof system of
[PS93], it is necessary to apply the input-prefix rule:

IP :
∀z ∈ fn(P,Q, y). P{z/y} = Q{z/y}

x(y).P = x(y).Q

whose premise always requires as many sub-proofs as the cardinality of fn(P,Q, y). This example
indicates that making reasoning assumptions explicit can often avoid a number of useless checks.
An accurate comparison between the two approaches w.r.t. efficient deduction strategies would be
interesting.

Between the publication of the short version of this paper [BD94] and the final revision, we
learnt of related work by Huimin Lin [Lin94] (successively extended to the weak case in [Lin95]).
There, a symbolic semantics very similar to ours is proposed. The considered calculus does not
contain mismatch and disjunction, which are nonetheless used in the meta-language for boolean
conditions. The absence of negation permits a simpler treatment of restriction, whose symbolic
operational rules just contain a side condition ensuring that the restricted name does not occur on
the premise’s transition. Beside that, the formulation of symbolic bisimulation is slightly simpler,
in that a particular “canonical” decomposition is always forced. The latter is taken to be the set of
all conditions complete over fn(P,Q) (in the sense of our Definition 5.6) that consistently extend
φ∧ψ. However, it is not clear to us whether such a formulation can be exploited to gain efficiency
when proving equivalence of processes. In this respect, we feel that the advantage of symbolic
bisimulation as presented in [HL92] and in our work lies in the fact that, by choosing appropriate
decompositions, the size and the number of the relations to exhibit can be possibly reduced.

Our work is somewhat related also to [Dam93] and to [FMQ94], where other symbolic transi-
tional semantics for the π-calculus have been presented. In [Dam93], a symbolic semantics is used
as a basis for developing a model checker; first-order (rather than boolean) formulae are used; in
the operational rules for the restriction operator, the “hiding” of a name y in a formula is modeled
using an existential quantifier ∃y. The aim of [FMQ94] is to define a uniform framework, within

28

which different kinds of strategies (such as early, late, open) can be described by just setting certain
parameters. The problem of efficiently representing the considered equivalences is not tackled.

Acknowledgments

We thank David Walker for providing helpful suggestions and Rosario Pugliese for careful reading
of an earlier draft. Two anonymous referees provided valuable suggestions for improvements.

References

[BD92] M. Boreale and R. De Nicola. Testing equivalence for mobile processes. Information and
Computation, 120:279–303, 1995. Extended abstract in: R. Cleaveland (ed.), Proceedings
of CONCUR ’92, LNCS 630.

[BD94] M. Boreale and R. De Nicola. A symbolic semantics for the π-calculus - Extended
abstract. In B. Jonsson, J. Parrow (eds.) Proceedings of CONCUR ’94, LNCS 836,
Springer-Verlag, Berlin, 1994.

[Dam93] M. Dam. Model checking mobile processes. In E. Best, editor, Proceedings of CONCUR
’93, LNCS 715. Springer-Verlag, Berlin, 1993.

[FMQ94] G. Ferrari, U. Montanari, and P. Quaglia. π-calculus with explicit substitutions. Techni-
cal report, Università di Pisa, 1994. Short version in Proceedings of MFCS’94. To appear
in Theoretical Computer Science.

[Hen91] M. Hennessy. A model for the π-calculus. Technical report 8/91, Computer Science,
University of Sussex, 1991.

[HL92] M. Hennessy and H. Lin. Symbolic bisimulations. in Theoretical Computer Science
138:353-389.

[HL93] M. Hennessy and H. Lin. Proof systems for message-passing process algebras. In E. Best,
editor, Proceedings of CONCUR ’93, LNCS 715. Springer-Verlag, Berlin, 1993.

[JP93] B. Jonsson and J. Parrow. Deciding bisimulation equivalences for a class of non-finite
state programs. Information and Computation, 107:272–302, 1993.

[Lin94] H. Lin. Symbolic bisimulations and proof systems for the π-calculus. Technical report
7/94, Computer Science, University of Sussex, 1994.

[Lin95] H. Lin. Complete inference systems for weak bisimulation equivalences in the π-calculus.
In Proceedings of TAPSOFT ’95, LNCS series, Springer-Verlag, Berlin, 1995.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, part 1 and 2.
Information and Computation, 100:1-77, 1992.

[PS93] J. Parrow and D. Sangiorgi. Algebraic theories for name-passing calculi. Information
and Computation, 120:174–197, 1995.

[San93] D. Sangiorgi. A theory of bisimulation for the π-calculus. Technical report ECS-LFCS
93-270, University of Edinburgh, 1993. To apper in Acta Informatica. Short version in
E. Best, editor, Proceedings of CONCUR ’93, LNCS 715. Springer-Verlag, Berlin, 1993.

29

