
Quantifying information leakage
in process calculi?

Michele Boreale
Dipartimento di Sistemi e Informatica

Università di Firenze

Abstract. We study two quantitative models of information leakage in the pi-
calculus. The first model presupposes an attacker with an essentially unlimited
computational power. The resulting notion ofabsolute leakage, measured in bits,
is in agreement with secrecy as defined by Abadi and Gordon: a process has an
absolute leakage of zero precisely when it satisfies secrecy. The second model
assumes a restricted observation scenario, inspired by the testing equivalence
framework, where the attacker can only conduct repeated success-or-failure ex-
periments on processes. Moreover, each experiment has a cost in terms of com-
munication actions. The resulting notion of leakagerate, measured in bits per
action, is in agreement with the first model: the maximum information that can
be extracted by repeated experiments coincides with the absolute leakageA of the
process. Moreover, the overall extraction cost is at leastA/R, whereR is the rate
of the process. Strategies to effectively estimate both absolute leakage and rate
are also discussed.

Keywords: process calculi, secrecy, information leakage, information theory.

1 Introduction
Research in language-based security has traditionally focused on qualitative aspects.
Recently, a few models have been proposed that allow forms of quantitative reasoning
on security properties. For a sequential program, it is natural to quantify leakage by
measuring the information flow between secret ("high") and public ("low") variables
induced by the computed function. Along these lines, an elegant theory of quantitative
non-interference has been recently proposed by Clark et al. [12] (other proposals in the
literature are examined in the concluding section.)

In this paper, we study quantitative models of information leakage in process calculi.
Processes come with no natural notion of computed function. Rather, one is interested
in quantifying the leakage induced by theirobservable behaviour. The difference in
intent can be illustrated by the following concrete example. A smart-card implements a
function that takes documents as input and releases documents signed with a secret key
as output. However, typical attacks targeting the secret key do not focus on the function
itself, but rather on the behaviour of the card, in terms e.g. of observed time variance of
basic operations [9], or observed power consumption [10].

Our starting point is the notion ofsecrecyas formalized by Abadi and Gordon, orig-
inally in the setting of the spi-calculus [1]. In the sequel, we will refer to this notion as
AG-secrecy. Informally,AG-secrecy holds for a processP and a parameterx represent-
ing a sensible information, if the the observable behaviour ofP does not depend on
the actual valuesx takes on. In other words, an attacker cannot infer anything aboutx

? Author’s address: Dipartimento di Sistemi e Informatica, Viale Morgagni 65, I–50134 Firenze,
Italy. Email: boreale@dsi.unifi.it. Work partially supported by theEU within theFET-GC2 ini-
tiative, projectSENSORIA.

by interacting withP. The notion of "observable behaviour" is formalized in terms of
behavioural equivalence, such as may testing [4, 2].

Although elegant and intuitive,AG-secrecy is in practice too rigid. The behaviour
of a typical security application depends nontrivially on the sensible information it
protects. Nevertheless, many such applications are considered secure, on the ground
that theamountof leaked information is, on the average, negligible. Consider aPIN-
checking processP(x) that receives a code from a user and checks it against a 5-digits
secret codex, in order to authorize or deny a certain operation. Clearly, an attacker may
acquire negative information aboutx by interacting withP(x). However, ifP(x) is in-
tended to model, say, an off-line device like a card reader, such small leaks should be
of no concern. More generally, one would like to first measure the information leakage
of a given system and then decide if it is acceptable or not.

In the present paper, we propose two quantitative models of leakage for processes:
one for measuringabsoluteleakage, and one for measuring therate at which informa-
tion is leaked. As explained below, the two models correspond to different assumptions
on the control an attacker may exercise over processes. The connections between these
two models will also be clarified.

After quickly reviewing a few notions from information theory that will be used
in the paper (Section 2), we introduce our reference language, a pi-calculus with data
values (Section 3). In the first model (absolute leakage, Section 4), we presuppose an
attacker with full control over the process. Using the language of unconditional security,
the model can be phrased as follows. A sensible information is modeled as a random
variable, sayX. The a prioriuncertaintyof an adversary aboutX is measured by the
Shannonentropy H(X), expressed in bits. For full generality, it is assumed that some
"side-information"Y, possibly related toX, is publicly available: the conditional en-
tropy H(X|Y) measures the uncertainty aboutX given thatY is known. The processP,
depending in general on bothX andY, induces a random variableZ = P(X,Y): follow-
ing the discussion above, it is reasonable to stipulate thatZ takes as values "observable
behaviours", that is, equivalence classes of a fixed behavioral semantics. Now, the con-
ditional entropyH(X|Y,Z) quantifies the uncertainty onX left after observing bothY
andZ. Hence the differenceI = H(X|Y)−H(X|Y,Z) is the amount of uncertainty about
X removed byP, that we take as its absolute leakage. We prove that this notion is in
full agreement with the qualitative notion ofAG-secrecy. In the special case when there
is no side-information, this means thatP(x) respectsAG-secrecy if and only ifP(X)
has an absolute leakage of 0 for every random variableX. We also offer two alternative
characterizations of zero-leakage, hopefully more amenable to automatic checking.

The second model we consider (rate of leakage, Section 5), refines the previous
scenario by introducing a notion ofcost. Adapting the testing equivalence framework
[4], we stipulate that an attacker can only conduct uponP repeated experimentsE1,
E2,... each yielding a binary answer, success or failure. The attacker has "full control" –
in the sense of the first model – over the compound systemsP||E, but not overP itself.
The security measure we are interested in is the overall number ofcommunications
required to extract one bit of information in this scenario. Thus, we define the rate at
which P leaks information in terms of the maximal number of bits of information per
visible action conveyed by an experiment onP. We then give evidence that this is indeed

a reasonable notion. First, we establish a relationship with the first model, showing that
absolute leakageA coincides with the maximum information that can be extracted by
repeated experiments, and that this costs at leastA/R, whereR is the rate ofP. Second,
we establish that, under certain conditions, process iteration (∗P) leaves the rate ofP
unchanged, which is what one would expect from a good definition of rate. Finally, in
the vein of testing equivalence, we give an experiment-independent characterization of
rate in terms of execution traces.

Strategies to effectively estimate rate of leakage (Section 5) and absolute leakage
(Section 6) are also discussed. These strategies depend on the use of symbolic semantics
in the vein of [7, 3]. Some remarks on further and related work conclude the paper
(Section 7). Proofs have been omitted due to lack of space.

2 Preliminary notions
We quickly recall a few concepts from elementary information theory; see e.g. [15] for
full definitions and underlying motivations. We shall consider discrete random variables
(r.v.) X,Y, ... defined over a common probabilty spaceΩ. We say that a r.v.X is of type
U , and writeX : U , if X(Ω) ⊆ U . We shall always assumeU to be finite. Elements
u ∈U are calledsamplesof X, and|X| is |{u ∈U |Pr[X = u] > 0}|. The concepts of
independent and uniformly distributed (u.d.) random variables, and of expectation of
X (E[X], for X real-valued) are defined as usual. As a function, every random variable
induces a partition into events of its domainΩ, {X−1(u) |u∈ X(Ω)}: we say that two
random variablesX andY are equivalentif they induce onΩ the same partition. A
vector of random variables̃X = (X1, ...,Xn), with n≥ 0 andXi : Ui , is just a random
variable of typeU1×·· ·×Un.

GivenX : U , theentropy Xof andconditional entropy of X given Y: V are defined
by:

H(X) def= −∑u∈U Pr[X = u] · log(Pr[X = u])

H(X|Y) def= ∑v∈V H(X|Y = v) ·Pr[Y = v]

where H(X|Y = v) =−∑u∈U Pr[X = u|Y = v] · log(Pr[X = u|Y = v]), all logarithms are
taken to the base of 2 and by convention 0· log0= 0. Two equivalent random variables
have the same entropy and conditional entropy. The following (in)equalities hold:

0≤ H(X)≤ log|X| (1)

H(X,Y) = H(X|Y)+H(Y) (chain rule) (2)

H(X1, ...,Xn)≤ H(X1)+ · · ·+H(Xn) (3)

where: in (1), equality on the left holds iffX is a constant, and equality on the right holds
iff X is u.d.; in (3), equality holds iff theXi ’s are pairwise independent. Note that by (2)
and (3),H(X|Y) = H(X) iff X andY are independent. IfY = F(X) for some functionF
thenH(Y|X) = 0. Information on X conveyed by Y(aka,mutual information) is defined
as: I(X;Y) def= H(X)−H(X|Y) .
By the chain rule,I(X;Y) = I(Y;X), and I(X;Y) = 0 iff X andY are independent.

Mutual information can be generalized by conditioning on another r.v.Z: I(X;Y|Z) def=
H(X|Z)−H(X|Z,Y). Conditioning onZ may in general either increase or decrease
mutual information betweenX andY. Note that entropy of a r.v. only depends on the
underlying probability distribution; thus any probability vector ˜p = (p1, ..., pn) (pi ≥ 0,
∑i pi = 1) determines a unique entropy value denotedH(p̃); we shall often abbreviate
H(p,1− p) asH(p).

3 The model
We assume a countable set ofvariablesV = {x,y, ...}, a family of non-empty, finite

value-setsU
def= {U,V, ...}, and a countable set ofnamesN = {a,b, ...}, partitioned

into a family of sortsS ,S ′, We assume a function that maps eachx to someT ∈
U∪{S ,S ′, ...}, writtenx : T, and say thatx hastype T. The inverse image of eachT is
infinite. These notations are extended to tuples as expected, e.g. for ˜x = (x1, ...,xn) and
T̃ = (T1, ...,Tn), x̃ : T̃ meansx1 : T1, ...,xn : Tn. We letu,v be generic elements of a finite
value-set. By slight abuse of notation, we sometimes denote byŨ the cartesian product
U1×·· ·×Un.

An evaluationσ is a map fromV to
⋃

U∈UU ∪N that respects typing, that is, for
eachx ∈ dom(σ), x : T implies σ(x) ∈ T. We denote by[d̃/x̃] the evaluation mapping
x̃ to d̃ component-wise. Bytσ, wheret is a term over an arbitrary signature with free
variables fv(t)⊆ V , we denote the result of replacing each free variablex∈ dom(σ)∩
fv(t) with σ(x).

We assume a language of logicalformulaeφ,ψ, We leave the language unspec-
ified, but assume it includes a first order calculus with variablesV , that function sym-
bols include all values inU and names as constants, and that the set of predicates in-
cludes equality[x = y]. We writeU, N |= φ, or simply|= φ, if for all evaluationsσ s.t.
dom(σ)⊇ fv(φ), φσ is valid (i.e. a tautology). We will often writeφ(x̃) to indicate that
the free variables ofφ are included in ˜x, and in this case, abbreviateφ[ũ/x̃] asφ(ũ).

The process language is a standard pi-calculus with variables and data values. We
assume a countable set ofidentifiers A,B, ... and usee,e′... to range over an unspecified
set ofexpressions, that can be formed starting from variables, values and names. The
syntax of processesP,Q, ... is given below.

m ::= x
∣∣ a

P,Q ::= 0
∣∣ τ.P

∣∣ m(x̃).P
∣∣ mẽ.P

∣∣ φP
∣∣ P+P

∣∣ (νb)P
∣∣ P|P

∣∣ A(ẽ) .

Each identifierA has an associated defining equation of the formA(x̃) def= P. Input prefix
m(x̃). and restriction(νb) are binders for ˜x andb, respectively, thus, notions of free
variables (fv) and free names (fn) arise as expected. We identify processes up to alpha-
equivalence. We assume a few constraints on the syntax above: ˜x is a tuple of distinct

elements in input prefix and inA(x̃) def= P, and in the latter fv(P) ⊆ x̃; φ is quantifier-
free. We assume a fixed sorting systemà la Milner. In particular, each sortS has an
associatedsort object ob(S) = (T1, ...,Tk) (k ≥ 0). Here, eachTi is either a sort or a
value-set from the universeU. Informally, a process obeys this sorting system if in
every input and output prefix, a name/variablem of sort S carries a tuple of objects
of the sort specified byob(S); we omit the details that are standard. We letΠo the set
of processes (possibly containing free variables) obeying these conditions andΠc the
subset ofclosedprocesses. Notationally, we shall often omit trailing0’s, writing e.g.
a.b. instead ofa.b.0, we shall write∑n

i=1Pi for nondeterministic choiceP1 + · · ·+ Pn,

and let replication !P denote the process defined by the equation: !P
def= P|!P.

We assume overΠc the standardearly operational semantics of pi-calculus – see
e.g. [14]. Let us just remind that in this form of semantics transitions are the form
P

µ−→ P′, whereµ is one ofτ (invisible action),ad̃ (input action) or(νc̃)ad̃ with c̃⊆ d̃

(output action) andd ::= a | u (name or value). A few standard notations will also
be used. In particular, for eachvisible (different from τ) action α, P

α=⇒ P′ means
P(τ−→)∗ α−→ (τ−→)∗P′. This notation is extended to any sequence of visible actionss
(i.e. atrace), P

s=⇒ P′, as expected. Finally,P
s=⇒ means that there isP′ s.t.P

s=⇒ P′.
We let∼ be a fixed equivalence relation overΠc. We denote by[Q] the equivalence

class of a processQ. We assume∼ is included intrace equivalence[2], includesstrong
bisimulation[14] and preserves all operators of the calculus, except possibly input pre-
fix and unguarded nondeterministic choice. We introduce now the main concept of this
section. Anopen processis a pair(P, x̃), written P(x̃), with x̃ a tuple of distinct vari-
ables of typeŨ ⊆ U andP∈Πo such that fv(P)⊆ x̃; when no confusion arises, we shall
abbreviateP[ũ/x̃] asP(ũ) and(P[ỹ/x̃])(ỹ) asP(ỹ) (ỹ a tuple of distinct variables.)

Definition 1 (open processes as random variables).Let P(x̃) be an open process and
X̃ a vector of random variables, with̃x : Ũ and X̃ : Ũ, for one and the samẽU. We
denote by P(X̃) the random variable F◦ X̃ , where F= λũ∈ Ũ .[P[ũ/x̃]].

Note that a sample ofP(X̃) is an equivalence class of∼.

Example 1. APIN-checking process can be defined as follows. Here, x,z : 1..k for some
integer k and x represents the secret code. The situation is modeled where an observer
can freely interact with the checking process.

Check(x) def= a(z).([z= x]ok.Check(x) + [z 6= x]no.Check(x)) . (4)

The range of the function F: u 7→ [Check(u)] has k distinct elements, as u6= u′ implies
Check(u) 6∼Check(u′). As a consequence, if X: 1..k is a random variable, the distri-
bution of P(X) mirrors exactly that of X. E.g., if X is uniformly distributed, then so is
P(X), i.e. the probability of each sample is1/k.

Note that, ifP(ũ)∼Q(ũ) for each ˜u, then, for anyX̃, P(X̃) andQ(X̃) are the same
random variable. Another concept we shall rely upon is that ofmost general boolean,
borrowed from [7, 3], that is, the most general condition under which two given open
processes are equivalent.

Definition 2 (mgb). Let P(x̃) and Q(ỹ) be two open processes, withx̃ : Ũ and ỹ : Ṽ .
We denote bymgb(P(x̃), Q(ỹ)) a chosen formulaφ(x̃, ỹ) s.t. for eachũ∈ Ũ andṽ∈ Ṽ :
P(ũ)∼Q(ṽ) if and only ifφ(ũ, ṽ) is true.

It is worthwhile to notice that in many cases mgb’s for pairs of open pi-processes
can be automatically computed relying onsymbolictransition semantics. Let us recall

from [7, 3] that a symbolic transition also carries a logical formula:P
µ,φ−−→P′. In [7], an

algorithm is described to compute mgb’s for pair of processes both havingfinite sym-
bolic transition systems. Here, we will just assume that the logical language guarantees
existence of mgb for any given pair of open processes.

4 Absolute leakage
Throughout the section and unless otherwise stated, we letP(x̃, ỹ) be an arbitrary open
process, with ˜x : Ũ andỹ : Ṽ, while X̃ : Ũ andỸ : Ṽ are two arbitrary vectors of random

variables, andZ
def= P(X̃,Ỹ).

Definition 3 (absolute leakage).The (absolute)information leakage from̃X to P given

Ỹ isA(P; X̃ | Ỹ) def= I(X̃;Z|Ỹ) = H(X̃|Ỹ)−H(X̃|Ỹ,Z).

WhenỸ is empty, we simply write leakage asA(P; X̃). A first useful fact says that
leakage is nothing but the uncertainty aboutZ after observing̃Y. The proof is a simple
application of the chain rule (2).

Lemma 1. A(P; X̃ | Ỹ) = H(Z|Ỹ). In particular, if ỹ is empty,A(P; X̃) = H(Z).

Example 2. The process Check(x) defined in (4) leaksall information about x. For
example, if X is u.d on1..k then Z= P(X) is u.d. over a set of k samples. Hence
A(Check;X) = H(Z) = logk = H(X).

Suppose now the adversary cannot interact freely with Check, but rather he observes
the result of a user interacting with Check:

OneTry(x,y) def= (νa)(Check(x)|ay) . (5)
Clearly, for any X,Y : 1..k, the range of the random variable Z= OneTry(X,Y) has only
two elements, that is[τ.ok] and[τ.no], that have probabilitiesPr[X = Y] andPr[X 6= Y],
respectively. In the case where X and Y are uniformly distributed and independent, these
probabilities are1/k and1−1/k, respectively. We are interested inA(OneTry; X |Y).
Easy calculations show that Z and Y are in fact independent. For the sake of concrete-
ness, let us assume k= 10; then we can compute absolute leakage as

A(OneTry;X |Y) = H(Z|Y) = H(Z) = H(
1
10

)≈ 0.469.

In this case, knowledge of Y brings no advantage to the adversary.

The next result is about composing leakage. Let us say that an-holes context
C[·, ..., ·] preserves∼ if wheneverPi ∼ P′i for 1≤ i ≤ n thenC[P1, ...,Pn]∼C[P′1, ...,P

′
n].

The following proposition states that leakage of a compound system cannot be greater
than the sum of leakage of individual systems. The (simple) proof is based on inequality
(3) plus the so called "data processing" inequality, saying that for any r.v.W and any
functionF of appropriate type,H(F(W))≤ H(W).

Proposition 1 (compositionality).Let C[·, ..., ·] be a n-holes context that preserves∼,
and let Qi(x̃, ỹ) be open processes,1≤ i ≤ n. Let P(x̃, ỹ) =C[Q1(x̃, ỹ), ...,Qn(x̃, ỹ)]. Then

A(P; X̃ | Ỹ)≤
n

∑
i=1

A(Qi ; X̃ | Ỹ) . (6)

For example, in the case of parallel composition, inequality (6) specializes to
A(P|Q; X̃ | Ỹ) ≤ A(P; X̃ | Ỹ) + A(Q; X̃ | Ỹ). The inequality implies that leakage is
never increased by unary operators. In the case of replication !, this leads to the some-
what unexpected conclusionA(!P; X̃ | Ỹ) ≤ A(P; X̃ | Ỹ). Inequalities provided by (6)
may hold strict or not, as shown below.

Example 3. Consider P(x) = ([x = 0]a)|a, where x: {0,1}, and X u.d. on the same
set. Then1 = A(P;X) > A(!P;X) = 0. The reason for the latter equality is that for v∈
{0,1}, !P(v)∼!a, that is, the behaviour of!P(x) does not depend on x, so H(P(X)) = 0.

On the other hand, consider P1(x) = [x = 2]a + [x = 4]a and P2(x) = [x = 1]b +
[x = 2]b, where this time x: 1..4, and X is u.d. on the same set. ThenA(P1|P2 ; X) =
A(P1 ; X)+A(P2 ; X) = H(1

2)+H(1
2) = 2.

Our next task is to investigate the situation of zero leakage. We start from Abadi and
Gordon’ definition of Secrecy, originally formulated in the setting of the spi-calculus
[1]. According to the latter, a processP(x̃) keeps ˜x secret if the observable behaviour
of P(x̃) does not depend on the actual values ˜x may take on. Partly motivated by the
non-interference scenario [5, 16], where variables are partitioned into "low" and "high",
we find it natural to generalize the definition of [1] to the case where the behaviour of
P may also depend on further parameters ˜y known to the adversary.

Definition 4 (generalized secrecy).We say that P(x̃, ỹ) keeps ˜x secret given ˜y if, for
eachṽ∈ Ṽ , and for each̃u∈ Ũ andũ′ ∈ Ũ, it holds P(ũ, ṽ)∼ P(ũ′, ṽ).

The main result of the section states agreement of diverse notions of secrecy: func-
tional (described above), quantitative (zero leakage) and logical (independence of mgb’s
from x̃). The latter appears to be more amenable to automatic checking, at least in those
cases where the mgb can be computed. We also offer an "optimized" version of the
quantitative notion, by which it is sufficient to check zero-leakage relatively to uni-
formly distributed and independentX̃ andỸ.

Theorem 1 (secrecy).Let P(x̃, ỹ) be an open process. The following assertions are
equivalent:

1. P(x̃, ỹ) keepsx̃ secret giveñy.
2. A(P; X̃∗ |Ỹ∗) = 0, for someX̃∗ : Ũ andỸ∗ : Ṽ uniformly distributed and indepen-

dent.
3. maxX̃:Ũ ,Ỹ:Ṽ A(P; X̃ |Ỹ) = 0.

4. φ ⇔∃x̃x̃′.φ, whereφ = mgb
(
P(x̃, ỹ), P(x̃′, ỹ′)

)
, for x̃′ andỹ′ tuples of distinct vari-

ables disjoint fromx̃ andỹ, but of the same type.

Example 4. Consider the following process, where x,y : 1..4:

Q(x,y) def= (νc)
(
c| [y = 1]c.a

)
+ [x = 2]τ.a.

It is immediate to see that Q does not keep x secret, given y. E.g., if the adversary knows
that y 6= 1 and observes the behaviour[τ.a] then he can infer that x= 2. In fact, the
mgbgiven by the theorem above isφ =

(
[y = 1]→ ([y′ = 1]∨ [x′ = 2])

)
∧

(
[y′ = 1]→

([y = 1]∨ [x = 2])
)
, and clearly,φ 6⇔ ∃xx′.φ. As an example, for X,Y independent and

u.d on1..4, the leakage from X to Q given Y can be computed as H(Z|Y)≈ 0.608. The
process Q′(x,y) = Q(x,y)+ [y 6= 1]τ.a keeps x secret given y.

5 Rate of leakage
We assume now an attacker can only conduct uponP repeated experiments, each yield-
ing a binary1 answer, say success or failure. We are interested in the number of com-
munications that arenecessaryfor the adversary to extract one bit of information about
X̃ in this way.

In the rest of the section, we fix∼ to beweak traceequivalence (akamay testing
equivalence [4, 2]) written', and defined as:P'Q iff for each traces, P

s=⇒ iff Q
s=⇒.

1 We expect no significant change in the theory ifk-ary answers, withk > 2 fixed, were instead
considered.

For the sake of simplicity, we shall only consider processes where channels transport
tuples of values, i.e. we ban name-passing. For the same reason, we shall assume that
no side-information is available to the attacker, i.e. ˜y is empty. We plan to present the
treatment of the most general case in a full version of the present paper. Throughout
the section and unless otherwise stated,P(x̃), where ˜x : Ũ , denotes an arbitrary open
pi-process,X̃ an arbitrary vector of random variables of typeŨ andZ is P(X̃). Recall
thatA(P; X̃) = H(Z).
Definitions and basic propertiesConsistently with the testing equivalence framework
[4, 2], we view an experimentE as a processes that, when composed in parallel withP,
may succeed or not. Input on a distinct nameω, carrying no objects, is used to signal
successto the adversary. Here, it is convenient to adjust the notion of composition (‖
below) to ensure that, in case of success, exactly one success action is reported to the
adversary.

Definition 5 (experiments).AnexperimentE is a closed process formed without using
recursive definitions and possibly using the distinct success actionω.

We say that a nonempty trace of visible actions s issuccessful forE if ω does not
occur in s and E

s·ω=⇒ .
For each E and process Q, let us define Q‖E def= (νc̃,ω′)(P|E[ω′/ω]|ω′.ω), where

c̃ = fn(Q,E)\{ω} andω′ /∈ fn(P,Q,ω).

Note that for eachQ it must be eitherQ‖E ' 0 – meaning thatE fails – orQ‖E '
ω.0 – meaning thatE succeeds. Hence, for eachE, we can define a binary random
variable thus2 E∗ def= P(X̃)‖E .

Information onX̃ conveyed byE∗ is I(X̃ ; E∗) = H(E∗)−H(E∗|X̃) = H(E∗). This
information is at most one bit. The rate notion of rate we are after should involve a
ratio between this quantity of information and thecostof E. The following example
shows the role played by non-determinism in extracting information, and provides some
indications as to what we should intend by cost.

Example 5. Consider again Check(X), where this time X is u.d. over1..k, for some fixed

even integer k≥ 2. An experiment E that extracts one bit out of E
def= ∑k/2

d=1 ad.ok.ω.
An attacker can only observe the outcome of the interaction between Check and E, i.e.
a sample of the r.v. E∗ =Check(X)‖E. If actionω is observed, then it must be X≤ k/2;
if action ω is not observed, then it must be X> k/2. Note that I(X;E∗) = H(E∗) =
H(1

2) = 1.

The above example suggests that different successful traces of an experiment should
be counted as different "trials" attempted by the attacker. The cost of each trial can be
assumed to be proportional to its length as a trace. These considerations motivate the
definition below.

Definition 6 (rate). For each experiment E, define itscost as |E| def= ∑{|s| :
s is succesful forE}. Therate ofP relative toX̃ is

R (P; X̃) def= sup
|E|>0

H
(
E∗)
|E|

. (7)

2 We would writeE∗(P) should any confusion aboutP arise.

Our first result is an experiment-independent characterization of rate. In accordance
with the may testing approach, this characterization is obtained in terms of observa-
tions of single traces. In what follows, given a trace of visible actionss, we consider
the r.v.P(X̃) s=⇒, which may yieldtrue or f alse, and denote byps the probability3

Pr[(P(X̃) s=⇒) = true]. Recall that for 0≤ p≤ 1, we denote byH(p) the entropy of the
distribution(p,1− p).

Proposition 2. It holds thatR (P; X̃) = sup|s|>0
H(ps)
|s| .

Example 6. Consider the process CheckOnce(x) def= a(z).([z= x]ok+[z 6= x]no), where
x,z : 1..10, and X u.d. on the same interval. It is immediate to verify that the ratio in the
proposition above is maximized by any of s= ad ·ok or s= ad ·no, for d∈ 1..10. This
yieldsR (CheckOnce; X) = H(1

10)/2≈ 0.234.

The proposition above allows one, at least in principle, to compute the rate of any
process having a finite symbolic transition system. In fact, relying onP’s symbolic
transition system, it is possible to compute, for any given traces, a logical formulaφs(x̃)
expressing the exact condition on ˜x under whichP(x̃) can performs (see [7, 3]). From
these formulae it is easy to compute, or at least estimate with any degree of precision,
the rate ofP – we omit the details.

The next result explains the relationship between the notion of rate and absolute
leakage. In particular, (a) establishes thatH(Z) is the maximal information that can
be extracted byrepeatedbinary experiments; and (b) provides a lower bound on the
cost necessary to extract this information, in terms of the rate ofP – thus providing a
justification for the name "rate". For̃E = (E1,E2, ...,En) a vector of experiments, write
|Ẽ|= |E1|+ · · ·+ |En| for its cost, andẼ∗ for the vector of r.v.(E∗

1,E∗
2, ...,E∗

n).

Proposition 3. It holds that
(a) A(P; X̃) = H(Z) = maxẼ I(X̃ ; Ẽ∗)
(b) for eachẼ, I(X̃ ; Ẽ∗) ≤ |Ẽ| ·R (P; X̃) .

Note in particular, that the cost of extractingall the available informationH(Z) can-

not be less thanH(Z)
R (P;X̃) . It is important to remark that processes with the same absolute

leakage may well exhibit different rates. Here is a small example to illustrate this point.

Example 7. Let P(x) and Q(x), where x: 0..3, be defined as follows:
P(x) = [x = 0](a+b) + [x = 1](b+c) + [x = 2](c+d) + [x = 3](d+a)
Q(x) = [x = 0]a + [x = 1]b + [x = 2]c + [x = 3]d .

Assume X is u.d. over0..3. Both P(X) and Q(X) are u.d. on a domain of four elements
(the four distinct equivalence classes[P(i)], resp.[Q(i)], for i ∈ 0..3). Hence leakage
is H(P(X)) = H(Q(X)) = H(X) = 2 bits. On the other hand, each nonempty trace of
P occurs with probability1/2, while each nonempty trace of Q occurs with probabil-
ity 1/4. Thus, by Proposition 2,R (P;X) = H(1

2) = 1 and R (Q;X) = H(1
4) ≈ 0.811.

Proposition 3(b) implies that gaining all information about X costs the attacker no less
than2 in the case of P, and no less than3 in the case of Q. Indeed, a sequence of two
(resp. three) one-action experiments is sufficient (a.ω, b.ω for P anda.ω, b.ω, c.ω for
Q) to determine X.
3 It is important to note that this definition doesnot induce a probability distribution on the set

of traces; rather, it assigns each traces a binary distribution(ps,1− ps).

CompositionalityIt is possible to give upper bounds for the rate of a compound process
in terms of the component expressions, in the vein of Proposition 1. Some of these upper
bounds are rather crude (e.g. in the case of restriction), others are more sophisticated
(e.g.R (ae.P; X̃) ≤max{H([e(X̃) = v])), R (P; X̃)}) – we leave the details for the full
version of the paper. Here, we concentrate on the rate of iterated processes. In order
to define iteration, we have to first define sequential composition. Output on a distinct
namestop, not carrying objects, is used to signal termination of a thread. Hence we

define sequential composition asP;Q
def= (ν stop′)(P[stop′/stop] |stop′.Q) (with stop′

fresh). This is not sequential composition in the usual sense, but it is equivalent in the
context we are going to consider – see definition below. For anyP, let iteration∗P be the

process recursively defined by∗P
def= P;∗P. We show that, under suitable conditions, the

rate of∗P is the same asP’s. The condition below requires essentially that termination
of a single thread in a process is equivalent to termination of the whole process.

Definition 7 (determinate processes).Let Q be a closed process. We say that a trace

s isterminating forQ if Q
s·stop
=⇒ . We say that Q isdeterminateif for every terminating

trace s, whenever Q
s=⇒Q′ then Q′' stop. Finally, an open process P(x̃) is determinate

if ∑ũ∈Ũ P(ũ) is determinate.

We need another technical condition: let us say thatQ is stableif wheneverQ
ε=⇒Q′

(ε = empty trace) thenQ′ 'Q.

Theorem 2 (iteration rate). Suppose that P(x̃) is determinate, and that for each̃u,
P(ũ) is stable. ThenR (∗P; X̃) = R (P; X̃).

Example 8. It is easy to check that CheckOnceStop(x) def= a(z).([z = x]ok.stop+ [z 6=
x]no.stop) is determinate. (x: 1..10). Hence, being Check(d) ' ∗CheckOnceStop(d),
for every d, by Theorem 2 and Example 6 we have:R (Check; X) =
R (CheckOnceStop; X) = H(1

10)≈ 0.234.

6 Computing bounds on absolute leakage
In this section, we analyze the problem of bounding absolute leakage, from the position
of someone – e.g. a developer – who has access to the process’ codeP, and for whom
it is inexpensive to draw independent samples of the dataX̃. For simplicity, we shall
limit our discussion to the case where the side-informationỸ is empty, so that absolute
leakage reduces toH(Z), whereZ = P(X̃). The problem is nontrivial, because even
for moderately complexP, the distribution ofZ may be extremely difficult to compute
or approximate. Methods commonly employed to estimate entropy in absence of an
explicit description of distribution involve generation of sample sequences, long enough
to let the underlying source’s redundancy become appreciable. These methods are not
applicable to our case, as operating on samples ofZ is extremely expensive. Generation
of even asinglesample ofZ – that is, an equivalence class, represented in some form
or another – generally takes exponential time and space in the size ofP.

We suggest a strategy that may work in practice in a number of cases, but we will not
dwell on complexity-theoretical issues. For any discrete random variableW, its index

of coincidence IC(W) is defined as the probability that two independent experiments
yield the same result, that is, denoting byU the type ofW:

IC(W) def= ∑
u∈U

(
Pr[X = u]

)2
.

Relationship ofIC with Shannon entropy is seen by applying a well-known inequality
of convex functions (Jensen’s inequality, see e.g. [15]), which yields:− log IC(W) ≤
H(W) (the quantity on theLHS is known asRenyi’s entropy of order 2.) This inequality
has been vastly generalized by Harremoës and Topsøe [8], who provide whole families
of lower- andupper-bounds of Shannon entropy in terms ofIC. These bounds are, in a
certain technical sense, the "best possible" and provide fairly good estimates ofH(W)
in many cases4. It remains to be seen howIC(W) can be efficiently estimated in our case

(W = Z). We show that this can be achieved via mgb’s. Letφ(x̃, x̃′) def= mgb
(
P(x̃),P(x̃′)

)
,

wherex̃′ is a tuple of distinct variables disjoint from ˜x. By interpreting the boolean val-
ues true and false as 1 and 0,φ(x̃, x̃′) can be interpreted as a functionŨ ×Ũ → {0,1}.
We then have the following proposition, based on elementary reasoning on probabili-
ties.
Proposition 4. Let X̃′ be independent from̃X, but with the same type and distribution
asX̃. Then IC(Z) = E[φ(X̃, X̃′)].

The expectationE[φ(X̃, X̃′)] can be estimated with any desired precision via the law
of large numbers: in practice, one draws several independent samples ofφ(X̃, X̃′) and
then takes the resulting arithmetical mean. The efficiency of this procedure depends on
the distribution ofX̃ and on the size ofφ. Therefore, the problem of evaluatingIC(Z)
can be reduced to the task of computing the formulaφ, and possibly reducing its size by
means of logical simplifications. Dedicated algorithms exist for that (see [7]) which are
practical in many cases. Using this methodology, we have conducted some simple but
very encouraging experiments on timing-dependent leakage in modular exponentiation
algorithms (see e.g. [9]) that will be reported in the extended version of the paper.

7 Conclusions and related work
Results and proofs presented here carry over essentially unchanged to other calculi
equipped with behavioral equivalences, such as the spi-calculus – except for those that
depend on pi’s symbolic semantics, like effective computation of leakage. The exam-
ples considered in the paper are admittedly a bit artificial. More realistic case-studies,
possibly involving cryptography or probabilistic behaviour, are needed for assessing
the model’s scalability. In the leakage rate scenario, different notions of "cost" are also
worthwhile to be investigated.

Early works on quantitative information flow are [13, 17, 6]. Volpano and Smith
have later developed a quantified theory of non-interference for imperative programs,
also giving a notion of rate [16], albeit not based on information theory. These ap-
proaches, like the one by Clark et al. [12], presuppose that computations produce some
form or another of "result" , possibly with an associated probability distribution, in the
sense already discussed in the introduction. A notable exception is represented by the
recent work of Lowe [11]. There, quantitative non-interference for timedCSPis defined

4 As an example, in the case of binary distributions(p,1− p), an upper boundU can be given
s.t. the ratioH/U lies between 1 and 0.9 for all distributions withp∈ [0.03,0.97].

as the number of different "low" behaviours that a "high" user can induce on the pro-
cess. This definition is shown to be in agreement with a qualitative notion of lack of
information flow due to Focardi and Gorrieri [5]. A notion of rate is also introduced
by taking time explicitly into account. These notions are not easily comparable to ours,
due to the different goals and settings (secrecy vs. non-interference, untimed vs. timed.)

AcknowledgementsThe reviewers comments have been very useful to improve on the
presentation. Valentina Fedi has conducted several experiments with the metodology
described in Section 6 as part of her MSC dissertation.

References

1. M. Abadi and A. Gordon. A calculus for cryptographic protocols: The Spi-calculus.Infor-
mation and Computation, 148(1): 1-70, 1999.

2. M. Boreale and R. De Nicola. Testing equivalence for mobile processes.Information and
Computation, 120(2): 279-303, 1995.

3. M. Boreale and R. De Nicola. A symbolic semantics for the pi-calculus.Information and
Computation, 126(1): 34-52, 1996.

4. R. De Nicola and M.C.B. Hennessy. Testing equivalences for processes.Theoretical Com-
puter Science, 34:83–133, 1984.

5. R. Focardi and R. Gorrieri. A classification of security properties.Journal of Computer Se-
curity, 3(1): 5-34, 1995).

6. J.W. Gray, III. Towards a mathematical foundation for information flow security. InProc. of
1991 IEEE Symposium on Research in Computer Security and Privacy, 1991.

7. M.C.B. Hennessy and H. Lin. Symbolic bisimulations.Theoretical Computer Science,
138(2): 353-389, 1995.

8. P. Harremoës and F. Topsøe. Inequalities between entropy and index of coincidence derived
from information diagrams.IEEE Transactions on Information Theory, 47(7): 2944-2960,
2001.

9. P. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other
Systems.CRYPTO 1996: 104-113, 1996.

10. P. Kocher, J. Jaffe and B. Jun. Differential Power Analysis.CRYPTO 1999: 388-397, 1999.
11. G. Lowe. Defining information flow quantity.Journal of Computer Security, 12(3-4): 619-

653, 2004).
12. D. Clark, S. Hunt and P. Malacaria. Quantitative Analysis of the Leakage of Confidential

Data.Electr. Notes Theor. Comput. Sci., 59(3), 2001.
13. J. Millen. Covert channel capacity. InProc. of 1987 IEEE Symposium on Research in Com-

puter Security and Privacy, 1987.
14. D. Sangiorgi and D. Walker.The pi-calculus: A Theory of Mobile Processes. Cambridge

University Press, 2001.
15. F. Topsøe. Basic concepts, identities and inequalities – the Toolkit

of Information Theory. Entropy, 3:162–190, 2001. Also available at
http://www.math.ku.dk/~topsoe/toolkitfinal.pdf.

16. D. Volpano and G. Smith. Verifying Secrets and Relative Secrecy. InPOPL 2000, 268-276,
2000.

17. J.T. Wittbold and D. Johnson. Information flow in nondeterministic systems. InProc. of 1990
IEEE Symposium on Research in Computer Security and Privacy, 1990.

