Proof Techniques for Cryptographic Processes

Michele Boreale Rocco De Nicola Rosario Pugliese
Dipartimento di Scienze dell'Informazione Dipartimento di Sistemi e Informatica Dipartimento di Sistemi e Informatica
Universita di Roma “La Sapienza” Universita di Firenze Universita di Firenze
boreal e@isi .uniromal. it deni col a@lsi . unifi.it pugliese@isi.unifi.it
Abstract Here,¢{d} ;. meansutputalongc of messagdd}; and0

stands fortermination ¢(x). is input alongc of a generic

Contextual equivalences for cryptographic process cal- message, andF(z) is some expression describing the be-
culi can be used to reason about correctness of proto- haviour of B after the receipt ofc. The whole protocol
cols, but their definition suffers from quantification over P(d) is theparallel compositionA(d) | B, with therestric-
all possible contexts. Here, we focus on two such equiv-tion (v k) indicating that the key: is only known toA(d)
alences, may-testing and barbed equivalence, and investi-andB.
gate tractable proof methods for them. To this aim, we de- The main advantage of this kind of description is that
velop an ‘environment-sensitive’ labelled transition system, process calculi have a formal yet simple semantics, usu-
where transitions are constrained by the knowledge the en-g)ly hased on labelled transition systems (Its), that permits
vironment has of names and keys. On top of the new tran, make mathematically rigorous such notions as ‘attacker’
sition system, a trace equivalence and a co-inductive weakgng ‘secrecy’. Continuing the example above, a way of as-
bisimulation equivalence are defined, both of which avoid serting thatP(d) maintains the secrecy dfis that of stat-
guantification over contexts. Our main results are sound- ing thatP(d) is equivalento P(d’) for every other’. An
ness of trace semantics and of weak bisimulation with re- appropriate notion of equivalence risay-testind9, 6, 3],
spect to may-testing and barbed equivalence, respectively,yhose intuition is precisely that no external context (which
This leads to more direct proof methods for equivalence j, the present setting can be read as ‘attacker’) may no-
checking. The use of such methods is illustrated via a fewyjce any difference when running in parallel with(d’) or
examples concerning imp!ementation of secure Chann_els byp(d)_ A similar intuition is supported also by other con-
means of encrypted public channels. We also consider ajextyal equivalences, likearbed equivalenciL5]. While
variant of the labelled transition system that gives com- rigorous and intuitive, the actual definitions of these equiv-

pleteness, but is less handy to use. alences suffer from universal quantification over contexts
) (attackers), that makes equivalence checking very hard. It
1. Introduction is then important to devise proof techniques that avoid such

Recently, there has been much interest toward using for-guantification. Results in this direction have been obtained

mal methods for analysing cryptographic protocols. Here, for traditiona_l process calculi (for_ example_ may testing is
we focus on a specific approach, which consists in mod_proved to coincide with trace equwalence in CCS [9]), but
elling them as concurrent processes, described in some prolttle has been done for cryptographic calculi.
cess calculus (like CSP [11, 17] or the spi-calculus [3, 4], a Inthis paper, we consider may-testing and barbed equiv-
cryptographic version of the-calculus [14]). As an exam- alences for a variant of the spi-calculus with shared-key
ple, consider the very simple protocol where two principals cryptographic primitives [3]. We develop an ‘environment-
A and B share a private ke¥, and A wants to send3 a sensitive’ labelled transition system, whose transitions are
datumd encrypted undek, through a public channel constrained by the knowledge the environment has of names
Messagel A — B:{d}; onc. and keys. A trace-based equivalence and a purely co-
inductive notion of weak bisimulation, that avoid quantifi-

This informal notation can be expressed in spi-calculus as™ . . .
cation on contexts, are defined over the new lIts and it is

follows: . .
def _ shown that they are sound for may-testing and barbed equiv-
A(d) = ¢{d}s.0 . . -
def alence, respectively. We also consider a variation on the Its
B = c(z).F(z) which gives completeness, but is less handy to use. A more
P(d) der (vk)(A(d) | B). detailed account of our work follows.

Let us consider the nature of the transitions in the (non- o > P, whereP is a process and is the current environ-
cryptographic)r-calculus. There are three kinds of basic ment's knowledge, which we model as a mapping from a
transitions which correspond to: input of a message, out-set of names (variables) to a set of messages. Intuitirely,
put of a message and internal move. An output transitionis a database of messages received from the processes, each
like p 2270 b says that proces® passes aew indexed with a different name. Transitions represent inter-
(fresh) name ((v -) stands for ‘new’) to the environment actions between the environment afidand take the form

along a channel, and becomeg” in doing so. Once
the environment acquires knowledgebothe environment
may useb arbitrarily, e.g. it can pass something back to wherey is the action of procesB ands is the complemen-
the process along. For example, the two-steps sequence tary environment action We have three different kinds of

p Wi, prbey pr(wherebe means ‘input ofe transitions.

alongb’) is possible. At each stage, environment and pro- 1. The process performs an output and the environment
cess share the same knowledge of names. Thus, if the pro- an input. As a consequence, the environment’s knowl-

m
o>Pr—o > P
s

cess is willing to perform some action, the environment will edge gets updated:
always be able to react. To determine whether two pro- (vb)a(M)
cesses are, say, may-testing equivalent it is then sufficient o> Pr————— o[Mj]> P

a(z)
(heres[M/x] means update of with the new entry
[M/z], for a fresh variabler, andb is a set of fresh
names). For the transition to take place, nammaust
belong to the knowledge of.

to establish that they can perform teamesequences of
(input/output) actions.

The correspondence between environment and process
actions is lost when moving to the spi-calculus, i.e. when
adding encryption and decryption primitives to the
calculus. Indeed, two new facts must be taken into account. 2. The process performs an input and the environment an
output. As discussed previously, messages from the
environment cannot be arbitrary, they must be built, via
encryption and decryption, using only the knowledge
in o. Thus, transitions take the form:

(&) When the environment receives a new nhame encrypted
under a fresh key, it does not acquire the knowledge
of that name immediately. For instance, if out-
puts a new nameé encrypted under a fresh key

— a M -
_p _wbRIRYY b then nameb is part of o> P \—)_g_ o[bh] > P'.
the knowledge ofP’, but not part of the knowledge - (vb)ale) _
of the environment. Thus, i’ is willing to in- Informally, b is a set of new names just created by the
put something ab (say P’ = b(c).P"), the environ- environment, and is an expression describing haw
ment cannot satisfy?’’s expectations: a sequence like is built out of andb. For example, itr(z1) = {c}s

ando(z2) = kandM = c¢then might bedec,, (z1),
indicating that messageresults from decrypting the
x1-entry with thexs-entry. Note that gets updated
also in_this case, to record the creation of the new
namesb. Again, a must belong to the knowledge of

p WEREA) b bey pir (that is possible in the
traditional-style transition system) should not be con-
sidered as meaningful. For similar reasons, a sequence
like p PRI b a'by prwhere the envi-
ronment immediately sends the cleartexiack to the
process, should not be considered as meaningful.

3. The process performs an internal move and the envi-
(b) Equivalent processes need not exhibit the same se- ronment does nothing:

guences of transitions. The process that performs
the single output(v k)a({b},) and terminates, and
the one that performsév k)a({c},) and terminates, To cope with (b) when defining trace and bisimulation
are equivalent, because the environment cannot dis-semantics (Section 3) on top of the new lts, the point of
tinguish betweer{b}; and{c};. However, the two view is taken thatequivalent configurations should exhibit
messages can be distinguished if the environment getdhe same environment actionsAs an example, take

the key k. Thus, processefv k)a{b},.ak.0 and with entrieso(z) = a, o(y) = b ando(z) = ¢ and

(v k)a{c}y.ak. 0 are not equivalent. consider the configuration8, &' o > (v k)a{b}. 0 and

To cope with (a) above and recover the correspondence be€’, LN (vk)a{c},.0. These configurations are both

tween environment and process actions, we introduce a latrace and bisimulation equivalent, because they exhibit only
belled transition system that explicitly describes the knowl- the transitions: o)

edge of the environment. This is the main contr_lbunon Cy k o[{ el > 0

of our paper. The states of the new Its amnfigurations a(w)

.
o> Pr— o> P.

and bound to z within P, otherwise the whole process is

vk)a{{c
C, ‘&) o[{cthw) >0 stuck. This enables one to write process expressions in
] a(w)) a more compact form: for instance, the spi-calculus pro-
which have the same environmentactidw). Onthe other cesscase M of {k},in (case N of {z},in P) can
hand, as discussed abow€; PN (vk)a{b}y.ak.0 be written ad et z = decgec, (m) (V) i N P inour syntax.

andC, ¥ 5 (v k)a{c}y.ak. 0 should not be regarded A more relevant difference from the spi-calculus is that in

as equivalent. Indeed, after two stegis, reaches a state Our syntax tuples are ruled out and that decryption keys can-
where the environment is[{}/w][¥/v] that cannot be con- NOt be compound messages: these simplifications permit a
sidered ‘equivalent’ to the environment reachable fiopp ~ clearer presentation of our approach. Finally, we have in-
i.e. o[{c}e/w][k/w]: the decryption of entry, which is now cluded non-deterministic choice-§, which is sometimes
possible because keyis known, yields distinct names (useful for specification purposes.
andc). A crucial point of our approach is explaining en- The notions offree namef a process’, fn(P), of
vironment equivalence by relating it to logical equivalence. bound namesf P, bn(P), and ofa-equivalence arise as
Anyway, when defining both trace and bisimulation equiva- expectedn(P) is fn(P) U bn(P). We shall writefn(P, Q)
lence, we shall require thatatching transitions should take in place offn(P)Ufn(Q) (similarly for bn(-) andn(-)). We
equivalent environments to equivalent environments assume the usual conventions®@quivalence and bound
The trace and bisimulation equivalences avoid quantifi- names; in particular, we identify-equivalent terms and as-
cation over contexts and only require considering the actualsume that bound names are always fresh and distinct.
transitions of the enriched Its. We shall show that the two A substitutiono is a finite partial map from\V to M;
equivalences imply their contextual counterparts. The con-the domain and proper co-domain®tire writtendom (o)
verse implication fails, but we indicate how to recover com- and range(o). The substitution mapping to M is writ-
pleteness, at the cost of introducing a less manageable ltsten [#/x], while the substitution mapping; to M;, for
To illustrate possible applications of trace and bisimulation i € I, is written as[#i/z;],_,. Forz not appearing i,
semantics as proof techniques, in Section 4 we give a num-we write[3/z] for the substitution which is the union of
ber of examples that deal with the problem of implementing and[/z]. For a givenl’ Csin N, we writeey for the sub-
secure, private channels using encrypted public channels, irstitution with dom (ey) = V' that acts as the identity dn.
the same vein of [2]. We claim that some of the equalities For any termy, to denotes the result of simultaneously re-
we establish would be very hard to prove by relying on the placing eaclx € fn(t) N dom (o) with o(z), with renaming
original, contextual definitions. Comparisons with related of bound names aof possibly involved to avoid captures.

work are reported in Section 5. We shall often abbreviate.0 asa, wherea is an input

or output prefix, andv a)(v b) P as(v a, b) P. We shall use
2. The Language the tilde~ to denote tuples of objects; e.g: is a generic
Syntax (Table 1) In the standard-calculus, names are tuple of name;. All our notations are extended to tuples
the only transmissible objects. Here, the possibility has component-wise. It = (k... ,k,), then{M}; stands

been added to communicatessagesbtained via shared- o7 1~ 1M}k, -+ -}, (similarly for decz (M)).

key encryption: messagg\ }. represents the ciphertext
obtained by encrypting messagé under keyk using a

shared-key encryption systeExpressionare obtained ap- .« def) T o
plying encryption and decryption operators to names and?” = {Po : P € P ando is a substitutio (similarly for
ciphertexts. For example, expressitst., ((;) represents ®°). While we are primarily interested i®, for techni-

the text obtained by decrypting the ciphertéxtunder the cal reasons that will be apparent later, it is convenient to
key (». Logicalformulaegeneralize the usual matching op- define the operational and observational semantics over the

erator of ther-calculus with a predicateame(-), which largerP®. Therefore, in the rest of the paper, a ‘process’ is
tests whether the argument is a plain name or a compound® term ofP“ and P, @, ... range ovefP*. In order to de-
ciphertext, and with a ‘let’ construct that binds the value fine the (traditional) Qperatlonal semantics of the c_alculus,
of some expressiod to a name:. Processesre built us- we need two evaluation funct_lons: one for expressions, the
ing a set of operators which include those from the standard®ther for formulae. Thevaluation functiorior expressions,
r-calculus, plus two new operators: boolean guard and en- : £ — MU{—} (where—is a distinct symbol), is defined

Standard operational semantics Consider the closure of
P under the set of all substitutions, that is the set of terms

cryption/decryption. by indEction or(as follows:

There are a few differences from Abadi and Gordon’s ca=a
spi-calculus [3]. First, our encryption/decryption oper- . {M} if (A] =M and(; =keWN,
ator has the form et z=(in P: it attempts evalu- o {Gi}e, = for someM andk

ating ¢; if the evaluation succeeds, the value @fis - otherwise

ab... bk, ... ,x,yz... names N

M = a | {M} messages M
¢ == a | {C}e | decey (1) expressions Z
¢ == # | name(M) | [Mi = M, formulae ®

| letz=(ing | ¢pr1 A2 | ¢

P = processes P
0 (null)
| a(z).P (input prefix)
| aM.P (output prefiz)
| P+ P (non — deterministic choice)
| Pi| P (parallel composition)
| (va)P (restriction)
| 'P (replication)
| oP (boolean guard)
| letz=(inP (encryption/decryption)

Operatorsi(z).-, (va)- andl et z = (i n - arebinders with the obvious scope, for names
z,a andz, respectively. Il et z = (i n -, we assume that ¢ n(().

Table 1. Syntax of the calculus

. M ifé = {M}; and(, =k € N, Remark 2.1 Note that some process termsfhmay re-
o decg,(C1) = for someM andk duce totermsiP, like in@{b},.Pla(z).Tc - P|{b}c.
— otherwise. This explains why it is convenient to considef in place of

The evaluation of an expression ‘fails’, i.e. returns the value P. Also note that, similarly to [3], a term likg} ¢, which

—, whenever an encryption/decryption with something dif- tries to use a compound message as a channel, is stuck. Dif-
ferent from a name is attempted, or whenever a decryp-ferently from [3], a term likez{b} , “is stuck in our oper-
tion with something different from the encryption key is ational semantics, g%}, is notamessage (a compound
attempted. For instance, the evaluation{e},; and of {c}x occurs in place of a plain name).

decy({a}.) is —, while dec.({a}.) evaluates ta.

The evaluation function for formulag,-] : ®° — May-testing and barbed equivalence We now instanti-
{tt, ff}, is defined by induction or asAexpected (evalua- ate the general framework of may-testing [9] to our calcu-
tion of [l et z=Cing] yields ff if (= —, [¢[S/2]] lus. Observersare processes that can perform a distinct
otherwise). For any substitutien we letoc = ¢ meanthat ‘success’ actionv, to signal that some test has been suc-
[6c] =t. cessfully passed by the observed process. For instance, the

The (traditional)operational semanticéTable 2) is de- ~ observer(v b)ab. b(z). [z = c|w tests for the ability of a
fined by the familiar early-style inference rules of the ~ process to receive a new nafmen channeh and then to
calculus, plus a rule for encryption/decryption (this presen- send name along thisb. The may-testing preorder can be
tation is essentially equivalent to the ‘commitment relation’ defined in terms of the ability of processes to pass tests pro-
semantics of Abadi and Gordon in [3]). Procassions(i.e. posed by observers.
labels of the transition s_ystem), ranged over;by\, ce Definition 2.2 (may-testing preorder, [9])
can be of three fqrmsr (|.nternal action)a M (input ata We write P C @ to mean that, for every observer, if
where messag#/ is recq\{ed) andv b)a(M) (0~u'Fput ata PO =5 thenQ | O . o
where messagé&/ containing the bound namess sent).

We writea(M) instead of(v b)a(M) wheneven = 0. In- The equivalence obtained as the kernel of the preorder
put and output actions will be calledsible actions. We L isdenotedby~ (~ = L n C 7]).

uses to range over sequences of visible actions (traces), We switch now to barbed equivalence [15]. The intu-
and write=> or = to denote the reflexive and transitive ition is somehow similar to that of testing, but in addition
closure of =+ and, inductively== for =-“5=*= when barbed equivalence conveys a notion of fairness, which de-
s =pu-s'. P == means thaP == P’ for someP". rives from the co-inductive part of its definition. In what

(INP) a(z). P M5 P[M/y] (out) am.p 2, p
P, p PP P
(Sum) ' "t (REP) [P
P +P 5P P P
P L)Pl (vb)ya(M))2 P a M P!
(PAR) ! ! (Com) L °
p-t p PMP’ N
(Res) — ¢ é¢n(p) (OPEN) — c#a,c€n(M)—b
(ve)P 5 (ve)P' (yc)pM)p’
=t PSP N YA N
(GUARD) [4] (LET) <7 [5/2]
¢P 5 P’ let z=¢inP - P

Table 2. Standard operational semantics (symmetric versio

follows, we say that a procedd commits toa, and write

P a, if P -2, or PL) for someM andb. We

also writeP |} a if P = P'andP’ | a, for someP’.

Definition 2.3 (barbed equivalence, [15])

A symmetric relation of processésis abarbed bisimula-
tion if wheneverPSQ then: (1) wheneveP -~ P’ then

there isQ)’ such that) = Q' and P'SQ’, and (2) when-
everP | athen@ | a. Barbed bisimilarity written = , is

the largest barbed bisimulation. Two procesBemd(are

barbed equivalentvritten P = (), if for all R we have that
P|R=Q|R. o

It is worthwhile to notice that neithel. nor = are

(pre-)congruences, due to the usual problems arising with

input prefix (see [14]).

3. Trace and Bisimulation Semantics

ns of (Sum), (PAR) and (Com) omitted)

For instance, kn([{0}..mfw, {atefe, {knfy, b)) =
{a, h, k}. Note thatkn(o) can be easily computed in a fi-
nite number of steps. We are now ready to introduce the
new lts. States areonfigurationsf the formo > P, where
o represents the environment, and transitions take the form

w .. .
o> P — o' > P' and represent atomic interactions be-
s

tween the process and the environment. The environment
actioné can be of three forms, output, input and ‘no action’:

5= whalQ) | a(a)

Free names and bound namesg @fre defined as expected,
in particularbn(a(xz)) = {z}. The inference rules for the

transition relation s are displayed in Table 3. Thasi-
b

ble environment actions are input and outputanges over
sequences of visible environment actions. In the following,
we write = or = to denote the reflexive and transitive

We introduce now the new ‘environment-sensitive’ Its. closure of‘_> and, inductively, erte=> for $:>‘_>;:.>
Then, we will define trace and bisimulation semantics, and

show that they are sound for may-testing and barbed equ
alence, respectively. Finally, we consider a more compleX 506 and bisimulation semantics In order to define ob-

s=p-s'andu=0-u'.

Its which guarantees completeness.

An environment-sensitive Its We start by making precise
the concept of knowledge of an environmentthat is, all
the information that can be deduced from the contemnt of

Definition 3.1 (environment knowledge)

ConsiderW C M. The setKn(W) is defined as the
smallestS C M such that: (i)W C S, and (ii) when-
everk € S and {M}, € SthenM € S. We de-
fine kn(WW) et Kn(W) N N. Given a substitutior,

Kn(o) der Kn(range(o)) andkn (o) der kn(range(o)). <©

servational semantics based ghs>, we have to precisely
u

define when two environments, represented by substitu-
tionso ando’, are ‘equivalent’. Informallyg ando’ are
equivalent whenever they are logically indistinguishable,
i.e. whenever for each formutawith fn(¢) C dom(o),

o |= ¢ if and only if o' |= ¢. This logical characteriza-
tion is difficult to check, as it contains a quantification on
all formulae. Below, we give a definition, that is easy to
check and still implies logical indistinguishability. First, a
notational shorthand. Givensa= [Mi/z;],_, andi € I, we
denote byore(o, ;) whatever cannot be further decrypted
in M; using the knowledge available in. Formally, we

vb)a
(v b)a(M) '

P P a € kn(o)

(E-OuT) =

(v bya(M) ,

o> Pr—— oMp]> P
a(z)

P a M }3/

a € kn(o) Mzgf; b

P P
(E-TAv) ;

O'I>P\;)O'|>P

def

(n(¢) — dom(a))

(E-INP)

a M T~
o> P F———:——————é (T[Qdﬂ > P
(vb)a(q)

Table 3. Rules for the environment-sensitive Its

definecore(o, z;) as the messag® such that, for some

k C kn(o), it holds M; = {N}; and eitherN is a name,
or N = {N'},, for someN’ andh ¢ kn(o). For example,
giveno = [{a}mwrfey, K/ry), thencore(o, 1) = {a}s.
The rationale of the definition below is that it should not
be possible to distinguish entries of two equivalent environ-
ments by failure of decryption (a), nor by theme(-) pred-
icate (b), nor by the equality predicate (c).

Definition 3.2 (equivalent environments)

Leto = [Mif;),., ando' = [Mi/z;],., be two sub-
stitutions with the same domain. For eathe I, let
N; = core(o,z;) and N} = core(o’,z;). We say thatr
ando’ areequivalentand writeo ~ ¢, if for eachi € T
the following conditions hold:

(a) for somek;, M; = {Ni}Ei andM] = {N{}Ei;
(b) if N; € NorN] e N thenN; = N/;
(c) foreachj € I, N; = N; iff N; = Nj.

<

As an example,o, [V, ¢xs, {bIr/fzs] and o
(M1, ¢xs, {chr/xs] are equivalent. On the contramy
o1[F/zs] andoy = o3[F/z4] are not equivalent, because
core(og,x3) = b # ¢ core(oy,x3), thus condition
(b) is violated. It is easy to prove that if ~ &' then
kn(o) = kn(c'). We are now ready to define a trace-based
preorder.

Definition 3.3 (trace preorder)
Let o1 ~ o03. Given two processe® and @, we write
(01,00) F P < Q if whenevers;, > P £ o} > P

thent there ares’, o5 and Q' such thatos > Q ts:>
u

oh > Q' ando] ~ g . O

Note that we just require that the environment tracg (
of matching transitions is the same, and do not require
anything about the process tracesapnds’). As an ex-
ample, definer = [#/x,Ufy,¢/2]. Theno > (v k)a{b}e

and o > (v k)a{c}, are <-equivalent. On the contrary,

IRecall that bound names efindu are assumed to be fresh. A similar
remark applies t@ andd in Def. 3.4.

o > (vk)a{b}r.ak ando > (v k)a{c},.ak are not related,
because [{0}k/v, kw]~ o[{ctkfv, k], for anyv, w. More
examples will be given in Section 4.

Bisimulation over the environment-sensitive Its can be

very easily defined. In what follows > P q-% o' > P

stands fow > P q-%-» o' > P'if u # 7, and foro > P =

o' > P if p = 7. We say that a pair of configurations
(o1 > P09 > Q) iscompatiblef o, ando, are equivalent.
We write (61,02) F PRQ if (o1 > P)R (02 > @), for a
binary relatiornk.

Definition 3.4 (weak bisimulation) LetR be a relation of
compatible pairs of configurations. We say thatis a
weak bisimulationif whenever (o1,02) F PRQ and

nw
o1 > P — of > P' then there arq/, o} and Q' such
[

that oo > Q tiz» oh > Q" and(o,0) F P'RQ’, and
the converse on the transitions@fand P. Bisimilarity, ~,
is the largest weak bisimulation relation. <o

Soundness It is convenient to state the soundness theo-
rems for notions which are more general tHgrand=. For
equivalentr; andoy, we let(oy,02) - P L Q mean that
for each observe® with fn(O) C dom(oy), if P|Ocy ==
then@ | Ooy ==. Clearly, P C @ holds if and only if
(ev,ev) F P L QforsomeV D fn(P,Q). A similar gen-
eralization can also be given for barbed equivalence (just
close under context8s; andRo, with fn(R) C dom(oy)

and check only for those commitments such that is in

the knowledge of; ando,): due to lack of space we omit
the details.

Theorem 3.5 (soundness of trace equivalence)

If (61,02) F P < Qthen(oy,02) F PL Q.

PROOF Assumefn(0) C dom(oy) and P | Oo1 ==.
The latter sequence can be ‘unzipped’ aB: = P/,

Oo; == with s andr complementary. Under this con-
dition, it can be deduced that > P == o} > P', for o}

andu s.t. r = uo} (here~ denotes the obvious extension

of the expression evaluation function). Then by hypothe- Definition 3.7 (equivalent environrpents revised)

sisoy > Q £ o) > Q', with o} ~ o, and moreoves’ Leto = [Mife],., ando’ = [Mifx],., be two substi-
u - tutions with the same domain. For eacle I, let N; =

is complementary te’ def uaé,. The crucial point is now core(o,z;) andN/ = core(c’, z;), and letN = N;er and

thatOo; == implies Oy == (this property relieson N’ = N/ ;. We say that ando’ areequivalentand write

the logical indistinguishabilitx ob{ andos). The thesis o ~ o', if for eachi € T the following conditions hold:

follows from this and fronQ) == Q'. 0 (a) for some tuple]; C I, M; = {Ni} 57, and M; =

The purely co-inductive proof technique of bisimulation {N{}ﬁ[j,.]?
can be enhanced tailoring to the present setting the so callegh) N, ¢ A/ iff N! e N;
up-totechnigues (similar to those in, e.g., [16, 7]), which of- . T ,

. ; = N; ;= N.. <

ten permit reducing the size of the relation to exhibit. For (c) foreachy € I, N; = N iff N; = N;
example, the ‘up to parallel composition’ technique permits As an example, the environment®}«.n)/x,, b/z,] and
cutting away common contexts from process derivatives: a[{0}«.n')/z;, h'/.zg] are equivalent, according to the new
relationR is aweak bisimulation up to parallel composi-
tion if R satisfies the definition of weak bisimulation (Def. _) N
3.4), but with the condition on the derivative®’ , o)) ble 3) requires an adjustment: we relax the condition éhat
P' R Q" replaced by the (weaker}é!, 0},) F P' R Q'-up has the same subject namega@ihat isa) and just require
to parallel composition’. The latter means that therefare ~ that the subject of is an expression s.t. n(n) C dom(o)
Qo andR with fn(R) C dom(c) suchthatP’ = Py|Ro, andno = a. Based on these two new notions, the defini-
andQ’' = Qo | Ra), an?i(ai,ag) F Py R Qo. tions of the new trace preordeg’, and of the new bisim-

Another technique, ‘up to contraction’, permits to dis- ulation equivalencey’, remain formally unchanged. It is
card environments entries that give redundant information, not difficult to prove that<” coincides with T, and, for
while a third one, ‘up to structural congruence’, permits image-finite processes (see [12]), thétcoincides withe=.

freely identifying processes up to structural congruesce ~ We omit the details and state:

[13]. Due tQ lack of space, we omit formal de]‘|r_1|'[_|ons qf Theorem 3.8 Leto; ~ g5. Then(oy,0:) F P <’ Q iff
these techniques. It can be proven that each b|5|mulat|on() - P C Q. Forima e-finité rocessds and()
up-to’ defined above, and any combination of tReis in- (01’02) L p Q.iﬁ (g); L p E% :
cluded in~. We shall see an example of use of these tech-'"1> 72 ~ 91,72 -

nique in Section 4. For the rest of the paper, we shall stick to the more man-
ageable relationg and~:.

definition. Also the definition ot > P \i> o' > P (Ta-
4

Theorem 3.6 (soundness of weak bisimilarity)

If (01,02) b P~ Qthen(o1,02) F P =Q. 4. Applications
ProOOF Consider the least relatio® such that: if . .
(01,00) F P~ Q andfn(R) C dom(oy) then(o,0s) The congruence laws listed in Table 4 are very useful (es-

(P| Rov) R (Q | Ro). Show thatR C . The proof relies pecially (C-RR) and (C-Res)) because they permit a kind

heavily on the up-to techniques mentioned above, or varia-Of compositional reasoning, as we shall see in the examples
of this section. They are stated fat, but are valid also for

tions on them. The thesis follows because. = . - ~. Another useful fact is that structural congruened13]

is included in both~ and<.
Completeness To see thatk does not coincide with_ , In the following examples, we show a possible use of our
consideroc = [%z]; then taken a new name, (o,0) F framework for proving security properties of communica-
aw ~ (vw)aw, but the two processes are easily seen to tion protocols. In the same vein of [1, 2], the idea is that of
benotrelated by« (the same example holds fer). The implementing communication on secure (private) channels

reason is that the definition of ~ o istoo demandingon by means of encrypted communication on public channels.
the identity of known names, in that(o,) = kn(o2). We Let us consider the-calculus process:

can relax this condition by modifying Definition 3.2 as we def

do below. We use the following notation: given two tuples P =(ve)(ed|c(z) R)

T = zier andJ = (ji,...,jx) C I, weletz[.J] denote the wherec does not occur irR. ProcessP creates a private
tuple(z;,,... ,x;,). Forinstance, it = (z1,z2,23) and channel: which is used to transmit namk Communica-
J=(1,1,3) thenz[J] = (z1, 21, z3). tion onc is secure because the execution context does not

p . . . know the private channel SinceP consists of two concur-
Formally, each up-to technique can be described as a fuattaver . .
binary relations, and a combination of techniques is siraptpmposition rent SprroceSS_eSa the actual |mpIementat.|on could aII(_)cate
of the corresponding functionals; see [16, 7]. them onto two different computers, whose interconnections

(C-INP) Suppose that for alf such thaﬁ] (n() — d/oin(m)) are fresh andoy # —
it holds: (o1 [Y/j], o= [Y/3]) + P[Cﬂl/x] < Q[¢o2/z]. Then(o1,02) + a(z).P < a(x).Q.

(C-0uT) If (01[Mi/x], o2[M2/]) F P < Q then(o1[M1/z], 02[M2/c]) +aM,. P < aM>.Q.

(C-PaR) Suppose thatn(R) C dom(oy).
If (01,02) FPKL chen(0'170'2) =P ‘ Roi1 K Q ‘ Ro».

(C-Res) Suppose thao1[M1/z], 02[Mo/z]) - P < Q.
If kN n(or) =0 andh N (o) = 0 then(o1,02) F (v F)P < (v 1)Q.

Table 4. Some congruence rules

are not guaranteed to be secure. Communication loas from which, applying (C-RR) one gets:

to be implemented in terms of lower-level, encrypted com-

munication on some public channel, gayThus, proces® (01,02) . | p(@).[z = {d}x.] R[] ~
p@) e ={d} R[] (3)

might be implemented as p{d
p(z).l et z =decy ()i nR). Now, from (1), (3) and transitivity, one gets that

1p € (v ko)
In Ip, namek, is a private encryption key that corresponds
to channek. Note that this implementation does not guar- (01, 02)
antee that! will eventually be passed tB: messagdd}y,
could be captured by some context (attacker) listening at
p. An implementation that solves this problem will be pre-
sented later. (01,00) F 7

p(z).l et z =decg (z)in R ~
ple).fe = {d'}x JR[T/:).

From this fact, (2) and transitivity one gets that

Ip(z)l et 2 =decy (z)inR ~

Example 4.1 (secrecy) pld'}k. |p(x)] et z =decy (z)inR.
Assume thatR keepsz secret, i.e. for everyl andd’,
R[d/2] is may-equivalent taR[d'/z]. Under this hypothe-
sis, we want to prove that the implementation scheme for
P preserves secrecy. To see this, we consider a gedfieric
let @ % (ve)(ed' | e(z). R) and show that:

(6\/,6\/) +]p ~]Q
where I is the obvious implementation @ andV =
fn(Ip,Ig). In order to prove this, ley be any fresh

Finally, the wanted claim follows by applying (CEB)
(with (v k.)) to the equality above.

Example 4.2 (may-semantics preservation)

Here we show that the previous implementation scheme
also preserves may semantics. We relax the hypothesis
that R keeps name secret, and, for the sake of simplic-

ity, assumeR e 32, In ther-calculus, proces® is may-

equivalent to procesl:si. We want to show that the imple-
mentations ofP andbd are still equivalent when they are

name and define; &' ey [{d}r.fy] andoy L' ey [{d }ecfy].
First, rule (C-NpP) allows one to prove thatoy,0q) F

— i ~ - d
pt(a:).l et Ztr? decg, (z) | rI] If " p(?:).[cmtg t{‘fi}’“r]R[/zg put in the low-level model of communications. We manage
(to prove this, one exp O!i\ & fact that for agys.t. to prove this under the assumption that public chapris|
n(¢) — dom(o1) are fresh, if(o, = {M};, thenM = d). both asynchronousindnoisy. Thus, the actual implemen-
This fact and (C-RBR) are used to infer that: def,
tation also includes a buffd8 =!p(x).pz and a noise gen-
(01,00) = D p(z).l et z=decy (z)inR ~ eratorN (v k)p{k}x for p. Both noise and asynchrony
p(z).[x = {d}r.| R[] (1) are necessary to prevent the execution context from detect-

o _) ing traffic onp. LetV = fn(Ip,bd, N, B). To sum up, we
Considering!’ in place ofd, symmetrically one provesthat: \ant to show that

(02,02) p(@).le = {d'}x]RIT/2] =~ (ev.ev) = (Ip | N | B) =~ (bd| N | B) (4)

pld'}r. |p(z)l et z=dec (z)in R (2) We do this in two steps. First, we prove tHat,ey) +

Now, from R[d/z] ~ R[@'/z] and (C-NP), it follows that (bd| N | B) < (Ip | N'| B). This follows from(ey, ey) F
y bd < Ip (thebd-action on the LHS can be simulated via

(01,02) b p(z).Jr = {d}x R[] ~ communication ap and decryption of(d}. in the RHS)

p(z).[Jz = {d’}kn]R[d'/z], and then applying the congruence rule (€rRP

Now, we prove the converse. Lgtbe any fresh name
and lete &' ey [{d}+./y]. The crucial step is showing that:

(0,0) F p(z)l et z=decy (z)inbz <

p(x).5d 5)

To see this, first note that for agysuch thato def (n(¢) —
dom(c)) are fresh and such thét\r # —, we have that:
(o[Wfid), o[@fw]) + | et z = decy, (Co)inbz < bd (in
fact, the only case fmeckn(gc\r) # —is WhepgAcr = {d}s,,
which implies that the LHS is equivalent t@). Then (5)
above follows applying (CNP). Now, using (C-RR) and
(5) above, we have that:

pld}r. | (p(z).) et z = decy, (z)inbz) <
p{d}r. | p(x).bd (6)

Hence, using (C-Rs) and then a standard structural law on
restriction (i.e.(va)(A | B) = ((va)A) | B if a & fn(B)),
we have:

(o,0) F

(6\/,6\/) F _
(v ko) (B{d}e, | p(z). et 2 = decy, (z) inbz) <
(v ke)(P{d}r. | p(x).bd) = (v ko) (P{d}1.) | p(2)-bd.

Now, note that(vk.)(p{d}r,) can be turned into a
particle of noise: (ey,ev) F (vk.)(P{d}x.)
(v k)(p{k}r). The thesis follows applying (CAR) and
the following two properties: noise absorptiéhy , ey) F
N | (vk)(p{k}r) ~ N (aninstance of the structural law
IA| A=!4) and(ev,ev) F B | p(z).bd < B|bd (anin-

~

stance of a general law for asynchronous channels), both of
which are not peculiar to cryptography. Note that equality

(4) doesnothold for barbed equivalence.

Example 4.3 (ensuring message delivery)

In this example, we shall use recursive definitions of agent

constants, of the kindl <= S where A is an agent con-
stant that may appear in the process expresSidthese

can be taken as primitive — the theory extends smoothly

— or can be coded up using replication like in [12]). We
also use the shorthandét z = (i n A el se B'in place
of‘(let z=CinA)+-(let z=int)B. Thistime

we consider a more sophisticated implementation scheme

for processP, and prove that (under the assumption of fair-

ness embodied by bisimilarity) this scheme guarantees tha

a message sent on channé eventually delivered. Again,
we implementc with an asynchronous and noisy public
channelp. This time, however, we need a more complex

source of noise:N d:ef!(y k)!p{k}r. Note the difference
from the previous exampleV can now spawn at any time
a processv k)!p{k} that emits a constant noigé}, atp.

The bufferB for p is still B d:ef!p(a:).ﬁa:. The implementa-
tion of P is the process

def

Ip = (v kc)(!ﬁ{d}k(| R) where
R <= p(z)l et z =decy (z)inbzel se (pz|R).

Componentp{d};. constantly emitg encrypted under key
k. on p, while R repeatedly tries to decrypt a ciphertext
received orp usingk.: when the decryption succeeds, the
cleartext is sent oh. LetV = fn(Ip,bd, B, N); we want

to prove that:

(ev,ev) F (Ip | B|N) ~ (bd| B|N).

In order to see this, defing, &' ev[{d}refy] and oy
ev[{k}xfy] (y fresh). We first show that

def

(01,00) - T & Bld}s.

b | Bk} | B| N

R|B|N =
def

(7)

from which the thesis will follow by first applying (C-£5)
(with (v k.) on the LHS andv k) on the RHS) and then
the structural lawN | (v k)!p{k}, = N. To prove (7),

we consider a relatiorR consisting oftwo pairs: R =
{(o1>T,0,>U), (01>0,00>0)} and show that

R is a weak bisimulation, up to parallel composition, con-
traction and structural congruence. As an example, the

o M p
move ofg; > T originating from transitionR RACHTIN

bd is matched by, > U up to structural congruence and
parallel composition withB EALICN p{k}r | B; due to

lack of space, we omit the other cases. <&

5. Final Remarks and Related Work

We have studied contextual equivalences and relative
proof techniques for a variant of the spi-calculus, an ex-
tension of ther-calculus introduced by Abadi and Gordon
[3]. We have considered a few examples concerning veri-
fication of protocol security, which demonstrate how these
techniques can be used in practice.

Two papers closely related to our work are [7] and [5]. In
[7], Sangiorgi and one of the authors introduce a Its for the
typed w-calculus in which the environment’s input/output
capabilities on names are explicitly described and updated.
Here, we use a similar approach to model the environment’s
knowledge about names and keys.

Abadi and Gordon presents in [5] a bisimulation ap-
roach to cryptographic protocols. When comparing two
grocessesP and @, an OK frame-theory pair(fr,th) is
used to represent the knowledge ©% and Q's environ-
ments. A judgmentfr,th) F M <« N is also introduced
to express that the meaning of messageo P’s environ-
ment is the same as the meaning of messége ()'s envi-
ronment. When matching transitions, this judgment is used
to check indistinguishability of messagés and N being
exchanged betweeR and its environment an@ and its
environment. In our case, the indistinguishabilityldfand

N is guaranteed by requiring that matching transitions have [5] M. Abadi, A.D. Gordon. A Bisimulation Method for

the same environment action and take equivalent environ-
ments to equivalent environments. This results in a major
difference between the work in [5] and ours when consid-
ering output transitions. In our case, given an output tran-
sition, it is sufficient, like in standard bisimilarity, to check

whether one of the output transitions of the other configu-

(6]

ration matches it (these output transitions are finitely many, 7]

at least for finite control processes). In the case of [5], one
must also look for a new frame-theory pair that consistently
extends the old one: this might be not completely trivial,

as shown in [10], a paper that addresses some of the non-[8]

algorithmic aspects of [5]. Another difference is that in [5]
there seems to be little or no compositional reasoning (con-
gruence laws) and no obvious way of tailoring the ‘up to’
techniques to their setting.

The process algebraic approach to cryptographic proto-
cols has also been followed by Schneider [17], that proposes

a CSP-based framework for the analysis and verification of 10]

authentication protocols. This approach, differently from
the one described in this paper, requires explicitly fixing an
attacker and carrying out the analysis with that; changing
the attacker would require a new analysis.

The relevance of may-testing to the analysis of security
properties has been first discussed by Abadi and Gordon in
[3]. May-testing was originally introduced for CCS in [9],
and subsequently studied for thecalculus in [6]; in [8] a
precise relationship is established for may-testing between
the notions of observer and intersection type.

[13]

Acknowledgments We would like to thank the anony-
mous referees for helpful comments. Discussions with Mar-
tin Abadi and Andrew Gordon have helped us to improve
the paper.

[14]

References

[1] M. Abadi. Protection in Programming-Language [15]

Translations.ICALP'98, ProceedinggK.G. Larsen,
S. Skyum, G. Winskel, Eds.),NCS 1443, pp.868-
883, Springer-Verlag, 1998.

[16]
[2] M. Abadi, C. Fournet, G. Gonthier. Secure implemen-
tation of channel abstractionsICS'98 IEEE Com-
puter Society Press, pp. 105-116, 1998.
[17]

[3] M. Abadi, A.D. Gordon. A calculus for cryptographic
protocols: The spi calculugnformation and Compu-
tation, 148(1):1-70, 1999.

[4] M. Abadi, A.D. Gordon. Reasoning about crypto-
graphic protocols in the spi calculuEONCUR'97
ProceedinggA. Mazurkiewicz, J. Winkowsky, Eds.),

LNCS 1243, pp.59-73, Springer-Verlag, 1997.

9]

[11]

[12]

Cryptographic ProtocoldNordic Journal of Comput-
ing, 5(4):267-303, 1998.

M. Boreale, R. De Nicola. Testing equivalence for
mobile processesnformation and Computatiqri 20:
279-303, 1995.

M. Boreale, D. Sangiorgi. Bisimulation in Name-
Passing Calculi without Matchind.ICS'98 IEEE
Computer Society Press, pp. 165-175, 1998.

F. Damiani, M. Dezani-Ciancaglini, P. Giannini. A fil-
ter model for mobile processdglathematical Struc-
tures in Computer Science appear.

R. De Nicola, M.C.B. Hennessy. Testing Equivalence
for ProcessesTheoretical Computers Scienc:83-
133, 1984.

A.S. Elkjaer, M. Hohle, H. Hiittel, K.O. Nielsen. To-
wards Automatic Bisimilarity Checking in the Spi
Calculus,Proc. of DMTCS’'99+CATS'991999.

G. Lowe. Breaking and Fixing the Needham-Schroe-
der Public-Key Protocol Using FDRACAS'96 Pro-
ceedinggT. Margaria, B. Steffen, Eds.)NCS 1055,

pp. 147-166, Springer-Verlag, 1996.

R. Milner. Communication and Concurrendyrentice
Hall International, 1989.

R. Milner. The Polyadicr-calculus: a Tutorial. In
Logic and Algebra of SpecificatiofF.L. Hamer,
W. Brauer, H. Schwichtenberg, Eds.), Springer-
Verlag, 1993.

R. Milner, J. Parrow, D. Walker. A calculus of mobile
processes, (Part | and llinformation and Computa-
tion, 100:1-77, 1992.

R. Milner, D. Sangiorgi. Barbed Bisimulation.
ICALP’92, ProceedinggW. Kuich, Ed.),LNCS 623,
pp.685-695, Springer-Verlag, 1992.

D. Sangiorgi. On the Bisimulation Proof Method.
Mathematical Structures in Computer Scief@&47-
479, 1998.

S. Schneider. Verifying Authentication Protocols in
CSP. IEEE Transactions on Software Engineering
24(8):743-758, 1998.

