
Bisimulation in Name-Passing Calculi without Matching�Michele Boreale y Davide Sangiorgi zUniversità �La Sapienza� INRIARome, ITALY Sophia Antipolis, FRANCEAbstractWe study barbed equivalence in name-passing lan-guages where there is no matching construct for test-ing equality between names. We concentrate on the�-calculus with capability types and subtypes, of whichthe untyped �-calculus without matching is a specialcase. We give a coinductive characterisation of typedbarbed equivalence, and present �bisimulation up�to�techniques to enhance the resulting coinductive proofmethod. We then use these techniques to prove someprocess equalities that fail in the ordinary �-calculus.1 IntroductionThe �-calculus is a development of CCS wherenames may be communicated. Name-passing permitsthe modeling of systems with dynamic linkage recon-�gurations. The �-calculus is being used for giving thesemantics to higher-order, object-oriented, constraint,concurrent languages [24, 20, 23], and as a basis forthe design of new programming languages [17, 3]. Thetheory of the �-calculus is well-developed. At its heartare the de�nitions of behavioural equivalence, whichare needed for proving, for instance, program trans-formations. Behavioural equivalence means �undistin-guishability in all contexts�. Typically a notion of suc-cess (or convergence) is de�ned, and then two termsare declared behaviourally equivalent if they have thesame success properties in all contexts. Barbed equiv-�Copyright 1998 IEEE. Published in the Proceedings ofLICS'98, 21-24 June 1998 in Indianapolis, Indiana. Personaluse of this material is permitted. However, permission toreprint/republish this material for advertising or promotionalpurposes or for creating new collective works for resale or redis-tribution to servers or lists, or to reuse any copyrighted com-ponent of this work in other works, must be obtained from theIEEE. Contact: Manager, Copyrights and Permissions / IEEEService Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway,NJ 08855-1331, USA. Telephone: + Intl. 732-562-3966.yAddress: Dipartimento di Scienze dell'Informazione, V.Salaria 113 - III piano, 00198 Roma Italy. Email:michele@dsi.uniroma1.itzAddress: INRIA-Sophia Antipolis, B.P. 93 F-06902 SophiaAntipolis France. Email: davide.sangiorgi@sophia.inria.fr.

alence is de�ned in this way, and is one of the moststudied behavioural equivalences for the �-calculus.Context-based behavioural equalities like barbedequivalence su�er from the universal quanti�cationon contexts, that makes it very hard to prove pro-cess equalities following the de�nition, and makes me-chanical checking impossible. Against this problem,it is important to �nd direct characterisations, with-out quanti�cation on contexts. In the case of barbedequivalence such a characterisation is given by labeledbisimilarity (in the early style). Approximately, P andQ are bisimilar ifP ��! P 0 implies Q �=) Q0,for some Q0 bisimilar to P 0 (1)and the vice versa, on the possible transitions by Q.This is a more useful de�nition for proving processequalities, because it is coinductive and has no quan-ti�cation on contexts. The coinduction proof methodcan be enhanced with �up to techniques�, such asbisimulation up to bisimulation, up to restriction, upto context [11, 19]. Moreover, coinductive characteri-sations like (1) can be the basis of tools for mechani-cally checking process equalities [22].When proving characterisations of barbed equiv-alence in terms of labeled bisimulations like (1), acentral role is played by the matching construct (orsimilar constructs, like mismatching), that is used fortesting equality between names. Indeed, bisimula-tion (1) implicitly gives the observer the capability oflooking at the names receive by the process, becauselabels of matching transitions must be syntacticallythe same. This prevents us from proving useful pro-gram transformations (something similar happens inimperative languages where it is possible to test equal-ity between pointers). Another argument against thematching construct is that matching on names (pre-cisely, on names that are actually used as channels)is rarely used in programming. For instance, thereis no matching on names in Pict and Join. Mostly

important, matching is often explicitely forbidden intyped �-calculi; for instance in presence of capabilitytypes (sometimes called I/O types) [15]. These types,similar to Reynold's reference types for Forsythe [18],allow us to distinguish, for instance the capability ofusing a name in input from that of using the namein output. If a name is received with only the inputor only the output capability, it cannot be tested forequality (which would mean going beyond the allowedcapability). Capabilities are useful for protecting re-sources; for instance, in a client-server model, they canbe used for preventing clients from using the accessname to the server in input and stealing messages tothe server; similarly they can be used in distributedprogramming for expressing security constraints [4].Capabilities are ubiquitous in the Join and Pict lan-guages: in Join, only the output capabilities on namesmay be communicated; in Pict it is rare or forbiddenthat a name is passed with all capabilities. Capabil-ities give rise to subtyping : the output capability iscontravariant, whereas the input capability is covari-ant. Subtyping is useful when �-calculus is used forobject-oriented programming, or for giving the seman-tics to object-oriented languages.In this paper, we study barbed equivalence in �-calculus languages without matching. We concen-trate on the �-calculus with capability types, of whichthe untyped �-calculus without matching is a specialcase. Our main result is a coinductive characterisationof typed barbed equivalence. We also present sev-eral �bisimulation up�to� techniques to enhance theresulting coinductive proof method. We then applythese techniques to show behavioural equalities be-tween processes that fail in the ordinary �-calculus.In the remainder of this introduction, we discuss ca-pability types, their semantic consequences, and giveand an overview of the technical developments in thepaper.In the recent proposals of types and subtypes for the�-calculus, types are assigned to names, and impose adiscipline on what names can carry. A capability typeshows the capability of a name and, recursively, of thenames carried by that name. For instance, a type1p : Toi (for appropriate type expression T) says thatname p can be used only in input; moreover, any namereceived at p may only be used in output. Thus, pro-cess p(q): qr:0 is well-typed under the type assignmentp : Toi; r : T . (We recall that qr: P is the output at qof name r with continuation P , and that p(q): P is aninput at p with q placeholder for the name received in1Expression Toi is the same as (To)i.

the input. Below we shall also use the pre�x a(b): P ,that represents the output at a of a private name b;parallel composition P j Q; and replication !P , thatrepresents an in�nite number of copies of P in paral-lel. We write p:P and p: P when the name transmittedat p is not important, and we often abbreviate a pre�x�:0 as �). To see why the addition of capability typeshas semantic consequences, we discuss some examples.Let P def= b(x): a(y): (y j x)Q def= b(x): a(y): (y:x+ x:y) (2)These processes are not behaviourally equivalent inthe untyped �-calculus. For instance, they are notearly bisimilar because P may terminate after 2 com-munications with the external observer, where thetransitions performed by P are P b(x)�! ax�! ��! 0.By contrast, Q always terminate after 4 interactionswith the observer. However, if we impose that onlythe input capability of names may be communicatedat b, then P and Q cannot be distinguished by any(well-typed) context. Similarly, processesP def= a(x): a(y): (!y:R j !x:R)Q def= a(x): ax: (!x:R) (3)are not equivalent in the untyped �-calculus. They arenot bisimilar because P may perform two initial out-puts of private names, whereas Q emits twice the samename. However, P and Q become undistinguishable ifonly the output capability on names may be commu-nicated at a.Other examples may be found in [15], or in Sec-tion 7. Examples like (2) and (3) show that the the-ory of the untyped �-calculus is unsatisfactory in thecalculus with capabilities (and more generally in �-calculus languages without matching). They also showthat if we look for a typed bisimilarity, to replace theuntyped de�nition (1), then at least two new factorshave to be taken into account:(a) Only a (possibly proper) subset of the actions ofprocesses is observable: processes may be testedby an external observer only on those actions forwhich the observer has the necessary capabilities.For instance, in Example (2) the observer receivesthe input capability on x and therefore cannot re-send it at a because this would require possessingthe output capability.(b) The labels of matching transitions of bisimilarprocesses may be syntactically di�erent. For in-stance, in Example (3), P has a sequence of tran-

sitions P a(x)�! a(y)�! yv�! that is matched by thesequence of transitions Q a(x)�! ax�! xv�! from Q.To accommodate (a) and (b), we de�ne bisimilar-ity of processes relative to a typed closure. The closurerecords the capabilities on names that an external ob-server may have acquired, and separates the observer'sview on the identity of names from their real identity.Closures give us information on the names available atsome point of the life of the external observer. This issimilar to their use in the semantics of imperative pro-grams, where closures show the type and value of thevariables that are available at some point of the exe-cution of a program. A closure [�; �] is composed of:a type environment �, that collects the names knownby the observer (one may think of these as variableslocal to the observer), together with the types thatthe observer has on them; a function � from names tonames, that says what is the real value of names in�. A closure [�; �] together with a process P form acon�guration, written [�, �]#P .We de�ne transitions on con�gurations. They maybe of three forms. The �rst form is[�, �]#P ��!� [�0, �0]#P 0:This represents an interaction between the process andthe observer in which � is the action performed by theprocess and ��0 the action performed by the observer.� is the observer's point of view on the action he per-forms (we call this a virtual action); the use of namesin � must respect the types assigned to them in �.For instance, if P def= a(c): P 0, � def= x : To; y : T , and� def= fx! a; y ! bg, then we have[�, �]#P ab�!xy [�, �]#P 0fc! bgThe closure grows if the observer creates a new nameand passes it to the process, or if the process performsan output and the observer an input, like in[�, �]#P ab�!xz [�[z:T], �[z!b]]#P 0Here z is a fresh name (that is, it does not occur in�; � and P), and �[z:T], �[z!b] indicate the updatesof � and � on z. The fresh name z is introducedbecause the observer cannot look at the identity ofthe received name; in future actions, the observer willuse z to refer to the name received. Note that twonames are mapped onto the same name b in �[z!b](aliasing).The second form of transition for a con�guration is[�, �]#P ��!� [�, �]#P 0;

and represents an interaction that takes place in theprocess, without the participation of the observer.The third form is[�, �]#P ��!h�; �i [�0, �0]#Pand represents an interaction that takes place in theobserver, without the participation of the process. Ac-tions � and � are virtual actions of the observer whosecorresponding real actions are the dual of each otherand therefore can be combined into an interaction.For instance, if � def= x : T i; y : To; z : T , and� def= fx! b; y ! b; z ! cg then we have[�, �]#P ��!hyz; x(u)i [�[u:T], �[u!c]]#P:In our typed bisimilarity, we only compare con�g-urations [�, �] # P and [�, �] # Q with the sameobserver �. Suppose [�, �]#P takes a step[�, �]#P ��!� [�0, �0]#P 0:We require that a matching transition from [�, �]#Qbe of the form[�, �]#Q �=)� [�, �]#Q0:The observer's virtual actions (�) are the same, but thereal actions (the duals of � and �) may be di�erent.On the other hand, we allow that a transition[�, �]#P ��!h�; �i [�0, �0]#Pbe matched by a sequence of transitions of the form[�, �]#Q �=)� �=)� [�0, �0]#Q0 :In the transition from [�, �] # P , only the observermoves. By contrast, in the transition from [�, �]#Q,observer and process cooperate to reach a con�gura-tion that is bisimilar with [�0, �0]#P .Since our bisimulation equates processes with syn-tactically di�erent transitions, some basic proofs, likecongruence for parallel composition, are rather di�er-ent from the untyped case. In this short version of thepaper most of the proofs are omitted.2 Typed �-calculusWe present the typed �-calculus, following [15].The syntax is given in Figure 1. The process con-structs are those of the monadic �-calculus [13] butwithout matching. For simplicity of presentation, wechose a monadic, rather than polyadic, calculus, we donot have recursive types, and restrictions are not ex-plicitly typed (we are not interested in type inference

or type checking in this paper). We use � to range oversubstitutions; for any expression E, we write E� forthe result of applying � to E, with the usual renam-ing convention to avoid captures. We assign sum andparallel composition the lowest precedence among theoperators. The labeled transition system is the usualone (in the early style). As an example, here are therules for input, and one of the communication rules:p(x): P pv�! Pfx! vg P a(b)�! P 0 Q ab�! Q0P j Q ��! (� b)(P 0 j Q0)where b =2 fn(Q). Actions, ranged over by �, can beof four forms: � (interaction), pq (an input at p inwhich q is received), pq (free output) and p(q) (boundoutput). In these actions, p is the subject. Free andbound names of actions and processes are de�ned asusual. Relation =) is the re�exive and transitive clo-sure of ��! , and �=) stands for =) ��! =). Theclass of image-�nite processes is the largest subset Iof processes which is derivation closed and s.t. P 2 Iimplies that, for all �, the set fP 0 : P �=) P 0g,quotiented by alpha conversion, is �nite.The rules for subtyping and typing are in Figure 2.Note that type annotation i (input capability) givescovariance, o (output capability) gives contravariance,and b (both capabilities) gives invariance. Type envi-ronments, ranged over by � and �, are �nite assign-ments of types to names. A typing judgement � ` Passerts that process P is well-typed in �, and � ` a : Tthat name a has type T in �. We write � � � ifwhenever � ` a : T then � ` a : T . In the rules forinput and output pre�xes, the subject of the pre�xis checked to possess the appropriate input or outputcapability in the type environment. There is only onerule, for name typing, which explicitly uses subtyping.This type system enjoys expected properties of typesystems (like subject reduction and narrowing [15]).3 Typed barbed equivalenceThe behavioural equality we adopt for the �-calculus is barbed equivalence. Barbed equivalence hasbeen used for a broad variety of calculi; its main ad-vantage is that it can be uniformly de�ned on di�erentcalculi, for it requires of the calculus little more thana notion of reduction � the � -step of the �-calculus.Barbed equivalence is de�ned on top of barbed bisim-ulation, using a universal quanti�cation on contexts.We re�ne the standard notions of barbed bisimu-lation and equivalence by adding an (external) typeenvironment and a typed notion of observable. P andQ barbed equivalent w.r.t. a typing � means, intu-itively, that the two processes are undistinguishable

under the assumption that the observer's behaviourrespects the types in �. Comparing typed processesand a typed observer makes sense only if these typesare compatible; that is, there is a type environmentunder which both the processes and the observer arewell-typed. (For simplicity, we assume that the freenames of the processes are all known to the observer.)De�nition 3.1 (compatibility) The relation KPof compatible triples is de�ned asKP def= f(P;�; Q) : there is � with � ` P;Q and� � � and fn(P;Q) � domain(�)g:For any R � KP and any type environment �,we de�ne R� def= f(P;Q) : (P;�; Q) 2 Rg. Wewrite P # a (resp. P # a) if P ��! P 0 for some P 0and input (resp. output) action � with subject a; andP + a (resp. P + a) if P =)# a (resp. P =)# a).De�nition 3.2 (typed barbed equivalence)Let R � KP and symmetric. We say that R is atyped barbed bisimulation if for all P;Q and � itholds that P R� Q implies, for all names x:1. if � ` x : To, for some T , and P # x then Q + x;2. if � ` x : T i, for some T , and P # x then Q + x,and3. if P ��! P 0 then there exists Q0 s.t. Q =) Q0and P 0 R� Q0We say that P and Q are barbed bisimilar w.r.t. �,written ��P �� Q, if P R� Q for some typed barbedbisimulation R . We say that P and Q are barbedequivalent w.r.t. �, written ��P ' Q, if ��P jR ��Q jR, for all R with � ` R.In the untyped case, barbed equivalence coincidewith the ordinary (early) labeled bisimilarity (onimage-�nite processes). One of the main goals of thispaper is to �nd a similar purely-coinductive charac-terisation of barbed equivalence in the typed case.4 A labelled transition systemOur characterization of barbed equivalence relies ona new labelled transition system (LTS) for the typed�-calculus (Figure 3). The states of this LTS recordsome information on the types that the observer has onnames. As explained in the Introduction, these typesimpose a constrain on the actions of processes that anobserver may test (by contrast, in a untyped setting,the observer is allowed unconstrained usage of thenames). We also need to keep track that the observer

Namesa; b; c; : : : p; q; r; : : : x; y; zTypesT ::= T I capability typej � unitCapability tagsI ::= i input onlyj o output onlyj b either
ProcessesP ::= 0 nil processj P j P parallelj (� x)P restrictionj p(x): P inputj pv: P outputj !P replicationj P + P summation

Figure 1: The syntax of the typed �-calculus

Subtyping rules: S � S I 2 fb; ig S � TSI � T i I 2 fb; og T � SSI � To S � �Process typing: � ` P � ` Q� ` P jQ � ` P� ` !P �; x : Sb ` P� ` (� x)P� ` 0 � ` p : Si �; x : S ` P� ` p(x): P � ` p : So � ` w : S � ` P� ` pw:PName typing: �(p) = T� ` p : T � ` v : S S � T� ` v : TFigure 2: Subtyping and typing rules for the �-calculus

may receive a name several times, with di�erent types.For instance, let Q def= (� b)(cb:c0b:c00(x)) and supposethat the observer knows c, c0 and c00 with types Toi,T ii and Tbo (for some T), respectively. Q can com-municate its private name b to the observer twice withtypes To and T i. The observer cannot send b at c00, be-cause the type of c00 requires that the observer has theb-capability on b. However, if the observer had a typeTbi on c, then a process (� b)(cb:c00(x)) could send bat c to the observer, and then the observer could sendb back at c00. These two examples show that receiv-ing a copy of a name with the input capability andanother copy with the output capability is di�erentfrom (it is more constraining than) receiving just onecopy with both capabilities. To allow observers withmultiple types on names, our LTS records the typeinformation for the observer in typed closures. Theseare pairs [�; �], where � is a type environment and� a substitution. Names in � represent occurrenceswhich are mapped to �real� names by �. A con�gu-ration is a closure [�; �] together with a �-calculusprocess P , written [�, �]#P . The set of all con�gu-rations is denoted by C and is ranged over by H;K. Ina con�guration, the observer is represented by the clo-sure; observer and process must be compatible, thatis, there is a type environment under which both arewell-typed.De�nition 4.1 (typed closures) A typed closureis a pair [�; �] with domain(�) = domain(�). Wewrite [�; �] ` a : T if, for some x, we have � ` x : Tand x� = a. Moreover, given two typed closures[�; �] and [�; �], we write [�; �] � [�; �] if whenever[�; �] ` a : T then [�; �] ` a : T .For a typing �, we write �� for the substitutionthat is the identity on domain(�), and is unde�nedelsewhere. Note that � � � i� [�; ��] � [�; ��].De�nition 4.2 (con�gurations) We shall write[�, �] # P , and call it a con�guration, if [�; �] isa typed closure, fn(P) � codomain(�) and there is a� s.t. � ` P and [�; ��] � [�; �].Note that the existence of the type environment �guarantees that � preserves types of names in �, upto subtyping. We de�ne now transitions on con�gura-tions. A transitions[�, �]#P ��!� [�0, �0]#P 0represents an internal activity of the system composedof the process in parallel with the observer, in which

the process contributes � and the observer contributes��0. We call � the process action, ��0 the observer'sreal action, and � the observer's virtual action (theprocess action and the observer's real action are thedual of each other�they must give rise to an interac-tion). The grammars for � and � are:� := � j �� := � j x(v) j xz j x(v) j h�; �i :Symbol ��� occurs when the process (in the case of�) or the observer (in the case of �) is idle�it doesnot contribute to the transition. Action h�; �i rep-resents an internal move of the observer, in which asubcomponent contributes � and another subcompo-nent contributes �; for this interaction to happen, thereal actions corresponding to � and � must be the dualof each other. The new LTS is de�ned by the rules inFigure 3 . In F-Out, the observer sends a global namez� at x�, and the process receives it; for this to hap-pen, � must posses the appropriate capabilities on xand z (condition � ` xz). In rule F-Inp, the observerreceives a name b with a type T ; a new entry is addedto the closure with value b and type T . The last tworules model internal transitions of the observer. RuleF-Com says that if two distinct name x and y in theclosure are aliases for the same name (x� = y�) andhave dual capabilities, then an internal transition cantake place, where the sender transmits a name z� withtype T , and the recipient can use it with a type S (bythe compatibility condition on con�gurations, T mustbe a subtype of S). A new entry is added to the closureto record the substitution of names that this commu-nication has produced in the observer. Rule B-Com issimilar, but here the communicated name is a private(hence new) name w.The notations used for process transitions are ex-tended to con�guration transitions. For instance,H =) H 0 stands for H(��!�)�H 0,H �=)� H 0 stands for H =) ��!� =) H 0.and H b�=)� H 0stands for H �=)� H 0 if � 6= � and for H =) H 0otherwise. For any two binary relations !1 and !2,we write A !1 � !2 B to mean that either A !1!2 B or A !2 !1 B hold.5 Bisimulation with capabilitiesIn the untyped labeled bisimulation, two processesare bisimilar if they can perform the same actions, and

In these rules, we assume that w and v are fresh names.(Tau) P ��! P 0[�, �]#P ��!� [�, �]#P 0(F-Out) P ab�! P 0 x� = a z� = b � ` xz[�, �]#P ab�!xz [�, �]#P 0 (B-Out) P aw�! P 0 x� = a � ` x : To[�, �]#P aw�!x(w) [�[w:T], �[w!w]]#P 0(F-Inp) P ab�! P 0 x� = a � ` x : T i[�, �]#P ab�!x(w) [�[w:T], �[w!b]]#P 0 (B-Inp) P a(w)�! P 0 x� = a � ` x : T i[�, �]#P a(w)�!x(w) [�[w:T], �[w!w]]#P 0(F-Com) x 6= y x� = y� � ` x : To � ` z : T � ` y : Si[�, �]#P ��!hxz; y(w)i [�[w:S], �[w!z�]]#P(B-Com) x 6= y x� = y� � ` x : To � ` y : Si[�, �]#P ��!hx(w); y(v)i [�[w:T;v:S], �[w!w; v!w]]#PFigure 3: Operational semantics of con�gurationsrecursively so on their derivatives. If the two processesperform the same actions, then also the real actionsof an observer interacting with them are the same.Therefore also the virtual actions of the observer arethe same, because in the untyped case virtual and realactions coincide. We take bisimulation to mean thatin matching transitions the observer's virtual actionsshould be the same. We de�ne bisimulation on con�g-urations accordingly. As a result, in matching tran-sitions of our typed bisimulation, the observer's realactions, and hence also the process actions, may bedi�erent.It only makes sense to compare con�gurations thathave the same observer and a common typing.De�nition 5.1 (compatibility on con�gurations)The relation KC of compatible con�gurations is so de-�nedKC def= f([�, �]#P; [�, �]#Q) : there is � with� ` P;Q and [�; ��] � [�; �] and [�; ��] � [�; �] g.Given S � KC and �xed any �, � and �, we write[� , �, �]� P S Q if ([�, �]#P) S ([�, �]#Q).De�nition 5.2 (typed bisimulation) Let S � KCand symmetric. We say that S is a typed bisimulation

if HSK implies (bound names of actions are assumedto be fresh):1. if H ��!� H 0, with � 6= �, then there are � andK 0 such thatK b�=)� K 0 and H 0SK 0;2. if H ��!h�; �i H 0 then there is K 0 s.t. either:(a) K �=)h�; �i K 0 and H 0SK 0, or(b) for some � and �, K �=)� � �=)� K 0 andH 0SK 0We say that H and K are typed bisimilar, writtenH � K, if there is a bisimulation S with HSK.The labels �; � (those on top of arrows) are notused in the bisimulation; we give them to help readingthe clauses. In Clause (2), the step from H representsan internal move of the observer. K may match thismove in the same way (clause 2.a); but it may alsomatch it via some interactions between the observerand the process (clause 2.b). The latter may happenwhen the closure in H has an aliasing that the closureinK does not have. See Examples 2 and 3 in Section 7for uses of this clause.

5.1 Techniques of �bisimulation up�to�Labeled bisimulation represents a powerful prooftechnique for proving typed process equalities. Tomake it even more powerful we enhance it with up�totechniques [11, 19]. Given a functional F : P(KC) �!P(KC), a typed bisimulation up to F is de�ned like atyped bisimulation (De�nition 5.2), but with the con-dition �H 0SK 0� replaced by the (weaker) �H 0F(S)K 0�.Di�erent functionals correspond to di�erent up�totechniques. A technique up to F is sound if any bisim-ulation up to F is included in �. Up�to techniques areuseful to reduce both the size and the number of thecon�gurations to consider when proving bisimilarities,as one is allowed to match the transitions of the twoprocesses being compared up to some transformations(represented by F) on their derivatives. For lack ofspace, below we introduce some useful sound up�totechniques only informally. These three techniques al-low us to discard entries of closures, to narrow types,and to discard restrictions in processes:� in bisimulation up to weakening, given a deriva-tive of the form [�[x:T], �[x!a]] # P (where �and � are not de�ned on x), we can discard x : Tand [x! a] if name a does not appear in P .� in bisimulation up to narrowing, given a deriva-tive [�, �]#P we can replace [�; �] with [�0; �0]if [�0; �0] � [�; �].� in bisimulation up to restriction, given a a pairof derivatives ([�, �] # (� c)P; [�, �] #Q), we can open the restriction on c in oneof the con�gurations and continue with a pair([�[x:U], �[x!c]] # P; [�[x:U], �[x!b]] # Q),for some b and U .Furthermore, any combination of the listed up�totechniques (formally, any composition of the corre-sponding functionals) is still a sound up�to technique.We can also adapt up�to techniques known for un-typed bisimulations; for instance, bisimulation up tobisimulation, bisimulation up to expansion, bisimu-lation up to parallel composition. In our typed set-ting, bisimulation up to parallel composition allowsus to cut parallel components of the form R� andR� in pairs of derivatives of the form ([�, �] #P j R�; [�, �]#Q jR�), provided that � ` R.6 Soundness and completeness w.r.t.barbed equivalenceIn this section we prove that our labeled bisimu-lation coincides with barbed equivalence on the classof image-�nite processes. For establishing soundness,

we have to prove that the labeled bisimulation is pre-served by parallel composition. This is, technically,quite di�erent and harder than the proofs of analo-gous results for ordinary bisimilarities.Lemma 6.1 If [�; ��] � [�; �] and � ` R then � `R�.Lemma 6.2 (parallel composition)If [� , �, �] � P � Q and � ` R then[� , �, �]� P j R� � Q jR�.Proof: By showing that relation (this relation is con-tained in KC by Lemma 6.1)f([�, �]#P j R�; [�, �]#Q jR�) :[�, �, �]� P � Q and � ` Rgis a bisimulation up to bisimulation, restriction andnarrowing. In this proof, the up�to techniques arevery important; it would be very hard to give the fullbisimulation relations otherwise. 2We abbreviate [��, �, ��]�P � Q to��P � Q.Corollary 6.3 (soundness) If ��P � Q then ��P ' Q.The proof of completeness, that follows the proofschema for untyped bisimulations, relies on: (i) acharacterization of � on con�gurations whose pro-cess is image-�nite given as the intersection of allthe inductive approximants �n, n � 0, and (ii)the existence of certain test processes R(n;�), suchthat � � P j R(n;�)� �� Q j R(n;�)� implies[� , �, �]� P �n Q.Theorem 6.4 (completeness) Let P and Q beimage-�nite processes. If ��P ' Q then ��P � Q.7 ExamplesExample 1 Consider the processesP def= b(x):a(y):(y j x) and Q def= b(x):a(y):(y:x + x:y).As explained in the Introduction, these processes arenot bisimilar in the ordinary �-calculus. It is simple toprove that they are bisimilar w.r.t. a type environment� s.t. � ` a : T io and � ` b : Toi.Example 2 Let P def= ca:R and Q def= cb:R, with R def=!a(z): bz j !b(z): az. These processes are not bisimilar inthe untyped �-calculus because their initial transitionshave di�erent labels, namely ca and cb. We can provethey are bisimilar w.r.t. any type environment � in

which � ` c : Sii does not hold for any S. For theproof, we can use relation S composed of the two pairs([�, ��]#P; [�, ��]#Q) and([�[v:T], ��[v!a]]#R; [�[v:T], ��[v!b]]#R)for T s.t. �(c) = T I . This relation is a typed bisimu-lation up to parallel composition and narrowing.In this proof, clause 2.b of the de�nition of typedbisimulation may be needed. We brie�y explain why.Suppose that, for some S, � ` c : Soi and �(a) =�(b) = Si. The action[�, ��]#P ca�!c(v) ([�[v:So], ��[v!a]]#R) def= His matched by[�, ��]#Q cb�!c(v) ([�[v:So], ��[v!b]]#R) def= K:This creates in the closure of H an aliasing betweentwo names a and v (both mapped onto a) with com-plementary capabilities (v has type So, and a typeSi). We can now use rule B-Com to inferH ��!hv(z); a(w)i H 0;for some H 0. To match this transition, K uses clause(2.b) and makes two communications with the link!b(z): az: in R, thus:K b(z)�!v(z) az�!a(w) K 0:Note that (H 0;K 0) belongs to S up to narrowing.Example 3 Suppose, for some T ,� ` a : Toi and� `b : T i. Due to clause 2 of the de�nition of bisimulation,processes ab and a(x) are not �-bisimilar. In fact,[�[x:To], ��[x!b]]#0 has a transition of the form[�[x:To], ��[x!b]]#0 ��!hxz; bzi Hfor some z and H , that [�[x:To], ��[x!x]] # 0 can-not match. Indeed, the two processes could not bedistinguished without the help of clause 2.Example 4: replication theorem. Capabilitytypes have been introduced in [15]. There, the mainapplication of types to behavioural equivalence of pro-cesses is a stronger version of Milner's replication the-orem. The assertion of the theorem reads thus: a pas-sive resource R that is shared among a certain numberof clients can be made private to each of them. In ournotation, it becomes:

Theorem 7.1 Suppose that(a) �;a : So ` P1 j P2, and(b) �;a : So;z : S ` R, for some z.Then � � (� a)(! a(z):R j P1 j P2) �(� a)(! a(z):R j P1) j (� a)(! a(z):R j P2).We can give a much simpler proof than that in [15]using our proof techniques based on the typed labeledbisimulation. We take the relation consisting of thepairs([�0, ��[a!a;a0!a]]# ! a(z):R j Pfa0 ! ag;[�0, ��0]# ! a(z):R j ! a0(z):Rfa! a0g j P)for �0 def= �;a : So;a0 : So, and � s.t. � ` P , and�;a : So;z : S ` R. This relation is a typed bisimu-lation up to bisimulation, parallel composition, weak-ening and narrowing. The thesis then follows fromsimple algebraic manipulations (congruence laws forrestrictions) and taking P to be P1 j (P2fa0 ! ag).The stronger replication theorem can be used, forinstance, to prove an optimisation in Milner's encod-ing of call-by-value �-calculus into the �-calculus.Example 5: functions. This example uses commu-nication of tuples and of integers, which are straight-forward to accommodate in the theory developed inthe previous sections. We wish to prove the correct-ness of implementations of functions as mobile pro-cesses. Consider a service P def= ! f(m; s): shfact(m)ithat, when passed a natural m and a return addresss at channel f , gives back the factorial of m at s.Consider now an implementation of the same functionwhere factorial is computed in the usual recursive way,relying on the operations of subtraction and multipli-cation:Q def= ! f(m; s): if m = 0 then sh1i else(� s0)(fhm� 1; s0i:s0(v):shm � vi)We expect that P and Q are behaviourally equiva-lent, but they are not in the untyped case, as Q cando an action (� s0)fhm� 1; s0i after f(m; s), whereasP cannot. Intuitively, an untyped observer can inter-fere with the recursive call of Q at f , thus disrupt-ing the underlying protocol of Q. However, we canprove that P and Q are equivalent, provided the en-vironment obeys the typing discipline for f given by� def= ff : hN;Nbiog. Note, in particular, that theenvironment cannot use f for input.Theorem 7.2 �� P � Q.

Proof: By showing that the relation consisting ofthe single pair �[�, ��] # P; [�, ��] # Q � is atyped bisimulation up to expansion and parallel com-position. 2Other examples of applications of our typed bisim-ulation can be found in [8], where we use them in�-calculus interpretations of Abadi and Cardelli's cal-culi of objects to prove properties of objects involvingtyping and subtyping.8 Related work and extensionsPierce and Sangiorgi [16] study behavioural equiv-alences in a �-calculus with polymorphic types. Onlybarbed equivalence is studied (no labeled bisimula-tion), but the distinction is made between typing ofthe observer and typing of the processes, which hasinspired our work. Hennessy and Riely [4] study a lan-guage with an explicit notion of locations and prim-itives on them; they have richer set of capabilities,and a richer subtyping relation than us. Only con-textual forms of behavioural equivalences are given.Characterisations of barbed equivalence on calculi formobile processes include Boreale, Laneve and Four-net [2], Amadio [1] and Sangiorgi [21]. However, inthese bisimilarities, matching transitions of processeshave the same labels (either because there is match-ing on all names, or because all names communicatedare private), therefore the problems of aliasing dealtwith in this paper do not appear. Other studies ofbarbed equivalence, or similar contextual-based no-tions of bisimulation, for typed mobile processes in-clude [6, 7, 25]. Merro and Sangiorgi [10] study barbedequivalence and congruence in an asynchronous �-calculus where only the output capability of namesmay be exported. The direct characterisations givenare simpler than ours, but they only work under boththe hypothesis of asynchrony and of output-capability-only. Other works related to ours are [9],[12] and [14].In [9], Larsen and Xinxin introduce action transduc-ers, where interaction between processes and the sur-rounding contexts is made explicit: this is somehowreminiscent of our LTS for typed bisimulation. Masonand Talcott in [14] and Montanari and Pistore in [12]discuss reasons for requiring or excluding, respectively,forms of matching in the considered process calculi.As for untyped bisimulations, closing our labeledbisimilarity under name substitutions gives us a char-acterisation of typed barbed congruence (the congru-ence induced barbed bisimilarity�with quanti�cationover all contexts).The results in this paper are also useful in untypedcalculi without matching. This corresponds to having

only the b-capability. In this case, all typing informa-tion in con�gurations can be ignored. For example,using the labeled bisimilarity we can give a simpleproof that in the untyped �-calculus without matchingab: (!b j !b j !c j !c) is equivalent to ac: (!b j !b j !c j !c).The results are also useful in typed calculi with thematching construct. We may for instance add a test-ing capability on names or, as suggested in [15], allowthat a name passed with both input and output capa-bility may be tested for equality. If two con�gurations[�, �] #P and [�, �] #Q are bisimilar and a namex appears in � with the testing capabilities, then weshould require that the values �(x) and �(x) be thesame (the observer can look at them). However, thetypes in � still impose constraints on the actions theobserver can o�er.Our results can be extended to other calculi with�rst-order types and subtyping on them. For instance,calculi with variants, records, products, and recursivetypes (with recursive types, some additional care isneeded when proving completeness for barbed equiv-alence, depending on the de�nition of type equality).We do not know how to extend these results to calculiwith higher-order types; higher-order types introducenew problems�see [16].It should be possible to extend our results to asyn-chronous calculi [5] but clause (2) of the de�nition oflabeled bisimulation might become more complex.AcknowledgmentsWe are grateful to Benjamin Pierce for several dis-cussions on typed calculi for mobile processes. Theanonymous referees provided useful suggestions andcomments.References[1] R. Amadio. An asynchronous model of locality,failure, and process mobility. In Proc. Coordina-tion'97, volume 1282 of Lecture Notes in Com-puter Science. Springer Verlag, 1997.[2] M. Boreale, C. Fournet, and C. Laneve. Bisimu-lations for the Join Calculus. To appear in Proc.PROCOMET'98.[3] C. Fournet and G. Gonthier The Re�exive Chem-ical Abstract Machine and the Join calculus. InProc. 23th POPL. ACM Press, 1996.[4] M. Hennessy and J. Riely. A typed languagefor distributed mobile processes. In Proc. 25thPOPL. ACM Press, 1997.

[5] K. Honda and M. Tokoro. On asynchronous com-munication semantics. ECOOP '91 1991 , vol-ume 612 of Lecture Notes in Computer Science,Springer Verlag, 1992.[6] K. Honda and N. Yoshida. On reduction-basedprocess semantics. Theoretical Computer Science,152(2):437�486, 1995.[7] N. Kobayashi, B.C. Pierce, and D.N. Turner. Lin-earity and the pi-calculus. In Proc. 23th POPL.ACM Press, 1996.[8] J. Kleist and D. Sangiorgi. Imperative objectsand mobile processes. To appear in Proc. PRO-COMET'98.[9] K. Larsen and L. Xinxin. Compositionalitythrough an Operational Semantics of Contexts.Journal of Logic and Computation 1(6):761�793,1991.[10] M. Merro and D. Sangiorgi. The asynchronous�-calculus, revisited. To appear in Proc. ofICALP'98.[11] R. Milner. Communication and Concurrency.Prentice Hall, 1989.[12] U. Montanari and M. Pistore. Checking Bisimi-larity for Finitary �-calculus. In Proc. of CON-CUR'95, 1995.[13] R. Milner, J. Parrow, and D. Walker. A calculusof mobile processes, (Parts I and II). Informationand Computation, 100:1�77, 1992.[14] I. Mason and C. Talcott. A Semantically SoundActor Translation. In Proc. of ICALP'97, 1997.[15] B. Pierce and D. Sangiorgi. Typing and subtyp-ing for mobile processes. Journal of Mathemat-ical Structures in Computer Science, 6(5):409�454, 1996. An extended abstract in Proc. LICS93, IEEE Computer Society Press.[16] B. Pierce and D. Sangiorgi. Behavioral equiv-alence in the polymorphic pi-calculus. In 24thPOPL. ACM Press, 1997.[17] B. C. Pierce and D. N. Turner. Pict: A program-ming language based on the pi-calculus. TechnicalReport CSCI 476, Indiana University, 1997. Toappear in Proof, Language and Interaction: Es-says in Honour of Robin Milner, Gordon Plotkin,Colin Stirling, and Mads Tofte, editors, MITPress.

[18] J. C. Reynolds. Preliminary design of the pro-gramming language Forsythe. Tech. rept. CMU-CS-88-159. Carnegie Mellon University., 1988.[19] D. Sangiorgi. On the proof method for bisim-ulation. Proc. MFCS'95, volume 969 of Lec-ture Notes in Computer Science, pages 479�488.Springer Verlag, 1995.[20] D. Sangiorgi. An interpretation of typed objectsinto typed �-calculus. Technical Report RR-3000,INRIA-Sophia Antipolis, 1996. To appear in In-formation and Computation.[21] D. Sangiorgi. The name discipline of recep-tiveness. In 24th ICALP, volume 1256 of Lec-ture Notes in Computer Science. Springer Verlag,1997.[22] B. Victor and F. Moller. The Mobility Workbench� a tool for the �-calculus. Proc. CAV'94, vol-ume 818 of Lecture Notes in Computer Science,Springer-Verlag, 1994.[23] B. Victor and J. Parrow. Constraints as pro-cesses. In Proc. CONCUR '96, volume 1119 ofLecture Notes in Computer Science. Springer Ver-lag, 1996.[24] D. Walker. Objects in the �-calculus. Informationand Computation, 116(2):253�271, 1995.[25] N. Yoshida. Graph types for monadic mobile pro-cesses. In Proc. FST & TCS, volume 1180 of Lec-ture Notes in Computer Science, pages 371�386.Springer Verlag, 1996.

