Bisimulation in Name-Passing Calculi without Matching*

Michele Boreale

Universita “La Sapienza”
Rome, ITALY

Abstract

We study barbed equivalence in name-passing lan-
guages where there is no matching construct for test-
ing equality between names. We concentrate on the
w-calculus with capability types and subtypes, of which
the untyped m-calculus without matching is a special
case. We give a coinductive characterisation of typed
barbed equivalence, and present “bisimulation up—to”
techniques to enhance the resulting coinductive proof
method. We then use these techniques to prove some
process equalities that fail in the ordinary m-calculus.

1 Introduction

The m-calculus is a development of CCS where
names may be communicated. Name-passing permits
the modeling of systems with dynamic linkage recon-
figurations. The 7-calculus is being used for giving the
semantics to higher-order, object-oriented, constraint,
concurrent languages [24, 20, 23], and as a basis for
the design of new programming languages [17, 3]. The
theory of the m-calculus is well-developed. At its heart
are the definitions of behavioural equivalence, which
are needed for proving, for instance, program trans-
formations. Behavioural equivalence means “undistin-
guishability in all contexts”. Typically a notion of suc-
cess (or convergence) is defined, and then two terms
are declared behaviourally equivalent if they have the
same success properties in all contexts. Barbed equiv-

*Copyright 1998 IEEE. Published in the Proceedings of
LICS’98, 21-24 June 1998 in Indianapolis, Indiana. Personal
use of this material is permitted. However, permission to
reprint /republish this material for advertising or promotional
purposes or for creating new collective works for resale or redis-
tribution to servers or lists, or to reuse any copyrighted com-
ponent of this work in other works, must be obtained from the
IEEE. Contact: Manager, Copyrights and Permissions / IEEE
Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway,
NJ 08855-1331, USA. Telephone: + Intl. 732-562-3966.

TAddress: Dipartimento di Scienze dell’Informazione, V.
Salaria 113 - III piano, 00198 Roma Italy. Email:
michele@dsi.uniromal.it

fAddress: INRIA-Sophia Antipolis, B.P. 93 F-06902 Sophia
Antipolis France. Email: davide.sangiorgi@sophia.inria.fr.

Davide Sangiorgi ¥

INRTA
Sophia Antipolis, FRANCE

alence is defined in this way, and is one of the most
studied behavioural equivalences for the m-calculus.

Context-based behavioural equalities like barbed
equivalence suffer from the universal quantification
on contexts, that makes it very hard to prove pro-
cess equalities following the definition, and makes me-
chanical checking impossible. Against this problem,
it is important to find direct characterisations, with-
out quantification on contexts. In the case of barbed
equivalence such a characterisation is given by labeled
bisimilarity (in the early style). Approximately, P and
Q are bisimilar if

P £ P implies Q = Q' (1)
for some Q' bisimilar to P’

and the vice versa, on the possible transitions by Q.
This is a more useful definition for proving process
equalities, because it is coinductive and has no quan-
tification on contexts. The coinduction proof method
can be enhanced with “up to techniques”, such as
bisimulation up to bisimulation, up to restriction, up
to context [11, 19]. Moreover, coinductive characteri-
sations like (1) can be the basis of tools for mechani-
cally checking process equalities [22].

When proving characterisations of barbed equiv-
alence in terms of labeled bisimulations like (1), a
central role is played by the matching construct (or
similar constructs, like mismatching), that is used for
testing equality between names. Indeed, bisimula-
tion (1) implicitly gives the observer the capability of
looking at the names receive by the process, because
labels of matching transitions must be syntactically
the same. This prevents us from proving useful pro-
gram transformations (something similar happens in
imperative languages where it is possible to test equal-
ity between pointers). Another argument against the
matching construct is that matching on names (pre-
cisely, on names that are actually used as channels)
is rarely used in programming. For instance, there
is no matching on names in Pict and Join. Mostly

important, matching is often explicitely forbidden in
typed mw-calculi; for instance in presence of capability
types (sometimes called I/O types) [15]. These types,
similar to Reynold’s reference types for Forsythe [18§],
allow us to distinguish, for instance the capability of
using a name in input from that of using the name
in output. If a name is received with only the input
or only the output capability, it cannot be tested for
equality (which would mean going beyond the allowed
capability). Capabilities are useful for protecting re-
sources; for instance, in a client-server model, they can
be used for preventing clients from using the access
name to the server in input and stealing messages to
the server; similarly they can be used in distributed
programming for expressing security constraints [4].
Capabilities are ubiquitous in the Join and Pict lan-
guages: in Join, only the output capabilities on names
may be communicated; in Pict it is rare or forbidden
that a name is passed with all capabilities. Capabil-
ities give rise to subtyping: the output capability is
contravariant, whereas the input capability is covari-
ant. Subtyping is useful when 7-calculus is used for
object-oriented programming, or for giving the seman-
tics to object-oriented languages.

In this paper, we study barbed equivalence in 7-
calculus languages without matching. We concen-
trate on the w-calculus with capability types, of which
the untyped w-calculus without matching is a special
case. Our main result is a coinductive characterisation
of typed barbed equivalence. We also present sev-
eral “bisimulation up—to” techniques to enhance the
resulting coinductive proof method. We then apply
these techniques to show behavioural equalities be-
tween processes that fail in the ordinary m-calculus.
In the remainder of this introduction, we discuss ca-
pability types, their semantic consequences, and give
and an overview of the technical developments in the
paper.

In the recent proposals of types and subtypes for the
m-calculus, types are assigned to names, and impose a
discipline on what names can carry. A capability type
shows the capability of a name and, recursively, of the
names carried by that name. For instance, a type!

p: T (for appropriate type expression T) says that
name p can be used only in input; moreover, any name
received at p may only be used in output. Thus, pro-
cess p(q).gr. 0 is well-typed under the type assignment

p:T° r:T. (We recall that gr. P is the output at g
of name r with continuation P, and that p(q). P is an
input at p with ¢ placeholder for the name received in

IExpression T°' is the same as (T°)".

the input. Below we shall also use the prefix a(b). P,
that represents the output at a of a private name b;
parallel composition P | @Q; and replication !P, that
represents an infinite number of copies of P in paral-
lel. We write p.P and p. P when the name transmitted
at p is not important, and we often abbreviate a prefix
7.0 as w). To see why the addition of capability types
has semantic consequences, we discuss some examples.

Let
def

P). a(y). (7)) o
Q def b(x). a(y). (.o + x.7)

These processes are not behaviourally equivalent in
the untyped w-calculus. For instance, they are not
early bisimilar because P may terminate after 2 com-
munications with the external observer, where the

b(z
transitions performed by P are P be) az 7, 9

By contrast, @ always terminate after 4 interactions
with the observer. However, if we impose that only
the input capability of names may be communicated
at b, then P and @ cannot be distinguished by any
(well-typed) context. Similarly, processes

P
Q

are not equivalent in the untyped w-calculus. They are
not bisimilar because P may perform two initial out-
puts of private names, whereas () emits twice the same
name. However, P and @) become undistinguishable if
only the output capability on names may be commu-
nicated at a.

Other examples may be found in [15], or in Sec-
tion 7. Examples like (2) and (3) show that the the-
ory of the untyped w-calculus is unsatisfactory in the
calculus with capabilities (and more generally in =-
calculus languages without matching). They also show
that if we look for a typed bisimilarity, to replace the
untyped definition (1), then at least two new factors
have to be taken into account:

(z).a(y). ('y.R|!z.R)
z).azx. (1z.R)

Sl

(3)

def
def a(

(a) Only a (possibly proper) subset of the actions of
processes is observable: processes may be tested
by an external observer only on those actions for
which the observer has the necessary capabilities.
For instance, in Example (2) the observer receives
the input capability on x and therefore cannot re-
send it at a because this would require possessing
the output capability.

(b) The labels of matching transitions of bisimilar
processes may be syntactically different. For in-
stance, in Example (3), P has a sequence of tran-

a(z) a(y) yo
—_— = ==

sitions P that is matched by the

E(z) azr
—

.. v
sequence of transitions Q — — from Q.

To accommodate (a) and (b), we define bisimilar-
ity of processes relative to a typed closure. The closure
records the capabilities on names that an external ob-
server may have acquired, and separates the observer’s
view on the identity of names from their real identity.
Closures give us information on the names available at
some point of the life of the external observer. This is
similar to their use in the semantics of imperative pro-
grams, where closures show the type and value of the
variables that are available at some point of the exe-
cution of a program. A closure [A, o] is composed of:
a type environment A, that collects the names known
by the observer (one may think of these as variables
local to the observer), together with the types that
the observer has on them; a function o from names to
names, that says what is the real value of names in
A. A closure [A, 0] together with a process P form a
configuration, written [A, o]# P.

We define transitions on configurations. They may
be of three forms. The first form is

A, o]#P = (A, o'|#P'.

This represents an interaction between the process and
the observer in which «a is the action performed by the
process and é¢’ the action performed by the observer.
6 is the observer’s point of view on the action he per-
forms (we call this a virtual action); the use of names
in 0 must respect the types assigned to them in A.
For instance, if P % a(c). P, A def TO,y : T, and

o X {z — a,y — b}, then we have
ab
A, ol#P 2 [A, o]#P'{c—b)

The closure grows if the observer creates a new name
and passes it to the process, or if the process performs
an output and the observer an input, like in

ab
[A’ U]#P 22 [A[ZZT]) U[z—>b]]#Pl

z

Here z is a fresh name (that is, it does not occur in
A,o and P), and Ap..7, 0.y indicate the updates
of A and o on z. The fresh name z is introduced
because the observer cannot look at the identity of
the received name; in future actions, the observer will
use z to refer to the name received. Note that two
names are mapped onto the same name b in o[,_y
(aliasing).

The second form of transition for a configuration is

[A, o]#P — [A, o]#P,

and represents an interaction that takes place in the
process, without the participation of the observer.
The third form is

A, o#P = 1A, SI#P

and represents an interaction that takes place in the
observer, without the participation of the process. Ac-
tions p and A are virtual actions of the observer whose
corresponding real actions are the dual of each other
and therefore can be combined into an interaction.
For instance, if A % 4 . T,y : T° % : T, and
i~ {x = b,y — b,z — ¢} then we have

(A, ol#P 5.

In our typed bisimilarity, we only compare config-
urations [A, o] # P and [A, p] # Q with the same
observer A. Suppose [A, o]# P takes a step

[A[u:T]a U[u—rc]] #P

A, ol#P 5 (A, o |#P

We require that a matching transition from [A, p]# Q
be of the form

ﬁ !
(A, p]#Q 7 [A, p]#Q"

The observer’s virtual actions () are the same, but the
real actions (the duals of a and) may be different.
On the other hand, we allow that a transition

[A, o]#P <#:; (A, o'|#P

i)

be matched by a sequence of transitions of the form
o s / / /

In the transition from [A, o] # P, only the observer
moves. By contrast, in the transition from [A, p]# Q,
observer and process cooperate to reach a configura-
tion that is bisimilar with [A’/, ¢']|# P.

Since our bisimulation equates processes with syn-
tactically different transitions, some basic proofs, like
congruence for parallel composition, are rather differ-
ent from the untyped case. In this short version of the
paper most of the proofs are omitted.

2 Typed n-calculus

We present the typed m-calculus, following [15].
The syntax is given in Figure 1. The process con-
structs are those of the monadic w-calculus [13] but
without matching. For simplicity of presentation, we
chose a monadic, rather than polyadic, calculus, we do
not have recursive types, and restrictions are not ex-
plicitly typed (we are not interested in type inference

or type checking in this paper). We use o to range over
substitutions; for any expression E, we write Eo for
the result of applying ¢ to E, with the usual renam-
ing convention to avoid captures. We assign sum and
parallel composition the lowest precedence among the
operators. The labeled transition system is the usual
one (in the early style). As an example, here are the
rules for input, and one of the communication rules:
a(b)

P — P'Q Q'
PlQ — (vb)(P'|Q")
where b ¢ fn(Q). Actions, ranged over by u, can be
of four forms: 7 (interaction), pg (an input at p in
which ¢ is received), g (free output) and p(q) (bound
output). In these actions, p is the subject. Free and
bound names of actions and processes are defined as
usual. Relation = is the reflexive and transitive clo-
sure of — , and == stands for = <~ =—>. The
class of image-finite processes is the largest subset 7
of processes which is derivation closed and s.t. P € 7
implies that, for all u, the set {P’ P £ P}
quotiented by alpha conversion, is finite.

ab
—

p(z). P RN P{z — v}

Y

The rules for subtyping and typing are in Figure 2.
Note that type annotation i (input capability) gives
covariance, o (output capability) gives contravariance,
and b (both capabilities) gives invariance. Type envi-
ronments, ranged over by I' and A, are finite assign-
ments of types to names. A typing judgement I' - P
asserts that process P is well-typed in ', and ' Fa : T
that name a has type 7" in I'. We write I' < A if
whenever A - a : T then I' - a : T. In the rules for
input and output prefixes, the subject of the prefix
is checked to possess the appropriate input or output
capability in the type environment. There is only one
rule, for name typing, which explicitly uses subtyping.
This type system enjoys expected properties of type
systems (like subject reduction and narrowing [15]).

3 Typed barbed equivalence

The behavioural equality we adopt for the -
calculus is barbed equivalence. Barbed equivalence has
been used for a broad variety of calculi; its main ad-
vantage is that it can be uniformly defined on different
calculi, for it requires of the calculus little more than
a notion of reduction — the 7-step of the w-calculus.
Barbed equivalence is defined on top of barbed bisim-
ulation, using a universal quantification on contexts.

We refine the standard notions of barbed bisimu-
lation and equivalence by adding an (external) type
environment and a typed notion of observable. P and
@ barbed equivalent w.r.t. a typing A means, intu-
itively, that the two processes are undistinguishable

under the assumption that the observer’s behaviour
respects the types in A. Comparing typed processes
and a typed observer makes sense only if these types
are compatible; that is, there is a type environment
under which both the processes and the observer are
well-typed. (For simplicity, we assume that the free
names of the processes are all known to the observer.)

Definition 3.1 (compatibility) The relation Kp
of compatible triples is defined as

Kp € {(P,A,Q) : there isT with T - P,Q and

I' <A and fin(P, Q) C domain(A)}.

For any R C Kp and any type environment A,

we define Ra ¥ {(P,Q) : (P,A,Q) € R}. We

write P | a (resp. P | @) if P - P’ for some P’
and input (resp. output) action pu with subject a; and
Pla(resp. Py a)if P =] a (resp. P = | a).

Definition 3.2 (typed barbed equivalence)

Let R C Kp and symmetric. We say that R is a
typed barbed bisimulation if for all P,Q and A it
holds that P R Ao @Q implies, for all names x:

1. if AFx:T°, for someT, and P | x then Q || x;

2. ifAl—ac:Ti,forsome T, and P | T then Q | T,
and

8. if P~ P' then there exists Q' s.t. Q = Q'
and P' Ra Q'

We say that P and) are barbed bisimilar w.r.t. A,
written A>P & Q, if P R o Q for some typed barbed
bisimulation R . We say that P and @) are barbed
equivalent w.r.t. A, written A>P ~ Q, if A>P|R =
Q| R, for all R with A+ R.

In the untyped case, barbed equivalence coincide
with the ordinary (early) labeled bisimilarity (on
image-finite processes). One of the main goals of this
paper is to find a similar purely-coinductive charac-
terisation of barbed equivalence in the typed case.

4 A labelled transition system

Our characterization of barbed equivalence relies on
a new labelled transition system (LTS) for the typed
m-calculus (Figure 3). The states of this LTS record
some information on the types that the observer has on
names. As explained in the Introduction, these types
impose a constrain on the actions of processes that an
observer may test (by contrast, in a untyped setting,
the observer is allowed unconstrained usage of the
names). We also need to keep track that the observer

Names Processes
a,bye, ... p,q, ... Ty, 2 P == 0 nil process
| P|P parallel
| (va)P restriction
Types | p(z).P input
T == T! capability type | pv.P output
| e unit | P replication
| P+ P summation
Capability tags

I == i input only
| o output only
| b either

Figure 1: The syntax of the typed m-calculus

Iefbi} S<T TIefbo} T<S

Subtyping rules:

S<S ST < T ST <T° S<e
Process typing:
TP '@ re-r~p F,ac:Sbl—P
rkP|lQ r+H'P rk+ (vz)P
Fl—p:Si z:SEHP L'tp:s° 'rw:S r-~p
r+o I'F p(z).P I+ pw.P

I(p)=T rtwv:S S<T
L'kp:T 'rov:T

Name typing:

Figure 2: Subtyping and typing rules for the m-calculus

may receive a name several times, with different types.
For instance, let @ def (v b)(b.c'b.c" (x)) and suppose

that the observer knows ¢, ¢’ and ¢ with types T°',

TiI and Tbo (for some T'), respectively.) can com-
municate its private name b to the observer twice with
types T° and T"'. The observer cannot send b at ¢, be-
cause the type of ¢’ requires that the observer has the

b-capability on b. However, if the observer had a type

TbI on ¢, then a process (v b)(¢b.c”(x)) could send b
at ¢ to the observer, and then the observer could send
b back at ¢’. These two examples show that receiv-
ing a copy of a name with the input capability and
another copy with the output capability is different
from (it is more constraining than) receiving just one
copy with both capabilities. To allow observers with
multiple types on names, our LTS records the type
information for the observer in typed closures. These
are pairs [A, p], where A is a type environment and
p a substitution. Names in A represent occurrences
which are mapped to “real” names by p. A configu-
ration is a closure [A, o] together with a m-calculus
process P, written [A, o]# P. The set of all configu-
rations is denoted by C and is ranged over by H, K. In
a configuration, the observer is represented by the clo-
sure; observer and process must be compatible, that
is, there is a type environment under which both are
well-typed.

Definition 4.1 (typed closures) A typed closure
is a pair [A, p] with domain(A) = domain(p). We
write [A, p] Fa: T if, for some x, we have A+ x: T
and xp = a. Moreover, given two typed closures
[T,o] and [A, p], we write [T',0] < [A, p] if whenever
[AyplFa:T then[TyolFa:T.

For a typing A, we write e for the substitution
that is the identity on domain(A), and is undefined
elsewhere. Note that T' < A iff [T, er] < [A, ea].

Definition 4.2 (configurations) We shall write
[A, o] # P, and call it a configuration, if [A, o] is
a typed closure, fn(P) C codomain(o) and there is a
T st. THPand [Ler] <[A, 0]

Note that the existence of the type environment I’
guarantees that o preserves types of names in A, up
to subtyping. We define now transitions on configura-
tions. A transitions

A, o]#P — [A, o'|#P'

represents an internal activity of the system composed
of the process in parallel with the observer, in which

the process contributes a and the observer contributes
6c’. We call a the process action, 6’ the observer’s
real action, and 6 the observer’s wvirtual action (the
process action and the observer’s real action are the
dual of each other—they must give rise to an interac-
tion). The grammars for a and ¢ are:

a = - | p
5= = | a@) | = | T0) | ().
Symbol “—” occurs when the process (in the case of

a) or the observer (in the case of §) is idle—it does
not contribute to the transition. Action {(u,\) rep-
resents an internal move of the observer, in which a
subcomponent contributes 1 and another subcompo-
nent contributes \; for this interaction to happen, the
real actions corresponding to i and A must be the dual
of each other. The new LTS is defined by the rules in
Figure 3 . In F-0ut, the observer sends a global name
zo at xo, and the process receives it; for this to hap-
pen, A must posses the appropriate capabilities on x
and z (condition A F Zz). In rule F-Inp, the observer
receives a name b with a type 7T'; a new entry is added
to the closure with value b and type T. The last two
rules model internal transitions of the observer. Rule
F-Com says that if two distinct name = and y in the
closure are aliases for the same name (xo = yo) and
have dual capabilities, then an internal transition can
take place, where the sender transmits a name zo with
type T, and the recipient can use it with a type S (by
the compatibility condition on configurations, T must
be a subtype of S). A new entry is added to the closure
to record the substitution of names that this commu-
nication has produced in the observer. Rule B-Com is
similar, but here the communicated name is a private
(hence new) name w.

The notations used for process transitions are ex-
tended to configuration transitions. For instance,

H = H' stands for H(—j—’)*H',

H :% H' stands for H = éi’ = H'.

and

~

H = H

stands for H :::> H if o« # 7 and for H — H'
otherwise. For any two binary relations —; and —g,
we write A —1 ¢ —s B to mean that either A —;
—o9 Bor A —y —1 B hold.

5 Bisimulation with capabilities
In the untyped labeled bisimulation, two processes
are bisimilar if they can perform the same actions, and

In these rules, we assume that w and v are fresh names.

P = P

(Tau)

PP so=a zo=b AFT:

(F-Out) =5 (B-Out)
[A, o]#P = (A, o] # P
PiP' ro =a Al—x:Ti
(F-Inp) - (B-Inp)
[Aa 0]#P xz;) [A[w:T]a O’[w—’vb]]#Pl

(A, o]#P — [A, o]#P

aw

PP zo0=a Arz:T°

[Ay 0—]#P5(7_‘) [A[w:T]a O-[w—tw]]#Pl

w

a(w)
—

P P zo=a Al—z:Ti

(A, o]#P)

a(w)

[A[w:T]a O—[w—tw]] # P’

w)

z#y zo=yo Araz:T° Arz:T Al—y:Si

(F-Com)

A ol#P o

Tz, y(w))

[A[w:S]y O—[w—tzo']] #P

r#y zo=yo Akrz:T° Al—y:Si

(B-Com) —
(B A#P))

[A[‘UJ:T,’U:S]’ Olw—w, v—tw]] #P

Figure 3: Operational semantics of configurations

recursively so on their derivatives. If the two processes
perform the same actions, then also the real actions
of an observer interacting with them are the same.
Therefore also the virtual actions of the observer are
the same, because in the untyped case virtual and real
actions coincide. We take bisimulation to mean that
in matching transitions the observer’s virtual actions
should be the same. We define bisimulation on config-
urations accordingly. As a result, in matching tran-
sitions of our typed bisimulation, the observer’s real
actions, and hence also the process actions, may be
different.

It only makes sense to compare configurations that
have the same observer and a common typing.

Definition 5.1 (compatibility on configurations)
The relation Ko of compatible configurations is so de-

fined
Ke € {([a, o]#P, [A, p|#Q) : there is T with
' P,Q and [T, er] < [A, 0] and [T, er] < [A, p] }

Given § C K¢ and fixed any A, o and p, we write
0, A, plbPSQIf (A, o] #P) S (A, o #Q).

Definition 5.2 (typed bisimulation) Let S C K¢
and symmetric. We say that S is a typed bisimulation

if HSK implies (bound names of actions are assumed
to be fresh):

1. if H %’ H', with a # —, then there are 3 and
K' such that

~

B
K = K' and H'SK';

2. if H <H:—A’> H' then there is K' s.t. either:

(a) K <u:_;> K' and H'SK', or

a B
(b) for some a and B, K == o 7 K' and
H'SK'

We say that H and K are typed bisimilar, written
H ~ K, if there is a bisimulation S with HSK.

The labels «, 3 (those on top of arrows) are not
used in the bisimulation; we give them to help reading
the clauses. In Clause (2), the step from H represents
an internal move of the observer. K may match this
move in the same way (clause 2.a); but it may also
match it via some interactions between the observer
and the process (clause 2.b). The latter may happen
when the closure in H has an aliasing that the closure
in K does not have. See Examples 2 and 3 in Section 7
for uses of this clause.

5.1 Techniques of “bisimulation up—to”

Labeled bisimulation represents a powerful proof
technique for proving typed process equalities. To
make it even more powerful we enhance it with up—to
techniques [11, 19]. Given a functional F : P(K¢) —
P(Ke), a typed bisimulation up to F is defined like a
typed bisimulation (Definition 5.2), but with the con-
dition “H'S K" replaced by the (weaker) “H'F(S)K".
Different functionals correspond to different up-to
techniques. A technique up to F is sound if any bisim-
ulation up to F is included in =~. Up—to techniques are
useful to reduce both the size and the number of the
configurations to consider when proving bisimilarities,
as one is allowed to match the transitions of the two
processes being compared up to some transformations
(represented by F) on their derivatives. For lack of
space, below we introduce some useful sound up—to
techniques only informally. These three techniques al-
low us to discard entries of closures, to narrow types,
and to discard restrictions in processes:

e in bisimulation up to weakening, given a deriva-
tive of the form [Ap.7), 0[p—a] # P (where A
and ¢ are not defined on z), we can discard z : T
and [z — a] if name a does not appear in P.

e in bisimulation up to narrowing, given a deriva-
tive [A, o]# P we can replace [A, o] with [A', o]
if [A", '] < [A,0].

e in bisimulation up to restriction, given a a pair
of derivatives ([A, o] # (vc)P, [A, p] #
@), we can open the restriction on ¢ in one
of the configurations and continue with a pair
([A[z:U]: U[z—w]] # P, [A[z:U]: p[z—>b]] #Q)7

for some b and U.

Furthermore, any combination of the listed up—to
techniques (formally, any composition of the corre-
sponding functionals) is still a sound up—to technique.

We can also adapt up—to techniques known for un-
typed bisimulations; for instance, bisimulation up to
bisimulation, bisimulation up to expansion, bisimu-
lation up to parallel composition. In our typed set-
ting, bisimulation up to parallel composition allows
us to cut parallel components of the form Ro and
Rp in pairs of derivatives of the form ([A, o] #
P | Ro, [A, p]#@Q | Rp), provided that A + R.

6 Soundness and completeness w.r.t.
barbed equivalence

In this section we prove that our labeled bisimu-
lation coincides with barbed equivalence on the class
of image-finite processes. For establishing soundness,

we have to prove that the labeled bisimulation is pre-
served by parallel composition. This is, technically,
quite different and harder than the proofs of analo-
gous results for ordinary bisimilarities.

Lemma 6.1 If [T, er] < [A,0] and A+ R then T +
Ro.

Lemma 6.2 (parallel composition)
If o, A, pl>P = Q and A + R then
[c, A, p]>P|Ro =~ Q| Rp.

PRrOOF: By showing that relation (this relation is con-
tained in K¢ by Lemma 6.1)

{(1a. ol#P| R, [A,) #Q| Fp) :
0, A, p]>P ~ Qand A+ R}

is a bisimulation up to bisimulation, restriction and
narrowing. In this proof, the up—to techniques are
very important; it would be very hard to give the full
bisimulation relations otherwise. O

We abbreviate [ea, A, ea]>P = Qto ADP =~ Q.

Corollary 6.3 (soundness) If A> P ~ @ then AD>
P~Q.

The proof of completeness, that follows the proof
schema for untyped bisimulations, relies on: (i) a
characterization of ~ on configurations whose pro-
cess is image-finite given as the intersection of all
the inductive approximants ~™, n > 0, and (ii)
the existence of certain test processes R(n,A), such

that A> P | R(n,A)o = Q| R(n,A)p ifnplies
0, A > P " Q.

Theorem 6.4 (completeness) Let P and Q be
image-finite processes. If A> P ~ @ then ADP =~ Q.

7 Examples

Example 1 Consider the processes
def -

P ¥ 5).aly).(y |) and Q ¥ b(2).a(y).(y.F + T.y).
As explained in the Introduction, these processes are
not bisimilar in the ordinary 7-calculus. It is simple to
prove that they are bisimilar w.r.t. a type environment

-0
Ast. Aba:T" and AFb:TO
def

Example 2 Let P ¥ 0. R and Q ¥ #b.R, with R &
la(z). bz |!b(2).@z. These processes are not bisimilar in
the untyped m-calculus because their initial transitions
have different labels, namely ¢a and ¢b. We can prove
they are bisimilar w.r.t. any type environment A in

0
which A F ¢ : S' does not hold for any S. For the
proof, we can use relation S composed of the two pairs

([A, eal#P, [A, ea]l#Q) and

([Aper)s €ap—al # R, [Apir)s €ajp—y] # R)

for T s.t. A(c) = T!. This relation is a typed bisimu-
lation up to parallel composition and narrowing.

In this proof, clause 2.b of the definition of typed
bisimulation may be needed. We briefly explain why.

Suppose that, for some S, A k- ¢ : 5°" and A(a) =
A(b) = S'. The action

ca def
[A, ea]l#P c?:) ([A[U:So]’ EA[U—’G]] # 1) =H
is matched by

b def -,
[Az EA]#Q c(v_)) ([A[v:so]7 EA[vﬁb]]#R) = K.
This creates in the closure of H an aliasing between
two names a and v (both mapped onto a) with com-
plementary capabilities (v has type S©, and a type
S"). We can now use rule B-Com to infer

for some H'. To match this transition, K uses clause
(2.b) and makes two communications with the link
b(z).@z. in R, thus:

S — Ei !
K o(w) K.
Note that (H', K') belongs to S up to narrowing.

Example 3 Suppose, for some T', A - a : 7O and A
b:T'. Due to clause 2 of the definition of bisimulation,
processes ab and a(z) are not A-bisimilar. In fact,
[A[z:TO]= €A[z—p)] # 0 has a transition of the form
[A[Z:TO]a GA[z—rb]] # 0 <E;_b)z> H
for some z and H, that [A[E:To], €A[o—az)) # 0 can-
not match. Indeed, the two processes could not be
distinguished without the help of clause 2.

Example 4: replication theorem. Capability
types have been introduced in [15]. There, the main
application of types to behavioural equivalence of pro-
cesses is a stronger version of Milner’s replication the-
orem. The assertion of the theorem reads thus: a pas-
sive resource R that is shared among a certain number
of clients can be made private to each of them. In our
notation, it becomes:

Theorem 7.1 Suppose that
(a) T,a:S°F Py | Py, and
(b) T,a:S%z2:SF R, for some 2.

Then T > (va)(la(z).R | P | P) R~
(va)(la(z).R|P1) | (va)(la(z).R| Py).

We can give a much simpler proof than that in [15]
using our proof techniques based on the typed labeled
bisimulation. We take the relation consisting of the
pairs

(I, ety ol # 'a(z).R| Pl = al,
[T, er/]# 'a(z).R| !d'(2).R{a — d'} | P)

for 7' ¥ Ta: S%a : S° and T s.t. T F P, and
T.a: S%z: S+ R. This relation is a typed bisimu-
lation up to bisimulation, parallel composition, weak-
ening and narrowing. The thesis then follows from
simple algebraic manipulations (congruence laws for
restrictions) and taking P to be Py | (Py{a’ — a}).

The stronger replication theorem can be used, for
instance, to prove an optimisation in Milner’s encod-
ing of call-by-value A-calculus into the 7-calculus.

Example 5: functions. This example uses commu-
nication of tuples and of integers, which are straight-
forward to accommodate in the theory developed in
the previous sections. We wish to prove the correct-
ness of implementations of functions as mobile pro-

cesses. Consider a service P %'l f(m,s). 3(fact(m))
that, when passed a natural m and a return address
s at channel f, gives back the factorial of m at s.
Consider now an implementation of the same function
where factorial is computed in the usual recursive way,
relying on the operations of subtraction and multipli-
cation:

Q dZEf!f(m,s). if m =0 then 35(1) else

(vs')(f(m—1,s").¢'(v).5(m *v))

We expect that P and @ are behaviourally equiva-
lent, but they are not in the untyped case, as @ can
do an action (vs')f(m — 1,s') after f(m,s), whereas
P cannot. Intuitively, an untyped observer can inter-
fere with the recursive call of Q at f, thus disrupt-
ing the underlying protocol of). However, we can
prove that P and (Q are equivalent, provided the en-

vironment obeys the typing discipline for f given by

def b\° . .
A = {f:(N,N°) }. Note, in particular, that the

environment cannot use f for input.

Theorem 7.2 A> P = Q.

ProoF: By showing that the relation consisting of
the single pair ([A, eal # P, [A, ea]l # Q) is a
typed bisimulation up to expansion and parallel com-
position. O

Other examples of applications of our typed bisim-
ulation can be found in [8], where we use them in
m-calculus interpretations of Abadi and Cardelli’s cal-
culi of objects to prove properties of objects involving
typing and subtyping.

8 Related work and extensions

Pierce and Sangiorgi [16] study behavioural equiv-
alences in a m-calculus with polymorphic types. Only
barbed equivalence is studied (no labeled bisimula-
tion), but the distinction is made between typing of
the observer and typing of the processes, which has
inspired our work. Hennessy and Riely [4] study a lan-
guage with an explicit notion of locations and prim-
itives on them; they have richer set of capabilities,
and a richer subtyping relation than us. Only con-
textual forms of behavioural equivalences are given.
Characterisations of barbed equivalence on calculi for
mobile processes include Boreale, Laneve and Four-
net [2], Amadio [1] and Sangiorgi [21]. However, in
these bisimilarities, matching transitions of processes
have the same labels (either because there is match-
ing on all names, or because all names communicated
are private), therefore the problems of aliasing dealt
with in this paper do not appear. Other studies of
barbed equivalence, or similar contextual-based no-
tions of bisimulation, for typed mobile processes in-
clude [6, 7, 25]. Merro and Sangiorgi [10] study barbed
equivalence and congruence in an asynchronous 7-
calculus where only the output capability of names
may be exported. The direct characterisations given
are simpler than ours, but they only work under both
the hypothesis of asynchrony and of output-capability-
only. Other works related to ours are [9],[12] and [14].
In [9], Larsen and Xinxin introduce action transduc-
ers, where interaction between processes and the sur-
rounding contexts is made explicit: this is somehow
reminiscent of our LTS for typed bisimulation. Mason
and Talcott in [14] and Montanari and Pistore in [12]
discuss reasons for requiring or excluding, respectively,
forms of matching in the considered process calculi.

As for untyped bisimulations, closing our labeled
bisimilarity under name substitutions gives us a char-
acterisation of typed barbed congruence (the congru-
ence induced barbed bisimilarity—with quantification
over all contexts).

The results in this paper are also useful in untyped
calculi without matching. This corresponds to having

only the b-capability. In this case, all typing informa-
tion in configurations can be ignored. For example,
using the labeled bisimilarity we can give a simple
proof that in the untyped m-calculus without matching
ab. ('b] b | 1] lc) is equivalent to @c. (0| !b] '] lc).

The results are also useful in typed calculi with the
matching construct. We may for instance add a test-
ing capability on names or, as suggested in [15], allow
that a name passed with both input and output capa-
bility may be tested for equality. If two configurations
[A, o] # P and [A, p]# Q are bisimilar and a name
x appears in A with the testing capabilities, then we
should require that the values o(z) and p(z) be the
same (the observer can look at them). However, the
types in A still impose constraints on the actions the
observer can offer.

Our results can be extended to other calculi with
first-order types and subtyping on them. For instance,
calculi with variants, records, products, and recursive
types (with recursive types, some additional care is
needed when proving completeness for barbed equiv-
alence, depending on the definition of type equality).
We do not know how to extend these results to calculi
with higher-order types; higher-order types introduce
new problems—see [16].

It should be possible to extend our results to asyn-
chronous calculi [5] but clause (2) of the definition of
labeled bisimulation might become more complex.

Acknowledgments

We are grateful to Benjamin Pierce for several dis-
cussions on typed calculi for mobile processes. The
anonymous referees provided useful suggestions and
comments.

References

[1] R. Amadio. An asynchronous model of locality,
failure, and process mobility. In Proc. Coordina-
tion’97, volume 1282 of Lecture Notes in Com-
puter Science. Springer Verlag, 1997.

[2] M. Boreale, C. Fournet, and C. Laneve. Bisimu-
lations for the Join Calculus. To appear in Proc.
PROCOMET’98.

[3] C.Fournet and G. Gonthier The Reflexive Chem-
ical Abstract Machine and the Join calculus. In
Proc. 23th POPL. ACM Press, 1996.

[4] M. Hennessy and J. Riely. A typed language
for distributed mobile processes. In Proc. 25th
POPL. ACM Press, 1997.

[5]

[6]

7]

8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

K. Honda and M. Tokoro. On asynchronous com-
munication semantics. ECOOP 91 1991 , vol-
ume 612 of Lecture Notes in Computer Science,
Springer Verlag, 1992.

K. Honda and N. Yoshida. On reduction-based
process semantics. Theoretical Computer Science,
152(2):437-486, 1995.

N. Kobayashi, B.C. Pierce, and D.N. Turner. Lin-
earity and the pi-calculus. In Proc. 23th POPL.
ACM Press, 1996.

J. Kleist and D. Sangiorgi. Imperative objects
and mobile processes. To appear in Proc. PRO-
COMET’98.

K. Larsen and L. Xinxin. Compositionality
through an Operational Semantics of Contexts.
Journal of Logic and Computation 1(6):761-793,
1991.

M. Merro and D. Sangiorgi. The asynchronous
m-calculus, revisited. To appear in Proc. of
ICALP98.

R. Milner. Communication and Concurrency.
Prentice Hall, 1989.

U. Montanari and M. Pistore. Checking Bisimi-
larity for Finitary mw-calculus. In Proc. of CON-
CUR’95, 1995.

R. Milner, J. Parrow, and D. Walker. A calculus
of mobile processes, (Parts I and IT). Information
and Computation, 100:1-77, 1992.

I. Mason and C. Talcott. A Semantically Sound
Actor Translation. In Proc. of ICALP’97, 1997.

B. Pierce and D. Sangiorgi. Typing and subtyp-
ing for mobile processes. Journal of Mathemat-
ical Structures in Computer Science, 6(5):409—
454, 1996. An extended abstract in Proc. LICS
93, IEEE Computer Society Press.

B. Pierce and D. Sangiorgi. Behavioral equiv-
alence in the polymorphic pi-calculus. In 2/th
POPL. ACM Press, 1997.

B. C. Pierce and D. N. Turner. Pict: A program-
ming language based on the pi-calculus. Technical
Report CSCI 476, Indiana University, 1997. To
appear in Proof, Language and Interaction: Es-
says in Honour of Robin Milner, Gordon Plotkin,
Colin Stirling, and Mads Tofte, editors, MIT
Press.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

J. C. Reynolds. Preliminary design of the pro-
gramming language Forsythe. Tech. rept. CMU-
(CS-88-159. Carnegie Mellon University., 1988.

D. Sangiorgi. On the proof method for bisim-
ulation. Proc. MFCS’95, volume 969 of Lec-
ture Notes in Computer Science, pages 479-488.
Springer Verlag, 1995.

D. Sangiorgi. An interpretation of typed objects
into typed mw-calculus. Technical Report RR-~3000,
INRTIA-Sophia Antipolis, 1996. To appear in In-
formation and Computation.

D. Sangiorgi. The name discipline of recep-
tiveness. In 24/th ICALP, volume 1256 of Lec-
ture Notes in Computer Science. Springer Verlag,
1997.

B. Victor and F. Moller. The Mobility Workbench
— a tool for the w-calculus. Proc. CAV’94, vol-
ume 818 of Lecture Notes in Computer Science,
Springer-Verlag, 1994.

B. Victor and J. Parrow. Constraints as pro-
cesses. In Proc. CONCUR ’96, volume 1119 of
Lecture Notes in Computer Science. Springer Ver-
lag, 1996.

D. Walker. Objects in the w-calculus. Information
and Computation, 116(2):253-271, 1995.

N. Yoshida. Graph types for monadic mobile pro-
cesses. In Proc. FST & TCS, volume 1180 of Lec-
ture Notes in Computer Science, pages 371-386.
Springer Verlag, 1996.

