
Basic Observables for Processes?Michele Boreale1 Rocco De Nicola2 Rosario Pugliese21Dipartimento di Scienze dell'Informazione, Universit�a di Roma \La Sapienza"2Dipartimento di Sistemi e Informatica, Universit�a di FirenzeAbstract. We propose a general approach to de�ne behavioural pre-orders over process terms by considering the pre{congruences inducedby three basic observables. These observables provide information aboutthe initial communication capabilities of processes and about their possi-bility of engaging in an in�nite internal chattering. We show that some ofthe observables{based pre{congruences do correspond to behavioral pre-orders long studied in the literature. The coincidence proofs shed light onthe di�erences between the must preorder of De Nicola and Hennessy andthe fair/should preorder of Cleaveland and Natarajan and of Brinksma,Rensink and Vogler, and on the rôle played in their de�nition by testsfor internal chattering.1 IntroductionIn the classical theory of functional programming, the point of view is assumedthat executing a program corresponds to evaluating it. If we write M # v toindicate that programM evaluates to value v, the problem of the equivalence oftwo programs, hence of their semantics, can be stated as follows:Two programs M and N are observationally equivalent if for every pro-gram context C such that both C[M] and C[N] are programs, and forevery value v, we have: C[M] # v if and only if C[N] # v.An alternative approach, used e.g. for the lazy lambda calculus [1], is that ofde�ning a simulation (whose kernel is an equivalence) based on the reduction tonormal forms. In general, given a language equipped with a reduction relation,the paradigm for de�ning equivalence over terms of the language, can be tracedback to Morris [16] and can be phrased as follows:1. De�ne a set of observables (values, normal forms, . . .) to which a programcan evaluate by means of successive reductions.2. Consider the largest (pre{)congruence over the (set of operators of the) lan-guage induced by the chosen set of observables.This paradigm has been the basis for assessing many semantics of sequentiallanguages and is at the heart of the full abstraction problem, see e.g. [18].Here, we aim at taking advantage of this paradigm also to assess models ofconcurrent systems and their equivalences. In this case, the choice of the basicobservables is less obvious. On one hand, it is well{known that input/output? Work partially supported by EEC: HCM project EXPRESS, by CNR project \Speci-�ca ad alto livello e veri�ca formale di sistemi digitali" and by Istituto di Elaborazionedell'Informazione CNR, Pisa.

relations are not su�cient for describing the semantics of these classes of systems,and thus it would be limitative to use values as observables. On the other hand,studying the evolution to normal forms under all possible contexts is not asinspective as in the case of lambda calculus. Indeed, the interaction between a�{term and the environment is circumscribed, while that between a process andits environment is less clear.If we consider the �{termMN , we know the extent of the in
uence of N overM , and, in any computation, we know exactly when an interaction between MandN occurs, namely whenM reduces to a �{abstraction. Thus by observingMin all possible contexts we can fully understand its behaviour. When consideringconcurrent systems, the internal evolution of each parallel component is freelyintermingled with external communications. Then understanding the semanticsof a component via its contextual behaviour turns out to be much less obvious.Here, we shall consider a simple process description language, TCCS (Tau{less CCS [7]), and will study the impact of three basic observables for concurrentsystems on this language. However, our results are easily extensible to generalSOS language formats, like GSOS [2].We shall be interested in testing for the initial guaranteed communicationcapabilities of a system. Indeed, when one is willing to infer the interactivebehaviour of a system from its \isolated" behaviour, to know about the system'spossibility of accepting communications along speci�c channels is not su�cient:due to the inherent nondeterminism of concurrent computations, it is necessaryto know whether the acceptance of the communications is guaranteed. This isessential to establish liveness properties, like the absence of deadlock.Moreover, we shall be interested in the risk a system has of getting involved inan in�nite sequence of internal communications (to diverge), because this couldlead to ignoring all subsequent external stimuli. Finally, with respect to this, itmight also be important to know the external communications that can lead todivergent states.These considerations guide us to introducing three basic observables:1. P ! ` (P guarantees `) asserts that, by internal actions, P can only reachstates from which action ` can be eventually performed;2. P # (P converges) asserts that P cannot get involved in an in�nite sequenceof internal actions;3. P # ` (P converges along `) asserts that P converges and does so also afterperforming `.For �nite process graphs these observables are obviously decidable; in general,they are not, but this is somehow expected since the basic language (TCCS) isTuring powerful.We shall analyze the impact of the above predicates on the semantics ofTCCS. The predicates naturally induce �ve contextual preorders. These pre-orders are listed in Table 1; there we represent a contextual preorder using thenotation s1�cs2 , where s1 (if present) refers to the used convergence predicate,and s2 (if present) refers to the guarantees one. The universal relation is denotedby U .

conv./comm. no req. # # `no req. U #�c #L�c! ` �cL #�cL #L�cLTable 1. Contextual Preorders
conv./comm. no req. # # `no req. U <�m <�m! ` <�FT <�M <�STable 2. Main resultsOur main results are �ve full abstraction theorems that make it manifestthat our contextual preorders do coincide with well{known and/or intuitive be-havioural preorders over processes studied in the literature. Table 2 provides asummary of the claimed results.More speci�cally, we will show that:{ �cL , the contextual preorder induced by ! `, coincides with <�FT , the max-imal pre{congruence included in the fair/should preorder of [17] and [3].This pre{congruence can be characterized (see [4]) as the conjunction ofthe classical trace preorder (called may preorder in [6]) with the fair/shouldpreorder;{ #�c and #L�c , the contextual preorders induced by # and # `, both coincidewith <�m , the (reverse) inclusion of the convergent traces preorder, a simplevariant of the trace preorder.Together with the impact of the three observables used in isolation we alsostudy the result of their conjunctions and show that:{ #�cL , the contextual preorder induced by # and ! `, coincides with <�M , theoriginal must preorder of [6, 10];{ #L�cL , the contextual preorder induced by # ` and ! `, gives rise to a newpreorder, the safe{must preorder <�S , which is supported by a very intuitivetesting scenario.The safe{must preorder has a direct characterization in terms of compu-tations from pairs of observers and processes: a computation is successful if asuccess state is reached before a catastrophic one (this explains the adjective`safe'). This notion certainly deserves further investigation.In the rest of the paper, we recall syntax and operational semantics (Sec. 2)and introduce an observational semantics (Sec. 3) for TCCS, then we presentour full abstraction results (Sec. 4), compare the semantic preorders (Sec. 5)and brie
y discuss related work. Due to space limitations, most proofs havebeen omitted; they can be found at http://dsi2.dsi.unifi.it/�denicola.2 Tau{less CCS: TCCSIn this section, we brie
y present the syntax and the operational semantics ofTCCS, (�{less CCS [7, 10]). We have preferred to use TCCS rather than CCSbecause it allows us to avoid the \congruence problems" that arise when the CCSchoice operator (+) is used and silent actions are abstracted away. It is worth

mentioning that the very same results can be obtained by using CCS and itsmust pre{congruence obtained from the must preorder by imposing that when-ever the \better" process can perform a silent move also the other can do it.We assume an in�nite set of names N , ranged over by a; b; : : :, and letN = fa j a 2 Ng, ranged over by a; b; : : :, be the set of co{names. N and Nare disjoint and are in bijection via the complementation function (�); we de�ne:(a) = a. We let L = N [N , ranged over by `; `0; : : :, be the set of labels; we shalluse B to range over subsets of L and we de�ne B = f` j ` 2 Bg. We also assumea countable set X of process variables, ranged over by X;Y; : : :.De�nition 1. The set of TCCS terms is generated by the grammar:E := 0 ��
 �� `:E �� E[]F �� E�F �� E j F �� EnL �� Effg �� X �� recX:Ewhere f : L ! L, called relabelling function is such that f` j f(`) 6= `g is �nite,f(a) 2 N and f(`) = f(`). We let P , ranged over by P , Q, etc., denote theset of closed terms or processes (i.e. those terms where every occurrence of anyagent variable X lies within the scope of some recX: operator).In the following, we often shall write ` instead of `:0. We writef`01=`1; : : : ; `0n=`ng for the relabelling operator ffg where f(`) = `0i if ` = `i,i 2 f1; : : : ; ng, and f(`) = ` otherwise. As usual, we write E[E1=X1; : : : ; En=Xn]for the term obtained by simultaneously substituting each occurrence of Xi inE with Ei (with renaming of bound process variables possibly involved).The structural operational semantics of a TCCS term is de�ned via the twotransition relations �! and �! induced by the inference rules in Table 3 and inTable 4, respectively. The symmetrical versions of rules AR4 and AR5 in Table 3and of rules IR5, IR6 and IR7 in Table 4 have been omitted.AR1 `:P �̀! PAR2 P �̀! P 0Pffg f(`)�! P 0ffg AR3 P �̀! P 0PnL �̀! P 0nL if ` 62 L [LAR4 P �̀! P 0P []Q �̀! P 0 AR5 P �̀! P 0P jQ �̀! P 0 jQTable 3. SOS rules for TCCS: Action RelationIR1
 �!
 IR2 recX:E �! E[recX:E=X]IR3 P �! P 0Pffg �! P 0ffg IR4 P �! P 0PnL �! P 0nLIR5 P �Q �! P IR6 P �! P 0P []Q �! P 0 []QIR7 P �! P 0P jQ �! P 0 jQ IR8 P �̀! P 0, Q �̀! QP jQ �! P 0 jQ0Table 4. SOS rules for TCCS: Internal Relation

As usual, we use =) or �=) to denote the re
exive and transitive closureof �! and use s=) , with s 2 L+, for =) �̀! s0=) when s = `s0. Moreover,we write P s=) for 9P 0 : P s=) P 0 (P �̀! and P �! will be used similarly).We will call sort of P the set sort(P) = f` 2 L j 9s 2 L� : P s`=) g, successorsof P the set S(P) = f` 2 L j P =̀) g, and language generated by P the setL(P) = fs 2 L� j P s=) g. Note that since we only consider �nite relabellingoperators, every TCCS process has a �nite sort.A context is a TCCS term C with one free occurrence of a process variable,usually denoted by . If C is a context, we write C[P] instead of C[P=]. Thecontext closure Rc of a given binary relation R over processes, is de�ned as:P RcQ i� for each context C, C[P]RC[Q]. Rc enjoys two important properties:(a) (Rc)c = Rc, and (b) R � R0 implies Rc � R0c. In the following, we willwrite 6R for the complement of R.3 Observational SemanticsIn this section, we introduce di�erent observational semantics for TCCS; wefollow two approaches. The �rst approach takes advantage of basic observables,the second one of the classical testing scenario of [6, 10] and variants of it.3.1 Basic Observables and Observation PreordersDe�nition 2. Let P be a process and ` 2 L. We de�ne three basic observationpredicates over processes as follows:{ P ! ` (P guarantees `) i� 8P 0 : P =) P 0 implies P 0 =̀) ;{ P # (P converges) i� there is no in�nite sequence of internal transitionsP �! P1 �! � � � starting from P ;{ P # ` (P converges along `) i� P # and 8P 0 : P =̀) P 0 implies P 0 #.The above predicates can be combined in �ve sensible ways and used tode�ne the corresponding basic observation preorders over processes, as stated inthe following de�nition.De�nition 3. Let P and Q be processes.{ P #�Q i� P # implies Q #;{ P #L�Q i� for each ` 2 L: P # ` implies Q # `;{ P �L Q i� for each ` 2 L: P ! ` implies Q ! `;{ P #�L Q i� for each ` 2 L: P # and P ! ` implies Q # and Q ! `;{ P #L�L Q i� for each ` 2 L: P # ` and P ! ` implies Q # ` and Q ! `.Of course, the basic observation preorders are very coarse. More re�ned rela-tions can be obtained by closing the above preorders under all TCCS contexts.For each basic observation preorder, say �, the contextual preorder generated by� is de�ned as its closure �c.

3.2 Testing Preorders and Alternative CharacterizationsLike in the original theory of testing [6, 10], we have that:- observers, ranged over by O;O0; : : :, are processes capable of performing anadditional distinct \success" action w =2 L;- computations from P j O are sequences of internal transitions P j O �!P1 jO1 �! � � �, which are either in�nite or such that Pk jOk 6�! , k � 0.De�nition 4. Let P be a process and O be an observer.1. P mustM O if for each computation from P jO, say P jO �! P1 jO1 �! � � �,there is some i � 0 s.t. Oi w�! .2. P mustS O if for each computation from P jO, say P jO �! P1 jO1 �! � � �,there is some i � 0 s.t. Oi w�! and Pi #.3. P mustF O if for each computation from P jO, say P jO �! P1 jO1 �! � � �,it holds that Pi j Oi w=) for each i � 0.The �rst de�nition of successful computation given above is exactly thatof [6]. The second one, considers successful only those computations in which asuccess state is reached before the observed process diverges. The third de�nition,which is essentially taken from [3], totally ignores the issue of divergence. Thesethree notions allow us to de�ne three preorders: the �rst one (<�M) is the originalmust preorder of [6, 10], the second one (<�S) is the new safe{must preorder andthe third one (<�F) is the (reverse of the) fair/should preorder of [17] and [3].De�nition 5. Let i 2 fM;S; Fg. For all processes P and Q, P <�iQ i� for everyobserver O: P musti O implies QmustiO.We introduce below alternative characterizations of the preorders must andsafe{must. They support simpler methods for proving (or disproving) that twoprocesses are behaviourally related. We need some additional notation.De�nition 6. Let s 2 L�, B ��n L and S be a set of processes.{ The convergence predicate, # s, is de�ned inductively as follows: P # � if P #;P # `s0 if P # � and 8P 0 : P =̀) P 0 implies P 0 # s0.We write P " s if P # s does not hold.{ (P after s) denotes the set of processes fP 0 : P s=) P 0g.{ We write P # B if 8` 2 B : P # ` and S # B if 8P 2 S : P # B.{ P !B stands for 8P 0 : P =) P 0 implies 9` 2 B : P 0 =̀) .{ S #!B stands for 8P 2 S : P # B and P !B.De�nition 7. For all processes P and Q, we write{ P �M Q if 8s 2 L� such that P # s, it holds that:(a) Q # s, and (b) for every B ��n L: (P after s) !B implies (Qafter s) !B.{ P �S Q is the same as above but predicate ! is replaced by #! .

Theorem8. For all processes P and Q, (1) P <�M Q i� P �M Q and (2)P <�S Q i� P �S Q.By taking advantage of the above alternative characterizations it is easy toprove that the must and the safe{must preorders are pre{congruences.Theorem9. For all processes P and Q and i 2 fM;Sg, P <�iQ i� P <�ciQ.Note that the congruence result does not hold for the fair/should preorder<�F , it is not preserved by the recursion operator. This can be easily seen byconsidering the following counter{example. Consider the processes P = a:b[]a:cand Q = a:b and the context C = recX:(ja:b:X)nfa; bg. It obviously holds thatP <�F Q, but C[P] 6<�F C[Q] (just take O = c:w); hence P 6<�cF Q.An alternative characterization of the closure of the fair/should preorder isgiven in [4], for a language slightly di�erent from ours.De�nition 10. For all processes P and Q, we writeP <�FT Q if (P <�F Q and L(P) � L(Q)).Theorem11. For all processes P and Q, P <�FT Q i� P <�cF Q.4 Full Abstraction ResultsFrom now on, we adopt the following convention: an action declared fresh in astatement is supposed to be di�erent from any other name and co{name men-tioned in the statement.4.1 Convergence predicate and convergent tracesIn this section, we deal with the �rst two contextual preorders, #�c and #L�c ,and prove that they have the same distinguishing power and coincide with thereverse inclusion of the convergent traces preorder.De�nition 12. For all processes P and Q, we write P <�m Q if 8s 2 L� suchthat P # s, it holds that:a) Q # s, andb) s 2 L(Q) implies s 2 L(P).Theorem13. For all processes P and Q, P <�m Q i� P <�cm Q.The following special contexts can be used to prove the next theorems. Ifs 2 L�, say s = `1 � � � `n (n � 0), we de�ne{ Cs1 = j `1: � � � :`n:0 and{ Cs2 = j `1: � � � :`n:
.Theorem14. For all processes P and Q, P <�m Q i� P #�cQ.Theorem15. For all processes P and Q, P #L�cQ i� P #�cQ.

4.2 Guarantees and fair testingLemma16. Let P be a process, O be an observer and let ` 2 L be a freshaction; (1) P mustF O i� P jOf =̀wg ! `, and (2) P ! ` i� P mustF `:w.Theorem17. For all processes P and Q, P <�cF Q i� P �cL Q.Proof: ((=) We prove that �cL is contained in <�F , the claimed result followsby closing under contexts. Suppose that P �cL Q and that P mustF O; let ` be afresh action. We have:P mustF O implies (Lemma 16(1))P j Of =̀wg ! ` implies (hypothesis P �cL Q, with C = jOf =̀wg)Q j Of =̀wg ! ` implies (Lemma 16(1))QmustF O(=)) The proof is similar but relies on Lemma 16(2). 24.3 Guarantees and convergence, and must testingThe next de�nition introduces two special contexts to be used in the proof ofTheorem 20.De�nition 18. Let s 2 L�, say s = `1 � � � `n (n � 0), and B ��n L. Let fBdenote a function which maps each ` 2 B to a single fresh c. Fix a bijectivecorrespondence among `1, . . . , `n and n fresh actions �1, . . . , �n. We de�ne{ Cs3 = jQs3 where Q�3 = c and Q`s03 = `:Qs03 []c, and{ Cs;B4 = (j Rs)ffBg j Qs4 where Rs = `1:�1: � � � `n:�n, Q�4 = 0 and Q`1s04 =�1:Qs04 []c.Lemma19. Let s 2 L�, B ��n L and c be a fresh action.a) P # s i� Cs3 [P] # i� Cs3 [P] # c.b) (P after s) !B i� Cs;B4 [P] ! c.Theorem20. For all processes P and Q, P <�M Q i� P #�cL Q.Proof: (=)) From the de�nition, it is easily seen that �M is contained in#�L (indeed P ! c i� (P after �) ! fcg). From this fact, by closing under contextsand applying Theorem 8, the thesis follows.((=) Here, we show that #�cL is contained in �M . From this fact and The-orem 8, the thesis follows. Assume that P #�cL Q and that P # s, for some s 2 L�.We have to show that: (a) Q # s and (b) (P after s) !B implies (Qafter s) !B,for any B ��n L. As to part (a), from P # s and Lemma 19(a), it follows thatCs3 [P] #. Obviously, for every process R, Cs3[R] ! c. From Cs3 [P] #, Cs3[P] ! c andP #�cL Q it follows that Cs3 [Q] #. By applying again Lemma 19(a), but in thereverse direction, we obtain Q # s. As to part (b), suppose that (P after s) !B.From this, applying Lemma 19(b), it follows that Cs;B4 [P] ! c. Moreover, it iseasy to see that for every process R, R # s implies Cs;B4 [R] #. From Cs;B4 [P] #,Cs;B4 [P] ! c and P #�cL Q, it follows that Cs;B4 [Q] ! c. By applying again Lemma19(b), but in the reverse direction, we obtain (Qafter s) !B. 2

4.4 Guarantees and convergence, and safe{mustTo prove full abstraction for safe{must, we will use another special context.Again, we assume that c 2 L is always fresh. If s 2 L�, say s = `1 � � � `n (n � 0),and B ��n L, we de�ne the context{ Cs;B5 = jQs;B5 where Q�;B5 =P`2B `:c and Q`s0;B5 = `:Qs0;B5 []c.The proof of the following theorem is similar to that of Theorem 20, but relieson the context Cs;B5 instead of Cs;B4 .Theorem21. For all processes P and Q, P <�S Q i� P #L�cL Q.It is worthwhile to point out why the context Cs;B5 cannot be used in place ofthe context Cs;B4 to prove full abstraction for the must preorder (Theorem 20).Indeed, P # s does not imply that Cs;B5 [P] # (for instance a:b:
 # a butCa;fbg5 [a:b:
] "). This would invalidate the proof of the \if" part of Theorem 20.5 Comparing the preordersTheorem22. For all processes P and Q, P <�M Q implies P <�S Q, but notvice{versa.Proof: Paralleling the proof of Theorem 20, part (=, it is easy to show that#�cL is contained in �S , from which the result will follow by applying Theorems20 and 8. To show that the vice{versa does not hold, consider P def= a:b:
 andQ def= a. It is easy to see that P <�S Q, but P 6#�cL Q (just consider j a). 2Theorem23.1. <�M = #�cL � #L�cL = <�S � #L�c = #�c :2. �cL = <�FT and <�FT is not comparable with <�M , <�S and #�c .Proof:1. The result follows from Theorems 14, 20, 21 and 22. By de�nition, it iseasily seen that #L�cL is included in #L�c . The inclusion is strict: a #L�c 0but a 6#L�L 0.2. The equality �cL = <�FT derives from Theorems 17 and 11. To see thatneither of <�M , <�S and #�c is included in <�F (hence in <�FT), considerthe processes P def= recX:(a:X []a:b) and Q def= recX:a:X . Clearly, P <�M Q,hence P <�S Q and P #L�cQ. However, P 6<�F Q (because P mustF O andQ 6mustF O, when O def= recX:(a:X []b:w)). To see the converse, observe that0 <�FT
, but 0 6#�
, hence 0 6<�S
 and 0 6<�M
. 2The mutual relationships among the pre{congruences are simpler if we moveto strongly convergent processes. We say that a process P is strongly convergentif P # s for every s 2 L�.Theorem24. For strongly convergent processes, it holds that:�cL = <�FT � <�M = #�cL = #L�cL = <�S � #L�c = #�c :

6 ConclusionsWe have proposed three basic notions of process observables, that, when closedwith respect to the contexts of a CCS{like language, induce �ve pre{congruencesthat have been proved to coincide with well{known and/or intuitive behaviouralrelations.Notions of observables in the same spirit as ours have been proposed in [13],[21], [11], [15], [8] and [12].In [13], it is shown that the pre{congruence induced by inclusion of maxi-mal traces coincides, both for CCS and CSP, with the must pre{congruence of[6]; another characterization is given by only considering the inclusion of themaximal �{trace, i.e. a sequence of invisible moves leading to a divergent stateor to a deadlocked one. The strength of the basic observables (maximal tracesare de�nitely more inspective than our guarantees predicate) prevents from cap-turing di�erent notions such as fair testing, and hinders the rôle played by theconvergence test, which is somehow included in that for maximality.In [21], two Petri nets are called d{equivalent if they both can reach a dead-locked state or if they both cannot do so. Then it is proved that, by closingd{equivalence with respect to parallel composition, the variant of failure seman-tics [5] that ignores divergence is obtained.In [11], a series of variants of the testing framework is proposed and resultsare listed showing that, by changing the expressive power of testers, a numberof equivalences ranging from bisimulation to testing can be captured. One ofthe considered family of observers is that consisting just of agents of the form`:w:0, that somehow resemble our !` predicates. It is claimed that for stronglyconvergent processes the pre{congruence induced by this family of observerscoincides with the must preorder and the reader is referred to [13] for the proof.However, we could not �nd the proof in Main's paper.Milner and Sangiorgi [15] de�ne an equivalence for processes based on ele-mentary observables, namely the possibility for a process to synchronize along aspeci�c channel. However, they permit to recursively test for the presence of thisobservable. The resulting notion of observability (called barbed bisimilarity),when closed under parallel composition, yields bisimulation{based equivalencesthat are signi�cantly more discriminating than ours.Ferreira [8] and Laneve [12] deal with languages signi�cantly di�erent fromclassical process algebras. In particular, Ferreira uses a predicate which resem-bles very much the conjunction of our # and ! ` (based on production of valuesrather than on communication capabilities) to de�ne a testing preorder for Con-current ML [20]; this seems to be strongly related to our safe{must preorder. Healso conjectures that if one considers pure CCS (and observes communicationcapabilities instead of value productions) the obtained preorder coincides withthe must pre{congruence of [6]; here we have proved this conjecture. Laneve dis-cusses the impact of an observables-based testing scenario on the Join Calculus,a language with elaborate synchronization schemata [9].

AcknowledgmentsWe are grateful to L. Aceto, F. van Breugel, W. Ferreira, A. Rensink and W.Vogler for interesting discussions and suggestions and to F. Focardi for a �rstdebugging of the ideas contained in the paper.References1. S. Abramsky. The lazy lambda calculus. Research Topics in Functional Program-ming, David Turner, ed., Addison{Wesley, 1990.2. B. Bloom, S. Istrail, A.R. Meyer. Bisimulation can't be traced. Journal of theACM, 42(1):232-268, 1995.3. E. Brinksma, A. Rensink, W. Vogler. Fair Testing. Proceedings of CONCUR'95,LNCS 962, pages 313-327, Springer, 1995.4. E. Brinksma, A. Rensink, W. Vogler. Applications of Fair Testing. In R. Gotzheinand J. Bredereke, ed., Formal Description Techniques IX, Chapman & Hall, 1996.5. S.D. Brookes, C.A.R. Hoare, A.W. Roscoe. A theory of communicating sequentialprocesses. Journal of the ACM, 31(3):560-599, 1984.6. R. De Nicola, M.C.B. Hennessy. Testing Equivalence for Processes. TheoreticalComputers Science, 34:83-133, 1984.7. R. De Nicola, M.C.B. Hennessy. CCS without � 's. Proceedings of TAPSOFT'87,LNCS 249, pages 138-152, Springer, 1987.8. W. Ferreira. Semantic Theories for Concurrent ML. Ph.D. Thesis, University ofSussex, 1996.9. C. Fournet, G. Gonthier, J.-L. L�evy, L. Maranget, D. R�emy. A Calculus of MobileAgents. Proceedings of CONCUR'96, LNCS 1119, 1996.10. M.C.B. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.11. M.C.B. Hennessy. Observing Processes. In Linear Time, Branching Time and Par-tial Order in Logics and Models for Concurrency, LNCS 354, Springer, 1989.12. C. Laneve. May and Must Testing in the Join-Calculus. Technical Report UBLCS-96-4, Universit�a di Bologna, Dept. of Computer Science, Bologna, 1996.13. M.G. Main. Trace, Failure and Testing Equivalences for Communicating Processes.Int. Journal of Parallel Programming, 16(5):383-400, 1987.14. R. Milner. Communication and Concurrency. Prentice Hall International, 1989.15. R. Milner, D. Sangiorgi. Barbed Bisimulation. Proceedings of ICALP'92, LNCS623, Springer, 1992.16. J.-H. Morris. Lambda Calculus Models of Programming Languages. Ph.D. Thesis,MIT, 1968.17. V. Natarajan, R. Cleaveland. Divergence and Fair Testing. Proceedings ofICALP'95, LNCS 944, pages 648-659, Springer, 1995.18. C.-H.L. Ong. Correspondence between operational and denotational semantics: thefull abstraction problem for PCF. Handbook of Logic in Computer Science, vol.4,S. Abramsky, D.M. Gabbay and T.S.E. Maibaum, ed., Oxford Science Publ., 1995.19. G.D. Plotkin. A Structural Approach to Operational Semantics. Technical ReportDAIMI FN-19, Aarhus University, Dept. of Computer Science, Aarhus, 1981.20. J.H. Reppy. Concurrent ML: Design, application and semantics. Proceedingsof Functional Programming, Concurrency, Simulation and Automata Reasoning,LNCS 693, pages 165-198, Springer, 1993.21. W. Vogler. Failures Semantics and Deadlocking of Modular Petri Nets. Acta In-formatica, 26:333-348, 1989.

