
Symbolic trace analysis
of cryptographic protocols?

Michele Boreale

Dipartimento di Sistemi e Informatica, Università di Firenze, Via Lombroso 6/17,
50134 Firenze, Italia. E-mail boreale@dsi.unifi.it.

Abstract. A cryptographic protocol can be described as a system of
concurrent processes, and analysis of the traces generated by this sys-
tem can be used to verify authentication and secrecy properties of the
protocol. However, this approach suffers from a state-explosion problem
that causes the set of states and traces to be typically infinite or very
large. In this paper, starting from a process language inspired by the
spi-calculus, we propose a symbolic operational semantics that relies on
unification and leads to compact models of protocols. We prove that the
symbolic and the conventional semantics are in full agreement, and then
give a method by which trace analysis can be carried out directly on the
symbolic model. The method is proven to be complete for the considered
class of properties and is amenable to automatic checking.

Keywords: spi-calculus, concurrency, formal methods for security pro-
tocols.

1 Introduction

In recent years, formal methods have proven useful in the analysis of crypto-
graphic protocols, often revealing previously unknown attacks. A popular ap-
proach is that of modelling a protocol as a system of concurrent processes, de-
scribed using an appropriate language, like CSP [13, 19, 21] or the spi-calculus
[1] – the latter an extension of the π-calculus [17]. In this setting, Abadi and
Gordon advocate the use of observational equivalences to formalize and verify
protocol properties [2, 7]. Here, in the vein of [3, 4, 12, 13, 16, 19, 21], we ana-
lyze the sequences of actions (traces) that a given process may execute. As an
example, a secrecy property like “protocol P never leaks the datum d”, might be
verified by adding to the description of P an ‘error’ action to be performed as
soon as the environment learns d (the way this is done depends on the specific
formalism, see e.g. [3]), and then checking that P never performs that ‘error’
action.

The main drawback of trace analysis is that the execution of a protocol typ-
ically generates infinitely many traces. The reason lies in the modelling of the
environment, whose behaviour is largely unpredictable. Rather than trying to
describe this behaviour as a specific process, it is sensible to simply assume that
the communication network is totally under the control of the environment. The
latter can store, duplicate, hide or replace messages that travel on the network.
It can also operate according to the rules followed by honest participants and

? A preliminary version of this paper has been circulated as [5]. Research partly sup-
ported by the Italian MURST Project TOSCA (Teoria della Concorrenza, Linguaggi
di Ordine Superiore e Strutture di Tipi).

synthetize new messages by pairing, decryption, encryption and creation of fresh
nonces and keys, or by arbitrary combinations of these operations (this approach
seems to date back to Dolev and Yao [11]). Thus, an agent waiting for an input
at a given moment may expect any of the infinitely many messages the envi-
ronment can produce and send on the network. This leads to a state explosion
that makes the protocol model, typically a state-transition graph, infinite (more
precisely, infinite-branching). In practice, those approaches that rely on model
checking [13, 19, 21] cut down the model to a convenient finite size by imposing
upper-bounds to the critical parameters (number of keys, number of pairing and
encryption in messages,. . .). Exhaustive exploration of the state-space is then
possible by standard techniques. However, this approach makes correctness in
the general case (completeness) very difficult to establish – though some progress
has recently been made [15, 20]. Furthermore, even when those upper-bounds
can be justified and the model is finite, the branching factor of input actions
may cause the number of states and traces to explode as larger systems are
considered.

In this paper we explore an alternative approach to trace analysis of crypto-
graphic protocols. As a base language, we consider a variant of the spi-calculus,
but this choice is not critical for the development of the theory. The idea is to
replace the infinitely many transitions arising from an input action by a single
symbolic transition, and to represent the received message as a variable. Con-
straints on this variable are accumulated as the execution proceeds. Let us see
this in more detail. In the variant of the spi-calculus we use, the receiver of a
message is written as a(x). R, where a is an arbitrary label, x is the input variable
and R is the continuation. The conventional (‘concrete’) operational semantics
of the language requires x to be instantiated with each message that can pos-
sibly be received from the network, and this causes the state explosion. In our
symbolic semantics, x is not instantiated immediately, rather constraints on its
value are added as needed. These constraints take the form of most general uni-
fiers. As an example, suppose that a process P , after receiving a message x, tries
decryption of x using key k, and, if this succeeds, calls y the result and proceeds
like P ′. This is written as P

def= a(x). case x of {y}k inP ′. We represent a state of
the protocol as a pair (σ,Q), where σ is the trace of process’ past actions and Q
is a process term. The two initial symbolic transitions of (ε, P) will be:

(ε, P) −→
S

(a〈x〉, case x of {y}k inP ′) −→
S

(a〈{y}k〉, P ′[{y}k/x])

where [{y}k/x] is the most general unifier for x and {y}k. In general, protocols
not using replication/recursion will generate finitely many symbolic transitions.
The resulting model is rather compact: sequential processes will just exhibit a
single complete symbolic trace, while, for parallel compositions, traces will be
obtained as usual by interleaving. We prove that the symbolic and the conven-
tional semantics are in full agreement, and then give a method by which trace
analysis can be carried out directly on the symbolic traces. We focus our atten-
tion on a specific class of properties, those of the form “in every execution of the
protocol, action α happens prior to action β”, for given α and β. As we shall
see, this scheme is flexible enough to express interesting forms of authentication

and secrecy. The method is proven to be complete for the language we consider,
and is easily mechanizable; this immediately yields decidability of trace analysis
for the considered language. When a protocol does not satisfy a property, the
method also gives an easy way to compute an attack, i.e. a trace that violates
the property. A prototype implementation of the method is already available [6].

The language we consider does not contain replication/recursion operators,
that would make trace analysis undecidable (see e.g. [12, 10]). Thus we consider
only protocols with a bounded number of participants. However, recent work by
Lowe [15] and Stoller [22] indicates that, in some cases, it is possible to reduce the
analysis of an unbounded protocol to the analysis of a protocol with a bounded,
statically determined number of participants.

The symbolic approach to the analysis of security protocols has been explored
by other authors, including Amadio and Lugiez [4] and Huima [12]. Discussion
with these and other related work can be found in the concluding section.

The rest of the paper is organized a follows. The language, a variant of
the spi-calculus with shared-key cryptography, is introduced in Section 2, along
with its conventional operational semantics. Section 3 introduces trace analysis.
The symbolic operational semantics, and its agreement with the conventional
semantics, are discussed in Section 4. Section 5 presents the symbolic method
for trace analysis, at the core of which is the concept of refinement. For the sake of
presentation, the language of Section 2 does not include the restriction operator,
whose treatment is postponed to Section 6. Section 7 contains discussion on
related work and a few concluding remarks. A separate appendix contains the
proof of a major theorem.

2 The language

Syntax (Table 1) We presuppose three countable disjoint sets: L, N and V. The
set L of labels is ranged over by a, b, The set of N of names is partitioned
into two countable sets, a set LN of local names a, b, . . . and a set EN of envi-
ronmental names a, b, . . .: these sets represent the basic data (keys, nonces,. . .)
initially known to the process and to the environment, respectively. The set V
of variables is ranged over by x, y, The set N ∪ V is ranged over by letters
u, v, Names and variables can be used to build compound messages, in M,
via shared-key encryption and pairing. In particular, {M}k represents the mes-
sage obtained by encrypting M (the argument) under name k (the key), using a
shared-key encryption system. We allow pairing and encryptions to be arbitrar-
ily nested, but only permit atomic keys. Terms are obtained by closing messages
under substitutions (they are just ‘garbage’ that can be generated at run-time,
with no semantical significance).

The syntax of agent expressions, in A, is taken essentially from the spi-
calculus [1]. Agent case {M}h of {y}k inA tries decryption of {M}h using k as
a key: if this is possible (that is, if k = h), the result of the decryption, M , is
bound to y, and the agent proceeds like A, otherwise, the whole expression is
stuck. Similarly, pair M of 〈x, y〉 inA tries to split M into two components and

call them x and y. A difference from spi/π-calculus is that, in our case, input and
output labels (a, b, . . .) must not be regarded as a channels (as already noted, we
assume just one public network), but rather as ‘tags’ attached to process actions
for ease of reference. Also, the only useful cases for output and decryption are
when ζ is a message and η is a name; otherwise the whole agent is stuck.

Given the presence of binders for variables, notions of free variables, v(A) ⊆ V
and alpha-equivalence arise as expected. We shall identify alpha-equivalent agent
expressions. For any M and u, [M/u] denotes the operation of substituting the
free occurrences of u by M . An agent expression A is said to be closed or a
process if v(A) = ∅ ; the set of processes P is ranged over by P,Q, Local
names and environmental names occurring in A are denoted by ln(A) and en(A),
respectively. A process P is initial if en(P) = ∅ . These notations are extended
to terms, messages, and tuples/string/sets of such objects, component-wise. We
shall also use such abbreviations as ln(M,P,Q) to mean ln(M)∪ ln(P)∪ ln(Q).

m, n, . . . names N x, y, . . . variables V
a, b, . . . , h, k, . . . local names LN
a, b, . . . , h, k, . . . environmental names EN
u, v, . . . variables or names V ∪ N a, b, . . . labels L

M, N ::= u | {M}u | 〈M, N〉 messages M
η, ζ ::= u | {ζ}η | 〈ζ, η〉 terms Z

A, B ::= agents A
0 (null)

| a(x). A (input)
| a〈ζ〉. A (output)
| case ζ of {y}η in A (decryption)
| pair ζ of 〈x, y〉 in A (selection)
| [ζ = η]A (matching)
| A ||B (parallel composition)

The occurrences of variables x and y in (input), (decryption) and (selection)
are bound.

Table 1. SyntaxExample 1 (the wide-mouthed frog protocol, WMF [8]). Principals A and B
share two secret keys, kAS and kBS respectively, with a server S. The pur-
pose of the protocol is that of establishing a new secret key k between A and B,
which A may use to send a confidential datum d to B. For the sake of simplic-
ity, we suppose that the protocol is always started by A. The protocol and its
translation in spi-calculus, WMF , are described below:

1. A −→ S : {k}kAS A
def
= a1〈{k}kAS 〉. a2〈{d}k〉. A′

2. S −→ B : {k}kBS S
def
= s1(x). case x of {x′}kAS in s2〈{x′}kBS 〉.0

3. A −→ B : {d}k. B
def
= b1(y). case y of {y′}kBS in b2(z). case z of {z′}y′ in B′

WMF
def
= A || S ||B .

Agents A′ and B′ represent the behaviour of A and B, respectively, after the
protocol has been completed. The above description just accounts for a single
instance of the protocol. The case of n > 1 instances is described by composing
n copies of A, S and B in parallel and then appropriately renaming the instance-
dependent quantities (k, d, nA and nB above).

Operational semantics The semantics of the calculus is given in terms of a tran-
sition relation −→ , which we will sometimes refer to as ‘concrete’ (as opposed
to the ‘symbolic’ one we shall introduce later on). We will find it convenient to
model a state of the system as a pair (s, P), where, s records the current envi-
ronment’s knowledge (i.e. the sequence of messages the environment has “seen”
travelling on the network up to that moment) and P is a process. Similarly to
[3, 4, 9], we characterize the messages that the environment can produce (or de-
duce) at a given moment, starting from the current knowledge s, via a deductive
system. These concepts are formalized below.

Definition 1 (the deductive system). Let S ⊆fin M and M a message. We
let ` be the least binary relation generated by the deductive system in Table 2.
If S ` M we say that S can produce M . 3

(Ax)
S ` M

M ∈ S (Env)
S ` a

a ∈ EN

(Proj1)
S ` 〈M, N〉

S ` M
(Proj2)

S ` 〈M, N〉

S ` N
(Pair)

S ` M S ` N

S ` 〈M, N〉

(Dec)
S ` {M}u S ` u

S ` M
(Enc)

S ` M S ` u

S ` {M}u

Table 2. Deductive system (`)

Note that, whatever S, the set of messages that S can produce is infinite, due to
rules Env, Pair and Enc. An action is a term of the form a〈M〉 (input action)
or a〈M〉 (output action), for a a label and M a message. The set of actions Act
is ranged over by α, β, . . ., while the set Act∗ of strings of actions is ranged over
by s, s′, String concatenation is written ‘·’ . We denote by act(s) and msg(s)
the set of actions and messages, respectively, appearing in s. A string s is closed
if v(s) = ∅ (note that s does not contain binders) and initial if en(s) = ∅ .
In what follows, we write s ` M for msg(s) ` M . We are now set to define
traces, that is sequences of actions that may result from the interaction between
a process and its environment. In traces, each message received by the process
(input message) is deducible from the knowledge the environment has previously
acquired. In configurations, the latter is explicitly recorded.

Definition 2 (traces and configurations). A trace is a closed string s ∈ Act∗

such that for each s1, s2 and a〈M〉, if s = s1 · a〈M〉 · s2 then s1 ` M .
A configuration, written as 〈s, P 〉, is a pair consisting of a trace s and a

process P . A configuration is initial if en(s, P) = ∅ . Configurations are ranged
over by C, C′, 3

(Inp) 〈s, a(x). P 〉 −→ 〈s · a〈M〉, P [M/x]〉 s ` M, M closed

(Out) 〈s, a〈M〉. P 〉 −→ 〈s · a〈M〉, P 〉

(Case) 〈s, case {ζ}k of {y}k in P 〉 −→ 〈s, P [ζ/y]〉

(Select) 〈s, pair 〈ζ, η〉 of 〈x, y〉 in P 〉 −→ 〈s, P [ζ/x, η/y]〉

(Match) 〈s, [ζ = ζ]P 〉 −→ 〈s, P 〉

(Par)
〈s, P 〉 −→ 〈s′, P ′〉

〈s, P ||Q〉 −→ 〈s′, P ′ ||Q〉

plus symmetric version of (Par).

Table 3. Transition relation (−→).

The concrete transition relation on configurations is defined by the rules in Ta-
ble 3. Each action taken by the process is recorded in the first component of
the configuration (thus a ‘labelled’ transition relation is not needed). Rule (Inp)
makes the transition relation infinite-branching, as M ranges over the infinite
set {M : s ` M, M closed }. Another point worth to notice is that decryption
with key k is achieved by matching the term to decrypt against a pattern {y}k,
where y is a fresh variable (rule (Case)). Finally, no handshake communication
is provided (rule (Par)): all messages go through the environment.

3 Trace analysis

Given a configuration 〈s, P 〉 and a trace s′, we say that 〈s, P 〉 generates s′,
written 〈s, P 〉 ↘ s′, if 〈s, P 〉 −→∗ 〈s′, P ′〉 for some P ′. Given a string of
actions s ∈ Act∗, and actions α and β, we say that α occurs prior to β in s if
whenever s = s′ ·β ·s′′ then α ∈ act(s′). We let ρ range over ground substitutions,
i.e. finite maps from a set dom(ρ) ⊆ V to closed messages; tρ denotes the result
of replacing each x ∈ v(t)∩dom(ρ) by ρ(x). The properties of configurations we
are interested in are defined below.

Definition 3 (properties). Let α and β be actions, with v(α) ⊆ v(β), and
let s be a trace. We write s |= α ←↩ β, or s satisfies α ←↩ β, if for each ground
substitution ρ it holds that αρ occurs prior to βρ in s. We say that a configuration

C satisfies α ←↩ β, and write C |= α ←↩ β, if all traces generated by C satisfy
α←↩ β. 3

Note that the variables in α and β can be thought of as being universally quan-
tified (so any consistent renaming of these variables does not change the set of
traces and configurations that satisfy α ←↩ β). In practice, the scheme α ←↩ β
permits formalizing all forms of authentication in Lowe’s hierarchy [14], except
the most demanding one (but can be easily modified to include this one as well).
As we shall see, the scheme also permits expressing secrecy as a reachability
property, in the style of [3]. To this purpose, it is convenient to assume a fixed
‘absurd’ action ⊥ that is nowhere used in agent expressions. Thus the formula
⊥ ←↩ α expresses that action α should never take place, and can be used to
encode reachability.

Example 2 (authentication and secrecy in WMF). We discuss the use of prop-
erties on the simple protocol WMF (Example 1), but our considerations are
indeed quite general.

A property of WMF that one would like to check is the following: if B ac-
cepts as ‘good’ a datum d encrypted under key k (step 3), then this message has
actually been sent by A. This is a form of authentication. In order to formalize
this particular property, we make B explicitly declare if, at the end of the pro-
tocol, a particular message has been accepted. That is, we consider the process
Bauth

def= b1(y). case y of {y′}kBS
in b2(z). case z of {z′}y′ in (B′ || accept〈z〉.0) in-

stead of B, and WMFauth
def= A || S ||Bauth instead of WMF . We have to check

that, in every trace of WMFauth, every accept is preceded by the corresponding
a2. More formally, we have to check that 〈ε, WMFauth〉 |= a2〈t〉 ←↩ accept〈t〉
(where t is any variable).

Another important property is secrecy: the environment should never learn
the confidential datum d. Following [3], we can formalize this property by con-
sidering a version of WMF that also includes a ‘guardian’ listening to the public
network: WMFsecr

def= WMF ||guard(x).0. Evidently, WMF generates a trace s
s.t. s ` d (i.e. the environment learns d) if and only if 〈ε, WMFsecr〉 generates
a trace containing action guard〈d〉. Thus, we have to check that action guard〈d〉
never takes place, i.e. that 〈ε, WMFsecr〉 |= ⊥ ←↩ guard〈d〉.

4 Symbolic semantics

‘Concrete’ traces and configurations can be given a symbolic counterpart, which
may contain free variables.

Definition 4 symbolic traces and configurations. A symbolic trace is
string σ ∈ Act∗ such that: (a) en(σ) = ∅ , and (b) for each σ1, σ2, α and x,
if σ = σ1 ·α ·σ2 and x ∈ v(α)− v(σ1) then α is an input action. Symbolic traces
are ranged over by σ, σ′,

A symbolic configuration, written 〈σ, A〉
S
, is a pair composed by a symbolic

trace σ and an agent A, such that en(A) = ∅ and v(A) ⊆ v(σ). 3

Note that, due to condition (b) in the definition, e.g. a〈x〉 · a〈{h}x〉 is not a sym-
bolic trace, while a〈{h}x〉 · a〈x〉 is. Let us now recall some standard terminology
about substitutions. A substitution θ is a finite partial map from V to M and,
for any object (i.e. variable, message, process, trace,. . .) t, we denote by tθ the
result of applying θ to t. A substitution θ is a unifier of t1 and t2 if t1θ = t2θ.
We denote by mgu(t1, t2) a chosen most general unifier (mgu) of t1 and t2, that
is a unifier θ such that any other unifier can be written as a composition of
substitutions θθ′ for some θ′.

The transition relation on symbolic configurations, −→
S
, is defined by the

rules in Table 4. There, a function newV (·) is assumed such that, for any given
V ⊆fin V, newV (V) is a variable not in V . Note that, differently from the concrete
semantics, input variables are not instantiated immediately in the input rule
(Inp

S
). Rather, constraints on these variables are added as soon as they are

needed, and recorded via mgu’s. This may occur due to rules (Case
S
), (Select

S
)

and (Match
S
). In the following example, after the first step, variable x gets

instantiated to name b due to a (Match
S
)-reduction:

〈ε, a(x). [x = b]P 〉
S
−→

S
〈a〈x〉, [x = b]P 〉

S
−→

S
〈a〈b〉, P [b/x]〉

S
.

The side condition on B′ in (Par
S
) ensures that constraints are propagated

across parallel components sharing variables, like in the following (Match
S
)-

reduction: 〈σ, [x = M]A || a〈x〉. B)〉
S
−→

S
〈σ[M/x], A[M/x] || a〈M〉. B[M/x]〉

S
.

Whenever 〈σ, A〉
S
−→∗

S
〈σ′, A′〉

S
for some A′, we say that 〈σ, A〉

S
sym-

bolically generates σ′, and write 〈σ, A〉
S
↘

S
σ′. The relation −→

S
is finite-

branching. This implies that each configuration generates a finite number of
symbolic traces. It is important to stress that many symbolic traces are in fact
‘garbage’ – jumbled sequences of actions that cannot be instantiated to give a
concrete trace. This is the case, e.g., for the trace a〈{x}k〉 · a〈x〉, which is sym-
bolically generated by 〈ε, P 〉

S
, where P

def= a(y). case y of {x}k in a〈x〉.0. To state
soundness and completeness of −→

S
w.r.t. −→ , we need a notion of consistency

for symbolic traces, given below.
Definition 5 (solutions of symbolic traces). Given a symbolic trace σ and
a ground substitution ρ, we say that ρ satisfies σ if σρ is a trace. In this case,
we also say that σρ is a solution of σ, and that σ is consistent. 3

Theorem6 (soundness and completeness). Let C be an initial configura-
tion and s a trace. Then C ↘ s if and only if there is σ s.t. C ↘

S
σ and s is a

solution of σ.

Proof: By transition induction on −→ and −→
S
, and then by induction on

the length of traces. 2

Any given configuration generates only finitely many symbolic traces. Thus, by
the previous theorem, the task of checking C |= α ←↩ β is reduced to analysing
each of these symbolic traces in turn. To do this, we need at least a method to
tell whether any given symbolic trace is consistent or not. More precisely, the
previous theorem reduces the problem C |= α←↩ β to the following, that will be
faced in the next section.

(InpS) 〈σ, a(x). A〉S −→S 〈σ · a〈x〉, A〉S

(OutS) 〈σ, a〈M〉. A〉S −→S 〈σ · a〈M〉, A〉S

(CaseS) 〈σ, case {ζ}v of {x}u in A〉S −→S 〈σθ, Aθ〉S θ = mgu({ζ}v, {x}u)

(SelectS) 〈σ, pair ζ of 〈x, y〉 in A〉S −→S 〈σθ, Aθ〉S θ = mgu(ζ, 〈x, y〉)

(MatchS) 〈σ, [ζ = η]A〉S −→S 〈σθ, Aθ〉S θ = mgu(ζ, η)

(ParS)
〈σ, A〉S −→S 〈σ′, A′〉S

〈σ, A ||B〉S −→S 〈σ′, A′ ||Bθ〉S
where σ′ = σθ, for some θ

plus symmetric version of (ParS). In the rules, it is assumed that:
(i) x = newV (V) – where V is the set of free variables in the source configuration,
(ii) y = newV (V ∪ {x}) and
(iii) msg(σ)θ ⊆M.

Table 4. Symbolic transition relation (−→S)

Symbolic trace analysis problem (STAP) Given actions α, β (v(α) ⊆ v(β)) and
a symbolic trace σ, check whether or not each solution s of σ satisfies α←↩ β.

We write σ |= α←↩ β if the answer to STAP with σ, α and β is ‘yes’. Note that
STAP is a non-trivial problem: one has to consider every solution of σ, and there
may be infinitely many of them.

5 Refinement

As a first step towards devising a method for STAP, let us consider the simpler
problem of checking consistency of a symbolic trace. Existence of solutions (i.e.
ground instances that are traces) of a symbolic trace σ depends on the form of
input actions in σ. For example, the symbolic trace σ0 = a〈h〉 · b〈{x}k〉 (h 6=
k) has no solution, because no matter which m is substituted for x, we have
{h} 6` {m}k. On the contrary, in σ1 = c〈k〉 · c〈{x}k〉, instantiating x with any
environmental name a ∈ EN will give a solution, because {k} ` {a}k. Yet a
different case is σ2 = c〈{a}k〉 · c〈{b}k〉 · c〈{x}k〉. Since {{a}k, {b}k} 6` k, there
are only two ways of getting a solution of σ2: to unify {x}k with either {a}k or
{b}k. These examples suggest that it should be possible to check consistency of
a symbolic trace by gradually instantiating it until a trace is obtained. We will
call this process refinement. In order to formalize this concept, we first need to
lift the definition of ‘trace’ to the non-ground case. This requires a few more
notations and concepts.

In refinement, we shall consider both ordinary variables and marked variables;
roughly, the latters can only be instantiated to messages that the environment

can produce. This is made precise in the sequel. We consider a new set V̂ of
marked variables, which is in bijection with V via a mapping ·̂: thus variables
x, y, z, . . . have marked versions x̂, ŷ, ẑ, Marked messages are messages that
may also contain marked variables, and marked symbolic traces are defined sim-
ilarly. The deduction relation ` is extended to marked messages by adding the
new axiom

(Mvar)
S ` x̂

x̂ ∈ V̂

to the system of Table 2. For any x̂ and any sequence σ, we denote by σ\x̂
the longest prefix of σ not containing x̂. The satisfaction relation is extended to
marked symbolic traces as follows:

Definition 7. Let σ be a marked symbolic trace and ρ be a ground substitution.
We say that ρ satisfies σ if σρ is a trace and, for each x̂ ∈ v(σ), it holds that
(σ\x̂)ρ ` ρ(x̂). We also say that σρ is a solution of σ, and that σ is consistent.

3

The terminology introduced above agrees with Definition 5 when σ does not
contain marked variables. We can give now the definition of solved form, that
lifts the definition of trace to the non-ground case (note that this definition is
formally the same as Def. 2)

Definition 8 solved forms. Let σ be a marked symbolic trace. We say σ is in
solved form (sf) if for every σ1, a〈M〉 and σ2 s.t. σ = σ1 · a〈M〉 · σ2 it holds that
σ1 ` M . 3

Solved forms are consistent: the next lemma gives us a specific way to instantiate
a solved form so as to get a trace.

Lemma 9. Let σ be in solved form and let ρ be any substitution from v(σ) to
EN . Then ρ satisfies σ.

A key concept of refinement is that of decomposing a message into its irreducible
components, those that cannot be further split or decrypted using the knowledge
of a given σ.

Definition 10 (decomposition of messages). Let σ be a marked symbolic
trace. We define the sets
– I(σ) def=
{M |σ ` M and either M ∈ LN ∪ V or M = {N}u for some u s.t. σ 6` u}.

– [M]σ by induction on M as follows:
[u]σ = {u} − (V̂ ∪ EN)

[〈M,N〉]σ = [M]σ ∪ [N]σ

[{M}u]σ =
{
{ {M}u } if σ 6` u
[M]σ if σ ` u

3

The irreducible components of σ, I(σ), are the building blocks of messages that
can be produced by σ. This is the content of the next proposition, that makes
the relationship among I(σ), [M]σ and ` precise.

Proposition 11. Let σ be a marked symbolic trace. Then σ ` M if and only if
[M]σ ⊆ I(σ).

There are two points worth noting with respect to the above proposition. First,
I(σ) is finite and can be easily computed by an iterative procedure, thus the
proposition gives us an effective method to decide σ ` M ; this also implies that
the set of solved forms is decidable. Second, the proposition suggests a strategy
for refining a generic σ to a solved form: for any input message M in σ, one
tries to make the condition [M]σ′ ⊆ I(σ′) true, for the appropriate prefix σ′ of
σ. We are now ready to define refinement formally. In the sequel, we shall use
the following notations. We write ‘t ∈θ S’ for: there is t′ ∈ S s.t. θ = mgu(t, t′);
when ỹ is a set of variables, we denote by [ỹ/̃̂y] the substitution that for each
x ∈ ỹ maps x̂ to x.

Let σ be a marked symbolic trace, and assume σ = σ′ · a〈M〉 · σ′′, where σ′ is
the longest prefix of σ that is in solved form. Assume N ∈ [M]σ′ − I(σ′).

(Ref1)
N /∈ V, N ∈θ I(σ′), ỹ = {x| x̂ ∈ v(σ) and (σθ)\x̂ is shorter than σ\x̂}

σ � σθ[ỹ/̃̂y]

(Ref2)
N = x or N = {N ′}x

σ � σ[x̂/x]

Table 5. Refinement (�)

Definition 12 (refinement). We let refinement, written � , be the least binary
relation over marked symbolic traces generated by the two rules in Table 5. 3

Rule (Ref1) implements the basic step: an element N in the decomposition of M
gets instantiated, via θ, to an irreducible component of some past message (to be
found in I(σ′)). E.g., consider again the above σ2 = c〈{a}k〉 ·c〈{b}k〉 ·c〈{x}k〉: its
possible refinements are σ2 � σ2[a/x] and σ2 � σ2[b/x], and the refined traces
are in sf. By rule (Ref2), one may choose to mark a variable x, that will be
considered as part of the environment’s knowledge in subsequent refinement.
Sometimes marked variables need to be ‘unmarked’ back to variables, and this
is achieved via the renaming [ỹ/̃̂y] in (Ref1).2

2 Unmarking of x̂ occurs in a (Ref1)-step if the prefix σ\x̂ gets shorter, like in: a〈{a}k〉·
a〈ẑ〉 · a〈{ẑ}h〉 · a〈k〉 · a〈{x̂}ŷ〉 · a〈{{x̂}ŷ}h〉 � a〈{a}k〉 · a〈{x}y〉 · a〈{{x}y}h〉 · a〈k〉 ·
a〈{x}y〉 · a〈{{x}y}h〉, where {{x̂}ŷ}h gets unified with {ẑ}h.

Refinement is repeatdly applied until some solved form is reached. It is
important to realize that the reflexive and transitive closure (�)∗ is a non-
deterministic relation, and that not all sequences of refinement lead to a solved
form. However, the set of possible solved forms reachable from σ completely
characterizes the set of solutions of σ. Formally, for any symbolic trace σ, we let
SF(σ) def= {σ′ |σ (�)∗ σ′ and σ′ is in sf}. Then we have the following theorem

Theorem 13 (characterization of solutions). Let σ be a symbolic trace and
s a trace. Then s is a solution of σ if and only if s is a solution of some σ′ ∈
SF(σ).

By the above theorem and Lemma 9, we obtain:

Corollary 14. A symbolic trace σ is consistent if and only if SF(σ) 6= ∅ .

Note that SF(σ) can be effectively computed, and is always finite, as: (a) � is
finitely-branching relation, and (b) infinite sequences of refinement steps cannot
arise. As to the latter point, note that, since each (Ref1)-step eliminates at least
one variable, any sequence of refinement steps can contain only finitely many
(Ref1)-steps, after the last of which rule (Ref2) can only be applied a finite
number of times. Thus, computing SF(σ) gives a method to decide consistency
of σ. This also suggests a method for solving STAP. As an example, suppose that
we want to check the property σ |= ⊥ ←↩ α, that is, no solution of σ contains an
instance of α. Then we can proceed as follows: for each action γ in σ, we check
whether there is a mgu θ that unifies γ and α; if such a θ does not exist, or if it
exists but σθ is not consistent (i.e. SF(σθ) = ∅ , Corollary 14), then the property
is true, otherwise it is not. Considering the general case α ←↩ β leads us to the
next theorem, which gives us an effective method to check σ |= α←↩ β. Its proof
relies on Theorem 13 and on Lemma 9, plus routine calculations on mgu’s.

Theorem15 (a method for STAP). Let σ be a symbolic trace and let pr =
α←↩ β, where v(α) ⊆ v(β) and v(β)∩v(σ) = ∅ . Then σ |= pr, if and only if the
following is true: for each θ such that α ∈θ act(σ) and for each σ′ ∈ SF(σθ),
say σ′ = σθθ′, it holds that αθθ′ occurs prior to βθθ′ in σ′.

The above theorem immediately yields decidability of STAP, because there are
finitely many mgu’s θ to consider (at most one for each action in σ), and SF(σ)
can be effectively computed. This result lifts of course to configurations.

Corollary 16 (decidability). Let C be an initial configuration and α ←↩ β be
a property. It is decidable whether C |= α←↩ β or not.

Proof: Compute {σ | C symbolically generates σ}, which is finite, and then
check whether or not for each σ in this set it is the case that σ |= α←↩ β, which
can be effectively done. The thesis is a consequence of Theorem 6. 2

In a practical implementation, rather than generating the whole set of symbolic
traces of a given configuration and then check the property, it is more convenient
to check the single symbolic traces as soon as they are generated in an ‘on-the-fly’
way.

6 Restriction

We consider extending the base language via the restriction operator (new a)A,
where a ∈ LN and A an agent; (new a) is binder for name a. The intended
meaning of (new a)A is that a new name a is created, which is private to A. The
concrete and symbolic rules for restriction are given below. A function newLN (·)
is assumed that, for any set of names V ⊆fin LN , yields a local name a /∈ V .

(New) 〈s, (new a)P 〉 −→ 〈s, P 〉 a = newLN (V)
(NewS) 〈σ, (new a)A〉S −→S 〈σ, A〉S a = newLN (V)

In both rules, V is the set of local names occurring free in the source config-
uration. Note that the side-condition on name a is always met modulo alpha-
renaming. A change is required in the rules for parallel composition A ||B, both
in the concrete and in the symbolic case: in the conclusion, an additional renam-
ing [b/a] (where a = newLN (ln(σ,A)) and b = newLN (ln(σ,A || B))) is applied
onto the target configuration: this prevents a new name a possibly created by
a (New)-transition of A from clashing with free occurences of a in B (this is
just the side-condition of the rule (Par) of the π-calculus [17] rephrased in our
language).

7 Conclusions

We have presented a symbolic method for analysing cryptographic protocols.
The method is well suited for an efficient mechanization. The word ‘efficient’
should be taken with a grain of salt here. The trace analysis problem is ob-
viouvsly NP- hard [4, 10], thus pathological examples are unavoidable: formal
statements on ‘efficiency’ are therefore hard to formulate. However, we expect
the method to perform well in practical cases; this is further discussed below.
Experiments conducted with a preliminary, non optimized implementation have
given encouraging results [6]. Developments in the near future include an opti-
mized implementation of the method and extension of the present results to other
cryptographic primitives, like public key and hashing: this should not present
conceptual difficulties, though we have not checked the details yet.

Approaches based on symbolic analysis have also been explored by Huima in
[12] and Amadio and Lugiez [4]. In [12], Huima presents a symbolic semantics
by which the execution of a protocol generates a set of equational constraints;
only an informal description is given of the kind of equational rewriting needed
to solve these constraints. Amadio and Lugiez in [4] consider a variant of the
spi-calculus equipped with a symbolic semantics. Similarly to Huima’s, their
symbolic semantics generates equational constraints of a special form, rather
than unifiers. The (rather complex) constraint-solving procedure is embedded
into symbolic execution, and uses a brute-force method to resolve variables in
key position (all possible instantiations of variables to names that are around are
tried). These factors have a relevant impact on the size of the symbolic model.
On the contrary, in our case symbolic execution and consistency check are kept
separate, and this permits to keep the size of the model to a minimum. The

consistency check procedure (refinement) is invoked only when necessary, and,
most important, does not use brute-force instantiation. Finally, Amadio and
Lugiez encode authentication via reachability: this may add to the complexity
of their method.

Model checking [9, 13, 19, 21] and theorem proving [18] seem to be among
the most successful approaches to the formal analysis of security protocols. As
Paulson has pointed out [18], theorem proving is intuitive, but, within it, veri-
fication is not fully automated and general completeness results are difficult to
establish. On the contrary, model checking is automatic, but suffers from the
state explosion problem, which requires the model to be cut down to a conve-
nient finite size. Our paper might be regarded as an attempt at bridging the two
approaches. We extract the unification mechanism underlying theorem proving
and bring it on the ground of a process language (a variant of the spi-calculus)
that naturally supports a notion of variable binding. This allows us to obtain
precise completeness results for trace analysis.

Acknowledgements I have benefitted from stimulating discussions with Martin
Abadi, Roberto Amadio, Rocco De Nicola, Marcelo Fiore and Rosario Pugliese.

References

1. M. Abadi, A.D. Gordon. A calculus for cryptographic protocols: The spi calculus.
Information and Computation, 148(1):1-70, 1999.

2. M. Abadi, A.D. Gordon. A Bisimulation Method for Cryptographic Protocols.
Nordic Journal of Computing, 5(4):267-303, 1998.

3. R. Amadio, S. Prasad. The game of the name in cryptographic tables. RR 3733
INRIA Sophia Antipolis. In Proc. of Asian’00, LNCS, 2000.

4. R.M. Amadio, S. Lugiez. On the reachability problem in cryptographic protocols.
In Proc. of Concur’00, LNCS, 2000. Full version: RR 3915 Inria Sophia Antipolis.

5. M. Boreale. Symbolic analysis of cryptographic protocols in the spi-calculus. Man-
uscript, 2000. Available at http://www.dsi.unifi.it/∼boreale/papers.html.

6. M. Boreale. STA: a tool for
trace analysis of cryptographic protocols. ML object code and examples, 2001.
Available at http://www.dsi.unifi.it/∼boreale/tool.html.

7. M. Boreale, R. De Nicola, R. Pugliese. Proof Techniques for Cryptographic
Processes. In Proc. of LICS’99, IEEE Computer Society Press, 1999. Full version
to appear in SIAM Journal on Computing.

8. M. Burrows, M. Abadi, R.M. Needham. A logic of authentication. Proc. of the
Royal Society of London, 426:233–271, 1989.

9. E.M. Clarke, S. Jha, W. Marrero. Using state exploration and a natural deduc-
tion style message derivation engine to verify security protocols. In Proc. of the
IFIP Working Conference on Programming Concepts and Methods (PROCOMET),
1998.

10. N. Durgin, P. Lincoln, J. Mitchell, A. Scedrov. Undecidability of bounded security
protocols. In Proc. of Workshop on Formal Methods and Security Protocols, Trento,
1999.

11. D. Dolev, A.C. Yao. On the security of public key protocols. In IEEE Transactions
on Information Theory 29(2):198–208, 1983.

12. A. Huima. Efficient infinite-state analysis of security protocols. In Proc. of Work-
shop on Formal Methods and Security Protocols, Trento, 1999.

13. G. Lowe. Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using
FDR. In Proceedings of TACAS’96, (T. Margaria, B. Steffen, Eds.), LNCS 1055,
pp. 147-166, Springer-Verlag, 1996.

14. G. Lowe. A Hierarchy of Authentication Specifications. In 10th IEEE Computer
Security Foundations Workshop, IEEE Computer Society Press, 1997.

15. G. Lowe. Towards a completeness result for model checking of security protocols.
In 11th Computer Security Foundations Workshop, IEEE Computer Society Press,
1998.

16. D. Marchignoli, F. Martinelli. Automatic verification of cryptographic protocols
through compositional analysis techniques. In Proc. of TACAS99, LNCS 1579:148–
163, 1999.

17. R. Milner, J. Parrow, D. Walker. A calculus of mobile processes, (Part I and II).
Information and Computation, 100:1-77, 1992.

18. L.C. Paulson. Proving Security Protocols Correct. In Proc. of LICS’99, IEEE Com-
puter Society Press, 1999.

19. A.W. Roscoe. Modelling and verifying key-exchange using CSP and FDR. In 8th
Computer Security Foundations Workshop, IEEE Computer Society Press, 1995.

20. A.W. Roscoe. Proving security protocols with model checkers by data independent
techniques. In 11th Computer Security Foundations Workshop, IEEE Computer
Society Press, 1998.

21. S. Schneider. Verifying Authentication Protocols in CSP. IEEE Transactions on
Software Engineering, 24(8):743-758, 1998.

22. S. Stoller. A reduction for automated verification of security protocols. In Proc. of
Workshop on Formal Methods and Security Protocols, Trento, 1999.

This article was processed using the LATEX macro package with LLNCS style

