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Abstract. We study two quantitative models of information leakage in the pi-
calculus. The first model presupposes an attacker with an essentially unlimited
computational power. The resulting notionadfsolute leakagemeasured in bits,

is in agreement with secrecy as defined by Abadi and Gordon: a process has an
absolute leakage of zero precisely when it satisfies secrecy. The second model
assumes a restricted observation scenario, inspired by the testing equivalence
framework, where the attacker can only conduct repeated success-or-failure ex-
periments on processes. Moreover, each experiment has a cost in terms of com-
munication actions. The resulting notion of leakagee, measured in bits per
action, is in agreement with the first model: the maximum information that can
be extracted by repeated experiments coincides with the absolute |c¢a&htie
process. Moreover, the overall extraction cost is at 1848, whereR is the rate

of the process. Strategies to effectively estimate both absolute leakage and rate
are also discussed.
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1 Introduction

Research in language-based security has traditionally focused on qualitative aspects.
Recently, a few models have been proposed that allow forms of quantitative reasoning
on security properties. For a sequential program, it is natural to quantify leakage by
measuring the information flow between secret ("high") and public ("low") variables
induced by the computed function. Along these lines, an elegant theory of quantitative
non-interference has been recently proposed by Clark et al. [12] (other proposals in the
literature are examined in the concluding section.)

In this paper, we study quantitative models of information leakage in process calculi.
Processes come with no natural notion of computed function. Rather, one is interested
in quantifying the leakage induced by theibservable behaviouiThe difference in
intent can be illustrated by the following concrete example. A smart-card implements a
function that takes documents as input and releases documents signed with a secret key
as output. However, typical attacks targeting the secret key do not focus on the function
itself, but rather on the behaviour of the card, in terms e.g. of observed time variance of
basic operations [9], or observed power consumption [10].

Our starting point is the notion gecrecyas formalized by Abadi and Gordon, orig-
inally in the setting of the spi-calculus [1]. In the sequel, we will refer to this notion as
AG-secrecy. InformallyaG-secrecy holds for a proceBsand a parametecrepresent-
ing a sensible information, if the the observable behaviouP dbes not depend on
the actual valuex takes on. In other words, an attacker cannot infer anything about
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by interacting withP. The notion of "observable behaviour" is formalized in terms of
behavioural equivalence, such as may testing [4, 2].

Although elegant and intuitiveyG-secrecy is in practice too rigid. The behaviour
of a typical security application depends nontrivially on the sensible information it
protects. Nevertheless, many such applications are considered secure, on the ground
that theamountof leaked information is, on the average, negligible. Considema
checking procesB(x) that receives a code from a user and checks it against a 5-digits
secret code, in order to authorize or deny a certain operation. Clearly, an attacker may
acquire negative information aboxiby interacting withP(x). However, ifP(x) is in-
tended to model, say, an off-line device like a card reader, such small leaks should be
of no concern. More generally, one would like to first measure the information leakage
of a given system and then decide if it is acceptable or not.

In the present paper, we propose two quantitative models of leakage for processes:
one for measuringbsoluteleakage, and one for measuring tiage at which informa-
tion is leaked. As explained below, the two models correspond to different assumptions
on the control an attacker may exercise over processes. The connections between these
two models will also be clarified.

After quickly reviewing a few notions from information theory that will be used
in the paper (Section 2), we introduce our reference language, a pi-calculus with data
values (Section 3). In the first model (absolute leakage, Section 4), we presuppose an
attacker with full control over the process. Using the language of unconditional security,
the model can be phrased as follows. A sensible information is modeled as a random
variable, sayX. The a prioriuncertaintyof an adversary abo is measured by the
Shannorentropy HX), expressed in bits. For full generality, it is assumed that some
"side-information"Y, possibly related te, is publicly available: the conditional en-
tropy H(X]Y) measures the uncertainty abodugiven thatY is known. The procesB,
depending in general on bo¥handY, induces a random variabfe= P(X,Y)): follow-
ing the discussion above, it is reasonable to stipulatezhakes as values "observable
behaviours", that is, equivalence classes of a fixed behavioral semantics. Now, the con-
ditional entropyH (X|Y,Z) quantifies the uncertainty oX left after observing botly
andZ. Hence the difference= H (X|Y) — H(X|Y, Z) is the amount of uncertainty about
X removed byP, that we take as its absolute leakage. We prove that this notion is in
full agreement with the qualitative notion at-secrecy. In the special case when there
is no side-information, this means thagx) respectsag-secrecy if and only iP(X)
has an absolute leakage of O for every random varigbl&/e also offer two alternative
characterizations of zero-leakage, hopefully more amenable to automatic checking.

The second model we consider (rate of leakage, Section 5), refines the previous
scenario by introducing a notion obst Adapting the testing equivalence framework
[4], we stipulate that an attacker can only conduct uporepeated experiments,
Ey,... each yielding a binary answer, success or failure. The attacker has "full control" —
in the sense of the first model — over the compound sysBf&s but not overP itself.
The security measure we are interested in is the overall numbesromunications
required to extract one bit of information in this scenario. Thus, we define the rate at
which P leaks information in terms of the maximal number of bits of information per
visible action conveyed by an experimentnVe then give evidence that this is indeed



a reasonable notion. First, we establish a relationship with the first model, showing that
absolute leakagA coincides with the maximum information that can be extracted by
repeated experiments, and that this costs at ké&twhereR is the rate of. Second,

we establish that, under certain conditions, process iteratiBhléaves the rate d?
unchanged, which is what one would expect from a good definition of rate. Finally, in
the vein of testing equivalence, we give an experiment-independent characterization of
rate in terms of execution traces.

Strategies to effectively estimate rate of leakage (Section 5) and absolute leakage
(Section 6) are also discussed. These strategies depend on the use of symbolic semantics
in the vein of [7,3]. Some remarks on further and related work conclude the paper
(Section 7). Proofs have been omitted due to lack of space.

2 Preliminary notions
We quickly recall a few concepts from elementary information theory; see e.g. [15] for
full definitions and underlying motivations. We shall consider discrete random variables
(r.v.) X,Y,... defined over a common probabilty spdeeWe say that a r.\X is of type
U, and writeX : U, if X(Q) C U. We shall always assume to be finite. Elements
u e U are calledsamplesof X, and|X]| is [{u € U|PrX = u] > 0}|. The concepts of
independent and uniformly distributed (u.d.) random variables, and of expectation of
X (E[X], for X real-valued) are defined as usual. As a function, every random variable
induces a partition into events of its domd {X~(u) ju € X(Q)}: we say that two
random variableX andY are equivalentif they induce onQ the same partition. A
vector of random variableX = (X1,..,%n), with n > 0 andX; : U, is just a random
variable of typdJy x -+ x Up.

GivenX : U, theentropy Xof andconditional entropy of X given YV are defined
by: H(X) &~ 5 ey X = U] -log(PX = u])

HXY) €' 5yey HXY =) - PriY = V]

where H(X]Y =v) = — 5 oy P{X =ulY =V]-log(Pr{X = ulY =V]), all logarithms are
taken to the base of 2 and by conventioid@ 0= 0. Two equivalent random variables
have the same entropy and conditional entropy. The following (in)equalities hold:

0<H(X) < log|X| (2)
H(X,Y) =H(X|Y)+H(Y) (chainrule) 2
H(Xg,...,Xn) <HX1) +---+H(Xn) 3

where: in (1), equality on the left holds X is a constant, and equality on the right holds
iff X is u.d.; in (3), equality holds iff th&;’s are pairwise independent. Note that by (2)
and (3),H(X|Y) = H(X) iff X andY are independent. ¥ = F(X) for some functior
thenH (Y|X) = 0. Information on X conveyed by(éka,mutual informatiof is defined
as: 1(X:Y) ZTH(X) — H(X]Y).

By the chain rule] (X;Y) = I(Y;X), andI(X;Y) = 0 iff X andY are independent.
Mutual information can be generalized by conditioning on anotheZr.i(X;Y|Z) def
H(X|Z) — H(X]|Z,Y). Conditioning onZ may in general either increase or decrease
mutual information betweeK andY. Note that entropy of a r.v. only depends on the
underlying probability distribution; thus any probability vecfm=Tps, ..., pn) (pi > 0,

Yi pi = 1) determines a unique entropy value dendté); we shall often abbreviate

H(p,1- p) asH(p).



3 The model

We assume a countable setwafriables?’ = {x,y,...}, a family of non-empty, finite

value-setsy( %' {U,V,...}, and a countable set alamesA_ = {a,b,...}, partitioned

into a family of sorts §,.5’,.... We assume a function that maps exdo someT <
UU{S,S’,...}, writtenx : T, and say thax hastype T. The inverse image of eadhis
infinite. These notations are extended to tuples as expected, exg=fof,"..,xn) and
T= (Te, ..., Tn), X: T meansq : Ti, ..., %0 : Tn. We letu,v be generic elements of a finite
value-set. By slight abuse of notation, we sometimes denoté thye cartesian product
Ug X -+ x Up.

An evaluationo is a map from? to Uy ey U UN that respects typing, that is, for
eachx € dom(o), x: T impliesa(x) € T. We denote byd/X the evaluation mapping
Xto Jcomponent-wise. Byo, wheret is a term over an arbitrary signature with free
variables f\it) C 7/, we denote the result of replacing each free variatdedom(c) N
fv(t) with o(x).

We assume a language of logidaimulae@, y, .... We leave the language unspec-
ified, but assume it includes a first order calculus with varialfeshat function sym-
bols include all values il and names as constants, and that the set of predicates in-
cludes equalityx = y]. We writeil, Al = @, or simply = @, if for all evaluationso s.t.
dom(o) D fv(q), @o is valid (i.e. a tautology). We will often writg(X) to indicate that
the free variables ap are included irx,and in this case, abbreviapil/x] as@(d).

The process language is a standard pi-calculus with variables and data values. We
assume a countable setidéntifiers AB, ... and usee, € ... to range over an unspecified
set ofexpressionsthat can be formed starting from variables, values and names. The
syntax of processd’Q, ... is given below.

mi=x|a
PQ:u=0|TtTP | mX.P| m&P | gP | P+P | (VO)P | PP | AE).

Each identifieA has an associated defining equation of the f&(%) ®ep, Input prefix
m(X). and restriction(vb) are binders fox andb, respectively, thus, notions of free
variables (fv) and free names (fn) arise as expected. We identify processes up to alpha-
equivalence. We assume a few constraints on the syntax ab@ve:tliple of distinct
elements in input prefix and iA(X) %'p. and in the latter fP) C X; @is quantifier-
free. We assume a fixed sorting systanta Milner. In particular, each sotf has an
associategort object ol§S) = (T1,...,Tx) (k > 0). Here, eacfT; is either a sort or a
value-set from the universg. Informally, a process obeys this sorting system if in
every input and output prefix, a name/variabieof sort S carries a tuple of objects
of the sort specified bgb(.5); we omit the details that are standard. Weltthe set

of processes (possibly containing free variables) obeying these conditio$®ahe
subset ofclosedprocesses. Notationally, we shall often omit trailidig, writing e.qg.
ab. instead ofa.b.0, we shall write{! ; P for nondeterministic choic®; + - -- + Py,

and let replicationP denote the process defined by the equatiBr?::e‘.PH P.

We assume overl® the standara@arly operational semantics of pi-calculus — see
e.g. [14]. Let us just remind that in this form of semantics transitions are the form

P -X P/, wherep is one oft (invisible action),ad (input action) or(v&)ad with & C d



(output action) andl ::= a | u (name or value). A few standard notations will also

be used. In particular, for eachsible (different fromt) actiona, P = P’ means
P(-5)* % (=5)*P. This notation is extended to any sequence of visible actions
(i.e. atrace), P == P/, as expected. Finallp = means that there B s.t.P = P

We let~ be a fixed equivalence relation ovaf. We denote byQ] the equivalence
class of a procesd. We assumev is included intrace equivalenc§], includesstrong
bisimulation[14] and preserves all operators of the calculus, except possibly input pre-
fix and unguarded nondeterministic choice. We introduce now the main concept of this
section. Anopen processs a pair(P,X), written P(X), with X a tuple of distinct vari-
ables of type&J C sl andP e M° such that fyP) C %; when no confusion arises, we shall
abbreviateP[U/X] asP(0) and(PY/X)(¥) asP(¥) (¥ a tuple of distinct variables.)

Definition 1 (open processes as random variabled)et P(X) be an open process and
X a vector of random variables, with: U and X : U, for one and the samé. We
denote by PX) the random variable F X, where F= At € U.[P[U/]].

Note that a sample d¥(X) is an equivalence class of.

Example 1. AIN-checking process can be defined as follows. Hes, X .k for some
integer k and x represents the secret code. The situation is modeled where an observer
can freely interact with the checking process.

Checkx) %' a(z).([z= xokChecKx) + [z+ xJTo.ChecKx)). (4)
The range of the function Fu+— [ChecKu)] has k distinct elements, asAl’ implies
ChecKu) £ ChecKu'). As a consequence, if XL..k is a random variable, the distri-
bution of RX) mirrors exactly that of X. E.g., if X is uniformly distributed, then so is
P(X), i.e. the probability of each sampleigk.

Note that, ifP({) ~ Q({) for eachu; then, for anyX, P(X) andQ(X) are the same
random variable. Another concept we shall rely upon is thaho$t general boolean
borrowed from [7, 3], that is, the most general condition under which two given open
processes are equivalent.

Definition 2 (mgb). Let P(X) and Q(§) be two open processes, with g andy: \:/
We denote byngh(P(X), Q(¥)) a chosen formulg(X,¥) s.t. for eachic U andV e V:
P(0) ~ Q(V) if and only if@(T, V) is true.

It is worthwhile to notice that in many cases mgb’s for pairs of open pi-processes
can be automatically computed relying symbolictransition semantics. Let us recall

from [7, 3] that a symbolic transition also carries a logical form@at®. P, In [7],an
algorithm is described to compute mgb’s for pair of processes both hémitgsym-

bolic transition systems. Here, we will just assume that the logical language guarantees
existence of mgb for any given pair of open processes.

4 Absolute leakage

Throughout the section and unless otherwise stated, W& %e§) be an arbitrary open

process, with7U andy": V, while X : U andY : V are two arbitrary vectors of random

variables, an@ £'P(X, ).



Definition 3 (absolute leakage)The (absolutelnformation leakage frorX to P given
def

Yisa(P;X|Y) = 1(X;Z]Y) =H(X|Y) - H(X]Y,Z2).

WhenY is empty, we simply write leakage aHP; )2). A first useful fact says that
leakage is nothing but the uncertainty ab@wfter observing'. The proof is a simple
application of the chain rule (2).

Lemma 1. 4(P;X |Y) =H(Z|Y). In particular, if § is empty,A(P;X) = H(Z).

Example 2. The process Chéxk defined in (4) leaksll information about x. For
example, if X is u.d od..k then Z= P(X) is u.d. over a set of k samples. Hence
A4(CheckX) =H(Z) =logk =H(X).

Suppose now the adversary cannot interact freely with Check, but rather he observes
the result of a user interacting with Check:

OneTryx,y) %" (va)(Checkx)[ay). ®)

Clearly, forany XY : 1..k, the range of the random variable=ZOneTryX,Y) has only
two elements, that ig.0k| and[t.no], that have probabilitie®rX = Y] andPrX #Y],
respectively. In the case where X and Y are uniformly distributed and independent, these
probabilities arel/k and1— 1/k, respectively. We are interested#{OneTry X|Y).
Easy calculations show that Z and Y are in fact independent. For the sake of concrete-
ness, let us assume=k10; then we can compute absolute leakage as

4(0neTryX|Y)=H(Z|Y)=H(Z) = H(Tlo) ~ 0.469.
In this case, knowledge of Y brings no advantage to the adversary.

The next result is about composing leakage. Let us say thahales context
C[,...,-] preserves- if whenever?, ~ P for 1 <i <nthenC[Py,...,P,] ~ C[Pf,..., Py].
The following proposition states that leakage of a compound system cannot be greater
than the sum of leakage of individual systems. The (simple) proof is based on inequality
(3) plus the so called "data processing" inequality, saying that for anwrand any
functionF of appropriate typet (F(W)) < H(W).

Proposition 1 (compositionality).Let C[-, ..., ] be a n-holes context that preserves
and let Q(X,¥) be open processeb< i <n. Let X, ¥) =C[Q1(X,¥), ..., Qn(X,¥)]. Then
n
APX|Y) < Zlﬂ(Qi;X 1Y). (6)

i=

For example, in the case of parallel composition, inequality (6) specializes to
A(P|Q; X |Y) < 4(P; X |Y) +4(Q; X | Y). The inequality implies that leakage is
never increased by unary operators. In the case of replication !, this leads to the some-
what unexpected conclusioi(!P; X |Y) < 4(P; X |Y). Inequalities provided by (6)
may hold strict or not, as shown below.

Example 3. Consider ®) = ([x = O]a)|a, where x {0,1}, and X u.d. on the same

set. Therl = 4(P; X) > A(!P; X) = 0. The reason for the latter equality is that foev

{0,1},!P(v) ~la, that is, the behaviour ¢P(x) does not depend on x, sqP(X)) =0.
On the other hand, consider ) = [x=2Ja+ [x=4]a and B(x) = [x=1b +

[x = 2]b, where this time x1..4, and X is u.d. on the same set. Th&(P1|P,; X) =

AP X)+ AP X) =H(3)+H() =2



Our next task is to investigate the situation of zero leakage. We start from Abadi and
Gordon’ definition of Secrecy, originally formulated in the setting of the spi-calculus
[1]. According to the latter, a proce$%X) keepsx'secret if the observable behaviour
of P(X) does not depend on the actual valxendy take on. Partly motivated by the
non-interference scenario [5, 16], where variables are partitioned into "low" and "high",
we find it natural to generalize the definition of [1] to the case where the behaviour of
P may also depend on further parametgknéwn to the adversary.

Definition 4 (generalized secrecy)We say that X, §) keepsx“secret givery Tf, for
eachV €V, and for eachiie U and(f € U, it holds R, %) ~ P({, V).

The main result of the section states agreement of diverse notions of secrecy: func-
tional (described above), quantitative (zero leakage) and logical (independence of mgb’s
from X). The latter appears to be more amenable to automatic checking, at least in those
cases where the mgb can be computed. We also offer an "optimized" version of the
quantitative notion, by which it is sufficient to check zero-leakage relatively to uni-
formly distributed and independeXtandY.

Theorem 1 (secrecy)Let P(X,§) be an open process. The following assertions are
equivalent:

1. P(X,¥) keepsX secret givery.

2. 4A(P; X*|Y*) =0, for someX* : U andY* : V uniformly distributed and indepen-
dent.

3. maxg.j v A4(P; X \?) =0.

4. @& 3K ., wherep= mgh(P(X,¥), P(X,¥)), for X andy tuples of distinct vari-
ables disjoint fronk andy, but of the same type.

Example 4. Consider the following process, whege:A..4:

Qx,y) %' (ve) (clly=1]ca) + [x=2ta.
Itis immediate to see that Q does not keep x secret, giveny. E.g., if the adversary knows
that y=# 1 and observes the behavio[ra] then he can infer that x 2. In fact, the
mgbgiven by the theorem abovegs= (y=1] — (Y =1 VX =2)) A (Y =1 —
(ly=1]Vv[x=2])), and clearly,p# 3xX.¢. As an example, for ¥ independent and
u.d onl..4, the leakage from X to Q given Y can be computed @§¥) ~ 0.608 The
process Qx,y) = Q(x,y) + [y # 1]1.a keeps x secret given y.

5 Rate of leakage

We assume now an attacker can only conduct upoepeated experiments, each yield-
ing a binary answer, say success or failure. We are interested in the number of com-
munications that areecessaryor the adversary to extract one bit of information about
X in this way.

In the rest of the section, we fix to beweak traceequivalence (akanay testing
equivalence [4, 2]) writterr, and defined a$® ~ Qiff for each traces, P = iff Q =..

1 We expect no significant change in the theorlg-iiry answers, wittk > 2 fixed, were instead
considered.



For the sake of simplicity, we shall only consider processes where channels transport
tuples of values, i.e. we ban name-passing. For the same reason, we shall assume that
no side-information is available to the attacker, y.és @émpty. We plan to present the
treatment of the most general case in a full version of the present paper. Throughout
the section and unless otherwise stafe(X), wherex: U, denotes an arbitrary open
pi-processX an arbitrary vector of random variables of tygeandZ is P(X). Recall
thata(P; X) = H(Z).

Definitions and basic propertie€onsistently with the testing equivalence framework
[4,2], we view an experimeri as a processes that, when composed in parallelRyith

may succeed or not. Input on a distinct na@ecarrying no objects, is used to signal
succesdo the adversary. Here, it is convenient to adjust the notion of composition (
below) to ensure that, in case of success, exactly one success action is reported to the
adversary.

Definition 5 (experiments).Anexperiment is a closed process formed without using
recursive definitions and possibly using the distinct success awtion

We say that a nonempty trace of visible actions suiscessful foE if w does not
occurinsand E22 .

For each E and process Q, let us definﬁE}‘éef (v&, o) (P|E[® /w] |0 .w), where
€=1n(Q,E)\ {w} andw ¢ fin(P,Q,w).

Note that for eacl it must be eitheQ||E ~ 0 — meaning thaE fails — orQ||E ~
.0 — meaning thakE succeeds. Hence, for eaéh we can define a binary random
variable thu$ E* % p(X)|E.

Information onX conveyed byE* is | (X; E*) = H(E*) — H(E*|X) = H(E*). This
information is at most one bit. The rate notion of rate we are after should involve a
ratio between this quantity of information and tbestof E. The following example
shows the role played by non-determinism in extracting information, and provides some
indications as to what we should intend by cost.

Example 5. Consider again Chde), where this time X is u.d. ovér.k, for some fixed

even integer k> 2. An experiment E that extracts one bit out of& 25/221 ad.ok w.

An attacker can only observe the outcome of the interaction between Check and E, i.e.
a sample of the r.v. E= CheckX)||E. If actionwis observed, then it must besXk/2;

if aftion w is not observed, then it must be>Xk/2. Note that [X;E*) = H(E*) =

H(3) =1

The above example suggests that different successful traces of an experiment should
be counted as different "trials" attempted by the attacker. The cost of each trial can be
assumed to be proportional to its length as a trace. These considerations motivate the
definition below.

def

Definition 6 (rate). For each experiment E, define itost as [E[ = 3{|s :
sis succesful foE }. Therate ofP relative toX is
- H(E*
R (P; X) & sup R(EY) . (7
o |El

2 We would writeE*(P) should any confusion aboBtarise.



Our first result is an experiment-independent characterization of rate. In accordance
with the may testing approach, this characterization is obtained in terms of observa-
tions of single traces. In what follows, given a trace of visible actgnge consider
the r.v.P(X) = which may yieldtrue or falsg and denote byps the probability
Pri(P(X) =) =trug]. Recall that for < p < 1, we denote by (p) the entropy of the
distribution(p,1— p).

Proposition 2. It holds that® (P; X) = SUPg~0 Hps)

Is|

Example 6. Consider the process CheckGém):dé“zf a(2).([z= x|ok+ [z # xno), where
X,z:1..10, and X u.d. on the same interval. It is immediate to verify that the ratio in the
proposition above is maximized by any of &d- ok or s= ad- o, for d€ 1..10. This
yields® (CheckOnceX) = H(+5)/2 ~ 0.234

The proposition above allows one, at least in principle, to compute the rate of any
process having a finite symbolic transition system. In fact, relyind®snsymbolic
transition system, it is possible to compute, for any given tsaadogical formulaps(X)
expressing the exact condition aufider whichP(X) can performs (see [7, 3]). From
these formulae it is easy to compute, or at least estimate with any degree of precision,
the rate ofP — we omit the details.

The next result explains the relationship between the notion of rate and absolute
leakage. In particular, (a) establishes thHZ) is the maximal information that can
be extracted byepeatedbinary experiments; and (b) provides a lower bound on the
cost necessary to extract this information, in terms of the rafe-ethus providing a
justification for the name "rate". Féf = (E1, Ep,...,En) a vector of experiments, write
|E| = |Ea| +- -+ |En| for its cost, andE* for the vector of r.v(E],E;, ..., E;).

Proposition 3. It holds that - o o~
(a) A(P;X) = H(Z) = maxg |(X; E")
(b) foreachE, I(X;E*) < |E|-R(P;X) .

Note in particular, that the cost of extractialy the available informatiohi (Z) can-

not be less thanRH(%)%. It is important to remark that processes with the same absolute

leakage may well exhibit different rates. Here is a small example to illustrate this point.

Example 7. Let Bx) and QX), where x 0..3, be defined as follows:

P(x) = [x=0](a+b) + [x=1](b+c) + [x=2](c+d) + [x=3|(d+a)

Q(x) = [x=0Ja + [x=1]b + [x=2c + [x=3[d.
Assume X is u.d. ovéx.3. Both R X) and QX) are u.d. on a domain of four elements
(the four distinct equivalence classgi)], resp.[Q(i)], for i € 0..3). Hence leakage
is H(P(X)) = H(Q(X)) = H(X) = 2 hits. On the other hand, each nonempty trace of
P occurs with probabilityl/2, while each nonempty trace of Q occurs with probabil-
ity 1/4. Thus, by Proposition 28 (P;X) = H(3) = 1 and R (Q;X) = H(3) ~ 0.811
Proposition 3(b) implies that gaining all information about X costs the attacker no less
than2 in the case of P, and no less tha@nn the case of Q. Indeed, a sequence of two
(resp. three) one-action experiments is sufficiani(b.w for P anda.w, b.w, T.w for
Q) to determine X.

3 It is important to note that this definition dosstinduce a probability distribution on the set
of traces; rather, it assigns each traeebinary distributior( ps,1 — ps).



Compositionalitylt is possible to give upper bounds for the rate of a compound process
in terms of the component expressions, in the vein of Proposition 1. Some of these upper
bounds are rather crude (e.g. in the case of restriction), others are more sophisticated
(e.9.% (aeP;X) < max{H([e(X) =V])), R(P;X)}) — we leave the details for the full
version of the paper. Here, we concentrate on the rate of iterated processes. In order
to define iteration, we have to first define sequential composition. Output on a distinct
namestop not carrying objects, is used to signal termination of a thread. Hence we

define sequential composition BsQ get (v stog)(P[stoB/stog | stop.Q) (with stop
fresh). This is not sequential composition in the usual sense, but it is equivalent in the

context we are going to consider — see definition below. FoPalet iteration« P be the

process recursively defined by d:efP; x P. We show that, under suitable conditions, the

rate of« P is the same aB’s. The condition below requires essentially that termination
of a single thread in a process is equivalent to termination of the whole process.

Definition 7 (determinate processes).et Q be a closed process. We say that a trace

s isterminating forQ if Q 2P we say that Q ideterminatéf for every terminating
trace s, whenever 8% Q' then @ ~ stop. Finally, an open process® is determinate
if 3 geg P(0) is determinate.

We need another technical condition: let us say @ststableif wheneverQ SN Q
(e = empty trace) the®@ ~ Q.

Theorem 2 (iteration rate). Suppose that (X) is determinate, and that for eadh
P(0) is stable. Therg (xP; X) = R (P; X).
Example 8. It is easy to check that CheckOnceSt)o({fpef a(z).([z= x|okstop+ [z #
xjno.stop is determinate. (x1..10). Hence, being Che¢H) ~ «CheckOnceStqgd),
for every d, by Theorem 2 and Example 6 we haw{Check X) =
R (CheckOnceStaX) = H(4) ~ 0.234

6 Computing bounds on absolute leakage

In this section, we analyze the problem of bounding absolute leakage, from the position
of someone — e.g. a developer — who has access to the proces®,cautd for whom
it is inexpensive to draw independent samples of the Hatior simplicity, we shall
limit our discussion to the case where the side-informatiégs empty, so that absolute
leakage reduces e (Z), whereZ = P(X). The problem is nontrivial, because even
for moderately complef, the distribution oZ may be extremely difficult to compute
or approximate. Methods commonly employed to estimate entropy in absence of an
explicit description of distribution involve generation of sample sequences, long enough
to let the underlying source’s redundancy become appreciable. These methods are not
applicable to our case, as operating on sampl&iskxtremely expensive. Generation
of even asinglesample ofZ — that is, an equivalence class, represented in some form
or another — generally takes exponential time and space in the dize of

We suggest a strategy that may work in practice in a number of cases, but we will not
dwell on complexity-theoretical issues. For any discrete random vanabies index



of coincidence IQW) is defined as the probability that two independent experiments
yield the same result, that is, denotingWythe type ofw:

Ic(w) & ZJ (PiX =u])?.
Relationship ofC with Shannon entr(;JSy is seen by applying a well-known inequality

of convex functions (Jensen’s inequality, see e.g. [15]), which yieldsg IC(W) <

H (W) (the quantity on theHs is known asRenyi’s entropy of order.2 This inequality

has been vastly generalized by Harremoés and Topsge [8], who provide whole families
of lower- andupperbounds of Shannon entropy in termsl@f These bounds are, in a
certain technical sense, the "best possible" and provide fairly good estimateg/of

in many cases It remains to be seen ha@ (W) can be efficiently estimated in our case

(W = Z). We show that this can be achieved via mgb’s.qgt X') d:efmgb(P()”(), P(X)).
wherex"is a tuple of distinct variables disjoint from By interpreting the boolean val-

ues true and false as 1 andg@f,X') can be interpreted as a functiobhx U — {0,1}.

We then have the following proposition, based on elementary reasoning on probabili-
ties.

Proposition 4. Let X’ be independent frorX, but with the same type and distribution
asX. Then 1GZ) = E[@(X,X)].

The expectatiof [@(X, X’)] can be estimated with any desired precision via the law
of large numbers: in practice, one draws several independent sammb@},&’) and
then takes the resulting arithmetical mean. The efficiency of this procedure depends on
the distribution ofX and on the size op. Therefore, the problem of evaluatihg(Z)
can be reduced to the task of computing the forngknd possibly reducing its size by
means of logical simplifications. Dedicated algorithms exist for that (see [7]) which are
practical in many cases. Using this methodology, we have conducted some simple but
very encouraging experiments on timing-dependent leakage in modular exponentiation
algorithms (see e.qg. [9]) that will be reported in the extended version of the paper.

7 Conclusions and related work

Results and proofs presented here carry over essentially unchanged to other calculi
equipped with behavioral equivalences, such as the spi-calculus — except for those that
depend on pi's symbolic semantics, like effective computation of leakage. The exam-
ples considered in the paper are admittedly a bit artificial. More realistic case-studies,
possibly involving cryptography or probabilistic behaviour, are needed for assessing
the model’s scalability. In the leakage rate scenario, different notions of "cost" are also
worthwhile to be investigated.

Early works on quantitative information flow are [13,17, 6]. Volpano and Smith
have later developed a quantified theory of non-interference for imperative programs,
also giving a notion of rate [16], albeit not based on information theory. These ap-
proaches, like the one by Clark et al. [12], presuppose that computations produce some
form or another of "result" , possibly with an associated probability distribution, in the
sense already discussed in the introduction. A notable exception is represented by the
recent work of Lowe [11]. There, quantitative non-interference for timgslis defined

4 As an example, in the case of binary distributigps1 — p), an upper bound can be given
s.t. the ratidH /U lies between 1 and.9 for all distributions withp € [0.03,0.97].



as the number of different "low" behaviours that a "high" user can induce on the pro-
cess. This definition is shown to be in agreement with a qualitative notion of lack of
information flow due to Focardi and Gorrieri [5]. A notion of rate is also introduced
by taking time explicitly into account. These notions are not easily comparable to ours,
due to the different goals and settings (secrecy vs. non-interference, untimed vs. timed.)

Acknowledgement3he reviewers comments have been very useful to improve on the
presentation. Valentina Fedi has conducted several experiments with the metodology
described in Section 6 as part of her Kl8issertation.
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