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Abstract

Contextual equivalences for cryptographic process cal-
culi can be used to reason about correctness of proto-
cols, but their definition suffers from quantification over
all possible contexts. Here, we focus on two such equiv-
alences, may-testing and barbed equivalence, and investi-
gate tractable proof methods for them. To this aim, we de-
velop an ‘environment-sensitive’ labelled transition system,
where transitions are constrained by the knowledge the en-
vironment has of names and keys. On top of the new tran-
sition system, a trace equivalence and a co-inductive weak
bisimulation equivalence are defined, both of which avoid
quantification over contexts. Our main results are sound-
ness of trace semantics and of weak bisimulation with re-
spect to may-testing and barbed equivalence, respectively.
This leads to more direct proof methods for equivalence
checking. The use of such methods is illustrated via a few
examples concerning implementation of secure channels by
means of encrypted public channels. We also consider a
variant of the labelled transition system that gives com-
pleteness, but is less handy to use.

1. Introduction

Recently, there has been much interest toward using for-
mal methods for analysing cryptographic protocols. Here,
we focus on a specific approach, which consists in mod-
elling them as concurrent processes, described in some pro-
cess calculus (like CSP [11, 17] or the spi-calculus [3, 4], a
cryptographic version of the�-calculus [14]). As an exam-
ple, consider the very simple protocol where two principalsA andB share a private keyk, andA wants to sendB a
datumd encrypted underk, through a public channelc:

Message 1 A! B: fdgk onc.
This informal notation can be expressed in spi-calculus as
follows: A(d) def= cfdgk:0B def= c(x):F (x)P (d) def= (� k)(A(d) j B):

Here,cfdgk: meansoutputalongc of messagefdgk and0
stands fortermination. c(x): is input alongc of a generic
messagex, andF (x) is some expression describing the be-
haviour ofB after the receipt ofx. The whole protocolP (d) is theparallel compositionA(d) jB, with therestric-
tion (� k) indicating that the keyk is only known toA(d)
andB.

The main advantage of this kind of description is that
process calculi have a formal yet simple semantics, usu-
ally based on labelled transition systems (lts), that permits
to make mathematically rigorous such notions as ‘attacker’
and ‘secrecy’. Continuing the example above, a way of as-
serting thatP (d) maintains the secrecy ofd is that of stat-
ing thatP (d) is equivalentto P (d0) for every otherd0. An
appropriate notion of equivalence ismay-testing[9, 6, 3],
whose intuition is precisely that no external context (which
in the present setting can be read as ‘attacker’) may no-
tice any difference when running in parallel withP (d0) orP (d). A similar intuition is supported also by other con-
textual equivalences, likebarbed equivalence[15]. While
rigorous and intuitive, the actual definitions of these equiv-
alences suffer from universal quantification over contexts
(attackers), that makes equivalence checking very hard. It
is then important to devise proof techniques that avoid such
quantification. Results in this direction have been obtained
for traditional process calculi (for example may testing is
proved to coincide with trace equivalence in CCS [9]), but
little has been done for cryptographic calculi.

In this paper, we consider may-testing and barbed equiv-
alences for a variant of the spi-calculus with shared-key
cryptographic primitives [3]. We develop an ‘environment-
sensitive’ labelled transition system, whose transitions are
constrained by the knowledge the environment has of names
and keys. A trace-based equivalence and a purely co-
inductive notion of weak bisimulation, that avoid quantifi-
cation on contexts, are defined over the new lts and it is
shown that they are sound for may-testing and barbed equiv-
alence, respectively. We also consider a variation on the lts
which gives completeness, but is less handy to use. A more
detailed account of our work follows.



Let us consider the nature of the transitions in the (non-
cryptographic)�-calculus. There are three kinds of basic
transitions which correspond to: input of a message, out-
put of a message and internal move. An output transition

like P (� b)ahbi������! P 0 says that processP passes anew
(fresh) nameb ((� �) stands for ‘new’) to the environment
along a channela, and becomesP 0 in doing so. Once
the environment acquires knowledge ofb, the environment
may useb arbitrarily, e.g. it can pass something back to
the process alongb. For example, the two-steps sequenceP (� b)ahbi������! P 0 b c��! P 00 (whereb c means ‘input ofc
alongb’) is possible. At each stage, environment and pro-
cess share the same knowledge of names. Thus, if the pro-
cess is willing to perform some action, the environment will
always be able to react. To determine whether two pro-
cesses are, say, may-testing equivalent it is then sufficient
to establish that they can perform thesamesequences of
(input/output) actions.

The correspondence between environment and process
actions is lost when moving to the spi-calculus, i.e. when
adding encryption and decryption primitives to the�-
calculus. Indeed, two new facts must be taken into account.

(a) When the environment receives a new name encrypted
under a fresh key, it does not acquire the knowledge
of that name immediately. For instance, ifP out-
puts a new nameb encrypted under a fresh keyk
– P (� b;k)ahfbgki���������! P 0 – then nameb is part of
the knowledge ofP 0, but not part of the knowledge
of the environment. Thus, ifP 0 is willing to in-
put something atb (sayP 0 = b(c):P 00), the environ-
ment cannot satisfyP 0’s expectations: a sequence likeP (� b;k)ahfbgki���������! P 0 b c��! P 00 (that is possible in the
traditional-style transition system) should not be con-
sidered as meaningful. For similar reasons, a sequence

like P (� b;k)ahfbgki���������! P 0 a0 b���! P 00, where the envi-
ronment immediately sends the cleartextb back to the
process, should not be considered as meaningful.

(b) Equivalent processes need not exhibit the same se-
quences of transitions. The process that performs
the single output(� k)ahfbgki and terminates, and
the one that performs(� k)ahfcgki and terminates,
are equivalent, because the environment cannot dis-
tinguish betweenfbgk and fcgk. However, the two
messages can be distinguished if the environment gets
the key k. Thus, processes(� k)afbgk: ak:0 and(� k)afcgk: ak:0 are not equivalent.

To cope with (a) above and recover the correspondence be-
tween environment and process actions, we introduce a la-
belled transition system that explicitly describes the knowl-
edge of the environment. This is the main contribution
of our paper. The states of the new lts areconfigurations

� � P , whereP is a process and� is the current environ-
ment’s knowledge, which we model as a mapping from a
set of names (variables) to a set of messages. Intuitively,�
is a database of messages received from the processes, each
indexed with a different name. Transitions represent inter-
actions between the environment andP , and take the form� � P �j�!� �0 � P 0
where� is the action of processP and� is the complemen-
tary environment action. We have three different kinds of
transitions.

1. The process performs an output and the environment
an input. As a consequence, the environment’s knowl-
edge gets updated:� � P (� eb)ahMij������!a(x) �[M=x]� P 0
(here�[M=x] means update of� with the new entry[M=x], for a fresh variablex, andeb is a set of fresh
names). For the transition to take place, namea must
belong to the knowledge of�.

2. The process performs an input and the environment an
output. As discussed previously, messages from the
environment cannot be arbitrary, they must be built, via
encryption and decryption, using only the knowledge
in �. Thus, transitions take the form:� � P aMj������!(�eb)ah�i �[eb=eb]� P 0:
Informally,eb is a set of new names just created by the
environment, and� is an expression describing howM
is built out of� andeb. For example, if�(x1) = fcgk
and�(x2) = k andM = c then� might bedecx2(x1),
indicating that messagec results from decrypting thex1-entry with thex2-entry. Note that� gets updated
also in this case, to record the creation of the new
nameseb. Again, a must belong to the knowledge of�.

3. The process performs an internal move and the envi-
ronment does nothing:� � P �j�!� � � P 0:

To cope with (b) when defining trace and bisimulation
semantics (Section 3) on top of the new lts, the point of
view is taken thatequivalent configurations should exhibit
the same environment actions. As an example, take�
with entries�(x) = a, �(y) = b and �(z) = c and

consider the configurationsC1 def= � � (� k)afbgk:0 andC2 def= � � (� k)afcgk:0. These configurations are both
trace and bisimulation equivalent, because they exhibit only
the transitions:C1 (� k)ahfbgkij��������!a(w) �[fbgk=w]� 0



and C2 (� k)ahfcgkij��������!a(w) �[fcgk=w]� 0
which have the same environment actiona(w). On the other

hand, as discussed above,C3 def= � � (� k)afbgk: ak:0
andC4 def= � � (� k)afcgk: ak:0 should not be regarded
as equivalent. Indeed, after two steps,C3 reaches a state
where the environment is�[fbgk=w][k=v] that cannot be con-
sidered ‘equivalent’ to the environment reachable fromC4,
i.e. �[fcgk=w][k=v]: the decryption of entryw, which is now
possible because keyk is known, yields distinct names (b
andc). A crucial point of our approach is explaining en-
vironment equivalence by relating it to logical equivalence.
Anyway, when defining both trace and bisimulation equiva-
lence, we shall require thatmatching transitions should take
equivalent environments to equivalent environments.

The trace and bisimulation equivalences avoid quantifi-
cation over contexts and only require considering the actual
transitions of the enriched lts. We shall show that the two
equivalences imply their contextual counterparts. The con-
verse implication fails, but we indicate how to recover com-
pleteness, at the cost of introducing a less manageable lts.
To illustrate possible applications of trace and bisimulation
semantics as proof techniques, in Section 4 we give a num-
ber of examples that deal with the problem of implementing
secure, private channels using encrypted public channels, in
the same vein of [2]. We claim that some of the equalities
we establish would be very hard to prove by relying on the
original, contextual definitions. Comparisons with related
work are reported in Section 5.

2. The Language

Syntax (Table 1) In the standard�-calculus, names are
the only transmissible objects. Here, the possibility has
been added to communicatemessagesobtained via shared-
key encryption: messagefMgk represents the ciphertext
obtained by encrypting messageM under keyk using a
shared-key encryption system.Expressionsare obtained ap-
plying encryption and decryption operators to names and
ciphertexts. For example, expressiondec�2(�1) represents
the text obtained by decrypting the ciphertext�1 under the
key�2. Logical formulaegeneralize the usual matching op-
erator of the�-calculus with a predicatename(�), which
tests whether the argument is a plain name or a compound
ciphertext, and with a ‘let’ construct that binds the value
of some expression� to a namez. Processesare built us-
ing a set of operators which include those from the standard�-calculus, plus two new operators: boolean guard and en-
cryption/decryption.

There are a few differences from Abadi and Gordon’s
spi-calculus [3]. First, our encryption/decryption oper-
ator has the formlet z = � in P : it attempts evalu-
ating �; if the evaluation succeeds, the value of� is

bound to z within P , otherwise the whole process is
stuck. This enables one to write process expressions in
a more compact form: for instance, the spi-calculus pro-
cesscaseM of fkgh in (caseN of fzgk in P ) can
be written aslet z = decdech(M)(N) in P in our syntax.
A more relevant difference from the spi-calculus is that in
our syntax tuples are ruled out and that decryption keys can-
not be compound messages: these simplifications permit a
clearer presentation of our approach. Finally, we have in-
cluded non-deterministic choice (+), which is sometimes
useful for specification purposes.

The notions offree namesof a processP , fn(P ), of
bound namesof P , bn(P ), and of�-equivalence arise as
expected;n(P ) is fn(P )[ bn(P ). We shall writefn(P;Q)
in place offn(P )[fn(Q) (similarly for bn(�) andn(�)). We
assume the usual conventions on�-equivalence and bound
names; in particular, we identify�-equivalent terms and as-
sume that bound names are always fresh and distinct.

A substitution� is a finite partial map fromN to M;
the domain and proper co-domain of� are writtendom(�)
andrange(�). The substitution mappingx to M is writ-
ten [M=x], while the substitution mappingxi to Mi, fori 2 I , is written as[Mi=xi]i2I . For x not appearing in�,
we write�[M=x] for the substitution which is the union of�
and[M=x]. For a givenV �fin N , we write�V for the sub-
stitution withdom(�V ) = V that acts as the identity onV .
For any termt, t� denotes the result of simultaneously re-
placing eachx 2 fn(t)\dom(�) with �(x), with renaming
of bound names oft possibly involved to avoid captures.

We shall often abbreviate�:0 as�, where� is an input
or output prefix, and(� a)(� b)P as(� a; b)P . We shall use
the tildee� to denote tuples of objects; e.g.ex is a generic
tuple of names. All our notations are extended to tuples
component-wise. Ifek = (k1; : : : ; kn), thenfMgek stands
for f� � � fMgk1 � � �gkn (similarly for decek(M)).
Standard operational semantics Consider the closure ofP under the set of all substitutions, that is the set of termsPc def= fP� : P 2 P and� is a substitutiong (similarly for�c). While we are primarily interested inP , for techni-
cal reasons that will be apparent later, it is convenient to
define the operational and observational semantics over the
largerPc. Therefore, in the rest of the paper, a ‘process’ is
a term ofPc andP;Q; : : : range overPc. In order to de-
fine the (traditional) operational semantics of the calculus,
we need two evaluation functions: one for expressions, the
other for formulae. Theevaluation functionfor expressions,b� : Z !M[f?g (where? is a distinct symbol), is defined
by induction on� as follows:� ba = a� df�1g�2 =8<: fMgk if b�1 = M and b�2 = k 2 N ,

for someM andk? otherwise



a; b : : : ; h; k; : : : ; x; y; z : : : namesNM ::= a j fMgk messagesM� ::= a j f�1g�2 j dec�2(�1) expressions Z� ::= tt j name(M ) j [M1 = M2] formulae �j let z = � in � j �1 ^ �2 j :�P ::= processes P0 (null)j a(x): P (input prefix)j aM:P (output prefix)j P1 + P2 (non� deterministic choice)j P1 j P2 (parallel composition)j (� a)P (restriction)j !P (replication)j �P (boolean guard)j let z = � in P (encryption=decryption)
Operatorsa(x):�, (� a)� andlet z = � in � arebinders, with the obvious scope, for namesx, a andz, respectively. Inlet z = � in �, we assume thatz 62 n(�).

Table 1. Syntax of the calculus� ddec�2(�1) =8<:M if b�1 = fMgk and b�2 = k 2 N ,
for someM andk? otherwise.

The evaluation of an expression ‘fails’, i.e. returns the value?, whenever an encryption/decryption with something dif-
ferent from a name is attempted, or whenever a decryp-
tion with something different from the encryption key is
attempted. For instance, the evaluation offagfbgc and ofdecb(fagc) is?, whiledecc(fagc) evaluates toa.

The evaluation function for formulae,[[ � ]] : �c !ftt; ffg, is defined by induction on� as expected (evalua-

tion of [[ let z = � in � ]] yields ff if b� = ?, [[ �[b�=z] ]]
otherwise). For any substitution�, we let� j= � mean that[[ �� ]] = tt.

The (traditional)operational semantics(Table 2) is de-
fined by the familiar early-style inference rules of the�-
calculus, plus a rule for encryption/decryption (this presen-
tation is essentially equivalent to the ‘commitment relation’
semantics of Abadi and Gordon in [3]). Processactions(i.e.
labels of the transition system), ranged over by�; �; : : : ,
can be of three forms:� (internal action),aM (input ata
where messageM is received) and(� eb)ahMi (output ata
where messageM containing the bound nameseb is sent).
We writeahMi instead of(� eb)ahMi whenevereb = ;. In-
put and output actions will be calledvisible actions. We
uses to range over sequences of visible actions (traces),
and write=) or �=) to denote the reflexive and transitive
closure of ��! and, inductively, s=) for =) ��! s0==) whens = � � s0. P s=)means thatP s=) P 0 for someP 0.

Remark 2.1 Note that some process terms inP may re-
duce to terms inPc, like in afbgk:P ja(x):xc ��! P jfbgkc.
This explains why it is convenient to considerPc in place ofP. Also note that, similarly to [3], a term likefbgkc, which
tries to use a compound message as a channel, is stuck. Dif-
ferently from [3], a term likeafbgfcgk is stuck in our oper-
ational semantics, asfbgfcgk is not a message (a compoundfcgk occurs in place of a plain name).

May-testing and barbed equivalence We now instanti-
ate the general framework of may-testing [9] to our calcu-
lus. Observersare processes that can perform a distinct
‘success’ action!, to signal that some test has been suc-
cessfully passed by the observed process. For instance, the
observer(� b)ab: b(x): [x = c]! tests for the ability of a
process to receive a new nameb on channela and then to
send namec along thisb. The may-testing preorder can be
defined in terms of the ability of processes to pass tests pro-
posed by observers.

Definition 2.2 (may-testing preorder, [9])
We write P <�Q to mean that, for every observerO, ifP j O !==) thenQ j O !==). 3

The equivalence obtained as the kernel of the preorder<� is denoted by' (' = <� \ <� �1
).

We switch now to barbed equivalence [15]. The intu-
ition is somehow similar to that of testing, but in addition
barbed equivalence conveys a notion of fairness, which de-
rives from the co-inductive part of its definition. In what



(INP) a(x): P aM���! P [M=x] (OUT) aM:P ahMi����! P(SUM) P1 ��! P 01P1 + P2 ��! P 01 (REP) P j !P ��! P 0!P ��! P 0(PAR) P1 ��! P 01P1 j P2 ��! P 01 j P2 (COM) P1 (� eb)ahMi�������! P 01 P2 aM���! P 02P1 j P2 ��! (� eb)(P 01 j P 02)(RES) P ��! P 0(� c)P ��! (� c)P 0 c =2 n(�) (OPEN) P (� eb)ahMi�������! P 0(� c)P (� ebc)ahMi�������! P 0 c 6= a; c 2 n(M)�eb(GUARD) [[ � ]] = tt P ��! P 0�P ��! P 0 (LET) b� 6= ? P [b�=z] ��! P 0
let z = � in P ��! P 0

Table 2. Standard operational semantics (symmetric versio ns of ( SUM), (PAR) and (COM) omitted)

follows, we say that a processP commits toa, and writeP # a, if P aM���! orP (� eb)ahMi�������!, for someM andeb. We
also writeP + a if P =) P 0 andP 0 # a, for someP 0.
Definition 2.3 (barbed equivalence, [15])
A symmetric relation of processesS is abarbed bisimula-
tion if wheneverPSQ then: (1) wheneverP ��! P 0 then
there isQ0 such thatQ =) Q0 andP 0SQ0, and (2) when-
everP # a thenQ + a. Barbed bisimilarity, written ��= , is
the largest barbed bisimulation. Two processesP andQ are
barbed equivalent, writtenP �= Q, if for all R we have thatP jR ��=Q jR. 3

It is worthwhile to notice that neither<� nor �= are
(pre-)congruences, due to the usual problems arising with
input prefix (see [14]).

3. Trace and Bisimulation Semantics

We introduce now the new ‘environment-sensitive’ lts.
Then, we will define trace and bisimulation semantics, and
show that they are sound for may-testing and barbed equiv-
alence, respectively. Finally, we consider a more complex
lts which guarantees completeness.

An environment-sensitive lts We start by making precise
the concept of knowledge of an environment�, that is, all
the information that can be deduced from the content of�.

Definition 3.1 (environment knowledge)
ConsiderW � M. The setKn(W ) is defined as the
smallestS � M such that: (i)W � S, and (ii) when-
ever k 2 S and fMgk 2 S then M 2 S. We de-

fine kn(W ) def= Kn(W ) \ N . Given a substitution�,Kn(�) def= Kn(range(�)) andkn(�) def= kn(range(�)). 3

For instance, kn([fbg(k;l;h)=w; fagk=x; fkgh=y; h=z]) =fa; h; kg. Note thatkn(�) can be easily computed in a fi-
nite number of steps. We are now ready to introduce the
new lts. States areconfigurationsof the form� � P , where� represents the environment, and transitions take the form� � P �j�!� �0 � P 0 and represent atomic interactions be-

tween the process and the environment. The environment
action� can be of three forms, output, input and ‘no action’:� ::= (� eb)ah�i j a(x) j � :
Free names and bound names of� are defined as expected,
in particularbn(a(x)) = fxg. The inference rules for the

transition relation
�j�!� are displayed in Table 3. Thevisi-

bleenvironment actions are input and output;u ranges over
sequences of visible environment actions. In the following,
we write j=) or

�j=) to denote the reflexive and transitive

closure of
�j�!� and, inductively, write

sj==)u for j=) �j�!� s0j==)u0
if s = � � s0 andu = � � u0.
Trace and bisimulation semantics In order to define ob-
servational semantics based on

sj==)u , we have to precisely

define when two environments, represented by substitu-
tions� and�0, are ‘equivalent’. Informally,� and�0 are
equivalent whenever they are logically indistinguishable,
i.e. whenever for each formula� with fn(�) � dom(�),� j= � if and only if �0 j= �. This logical characteriza-
tion is difficult to check, as it contains a quantification on
all formulae. Below, we give a definition, that is easy to
check and still implies logical indistinguishability. First, a
notational shorthand. Given a� = [Mi=xi]i2I andi 2 I , we
denote bycore(�; xi) whatever cannot be further decrypted
in Mi using the knowledge available in�. Formally, we



(E-OUT)
P (� eb)ahMi�������! P 0 a 2 kn(�)� � P (� eb)ahMij������!a(x) �[M=x]� P 0 (E-TAU)

P ��! P 0� � P �j�!� � � P 0
(E-INP)

P aM���! P 0 a 2 kn(�) M = c�� eb def= (n(�)� dom(�))� � P aMj������!(� eb)ah�i �[eb=eb]� P 0
Table 3. Rules for the environment-sensitive lts

definecore(�; xi) as the messageN such that, for someek � kn(�), it holdsMi = fNgek and eitherN is a name,
or N = fN 0gh for someN 0 andh =2 kn(�). For example,
given � = [fag(h;k)=x1; k=x2], then core(�; x1) = fagh.
The rationale of the definition below is that it should not
be possible to distinguish entries of two equivalent environ-
ments by failure of decryption (a), nor by thename(�) pred-
icate (b), nor by the equality predicate (c).

Definition 3.2 (equivalent environments)
Let � = [Mi=xi]i2I and �0 = [M 0i=xi]i2I be two sub-

stitutions with the same domain. For eachi 2 I , letNi = core(�; xi) andN 0i = core(�0; xi). We say that�
and�0 areequivalent, and write� � �0, if for eachi 2 I
the following conditions hold:

(a) for someeki, Mi = fNigeki andM 0i = fN 0igeki ;
(b) if Ni 2 N orN 0i 2 N thenNi = N 0i ;
(c) for eachj 2 I , Ni = Nj iff N 0i = N 0j . 3
As an example,�1 = [b=x1; c=x2; fbgk=x3] and �2 =[b=x1; c=x2; fcgk=x3] are equivalent. On the contrary,�3 =�1[k=x4] and �4 = �3[k=x4] are not equivalent, becausecore(�3; x3) = b 6= c = core(�4; x3), thus condition
(b) is violated. It is easy to prove that if� � �0 thenkn(�) = kn(�0). We are now ready to define a trace-based
preorder.

Definition 3.3 (trace preorder)
Let �1 � �2. Given two processesP andQ, we write(�1; �2) ` P � Q if whenever�1 � P sj==)u �01 � P 0
then1 there ares0, �02 and Q0 such that�2 �Q s0j==)u�02 �Q0 and�01 � �02 : 3
Note that we just require that the environment trace (u)
of matching transitions is the same, and do not require
anything about the process traces (s and s0). As an ex-
ample, define� = [a=x; b=y; c=z]. Then � � (� k)afbgk
and � � (� k)afcgk are�-equivalent. On the contrary,1Recall that bound names ofs andu are assumed to be fresh. A similar
remark applies to� and� in Def. 3.4.

� � (� k)afbgk:ak and� � (� k)afcgk:ak are not related,
because�[fbgk=v; k=w] 6� �[fcgk=v; k=w], for anyv; w. More
examples will be given in Section 4.

Bisimulation over the environment-sensitive lts can be
very easily defined. In what follows� � P b�j=)� �0 � P 0
stands for� � P �j=)� �0 � P 0 if � 6= � , and for� � P j=)�0 � P 0 if � = � . We say that a pair of configurations(�1 � P ; �2 �Q) is compatibleif �1 and�2 are equivalent.
We write(�1; �2) ` P RQ if (�1 � P )R (�2 �Q), for a
binary relationR.

Definition 3.4 (weak bisimulation) LetR be a relation of
compatible pairs of configurations. We say thatR is a
weak bisimulationif whenever (�1; �2) ` P RQ and�1 � P �j�!� �01 � P 0 then there are�0, �02 andQ0 such

that �2 �Q b�0j==)� �02 �Q0 and(�01; �02) ` P 0RQ0; and

the converse on the transitions ofQ andP . Bisimilarity,�,
is the largest weak bisimulation relation. 3
Soundness It is convenient to state the soundness theo-
rems for notions which are more general than<� and�=. For
equivalent�1 and�2, we let(�1; �2) ` P <�Q mean that

for each observerO with fn(O) � dom(�1), if P jO�1 !==)
thenQ j O�2 !==). Clearly,P <�Q holds if and only if(�V ; �V ) ` P <�Q for someV � fn(P;Q). A similar gen-
eralization can also be given for barbed equivalence (just
close under contextsR�1 andR�2 with fn(R) � dom(�1)
and check only for those commitments# a such thata is in
the knowledge of�1 and�2): due to lack of space we omit
the details.

Theorem 3.5 (soundness of trace equivalence)
If (�1; �2) ` P � Q then(�1; �2) ` P <�Q.

PROOF: Assumefn(O) � dom(�1) andP j O�1 !==).
The latter sequence can be ‘unzipped’ as:P s=) P 0,O�1 r!==) with s andr complementary. Under this con-
dition, it can be deduced that�1 � P sj==)u �01 � P 0, for �01
andu s.t. r = du�01 (hereb� denotes the obvious extension



of the expression evaluation function). Then by hypothe-

sis�2 �Q s0j==)u �02 �Q0, with �01 � �02, and moreovers0
is complementary tor0 def= du�02. The crucial point is now
thatO�1 r!==) impliesO�2 r0!===) (this property relies on
the logical indistinguishability of�01 and�02). The thesis
follows from this and fromQ s0==) Q0. 2

The purely co-inductive proof technique of bisimulation
can be enhanced tailoring to the present setting the so called
up-totechniques (similar to those in, e.g., [16, 7]), which of-
ten permit reducing the size of the relation to exhibit. For
example, the ‘up to parallel composition’ technique permits
cutting away common contexts from process derivatives: a
relationR is a weak bisimulation up to parallel composi-
tion if R satisfies the definition of weak bisimulation (Def.
3.4), but with the condition on the derivatives ‘(�01; �02) `P 0RQ0’ replaced by the (weaker) ‘(�01; �02) ` P 0RQ0–up
to parallel composition’. The latter means that there areP0,Q0 andR with fn(R) � dom(�01) such that:P 0 = P0 jR�01
andQ0 = Q0 j R�02 and(�01; �02) ` P0RQ0.

Another technique, ‘up to contraction’, permits to dis-
card environments entries that give redundant information,
while a third one, ‘up to structural congruence’, permits
freely identifying processes up to structural congruence�
[13]. Due to lack of space, we omit formal definitions of
these techniques. It can be proven that each ‘bisimulation
up-to’ defined above, and any combination of them2, is in-
cluded in�. We shall see an example of use of these tech-
nique in Section 4.

Theorem 3.6 (soundness of weak bisimilarity)
If (�1; �2) ` P � Q then(�1; �2) ` P �= Q.

PROOF: Consider the least relationR such that: if(�1; �2) ` P � Q andfn(R) � dom(�1) then(�1; �2) `(P jR�1)R (Q jR�2). Show thatR ��. The proof relies
heavily on the up-to techniques mentioned above, or varia-
tions on them. The thesis follows because�� ��= . 2
Completeness To see that� does not coincide with<� ,
consider� = [a=x]; then taken a new namew, (�; �) `aw ' (� w)aw, but the two processes are easily seen to
benot related by� (the same example holds for�). The
reason is that the definition of�1 � �2 is too demanding on
the identity of known names, in thatkn(�1) = kn(�2). We
can relax this condition by modifying Definition 3.2 as we
do below. We use the following notation: given two tuplesex = xi2I and eJ = (j1; : : : ; jk) � I , we letex[ eJ ] denote the
tuple(xj1 ; : : : ; xjk ). For instance, ifex = (x1; x2; x3) andeJ = (1; 1; 3) thenex[ eJ ] = (x1; x1; x3).2Formally, each up-to technique can be described as a functional over
binary relations, and a combination of techniques is simplya composition
of the corresponding functionals; see [16, 7].

Definition 3.7 (equivalent environments revised)
Let � = [Mi=xi]i2I and�0 = [M 0i=xi]i2I be two substi-

tutions with the same domain. For eachi 2 I , let Ni =core(�; xi) andN 0i = core(�0; xi), and let eN = Ni2I andfN 0 = N 0i2I . We say that� and�0 areequivalent, and write� � �0, if for eachi 2 I the following conditions hold:

(a) for some tupleeJi � I , Mi = fNig eN[ eJi] andM 0i =fN 0igfN 0[ eJi];
(b) Ni 2 N iff N 0i 2 N ;

(c) for eachj 2 I , Ni = Nj iff N 0i = N 0j . 3
As an example, the environments[fbg(k;h)=x1; h=x2] and[fbg(k0;h0)=x1; h0=x2] are equivalent, according to the new

definition. Also the definition of� � P �j�!� �0 � P 0 (Ta-

ble 3) requires an adjustment: we relax the condition that�
has the same subject name as� (that isa) and just require
that the subject of� is an expression� s.t.n(�) � dom(�)
andc�� = a. Based on these two new notions, the defini-
tions of the new trace preorder,�0, and of the new bisim-
ulation equivalence,�0, remain formally unchanged. It is
not difficult to prove that�0 coincides with<� , and, for
image-finite processes (see [12]), that�0 coincides with�=.
We omit the details and state:

Theorem 3.8 Let �1 � �2. Then(�1; �2) ` P �0 Q iff(�1; �2) ` P <� Q. For image-finite processesP andQ,(�1; �2) ` P �0 Q iff (�1; �2) ` P �= Q.

For the rest of the paper, we shall stick to the more man-
ageable relations� and�.

4. Applications

The congruence laws listed in Table 4 are very useful (es-
pecially (C-PAR) and (C-RES)) because they permit a kind
of compositional reasoning, as we shall see in the examples
of this section. They are stated for�, but are valid also for�. Another useful fact is that structural congruence� [13]
is included in both� and�.

In the following examples, we show a possible use of our
framework for proving security properties of communica-
tion protocols. In the same vein of [1, 2], the idea is that of
implementing communication on secure (private) channels
by means of encrypted communication on public channels.
Let us consider the�-calculus process:P def= (� c)(cd j c(z): R)
wherec does not occur inR. ProcessP creates a private
channelc which is used to transmit named. Communica-
tion on c is secure because the execution context does not
know the private channelc. SinceP consists of two concur-
rent subprocesses, the actual implementation could allocate
them onto two different computers, whose interconnections



(C-INP) Suppose that for all� such thatey def= (n(�)� dom(�1)) are fresh andd��1 6= ?
it holds: (�1[ey=ey]; �2[ey=ey]) ` P [d��1=x]� Q[d��2=x]: Then(�1; �2) ` a(x):P � a(x):Q:(C-OUT) If (�1[M1=x]; �2[M2=x]) ` P � Q then(�1[M1=x]; �2[M2=x]) ` aM1:P � aM2:Q:(C-PAR) Suppose thatfn(R) � dom(�1):
If (�1; �2) ` P � Q then(�1; �2) ` P jR�1 � Q j R�2:(C-RES) Suppose that(�1[M1=x]; �2[M2=x]) ` P � Q:
If ek \ n(�1) = ; andeh \ n(�2) = ; then(�1; �2) ` (� ek)P � (� eh)Q:

Table 4. Some congruence rules

are not guaranteed to be secure. Communication onc has
to be implemented in terms of lower-level, encrypted com-
munication on some public channel, sayp. Thus, processP
might be implemented asIP def= (� kc)(pfdgkc j p(x):let z = deckc(x) in R):
In IP , namekc is a private encryption key that corresponds
to channelc. Note that this implementation does not guar-
antee thatd will eventually be passed toR: messagefdgkc
could be captured by some context (attacker) listening atp. An implementation that solves this problem will be pre-
sented later.

Example 4.1 (secrecy)
Assume thatR keepsz secret, i.e. for everyd and d0,R[d=z] is may-equivalent toR[d0=z]. Under this hypothe-

sis, we want to prove that the implementation scheme forP preserves secrecy. To see this, we consider a genericd0,
letQ def= (� c)(cd0 j c(z): R) and show that:(�V ; �V ) ` IP ' IQ
whereIQ is the obvious implementation ofQ andV =fn(IP ; IQ). In order to prove this, lety be any fresh

name and define�1 def= �V [fdgkc=y] and�2 def= �V [fd0gkc=y].
First, rule (C-INP) allows one to prove that(�1; �1) `p(x):let z = deckc(x) in R ' p(x):[x = fdgkc ]R[d=z]
(to prove this, one exploits the fact that for any� s.t.n(�) � dom(�1) are fresh, ifd��1 = fMgkc thenM = d).
This fact and (C-PAR) are used to infer that:(�1; �1) ` pfdgkc j p(x):let z = deckc(x) in R 'pfdgkc j p(x):[x = fdgkc ]R[d=z] (1)

Consideringd0 in place ofd, symmetrically one proves that:(�2; �2) ` pfd0gkc j p(x):[x = fd0gkc ]R[d0=z] 'pfd0gkc j p(x):let z = deckc(x) in R (2)

Now, fromR[d=z] ' R[d0=z] and (C-INP), it follows that(�1; �2) ` p(x):[x = fdgkc ]R[d=z] 'p(x):[x = fd0gkc ]R[d0=z];

from which, applying (C-PAR) one gets:(�1; �2) ` pfdgkc j p(x):[x = fdgkc ]R[d=z] 'pfd0gkc j p(x):[x = fd0gkc ]R[d0=z] (3)

Now, from (1), (3) and transitivity, one gets that(�1; �2) ` pfdgkc j p(x):let z = deckc(x) in R 'pfd0gkc j p(x):[x = fd0gkc ]R[d0=z]:
From this fact, (2) and transitivity one gets that(�1; �2) ` pfdgkc j p(x):let z = deckc(x) in R 'pfd0gkc j p(x):let z = deckc(x) in R:
Finally, the wanted claim follows by applying (C-RES)
(with (� kc)) to the equality above. 3
Example 4.2 (may-semantics preservation)
Here we show that the previous implementation scheme

also preserves may semantics. We relax the hypothesis
thatR keeps namez secret, and, for the sake of simplic-

ity, assumeR def= bz. In the�-calculus, processP is may-
equivalent to processbd. We want to show that the imple-
mentations ofP andbd are still equivalent when they are
put in the low-level model of communications. We manage
to prove this under the assumption that public channelp is
bothasynchronousandnoisy. Thus, the actual implemen-

tation also includes a bufferB def=!p(x):px and a noise gen-

eratorN def=!(� k)pfkgk for p. Both noise and asynchrony
are necessary to prevent the execution context from detect-
ing traffic onp. Let V = fn(IP ; bd;N;B). To sum up, we
want to show that(�V ; �V ) ` (IP jN jB) ' (bd jN jB) (4)

We do this in two steps. First, we prove that(�V ; �V ) `(bd jN jB)� (IP jN jB). This follows from(�V ; �V ) `bd � IP (the bd-action on the LHS can be simulated via
communication atp and decryption offdgkc in the RHS)
and then applying the congruence rule (C-PAR).



Now, we prove the converse. Lety be any fresh name

and let� def= �V [fdgkc=y]. The crucial step is showing that:(�; �) ` p(x):let z = deckc(x) in bz �p(x):bd (5)

To see this, first note that for any� such thatew def= (n(�) �dom(�)) are fresh and such thatc�� 6= ?, we have that:(�[ ew=ew]; �[ ew=ew]) ` let z = deckc(c��) in bz � bd (in
fact, the only case fordeckc(c��) 6= ? is whenc�� = fdgkc ,
which implies that the LHS is equivalent tobd). Then (5)
above follows applying (C-INP). Now, using (C-PAR) and
(5) above, we have that:(�; �) ` pfdgkc j (p(x):let z = deckc(x) in bz)�pfdgkc j p(x):bd (6)

Hence, using (C-RES) and then a standard structural law on
restriction (i.e.(� a)(A j B)� ((� a)A) j B if a 62 fn(B)),
we have:(�V ; �V ) `(� kc)(pfdgkc j p(x):let z = deckc(x) in bz) �(� kc)(pfdgkc j p(x):bd)� (� kc)(pfdgkc) j p(x):bd:
Now, note that (� kc)(pfdgkc) can be turned into a
particle of noise: (�V ; �V ) ` (� kc)(pfdgkc) '(� k)(pfkgk). The thesis follows applying (C-PAR) and
the following two properties: noise absorption(�V ; �V ) `N j (� k)(pfkgk) ' N (an instance of the structural law!A j A� !A) and(�V ; �V ) ` B j p(x):bd � B j bd (an in-
stance of a general law for asynchronous channels), both of
which are not peculiar to cryptography. Note that equality
(4) doesnothold for barbed equivalence. 3
Example 4.3 (ensuring message delivery)
In this example, we shall use recursive definitions of agent
constants, of the kindA (= S whereA is an agent con-
stant that may appear in the process expressionS (these
can be taken as primitive — the theory extends smoothly
— or can be coded up using replication like in [12]). We
also use the shorthand ‘let z = � in A else B’ in place
of ‘(let z = � in A)+:(let z = � in tt)B’. This time
we consider a more sophisticated implementation scheme
for processP , and prove that (under the assumption of fair-
ness embodied by bisimilarity) this scheme guarantees that
a message sent on channelc is eventually delivered. Again,
we implementc with an asynchronous and noisy public
channelp. This time, however, we need a more complex

source of noise:N def=!(� k)!pfkgk. Note the difference
from the previous example:N can now spawn at any time
a process(� k)!pfkgk that emits a constant noisefkgk atp.

The bufferB for p is still B def=!p(x):px. The implementa-
tion ofP is the process

IP def= (� kc)(!pfdgkc j R) whereR(= p(x):let z = deckc(x) in bz else (px j R):
Component!pfdgkc constantly emitsd encrypted under keykc on p, while R repeatedly tries to decrypt a ciphertextx
received onp usingkc: when the decryption succeeds, the
cleartext is sent onb. Let V = fn(IP ; bd; B;N); we want
to prove that:(�V ; �V ) ` (IP jB jN) � (bd jB jN):
In order to see this, define�1 def= �V [fdgkc=y] and�2 def=�V [fkgk=y] (y fresh). We first show that(�1; �2) ` T def= pfdgkc jR j B jN �bd j !pfkgk jB jN def= U (7)

from which the thesis will follow by first applying (C-RES)
(with (� kc) on the LHS and(� k) on the RHS) and then
the structural lawN j (� k)!pfkgk � N . To prove (7),
we consider a relationR consisting oftwo pairs: R =f (�1 � T ; �2 � U) ; (�1 � 0 ; �2 � 0) g and show thatR is a weak bisimulation, up to parallel composition, con-
traction and structural congruence. As an example, the

move of�1 � T originating from transitionR p fdgkc�����!�bd is matched by�2 � U up to structural congruence and

parallel composition withB p fkgk����! pfkgk j B; due to
lack of space, we omit the other cases. 3
5. Final Remarks and Related Work

We have studied contextual equivalences and relative
proof techniques for a variant of the spi-calculus, an ex-
tension of the�-calculus introduced by Abadi and Gordon
[3]. We have considered a few examples concerning veri-
fication of protocol security, which demonstrate how these
techniques can be used in practice.

Two papers closely related to our work are [7] and [5]. In
[7], Sangiorgi and one of the authors introduce a lts for the
typed�-calculus in which the environment’s input/output
capabilities on names are explicitly described and updated.
Here, we use a similar approach to model the environment’s
knowledge about names and keys.

Abadi and Gordon presents in [5] a bisimulation ap-
proach to cryptographic protocols. When comparing two
processesP andQ, an OK frame-theory pair(fr; th) is
used to represent the knowledge ofP ’s andQ’s environ-
ments. A judgment(fr; th) ` M $ N is also introduced
to express that the meaning of messageM to P ’s environ-
ment is the same as the meaning of messageN toQ’s envi-
ronment. When matching transitions, this judgment is used
to check indistinguishability of messagesM andN being
exchanged betweenP and its environment andQ and its
environment. In our case, the indistinguishability ofM and



N is guaranteed by requiring that matching transitions have
the same environment action and take equivalent environ-
ments to equivalent environments. This results in a major
difference between the work in [5] and ours when consid-
ering output transitions. In our case, given an output tran-
sition, it is sufficient, like in standard bisimilarity, to check
whether one of the output transitions of the other configu-
ration matches it (these output transitions are finitely many,
at least for finite control processes). In the case of [5], one
must also look for a new frame-theory pair that consistently
extends the old one: this might be not completely trivial,
as shown in [10], a paper that addresses some of the non-
algorithmic aspects of [5]. Another difference is that in [5]
there seems to be little or no compositional reasoning (con-
gruence laws) and no obvious way of tailoring the ‘up to’
techniques to their setting.

The process algebraic approach to cryptographic proto-
cols has also been followed by Schneider [17], that proposes
a CSP-based framework for the analysis and verification of
authentication protocols. This approach, differently from
the one described in this paper, requires explicitly fixing an
attacker and carrying out the analysis with that; changing
the attacker would require a new analysis.

The relevance of may-testing to the analysis of security
properties has been first discussed by Abadi and Gordon in
[3]. May-testing was originally introduced for CCS in [9],
and subsequently studied for the�-calculus in [6]; in [8] a
precise relationship is established for may-testing between
the notions of observer and intersection type.
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