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Abstract

We propose a general approach for defining behavioural preorders over
process terms as the maximal pre–congruences induced by basic observables.
We will consider three of these, that provide information about the initial com-
munication capabilities of processes and about the possibility that processes
get engaged in divergent computations. We show that the pre–congruences
induced by our basic observables coincide with intuitive and/or widely stud-
ied behavioural preorders. In particular, we retrieve in our setting the must
preorder of De Nicola and Hennessy and the fair/should preorder introduced
by Cleaveland and Natarajan and by Brinksma, Rensink and Vogler. A new
form of testing preorder, which we call safe–must, also emerges. The alter-
native characterizations we offer shed light on the differences between these
preorders, and on the rôle played in their definition by tests for divergence.

1 Introduction

In the classical theory of functional programming, the point of view is taken that

executing a program expression corresponds to evaluating it. If we write M ↓ v to

indicate that program M evaluates to value v, the problem of the equivalence of two

programs, hence of their semantics, can be stated as follows:

Two programs M and N are observationally equivalent if for every pro-

gram context C such that both C[M ] and C[N ] are programs, and for

every value v, we have: C[M ] ↓ v if and only if C[N ] ↓ v.

∗The extended abstract of this paper has been presented at ICALP’97 and appears in LNCS
1256, at pages 482 – 492. This work has been partially supported by EEC: HCM project EXPRESS,
by CNR project “Specifica ad alto livello e verifica formale di sistemi digitali” and by Istituto di
Elaborazione dell’Informazione CNR, Pisa.
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A similar approach, used e.g. for the lazy lambda calculus [1], is that of defining

equivalence relations in terms of reduction to normal forms. It leads to considering

as equivalent any two programs that cannot be differentiated by considering the

possibility of obtaining normal forms after plugging terms in any context.

In general, given a language equipped with a reduction relation, the paradigm

for defining preorders (equivalences) over terms of the language, can be traced back

to Morris [21] and can be phrased as follows:

1. Define a set of observables (values, normal forms, . . . ) to which a program

can evaluate by means of successive reductions.

2. Define a basic preorder over terms by stating that a term is less defined than

another if it exhibits a smaller set of basic observables.

3. Consider the largest pre–congruence over the language induced by the basic

preorder.

This paradigm has been the basis for assessing many semantics of sequential lan-

guages and is at the heart of the full abstraction problem, see e.g. [27].

Here, we aim at taking advantage of this paradigm also for studying models

of concurrent systems and their equivalences. In this case, the choice of the basic

observables is less obvious. It is well–known that input/output relations are not

sufficient for describing the semantics of this class of systems; it would thus be

limitative to use values as observables.

Also studying the evolution to some kind of normal forms under all possible

contexts is not as inspective as in the case of lambda calculus. Indeed, while the

interaction between a λ–term and the environment is circumscribed, that between

a process and its environment is less clear. Suppose a λ–term M is plugged into a

“context” N , to form an application MN ; then, everywhere along a computation,

we know when an interaction between M and N occurs, namely when M reduces to

a λ–abstraction and a β-reduction takes place. Thus, observing reduction of M to a

λ-astraction or to a value is a sensible basic observable that permits understanding

the overall behaviour of a term. On the contrary, when considering concurrent sys-

tems, the internal evolution of single parallel components is freely intermingled with

external communications. Understanding the semantics of concurrent components

via their contextual behaviour turns out to be much less obvious.

A first attempt at approaching the problem of process equivalences along the

mentioned lines is described in [20]. Milner and Sangiorgi define a new equivalence

for CCS [19] based on barbed bisimilarity. This relation represents a uniform basis

for defining sensible process equivalences for different languages, as it only relies on

a reduction relation and an observation predicate that detects the communication

capability at a given channel. Informally, two processes are considered as barbed

equivalent if they have the same communication capabilities, and this property is
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preserved by internal reduction. The latter requires a co–inductive definition. Milner

and Sangiorgi show that CCS and π–calculus context closures of barbed bisimilarity

leads to alternative characterizations of bisimulation congruences.

It can be said that in [20] the classical approach, à la Morris, is not followed to

the letter. Indeed, the basic observables are very simple, but the basic equivalence

heavily relies on co–induction. In this paper we would like to consider the impact of

a simpler observation machinery that only relies on contexts and basic observables,

avoiding the use of co–inductive tests.

Like Milner and Sangiorgi, we shall be interested in testing for the communication

capabilities of systems, but we shall look for guaranteed ones. When one is willing to

infer the interactive behaviour of a system from its “isolated” behaviour, the simple

knowledge of the system’s possibility of accepting communications along specific

channels is not sufficient. Indeed, considering just the possibility of communication

and closing with respect to all contexts would lead to trace semantics (see e.g.

[9]), that totally ignores possible deadlocks and other liveness properties. Due to

the inherent nondeterminism of concurrent computations, to get more inspective

semantics it is necessary to know whether communications are guaranteed.

Moreover, we shall be interested in the risk a system has of getting involved in an

infinite sequence of internal communications (divergence), because this could lead

to ignoring all subsequent external stimuli. Finally, when considering divergence we

find it interesting also to detect the specific external communications that can lead

a process to a divergent state.

These considerations lead us to introducing three basic observables:

1. P ! ` (P guarantees `) asserts that, by internal actions, P can only reach states

from which action ` can be eventually (after a sequence of internal actions)

performed;

2. P ↓ (P converges) asserts that P cannot get involved in an infinite sequence

of internal actions;

3. P ↓ ` (P converges along `) asserts that P converges and does so also after

performing `.

For processes equipped with a finite reduction relation, these observables are ob-

viously decidable; but, in general, they are not. This is somehow expected whenever

the base language is Turing powerful.

As base language, we shall consider a simple variant of CCS, named Tau–less

CCS (TCCS, [11]) that replaces the operators for internal actions and choice with

an operator for internal choice and an operator for purely external choice1. We

1These choice operators were originally introduced by Hoare, see e.g. [16], their operational
semantics was described in [26].
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have chosen TCCS for the sake of simplicity and for avoiding the well known (non-

)congruence problem that arises in presence of silent actions and choice. All of our

results are however easily extended to CCS and to other languages whose operational

semantics enjoys some mild conditions (see the final section).

The three predicates described above naturally induce five contextual preorders,

that are listed in Table 1 (on the left of ⇔). There we represent a contextual pre-

order using the notation s1�c
s2

, where s1 (if present) refers to the used convergence

predicate, and s2 (if present) refers to the guarantees one. The universal relation is

denoted by U .

The main results of this paper are five full abstraction theorems that make it

manifest that our contextual preorders do coincide with well–known and/or intuitive

behavioural preorders over processes studied in the literature. More specifically, we

will show that:

• �c
L

, the contextual preorder induced by ! `, coincides with <∼
c

FS
, the maximal

pre–congruence included in the fair/should preorder of [22] and [5].

• ↓�c and ↓L�c , the contextual preorders induced by ↓ and ↓ `, both coincide

with <∼CT
, the preorder given by reverse inclusion of convergent traces. This

is the maximal refinement of trace semantics [9] that repects divergence.

Together with the impact of the three observables used in isolation we will also study

the result of using them in pairs and shall show that:

• ↓�c
L

, the contextual preorder induced by ↓ and ! `, coincides with <∼M
, the

original must preorder of [10, 14];

• ↓L�c
L

, the contextual preorder induced by ↓ ` and ! `, gives rise to a new

preorder, the safe–must preorder <∼SM
, which is also supported by a very

intuitive testing scenario.

Table 1 provides a summary of the mentioned results.

The safe–must preorder has a direct characterization in terms of computations

from pairs of observer and process: a computation is successful if a success state

is reached strictly before a “catastrophic” (divergent) one (this explains the adjec-

tive ‘safe’). This condition is stronger than the one introduced by De Nicola and

Hennessy [10] and is very closely related to the definition of Olderog’s readiness

semantics in [25].

The rest of the paper is organized as follows. In Section 2, we briefly recall

syntax and transitional semantics of TCCS. In Section 3, we introduce the rele-

vant notions of the observational semantics for TCCS. Moreover, we report some

alternative characterizations of the testing preorders that will be convenient in later

proofs. In Section 4, we present the full abstraction theorems that relate our con-

textual preorders to the preorder given by the reverse inclusion of convergent traces,
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communication
requirements



convergence requirements︷ ︸︸ ︷
no req. convergence: ↓ conv. after `: ↓ `

no req. U ↓�c ⇔ <∼CT ↓L�c ⇔ <∼CT

guarantee `: ! ` �c
L ⇔ <∼

c

FS ↓�c
L ⇔ <∼M ↓L�c

L ⇔ <∼SM

Table 1: Contextual Preorders Characterizations

to the fair/should preorder, to the must preorder and to the safe–must preorder.

Section 5 is devoted to studying the relationships among the different preorders we

have considered, and to further investigating the safe–must preorder. Section 6 con-

tains a brief discussion on extensions and future work. The final section contains

some concluding remarks and comments on related work.

2 Tau–less CCS: TCCS

In this section, we briefly present the syntax and the operational semantics of TCCS,

(τ–less CCS [11, 14]). As mentioned in the introduction, we have preferred TCCS

to CCS because the former allows us to avoid the “congruence problems” that arise

when the CCS choice operator (+) is used and silent actions are abstracted away.

However, the very same results can be obtained by using CCS and its must pre–

congruence. This can be obtained from the must preorder by imposing that whenever

the “better” process can perform a silent move, so can do the other [10].

We let

• N , ranged over by a, b, . . ., be an infinite set of names and N = {a | a ∈ N},
ranged over by a, b, . . ., be the set of co–names. N and N are disjoint and are

in bijection via the complementation function (·); we define: (a) = a;

• L = N ∪N , ranged over by `, `′, . . ., be the set of labels; we shall use L, K, . . .,

to range over subsets of L and we define L = {` | ` ∈ L};

• X , ranged over by X, Y, . . ., be a countable set of process variables.

Definition 2.1 The set of TCCS terms is generated by the grammar:

E := 0
∣∣∣ Ω

∣∣∣ `.E
∣∣∣ E[]F

∣∣∣ E⊕F
∣∣∣ E |F

∣∣∣ E\L
∣∣∣ E{f}

∣∣∣ X
∣∣∣ recX.E

where f : L → L, called relabelling function is such that {` | f(`) 6= `} is finite,

f(a) ∈ N and f(`) = f(`). We let P , ranged over by P , Q, etc., denote the set

of closed terms or processes (i.e. those terms where every occurrence of any agent

variable X lies within the scope of some recX. operator).
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The language has two basic processes (0 and Ω) and a number of operators for

building up terms from existing ones. The intuitive meaning of TCCS terms is:

- 0 (inaction) cannot perform any action;

- Ω (divergence) may only compute internally;

- `.E (action prefix) executes action ` and then behaves like E;

- E[]F (external choice) behaves either like E or like F and the choice is con-

trolled by the environment;

- E⊕F (internal choice) may autonomously decide to behave either like E or

like F ;

- E | F (parallel composition) denotes the concurrent execution of E and F ;

- E\L (restriction) behaves like E except that it cannot execute actions in L;

- E{f} (relabelling) behaves like E except that its actions are renamed by f ;

- recX.E (recursive definition) has the same meaning as the term defined by

the equation X = E and is used for describing recursive behaviours.

In the following, we often shall write ` instead of `.0. We write {`′1/`1, . . . , `
′
n/`n}

for the relabelling operator {f} where f(`) = `′i if ` = `i, i ∈ {1, . . . , n}, and

f(`) = ` otherwise. As usual, we write E[E1/X1, . . . , En/Xn] for the term obtained

by simultaneously substituting each occurrence of Xi in E with Ei (with renaming

of bound process variables possibly involved). We use the notation
∑

i∈{1,...,n} Ei

as a shorthand of E1[] · · · []En (the order in which the operands Ei are arranged is

unimportant, as [] is associative and commutative in every semantics considered in

the paper); when n = 0, this term will by convention indicate 0. Similarly, the

notation
∑◦i∈{1,...,n}Ei is used as a shorthand of E1⊕ · · ·⊕En (also ⊕ is associative

and commutative in every semantics considered in the paper).

The structural operational semantics of a TCCS term is defined via the two

transition relations
`−→ (visible actions) and �→ (internal actions) induced by the

inference rules in Table 2 and in Table 3, respectively.

As usual, we use =⇒ or
ε

=⇒ to denote the reflexive and transitive closure of

�→ and use
s

=⇒ , with s ∈ L+, for =⇒ `−→ s′
=⇒ when s = `s′. Moreover, we

write P
s

=⇒ if there exists P ′ such that P
s

=⇒ P ′ (P
`−→ and P �→ will be used

similarly). We will call sort of P the set sort(P ) = {` ∈ L | P s`
=⇒ for some s ∈ L∗},

successors of P the set S(P ) = {` ∈ L | P `
=⇒}, and language generated by P the

set L(P ) = {s ∈ L∗ | P
s

=⇒ }. Note that, since we only consider finite relabelling

operators, every TCCS process has a finite sort.
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AR1 `.P
`−→ P

AR2 P
`−→ P ′

P{f} f(`)−→ P ′{f}
AR3 P

`−→ P ′

P\L `−→ P ′\L
if ` 6∈ L ∪ L

AR4 P
`−→ P ′

P []Q `−→ P ′
AR5 P

`−→ P ′

P |Q `−→ P ′ |Q

Table 2: SOS rules for Visible Actions (symmetric of rules AR4 and AR5 omitted)

IR1 Ω�→ Ω IR2 recX.E �→ E[recX.E/X]

IR3 P �→ P ′

P{f} �→ P ′{f} IR4 P �→ P ′

P\L�→ P ′\L
IR5 P ⊕Q�→ P IR6 P �→ P ′

P [] Q�→ P ′ [] Q

IR7 P �→ P ′

P |Q�→ P ′ |Q IR8 P
`−→ P ′, Q

`−→ Q
P |Q�→ P ′ |Q′

Table 3: SOS rules for Internal Actions (symmetric of rules IR5, IR6 and IR7 omitted)

We will write P n to denote the n–th finite syntactical approximant of P , obtained

by first unfolding n times all the recursive sub-terms of P , and then replacing the

recursive sub-terms with Ω (see, e.g., [14]).

Definition 2.2 A context is a TCCS term C with one free occurrence of a process

variable, usually denoted by . If C is a context, we write C[P ] instead of C[P/ ].

The context closure Rc of a given binary relation R over processes, is defined as:

P Rc Q if and only if for each context C : C[P ]R C[Q].

Rc enjoys two important properties:

a. (Rc)c = Rc,

b. R ⊆ R′ implies Rc ⊆ R′c.

In the following, we will write 6R for the complement of R.

3 Observational Semantics

In this section, we introduce a number of observational semantics for TCCS; we

follow two approaches. The first one relies on three basic observables (i.e. predi-

cates over processes) which give rise to five significant preorders; the corresponding

pre–congruences are obtained by closing these preorders over all possible TCCS con-

texts and determine five semantics for the language. The second approach relies on
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the classical testing scenario of [10, 14], or variants of it. We shall also introduce

alternative characterizations of the obtained testing preorders that will be useful in

later proofs.

3.1 Basic Observables and Observation Preorders

Definition 3.1 Let P be a process and ` ∈ L. We define three basic observation

predicates over processes as follows:

• P ! ` (P guarantees `) if and only if for each P ′, P =⇒ P ′ implies P ′ `
=⇒ ;

• P ↓ (P converges) if and only if there is no infinite sequence of internal tran-

sitions P �→ P1 �→ · · · starting from P ;

• P ↓ ` (P converges along `) if and only if P ↓ and, for each P ′, P
`

=⇒ P ′

implies P ′ ↓.

The above predicates can be combined in five sensible ways and used to define

five basic observation preorders over processes, as stated in the following definition.

Definition 3.2 Let P and Q be processes.

• P ↓�Q if and only if P ↓ implies Q ↓;

• P ↓L�Q if and only if for each ` ∈ L: P ↓ ` implies Q ↓ `;

• P �L Q if and only if for each ` ∈ L: P ! ` implies Q ! `;

• P ↓�L Q if and only if for each ` ∈ L: (P ↓ and P ! `) implies (Q ↓ and Q ! `);

• P ↓L�L Q if and only if for each ` ∈ L: (P ↓ ` and P ! `) implies (Q ↓ ` and

Q ! `).

Of course, the basic observation preorders are very coarse. More refined relations

can be obtained by closing the above preorders under all TCCS contexts. For each

basic observation preorder, say �, the contextual preorder generated by � is defined

as its closure �c.

3.2 Testing Preorders and Alternative Characterizations

Like in the original theory of testing [10, 14], we have that:

- observers, ranged over by O,O′, . . ., are processes capable of possibly perform-

ing an additional distinct “success” action w /∈ L;

- computations from P | O are sequences of internal transitions P | O (=

P0 |O0)�→ P1 |O1 �→ · · ·, which are either infinite or such that there exists

k ≥ 0 with Pk |Ok 6�→ .

8



Definition 3.3 Let P be a process and O be an observer.

1. P must
M

O if for each computation from P |O, say P |O �→ P1 |O1 �→ · · ·,
there is some i ≥ 0 such that Oi

w−→ .

2. P must
SM

O if for each computation from P |O, say P |O�→P1 |O1�→ · · ·,
there is some i ≥ 0 such that Oi

w−→ and Pi ↓.

3. P must
FS

O if for each computation from P |O, say P |O�→ P1 |O1 �→ · · ·,
it holds that Pi |Oi

w
=⇒ for each i ≥ 0.

The first definition of successful computation given above is exactly that of [10].

The second one considers successful only those computations that can report a

success strictly before the observed process diverges. The third definition, which is

essentially borrowed from [5], totally ignores the issue of divergence. These three

notions allow us to define three preorders: the first one ( <∼M
) is the original must

preorder of [10, 14], the second one ( <∼SM
) is the new safe–must preorder and the

third one ( <∼FS
) is the (reverse of the) fair/should preorder of [22] and [5].

Definition 3.4 Let P and Q be processes and X ∈ {M, SM, FS} then

P <∼X
Q if and only if for every observer O: P must

X
O implies Qmust

X
O.

<∼M
, <∼SM

and <∼FS
are called must, safe–must and fair/should preorder, respec-

tively.

Given a testing preorder <∼X
, X ∈ {M, SM, FS}, the corresponding TCCS pre–

congruence is defined as its closure <∼
c

X
and the corresponding equivalence, '

X
, is

defined as '
X

= <∼X
∩ ( <∼X

)−1.

We introduce below alternative characterizations of the preorders must and safe–

must. They support simpler methods for proving (or disproving) that two processes

are behaviourally related. For presenting the new characterizations, we need some

additional notation.

Definition 3.5 Let s ∈ L∗, B ⊆fin L and P be a set of processes.

• The convergence predicate, ↓ s, is defined inductively as follows:

– P ↓ ε if P ↓;

– P ↓ `s′ if P ↓ ε and for each P ′ : P
`

=⇒ P ′ implies P ′ ↓ s′.

We write P ↑ s (P ↑ ε or P ↑) if P ↓ s (P ↓ ε) does not hold.

• (P after s) is the set of processes {P ′ | P s
=⇒ P ′}.

• P ↓ B means P ↓ ` for each ` ∈ B.
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• P ↓ B means P ↓ B for each P ∈ P .

• P accepts
M

B means that there exists ` ∈ B such that P
`

=⇒ .

• P accepts
M

B means P accepts
M

B for each P ∈ P .

• P accepts
SM

B means P ↓ B and P accepts
M

B.

Definition 3.6 Let X ∈ {M, SM}. For processes P and Q, we write P �
X

Q if

for each s ∈ L∗ such that P ↓ s, it holds that:

a) Q ↓ s, and

b) for every B ⊆fin L: (P after s) accepts
X
B implies (Qafter s)accepts

X
B.

The proof of the following result is reported in [10, 14].

Theorem 3.7 For all processes P and Q, P <∼M
Q if and only if P �

M
Q.

Theorem 3.8 For all processes P and Q, P <∼SM
Q if and only if P �

SM
Q.

Proof: Very similar to that of Theorem 3.7, reported e.g. in [14]. Below, we

outline the proof. We provide additional details for those points that differ from

[14].

Part (⇐=). Let O be any observer and suppose that Q 6must
SM

O: we show

that P 6must
SM

O as well. Let γ be any non-successful computation, say Q | O =

(Q0 | O0) �→ Q1 | O1 �→ · · ·, for Q | O. The case when γ is infinite is dealt with

exactly like in [14] (it requires König’s Lemma for reducing to the finite case). If γ is

finite, then there are k and s such that Qk |Ok 6�→ , and Q
s

=⇒ Qk and O
s

=⇒ Ok.

Furthermore, for each i, 0 ≤ i ≤ k, such that Oi
w−→ , there is j ≤ i with Qj ↑.

Now, if P ↑ s a non-successful computation for P | O can be easily constructed. If

P ↓ s then Q ↓ s, by definition of �
SM

: this implies that Oi 6
w−→ for 0 ≤ i ≤ k.

Now, let B
def
= S(Ok). Since Qk | Ok 6�→ , we deduce that (Qafter s) accepts

SM
B

does not hold. From this and P ↓ s we deduce that also (P after s) accepts
SM

B

does not hold. That is, there is P ′ such that P
s

=⇒ P ′ and either S(P ′)∩B = ∅ or

P ′ `
=⇒ P ′′ and P ′′ ↑, for some ` ∈ B: in both cases, a non successful computation

for P |O can be easily constructed.

The proof of part (=⇒), similarly to the proof of Theorem 3.7 in [14], re-

lies on two sets of observers. The first kind of observers tests for convergence

along s (P ↓ s), and is defined inductively on s as follows: c(ε) = w and

c(`s′) = (w⊕w)[](`.c(s′)). The second kind tests for the sets of accepance after

a sequence of actions ((P after s) accepts
SM

B), and is defined inductively on s as

follows: a(ε, B) =
∑

`∈B `.w and a(`s′, B) = (w⊕w)[](`.a(s′, B)). 2

By taking advantage of the above alternative characterizations it is easy to prove

that the must and the safe–must preorders are pre–congruences.
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Theorem 3.9 For all processes P and Q and X ∈ {M, SM}, P <∼X
Q if and only

if P <∼
c

X
Q.

Proof: The proof for <∼M
relies on the alternative characterization and can be

found, e.g., in [14]. The proof for <∼SM
can be done along the same lines. In

particular, to show that the preorder is preserved also by the recursive contexts, the

following property is used:

for any process P and any observer O,

P must
SM

O implies that there exists n ≥ 0 such that P n must
SM

O

where P n denotes the n–th finite syntactical approximant of P . 2

The fair/should preorder <∼FS
was not considered above because it is not pre-

served by recursive contexts. This can be easily seen by considering the following

counter–example. Consider the processes P = a.b[]a.c and Q = a.b and the context

C = recX.( | a.b.X)\{a, b}. It obviously holds that P <∼FS
Q, but C[P ] 6<∼FS

C[Q]

(just take O = c.w); hence P 6<∼
c

FS
Q.

In [6], for a language slightly different from ours, the following alternative char-

acterization of the closure of the fair/should preorder is conjectured: P <∼
c

FS
Q if

and only if (P <∼FS
Q and L(P ) ⊆ L(Q)). If the conjecture were proved we would

get a simple and natural characterization of the contextual preorder <∼
c

FS
.

4 Full Abstraction Results

In this section, we present the full abstraction theorems that relate our contextual

preorders to the (reverse) inclusion of convergent traces preorder, the fair/should

testing, the must testing and the safe–must preorders.

From now onward, we shall adopt the following convention: an action declared

fresh in a statement is assumed different from any other name and co–name there

mentioned.

4.1 Convergence predicate and convergent traces

In this section, we deal with the first two contextual preorders, ↓�c and ↓L�c , and

prove that they have the same distinguishing power and coincide with the reverse

inclusion of the convergent traces preorder.

Definition 4.1 For all processes P and Q, we write P <∼CT
Q if for each s ∈ L∗

such that P ↓ s, it holds that:

a) Q ↓ s, and

b) s ∈ L(Q) implies s ∈ L(P ).
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It is easy to show that <∼CT
is the largest preorder included in trace semantics

(reverse trace inclusion) which includes the must preorder <∼M
. Furthermore, <∼CT

is a congruence, as stated by the following theorem.

Theorem 4.2 For all processes P and Q, P <∼CT
Q if and only if P <∼

c

CT
Q.

Proof: Obviously we have that <∼
c

CT
is included in <∼CT

. To establish the reverse

inclusion we need a case analysis on the contexts. The only difficult case is when a

recursive context is used. In this case the proof relies on the following facts, whose

proofs are standard:

1. for any process P and sequence s ∈ L∗, P ↓ s if and only if there exists n ≥ 0

such that P n ↓ s;

2. for any process P and sequence s ∈ L∗, s ∈ L(P ) if and only if there exists

n ≥ 0 such that s ∈ L(P n)

where P n denotes the n–th finite syntactical approximant of P . 2

We will use some special contexts for proving relationships between the preorders.

If s ∈ L∗, say s = `1 · · · `n (n ≥ 0), we define

Cs
1 = | `1. · · · .`n.0 and Cs

2 = | `1. · · · .`n.Ω.

The following two lemmas will be useful for proving the coincidence of the pre-

orders ↓�c , ↓L�c and <∼CT
. The proof of the first is straightforward.

Lemma 4.3 For any process P and s ∈ L∗, P ↓ s if and only if Cs
1 [P ] ↓.

Lemma 4.4 Consider a process P and s ∈ L∗ such that P ↓ s. Then s ∈ L(P ) if

and only if Cs
2 [P ] ↑.

Proof: Assume that P ↓ s. If P
s

=⇒ P ′ then we can construct the derivation

Cs
2 [P ] =⇒ P ′ |Ω: this implies that Cs

2 [P ] ↑. On the converse, suppose that Cs
2 [P ] ↑:

then, relying on the fact that P ↓ s, we can easily show by induction on s that

P
s

=⇒ . 2

Theorem 4.5 For all processes P and Q, P <∼CT
Q if and only if P ↓�c Q.

Proof: (=⇒) Since ε ∈ L(P ) for any process P then, by definition, <∼CT
is

contained in ↓� from which the result follows by closing under contexts and by

relying on Theorem 4.2.

12



(⇐=) Suppose that P ↓�c Q and that P ↓ s. Then we have:

P ↓ s implies (Lemma 4.3)

Cs
1 [P ] ↓ implies (hypothesis P ↓�c Q with C = Cs

1)

Cs
1 [Q] ↓ implies (Lemma 4.3)

Q ↓ s.

Now we can use the fact that P ↓ s and Q ↓ s for proving that s ∈ L(Q) implies

s ∈ L(P ). Indeed, suppose that s ∈ L(Q); then we have

s ∈ L(Q) implies (Lemma 4.4 and Q ↓ s)

Cs
2 [Q] ↑ implies (hypothesis P ↓�c Q with C = Cs

2)

Cs
2 [P ] ↑ implies (Lemma 4.4 and P ↓ s)

s ∈ L(P ).

which proves that P <∼CT
Q. 2

Theorem 4.6 For all processes P and Q, P ↓L�c Q if and only if P ↓�c Q.

Proof: (=⇒) We prove that ↓L�c is contained in ↓� , from which the result follows

by closing under contexts. Suppose that P ↓L�c Q and that P ↓. Fix a fresh ` ∈ L
(such an ` exists because sort(P ) and sort(Q) are finite). Then we have:

P ↓ implies

(P | `) ↓ ` implies (hypothesis P ↓L�c Q with C = | `)
(Q | `) ↓ ` implies

Q ↓

which proves that P ↓�Q.

(⇐=) It can be proved like Theorem 4.5, first part of case (⇐=) with s = `. 2

4.2 Guarantees and fair testing

To prove full abstraction for fair/should, we will use the following lemma.

Lemma 4.7 Let P be a process and O be an observer.

1. P must
FS

O if and only if P |O{ /̀w} ! `, where ` ∈ L is a fresh action;

2. P ! ` if and only if P must
FS

`.w.

Proof:

13



1. Observe that, as {w, w} ∩ sort(P ) = ∅ and {`, `} ∩ (sort(P, O)) = ∅, the

renaming { /̀w} does not affect the interactions between P and O, therefore

(a) P |O =⇒ P ′ |O′ if and only if P |O{ /̀w} =⇒ P ′ |O′{ /̀w}

and

(a) P ′ |O′ w
=⇒ if and only if P ′ |O′{ /̀w} `

=⇒ .

Now we prove that P must
FS

O implies P | O{ /̀w} ! ` (the converse can be

proved similarly). Let P ′ and O′ be such that P | O{ /̀w} =⇒ P ′ | O′{ /̀w}.
Facts (a) and (b) above and the hypothesis imply that P |O =⇒ P ′ |O′ and

P ′ |O′ w
=⇒ . Using again (a) and (b) above, but in the opposite direction, we

conclude that P ′ |O′{ /̀w} `
=⇒ .

2. (=⇒) Let P ′ and O be such that P | `.w =⇒ P ′ | O: we must show that

P ′ | O w
=⇒ . If O = w then P ′ | O w−→ which implies the thesis. If O = `.w

then P =⇒ P ′. By hypothesis, P ′ `
=⇒ . This implies that P ′ | `.w w

=⇒ .

(⇐=) Suppose that P =⇒ P ′: we must show that P
`

=⇒ . Now P | `.w =⇒
P ′ | `.w. By hypothesis, P ′ | `.w w

=⇒ ; since w 6∈ sort(P ), then P ′ `
=⇒ . 2

Theorem 4.8 For all processes P and Q, P <∼
c

FS
Q if and only if P �c

L
Q.

Proof: (⇐=) We prove that �c
L

is contained in <∼FS
, and the claimed result will

follow by closing under contexts. Suppose that P �c
L

Q and that P must
FS

O; let `

be a fresh action. We have:

P must
FS

O implies (Lemma 4.7(1))

P |O{ /̀w} ! ` implies (hypothesis P �c
L

Q, with C = |O{ /̀w})
Q |O{ /̀w} ! ` implies (Lemma 4.7(1))

Qmust
FS

O.

(=⇒) We prove that <∼FS
is contained in �L , and the claimed result will follow

by closing under contexts. Suppose that P <∼FS
Q and that P ! `, for any `. We

have:
P ! ` implies (Lemma 4.7(2))

P must
FS

`.w implies (hypothesis P <∼FS
Q)

Qmust
FS

`.w implies (Lemma 4.7(2))

Q ! `.

2
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Figure 1: Processes Qs
3 and Qs

4 used for contexts Cs
3 and Cs

4

4.3 Guarantees plus convergence, and must testing

To prove full abstraction for must, we will use the following special contexts.

Definition 4.9 Let s ∈ L∗, say s = `1 · · · `n (n ≥ 0), and B ⊆fin L. Let fB denote

a function which maps each ` ∈ B to one and the same fresh c. Fix a bijective

correspondence among `1, . . . , `n and n fresh actions α1, . . . , αn. We define

Cs
3 = |Qs

3 where Qε
3 = c and Q`s′

3 = `.Qs′

3 []c

and

Cs,B
4 = ( |Rs){fB}|Qs

4 where Rs = `1.α1. · · · `n.αn, Qε
4 = 0 and Q`1s′

4 = α1.Q
s′

4 []c .

To give a better intuition of these contexts, we report in Figure 1 a pictorial

representation of processes Qs
3 and Qs

4, for s = `1 · · · `n.

Lemma 4.10 Let s ∈ L∗, B ⊆fin L and c be a fresh action.

a) P ↓ s if and only if Cs
3 [P ] ↓ if and only if Cs

3 [P ] ↓ c.

b) (P after s) accepts
M

B if and only if Cs,B
4 [P ] ! c.

Proof:

a) We start with proving that P ↓ s implies Cs
3 [P ] ↓. The proof is by in-

duction on s. The base case is trivial. Suppose now s = `s′, and assume

by contradiction that Cs
3 [P ] ↑, i.e. assume there is an infinite sequence

Cs
3 [P ] = R0�→R1�→ · · ·. Due to the form of the context Cs

3 and to the fact
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that P ↓, we deduce that, for some i, Ri = Cs′
3 [P ′], with P

`
=⇒ P ′. Now, by

hypothesis P ′ ↓ s′, thus by induction hypothesis we get Ri = Cs′
3 [P ′] ↓, which

is a contradiction.

Now, we prove that Cs
3 [P ] ↓ implies Cs

3 [P ] ↓ c. We have just to show that

Cs
3 [P ]

c
=⇒ R implies R ↓. Due to the form of the context Cs

3 and the fact

that c is fresh, R is of the form P ′ | 0 where P
s′

=⇒ P ′, for some s′ prefix of

s. Since Cs
3 [P ] =⇒ P ′ | Qs′′

3 , with s′s′′ = s, the hypothesis implies that P ′ ↓
which, in turn, implies R ↓.

We are left with proving that Cs
3 [P ] ↓ c implies P ↓ s. Let s′ be some prefix

of s, i.e. s = s′s′′, and P ′ be such that P
s′

=⇒ P ′. We must show that P ′ ↓.
Since we can construct the sequence of internal moves Cs

3 [P ] =⇒ P ′ |Qs′′
3 , the

hypothesis Cs
3 [P ] ↓ c implies P ′ ↓.

b) (=⇒) Suppose that Cs,B
4 [P ] =⇒ R. We must show that R

c
=⇒ . Due to the

form of the context Cs,B
4 , there exist s′, s′′ and P ′ such that s = s′s′′ and P

s′
=⇒

P ′ and either R = (P ′ |αi−1.R
s′′){fB}|(αi−1.Q

s′′
4 []c) or R = (P ′ |Rs′′){fB}|Qs′′

4 .

In the first case, obviously, R
c

=⇒ . In the second case, if s′ is a proper prefix

of s then Qs′′
4

c−→ otherwise there exists ` ∈ B such that P ′ `
=⇒ and then

R
c

=⇒ .

(⇐=) Let R ∈ (P after s) (if (P after s) = ∅, we are done). Due to the

form of the context Cs,B
4 , R ∈ (P after s) implies that the following sequence

of internal transitions Cs,B
4 [P ] =⇒ (R | 0){fB} | 0 is possible. Since, by

hypothesis, Cs,B
4 [P ] ! c and c is fresh then there exists ` ∈ B such that R

`
=⇒ ,

i.e. R accepts
M

B, and the thesis is proved. 2

Theorem 4.11 For all processes P and Q, P <∼M
Q if and only if P ↓�c

L
Q.

Proof: (=⇒) From the definition, it is easily seen that �
M

is contained in ↓�L

(indeed P ! c if and only if (P after ε) accepts
M
{c}). By applying Theorem 3.7,

closing under contexts and recalling that <∼M
is a pre–congruence (Theorem 3.9),

the thesis follows.

(⇐=) Here, we show that ↓�c
L

is contained in �
M

. This fact, Theorem 3.7

and Theorem 3.9 imply the thesis. Assume that P ↓�c
L

Q and that P ↓ s, for some

s ∈ L∗. We have to show that: (a) Q ↓ s and (b) (P after s) accepts
M

B implies

(Qafter s) accepts
M

B, for any B ⊆fin L.

As to part (a), from P ↓ s and Lemma 4.10(a), it follows that Cs
3 [P ] ↓. Obviously,

for every process R, Cs
3[R] ! c. From Cs

3 [P ] ↓, Cs
3[P ] ! c and P ↓�c

L
Q it follows that

Cs
3 [Q] ↓. By applying again Lemma 4.10(a), but in the opposite direction, we obtain

Q ↓ s.

16



Qs,B
5

`1

`2

`n

c

c

c

�
�

�	

�
�

�	

�
�

�	

@
@

@R
@

@
@R

@
@

@R

ss s

�
�

�	

�
�
��

@
@

@R

? ? ?

s s s`′1 `′2 `′m

c c c

Figure 2: Process Qs,B
5 for context Cs,B

5

As to part (b), suppose that (P after s) accepts
M

B. This and Lemma 4.10(b)

imply that Cs,B
4 [P ] ! c. Moreover, it is easy to see that for every process R,

R ↓ s implies Cs,B
4 [R] ↓. From Cs,B

4 [P ] ↓, Cs,B
4 [P ] ! c and P ↓�c

L
Q, it follows that

Cs,B
4 [Q] ! c. By applying again Lemma 4.10(b), but in the opposite direction, we

obtain (Qafter s) accepts
M

B. 2

4.4 Guarantees plus convergence, and safe–must testing

To prove full abstraction for safe–must, we will use another special context. Again,

we assume that c ∈ L is always fresh.

Definition 4.12 Let s ∈ L∗, say s = `1 · · · `n (n ≥ 0), and B ⊆fin L. We define the

context

Cs,B
5 = |Qs,B

5 where Qε,B
5 =

∑
`∈B

`.c and Q`s′,B
5 = `.Qs′,B

5 []c .

Again, to give a better intuition of context Cs,B
5 , we report in Figure 2 a pictorial

representation of process Qs,B
5 , for s = `1 · · · `n and B = {`′1, · · · , `′m}.

Lemma 4.13 Let s ∈ L∗, B ⊆fin L and c be a fresh action. If P ↓ s then

(P after s) accepts
SM

B if and only if (Cs,B
5 [P ] ↓ c and Cs,B

5 [P ] ! c).

Proof: (=⇒) We must show that (a) Cs,B
5 [P ] ↓, (b) Cs,B

5 [P ]
c

=⇒ R implies R ↓,
and (c) Cs,B

5 [P ] =⇒ R implies R
c

=⇒ .
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The proof of (a) goes by induction on s and is similar to the proof of the first

part of Lemma 4.10(a): the only difference is that now, in the base case, one relies

on the fact that for each ` ∈ B and P ′ such that P =⇒ P ′, we have P ′ ↓ `, which

is a consequence of (P after s) accepts
SM

B.

As to (b), if Cs,B
5 [P ]

c
=⇒ R, due to the form of Cs,B

5 it must be R = P ′ | 0, with

P
s′

=⇒ P ′ for some prefix s′ of s`, with ` ∈ B. Since it must be P ↓ s` (from P ↓ s

and (P after s) accepts
SM

B), we get that P ′ ↓, and the claim follows.

As to (c), suppose that Cs,B
5 [P ] =⇒ R. Due to the form of Cs,B

5 , it must be

either R = P ′ | c or R = P ′ | Qs′′,B
5 and P

s′
=⇒ P ′ with s′s′′ = s. In the first case,

obviously R
c−→ . In the second case, if s′′ 6= ε, we have Qs′′,B

5
c−→ ; otherwise, it

is s′ = s and from (P after s) accepts
SM

B we deduce that there is ` ∈ B such that

P ′ `
=⇒ ; hence R

c
=⇒ .

(⇐=) Let R ∈ (P after s) (if (P after s) = ∅, we are done). Due to the form

of the context Cs,B
5 , we have that Cs,B

5 [P ] =⇒ R | ∑
`∈B `.c. Since c is fresh,

the hypothesis Cs,B
5 [P ] ! c implies that there exists ` ∈ B such that R

`
=⇒ , i.e.

R accepts
M

B; moreover, the hypothesis Cs,B
5 [P ] ↓ c implies that whenever R

`
=⇒ R′

with ` ∈ B then R′ ↓, i.e. R ↓ B, and the thesis follows. 2

Theorem 4.14 For all processes P and Q, P <∼SM
Q if and only if P ↓L�c

L
Q.

Proof: The proof can be done along the lines of Theorem 4.11, but relying on

Theorem 3.8, and Lemmas 4.10(a) and 4.13 and on the fact that <∼SM
is a pre–

congruence (Theorem 3.9). 2

Remark 4.15 It is worthwhile to point out that the context Cs,B
5 cannot be used

in place of the (more complex) context Cs,B
4 to prove full abstraction for the must

preorder (Theorem 4.11). In fact, P ↓ s does not imply that Cs,B
5 [P ] ↓ (for instance

a.b.Ω ↓ a but C
a,{b}
5 [a.b.Ω] ↑). This would invalidate the proof of the “if” part of

Theorem 4.11.

Indeed, the use of a context very similar to our Cs,B
5 invalidates a proof in a

paper by Main ([18], Lemma 4.2), where the relationships between the must and

the maximal trace preorders are studied.

5 An Assessment of the Preorders

In this section we explore the relationships among the preorders we have considered:

the uniform setting we have used makes this task relatively simple. Moreover, we

discuss on the safe–must preorder.

Theorem 5.1 For all processes P and Q, P <∼M
Q implies P <∼SM

Q, but not vice–

versa.
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Proof: We show that ↓�c
L

is contained in �
SM

, from which the result will fol-

low by applying Theorems 4.11 and 3.8. Suppose that P ↓�c
L

Q and that P ↓ s,

for some s ∈ L∗. We show that (a) Q ↓ s and that (b) (P after s) accepts
SM

B

implies (Qafter s) accepts
SM

B, for any B ⊆fin L. Let s be `1 · · · `n. As to (a),

just apply Lemma 4.10(a), like in the proof of Theorem 4.11. As to (b), sup-

pose that (P after s) accepts
SM

B. It is easy to show (paralleling the proof of Lem-

mas 4.10 and 4.13 part (b)) that for any P ′ it holds that Cs,B
5 [P ′] ↓ and Cs,B

5 [P ′] ! c

if and only if (P ′ after s) accepts
SM

B. Applying this result to P and Q it follows

(Qafter s) accepts
SM

B (just parallel the proofs of Theorems 4.11 and 4.14).

This proves that P ↓�c
L

Q implies P <∼SM
Q. To show that the vice–versa does

not hold, we exhibit a counter–example. Consider P
def
= a.b.Ω and Q

def
= a. It is easy

to see that P <∼SM
Q, but P 6↓�c

L
Q (just consider the context | a). 2

The following theorem summarizes the relationships among the pre–congruences

considered in the paper.

Theorem 5.2

1. <∼M
⊂ <∼SM

⊂ <∼CT
.

2. <∼
c

FS
is not comparable with <∼M

, <∼SM
and <∼CT

.

Proof:

1. The result follows from Theorems 4.5, 4.11, 4.14 and 5.1. By definition, it is

easily seen that ↓L�c
L

is included in ↓L�c . The inclusion is strict: a ↓L�c 0

but a 6↓L�L 0.

2. To see that neither of <∼M
, <∼SM

and <∼CT
is included in <∼FS

(hence

in <∼
c

FS
), consider the processes P

def
= recX.(a.X[]a.b) and Q

def
= recX.a.X.

Clearly, P <∼M
Q, hence P <∼SM

Q and P <∼CT
Q. However, P 6<∼FS

Q (be-

cause P must
FS

O and Q 6must
FS

O, when O
def
= recX.(a.X[]b.w)). To see the

converse, observe that 0 <∼
c

FS
Ω, but 0 6<∼CT

Ω, hence 0 6<∼SM
Ω and 0 6<∼M

Ω.
2

The mutual relationships among the pre–congruences are simpler if we move to

strongly convergent processes. We say that a process P is strongly convergent if

P ↓ s for every s ∈ L∗.

Theorem 5.3 For strongly convergent processes, it holds that:

<∼
c

FS
⊂ <∼M

= <∼SM
⊂ <∼CT

.
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Proof: The alternative characterizations of <∼M
and <∼SM

, show that they coin-

cide for strongly convergent processes: this accounts for the equality.

We show now that if P and Q are strongly convergent then P <∼
c

FS
Q implies

P <∼M
Q. For this we prove that �c

L
, restricted to strongly convergent processes, is

contained in �
M

, from which the result follows by Theorems 4.8 and 3.7. Indeed,

assume that P �c
L

Q and that (P after s) accepts
M

B, for some s ∈ L∗ and B ⊆ L.

We prove that (Qafter s) accepts
M

B as well, which, since the considered processes

are strongly convergent, is sufficient to prove the thesis. By Lemma 4.10(b), it

follows that Cs,B
4 [P ] ! c, which in turn implies Cs,B

4 [Q] ! c, which in turn, in virtue

of Lemma 4.10(b), implies the wanted (Qafter s) accepts
M

B. This proves that

P �
M

Q and concludes the proof that P <∼M
Q. The same counter–examples

used in the proof of Theorem 5.2 show that the inclusions <∼
c

FS
⊂ <∼M

and
<∼SM

⊂ <∼CT
are strict. 2

We conclude the section with a discussion on the safe–must preorder. First, we

outline an axiomatization for it. Consider the law

(S) `.Ω = `.Ω⊕0 .

The intuition behind (S) is that if action ` is “unsafe” (leads to divergence), ` cannot

even be guaranteed. It is not difficult to prove that any axiomatization for <∼M

(e.g. those in [14, 10]) augmented with the law (S) yields a sound and complete

axiomatization for <∼SM
. The idea is to show that must and safe–must coincide over

normal forms (in the sense of [14, 10]) which have additionally been “saturated” with

respect to left-to-right applications of the law (S). These safe normal formas can

be defined inductively as follows:

• Ω is a safe;

• ∑◦A∈L
∑

`∈A `.P` is a safe normal form if: (a) P` is safe if for each ` ∈ ∪{A :

A ∈ L}, and (b) whenever P`0 =⇒ Ω, for some `0 ∈ A with A ∈ L, then

A \ {l0} ∈ L.

We omit the details of the proof, which can be done along the same lines of [14, 10].

Safe–must is closely related to a variant of readiness semantics considered by

Olderog [25]. In particular, the must engage relation he uses to define this variant

is very similar to our must
SM

, modulo the fact that we consider observers, whereas

he considers traces. Indeed, it is easily seen that <∼SM
is included in Olderog’s

semantics (we refer the interested reader to [3]), while the vice–versa is not true, as

shown by the following counter–example. Consider the processes P = a.Ω[]b and

Q = (a.Ω[]b)⊕0. They have the same readiness semantics in the sense of Olderog

but, defining the observer O
def
= b.w, we have P must

SM
O and P 6must

SM
O.

Olderog’s variant of readiness semantics can be slightly modified to get

coincidence with our safe–must. It is sufficient to modify the third clause
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of the close operation used by Olderog {(s, F ′)| exists ` such that (s`, ↑) ∈
Γ(P ) and F ′ ⊆ succ(s, Γ(P ))} (Definition 4.4.1, pag.126 of [25]) with the following:

{(s, F ′)| exists F such that (s, F ∪F ′) ∈ Γ(P ) and for each ` ∈ F : (s`, ↑) ∈ Γ(P )}.
The proof of coincidence between the modified definition and <∼SM

is quite simple.

Details can be found in [3].

6 Generalizations and Future Work

The full abstraction results for TCCS (Theorems 4.5, 4.8, 4.11 and 4.14) can be easily

extended to many other process languages, provided the theorems are re-stated to

replace each of the (must and safe–must) testing preorders with the induced pre–

congruences. This is necessary to cope with operators that might not preserve the

preorders, such as the CCS choice operator +.

More precisely, the full abstraction results can be easily established for any

process language that satisfies the following two requirements:

1. The set of operators contains inaction, action prefix, external choice, parallel

composition and relabelling;

2. The associated labelled transition system is finitely branching.

Indeed, once observables and testing preorders for such a language have been defined,

the wanted results can be obtained by simply noticing that:

- the proofs of the full abstraction theorems only rely on contexts that can be

built using the operators listed above and, for must and safe-must, on the

existence of alternative characterizations preorders �
M

and �
SM

;

- on the other hand, the alternative characterizations �
M

and �
SM

are (al-

most) language-independent, as they only rely on the two previously mentioned

requirements (see also [14], Chapter 4.4).

The observables we have considered capture natural communications and con-

vergence capabilities of reactive systems. It is not difficult to strengthen the cor-

responding predicates to get more inspective observables, some of which require

considering a richer base language than TCCS. Below, we discuss a few possible

generalizations.

• Efficiency can be taken into consideration by counting the number of internal

actions, in the spirit of [2, 23]. To capture the above within our setting, we

can refine the guarantee predicate with information about the number of �→–

reductions needed to reach a state capable of the visible action. More precisely,

we could define P !m`, m ≥ 0, as:
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whenever P �→ iP ′ then there is j such that i + j ≤ m and P ′ �→ j `−→ .

We strongly conjecture that this observable (plus convergence) exactly cap-

tures the must efficiency testing preorder of Natarajan and Cleaveland [23],

provided that the language is extended with the parallel composition operator

| k of [23], that depends on a natural number k which decreases whenever an

internal action takes place.

• Distribution of systems can be observed by tagging visible actions with some

information about the location where they take place, see e.g. [8, 4]. A natural

choice for us would be to consider a guarantee predicate of the form P !(`@u),

where u is a locality in the sense of [4]. If the language is extended with

a parallel composition operator which requires two synchronizing actions to

be tagged with the same locality, it should not be difficult to establish full

abstraction results for the resulting testing theories.

• Timing aspects of processes behaviour are elegantly modelled in [30, 31, 24]

by adopting a two-phase operational semantics, one modelling occurrence of

usual atomic actions, the other modelling time passing via “idling” transitions,

of the form P
d−→ P ′ (d non-negative real). The latter transitions arise from

explicit idling prefixes. A parallel composition of processes can idle only if

both the components can; as a consequence, in a testing scenario, observers

can be used to exactly detect how long processes can idle. Full abstraction

results with respect to testing could be obtained by extending the guarantee

predicate to idling actions: P !d if and only if whenever P
d′

=⇒ P ′, d′ < d,

then P ′ d−d′
=⇒ (here Q

d
=⇒ Q′ means Q =⇒ d1−→ =⇒ · · · =⇒ dn−→ , for some

d1, . . . , dn such that
∑n

i=1 di = d).

In much the same vein, basic observables could be devised to deal with other

features of concurrent systems, such as priority, probability and causality.

7 Concluding Remarks and Related work

We have advocated the general approach of defining behavioural preorders for

process as the maximal pre–congruences induced by basic observables. As case study

we have considered a simple process algebra (TCCS) and three observables that

check the communication capabilities of processes and the possibility that processes

have of getting engaged in infinite internal computations. Our standpoint is vin-

dicated by the fact that all but one of the obtained pre–congruences for TCCS do

correspond to preorders long studied in the literature [10, 22, 5].

If we had to sum up the main achievements and the success of our approach, we

could say that it represents a uniform basis for defining testing–based observational
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preorders. The languages may significantly differ from the process algebra consid-

ered in this paper. For example, our approach can be used for defining behavioural

equivalences for asynchronous models of parallelism, once one has fixed what are

the important facets of such systems. Or, it can be used to capture other seman-

tics aiming at describing also other aspects (efficiency, location, duration, . . . ) of

concurrent systems. Obviously, the problem of finding the right basic observables

for capturing the wanted semantics might turn out to be difficult to solve. But the

observables might also be used to choose the appropriate semantics for the chosen

class of processes. Of course, relations defined in terms of context closure might

turn out to be of little use for practical applications, but they can definitely be used

prescriptively to assess alternative characterization more amenable to automatic

checking.

Beside Milner and Sangiorgi[20], notions of observables in the same spirit as

ours have been proposed by Main [18], Vogler [29], Hennessy [15], Ferreira [12] and

Laneve [17].

In [18], it is shown that the pre–congruence induced by inclusion of maximal

traces coincides, both for CCS and CSP, with the must pre–congruence of [10];

another characterization is given by only considering the inclusion of the maximal

ε–trace, i.e. a sequence of invisible moves leading to a divergent state or to a

deadlocked one. These basic observables hinder the rôle played by the convergence

test, which is somehow included in that for maximality, and this prevents from

capturing different notions, such as fair testing.

In [29], two Petri nets are called d–equivalent if they both can reach a deadlocked

state or if they both cannot do so. Then it is proved that the variant of failure se-

mantics [7] that ignores divergence is obtained by closing d–equivalence with respect

to parallel composition.

In [15], a series of variants of the testing framework are proposed and results

are listed that show how, by changing the expressive power of observers, a number

of equivalences ranging from bisimulation to testing can be captured. One of the

considered family of observers consists just of agents of the form `.w.0, that somehow

resemble our ! ` predicates. It is claimed that for strongly convergent processes the

pre–congruence induced by this family of observers coincides with the must preorder.

Ferreira [12] and Laneve [17] deal with languages different from classical process

algebras. In particular, Ferreira uses a predicate which resembles very much the

conjunction of our ↓ and ! ` (based on production of values rather than on commu-

nication capabilities) to define a testing preorder for Concurrent ML [28]; this seems

to be strongly related to our safe–must preorder. He also conjectures that if one

considers pure CCS (and observes communication capabilities instead of value pro-

ductions) the obtained preorder coincides with the must pre–congruence of [10]; here

we have proved this conjecture. Laneve discusses the impact of an observables-based

testing scenario on the Join Calculus, a language with elaborate synchronization
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schemata [13].

Acknowledgments

We are grateful to L. Aceto, F. van Breugel, W. Ferreira, A. Rensink and W. Vogler

for interesting discussions and suggestions and to F. Focardi for a first debugging of

the ideas presented in the paper. Two anonymous referees provided helpful sugges-

tions for improving the presentation.

References

[1] S. Abramsky. The lazy lambda calculus. Research Topics in Functional Programming,
David Turner, ed., Addison–Wesley, 1990.

[2] S. Arun-Kumar, M. Hennessy. An efficiency preorder for processes. Acta Informatica,
29(8):737-760, 1992.

[3] M. Boreale, R. De Nicola, R. Pugliese. A Note on Safe Testing. Draft, 1998.

[4] G. Boudol, I. Castellani, M. Hennessy, A. Kiehn. Observing localities. Theoretical
Computers Science, 114:31-61, 1993.

[5] E. Brinksma, A. Rensink, W. Vogler. Fair Testing. Proceedings of CONCUR’95,
LNCS 962, pages 313-327, Springer, 1995.

[6] E. Brinksma, A. Rensink, W. Vogler. Applications of Fair Testing. In R. Gotzhein
and J. Bredereke, ed., Formal Description Techniques IX, Theory, Applications and
Tools. IFIP, Chapman & Hall, 1996.

[7] S.D. Brookes, C.A.R. Hoare, A.W. Roscoe. A theory of communicating sequential
processes. Journal of the ACM, 31(3):560-599, 1984.

[8] I. Castellani, M. Hennessy. Distributed bisimulations. Journal of the ACM, 10:887-
911, 1989.

[9] R. De Nicola. Extensional Equivalences for Transition Systems. Acta Informatica,
24:211-237, 1987.

[10] R. De Nicola, M. Hennessy. Testing Equivalence for Processes. Theoretical Computers
Science, 34:83-133, 1984.

[11] R. De Nicola, M. Hennessy. CCS without τ ’s. Proceedings of TAPSOFT’87
(H. Ehring, et Al., Editors), LNCS 249, pages 138-152, Springer, 1987.

[12] W. Ferreira. Semantic Theories for Concurrent ML. Ph.D. Thesis, University of Sus-
sex, 1996.

24
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