Bisimilarity Problems Requiring Exponential
Time (Extended Abstract)

Michele Boreale* and Luca Trevisan

Universita di Roma “La Sapienza”. Dipartimento di Scienze dell’Informazione. Via
Salaria 113, 00198 Roma. Email {michele,trevisan}@dsi.uniromal.it

Abstract. We study the complexity of deciding bisimilarity between
non-deterministic processes. In particular, we consider a calculus with re-
cursive definitions of processes, value passing (i.e. input/output of data)
and an equality test over data. We show that the bisimilarity problem
is EXP-complete over this calculus and thus that exponential time is
provably necessary in order to solve it. We then prove that, if we add a
parallel composition operator to the calculus, and we impose that parallel
composition is never used inside recursive definitions, then the bisimilar-
ity problem is still EXP-complete, thus no harder than in the fragment
without parallel composition.

1 Introduction

A major field of research in theoretical computer science is concerned
with the formal description and analysis of concurrent systems. Well-
developed theories exist for calculi such as Milner’s CCS [12], which per-
mits naturally describing systems where different agents can interact via
synchronization, without passing of data values involved. Recently, there
has been much interest around extensions of CCS with explicit primi-
tives for handling data values [7, 8, 15]. In these formalisms, referred to as
value-passing calculi, data, beside being sent or received, can also be used
as parameters in recursive definitions of processes and tested by means
of certain predicates. As an example, the recursively defined process:

M(z) < [x < o)(Fe.M(z) + w(y).M(y)) + [z > v]E(x)

specifies an updatable memory cell, containing an initial value x. As long
as x remains less than a certain value v, the memory can either out-
put its content at channel r, 7x., or input a new value at channel w,

* This research was done while the first author was at the Istituto per ’Elaborazione
dell’Informazione of the CNR (Italian Research Council). Work partially supported
by EEC, within HCM Project Express, and by CNR, within the project “Specifica
ad Alto Livello e Verifica di Sistemi Digitali”.

w(y). (the symbol + represents non-deterministic choice). As soon as x
equals or exceeds v, a recovery procedure F is called. A peculiar kind of
value-passing calculus is the w-calculus [13,15,1], where the values be-
ing exchanged among processes are channels themselves: this makes it
possible to dynamically reconfigure processes’ communication topology.

In this setting, a central problem is that of wverification, which con-
sists in establishing whether two given descriptions (representing, e.g., a
specification and an implementation) are “equivalent” or not, according
to a chosen notion of behavioural equivalence. By now, the algebraic as-
pects of this problem have become well-understood also for value-passing
calculi [7,1,2,8,13,15], but much is left to do concerning computational
complexity. A fundamental issue is that of classifying the relative compu-
tational power of the different mechanisms for handling data values, also
in the presence of other primitives of process calculi, such as parallelism.
This could in practice provide useful indications to build more effective
verification tools.

In the present paper, we shall tackle some of these issues, for one of
the most widely studied equivalence, Milner’s bisimulation equivalence
(also called “bisimilarity”), written ~ [12].

Previous works about decidability and complexity of value-passing
bisimilarity are [9] and [3]. In [9], Jonsson and Parrow consider a
particular class of non-deterministic value-passing processes, the data-
independent ones: here, data can be sent, received and used in parametric
definitions, but no predicate or function over them is allowed. Jonsson and
Parrow show the decidability of bisimilarity for these processes by reduc-
ing the problem to bisimilarity of certain non-value-passing programs,
for which verification methods exist [14,10]. In [3], the authors prove
that bisimilarity is PSPACE-hard (in the syntactical size of the terms) for
data-independent processes.

Having data values without being able to test them is, in practice, of
little use. It is therefore natural to ask what happens to complexity when
a simple form of predicate is added to data-independent processes. In [3],
a simple equality predicate over data was considered. Equality is perhaps
the most elementary form of predicate one would admit over data: not
even negative tests, to check inequality of two values, are permitted. The
computational power of equality was indirectly showed in [3] by proving
that, relying on it, input-output primitives (a(z). and @v.) can be poly-
nomially reduced to the remaining operators. Here, we prove that, when
equality is added, value-passing bisimilarity is EXP-complete.

We also consider adding other primitives typical of process calculi,
such as parallelism [12]. It is known that, for full CCS, bisimilarity is un-
decidable; however, it is decidable for certain meaningful restricted for-
mats, such as finite control processes, where parallelism does not occur
inside the scope of recursive definitions. For processes in such format, we
prove that, in the presence of equality, the overall computational complex-
ity does not increase, i.e. bisimilarity remains EXP-complete. It is worth
to stress that EXP-complete problems are provably intractable, that is,
any algorithm solving an EXP-complete problem must have an exponen-
tial worst-case running time, and this can be shown without relying on
unproven complexity-theoretic conjectures (conversely, NP-complete and
PSPACE-complete problems are just supposed to be intractable). Mean-
ingful EXP-complete problems are quite rare in the literature. In particu-
lar, we are not aware of any other EXP-complete problem concerned with
verification of process equivalences.

The used proof techniques are also worth to mention. We rely on the
characterization of the class EXP in terms of Alternating Turing Machines
(ATM). (see [5]). We show how to define processes that somehow simulate
an arbitrary linear-space ATM. The more difficult technical step consists
in simulating alternation.

The rest of the paper is organized as follows. In Section 2 we define
the syntax and the operational and bisimulation semantics of the basic
calculus, without parallel composition. In Section 3 we recall some basics
facts about the class EXP and its characterization in terms of ATM’s.
Section 4 contains the EXP-completeness proofs. In Section 5 we deal
with the parallel composition operator. A few conclusive remarks are
contained in Section 6.

2 The Language

Below, we present first the syntax and then operational and bisimulation
semantics of the calculi. The notation we use is that of value-passing CCS
[11,12] and of m-calculus [13]. We assume the following disjoint sets:

— a countable set Act of pure actions or communications ports, ranged
over by a,d’,...;

— a countable set Var of variables, ranged over by x,y, .. .;

— a countable set Val of values, ranged over by v,v/,.. .;

— a countable set Ide of identifiers each having a non-negative arity.
Ide is ranged over by Id and capital letters.

A wvalue expression is either a variable or a value. Value expressions
are ranged over by e, ¢’,.... We also consider the set Act = {@|a € Act}
of co-actions, which represent output synchronizations. The set Act U Act
will be ranged over by c.

Following the notation of [3], we let £, , be the set of terms (ranged
over by P,Q,...) given by the operators of pure synchronization prefiz,
input prefix, output prefix, non-determinism, matching and identifier, ac-
cording to the following grammar:

Pu=cP | a(@).P | @eP | > P | [e1=elP | Id(es,... ep)
1€l

where k is the arity of Id. We also let £, be the restriction of £, , to terms
without input and output prefixes. We always assume that the index set
I'in), ; P; is finite and sometimes write Py +-- -+ P, for Zie{l,.“ n} p;.

When [is empty, we use the symbol 0: 0 def > ico B

An occurrence of a variable x in a term P is said to be bound if it
is within the scope of an input prefix a(z); otherwise it is said a free
occurrence. The set of variables which have a free occurrence in P is
denoted by fvar(P). The size of a term P, indicated by |P|, is the number
of symbols appearing in it; e.g., if P = a(x).axz.a’.0 + Id(x) then |P| = 9.

We presuppose an arbitrarely fixed finite set Eq of identifiers defini-
tions, each of the form

Id(xl,...,a;k) <P

where k > 0 is the arity of the identifier Id, the z;’s are pairwise distinct
and fvar(P) C {z1,...,zx}. In Eq, each identifier has a single definition.
The requirement for the set Eq to be finite is motivated by the fact that
we are only interested in syntactically finite processes.

A process term P is said to be closed if fvar(P) = 0; in this case, P
is said to be a process. Processes are the terms we are most interested in.
As we shall see, bisimulation semantics will be defined only over the set
of processes.

The operational behaviour of our processes is defined by means of a
transition relation. Its elements are triples (P, u, P') written as P -~ P’.
Here, pu can be of three different forms: ¢, av or a(v). A pure action c
represents a synchronization through the port ¢, without passing of data
involved. An output action av means transmission of the datum v through
the port a. An input action a(v) represents receipt of the datum v through
the port a. We let p range over actions. The transition relation is defined

by the inference rules in Table 2. Note that £, leads processes into
processes. On the top of the transition relation £, , we define strong
bisimulation equivalence ~ , [12,13,15] as usual:

(Sync) c.P - P

a(v) _ av
(Inp) a(z).P — P{Yx},veVal (Out) av.P — P
P p p; £ P
(Match) ——— (Sum)—— jel
[v=1]P 5 P’ S P P
P{izy 5 P
(Ide) ——— if Id(Z) < P isin Eq
Id(o) 2 P’

Table 1. Inference rules for the transition relation —— .

Definition 1 ((Strong bisimulation equivalence)). A binary sym-
metric relation R over processes is a bisimulation if, whenever PRQ
and P 25 P!, there exists Q' s.t. Q -5 Q' and P'RQ’. We let P ~ Q,
and say that P is bisimilar to Q, if and only if PRQ, for some bisimula-
tion R.

From now on, we will omit the adjective “strong”.

3 Alternating Turing Machines and the Class EXP

In this paper, we will measure the complexity of deciding bisimilarity
between P and () with a set of identifier definitions Eq¢, in function of the
sum of the syntactical sizes of P, () and of the terms occurring in Eq. We
will deal with the complexity classes P, LIN-EXP and EXP and with the
notions of polynomial-time reducibility, hardness and completeness.

It is known that P C LIN-EXP C EXP and that the these three classes
are provably distinct. A problem is hard for a class C if every problem
in C is polynomial-time reducible to it; a C-hard problem is said to be C-
complete if it belongs to C. It is easy to show that a problem is LIN-EXP-
hard if and only if it is EXP-hard. See e.g. [4] for a more complete intro-
duction to complexity classes. Here we recall the following result due to

Hartmanis and Stearns that states the provable intractability of LIN-EXP-
hard problem.

Theorem 1 ([6]). For any LIN-EXP-hard problem A, a constant c4 ex-
ists such that no algorithm can solve A with a worst case running time
smaller than 2.

In the following we shall outline the characterization of LIN-EXP as
the class of languages decided by alternating Turing machines (in short,
ATM) working with linear space. This characterization will be exploited
in Section 4 in order to prove the EXP-hardness of bisimilarity in £,.

Definition 2 (Alternating Turing Machine). An alternating Turing
machine (ATM in short) AT is a five-tuple AT = (Q, qo, 9, X, 0) where

— @ is the set of states;

— qo 18 the initial state;

— g:Q — {A,V,accept,reject};

— X is the tape alphabet;

—0CQQx(Xu{d}) xQx X x{L,R} is the next move relation.

Here U is a distinguished blank symbol, not belonging to X' that represents
unused parts of the tape. The function g partitions () into four sets: the
set Qu = {q € Qlg(q) = A} of universal states, the set Qp = {q €
Qlg(q) = V} of existential states, the set Qa = {q € Q|g(q) = accept}
of accepting states, and the set Qr = {q € Q|g(q) = reject} of rejecting
states.

Definition 3 (Configuration). A configuration of an ATM AT is a
string
¢=(q1,81,--,qn,8n) € (QU{L})- %)

such that exactly one index j € {1,...,n} exists such that q; # L.

Intuitively, ¢ = (L, s1,...,1,sj-1,¢,5;,L,8j41,..., L, sy,) represents
the global state of machine AT when n cells of the tape have been used,
the head is on the j-th cell, the content of the tape is si,..., s,, and the
finite control is in state ¢. We will denote by GC a1 the set of configura-
tions of machine AT. A configuration is said to be halting (respectively,
existential, universal) if it contains a halting (respectively, existential, uni-
versal) state. The initial configuration of AT with input x = (z1,...,zx)
is (qo, 1, L, zo, ..., L, k).

With a slight abuse of notation, we will denote by §(¢) the set of
configurations ¢’ such that ¢ can evolve in one step into ¢’ according to the

relation . Whenever & € 6(¢) we will write ¢ - @’; let F* be the transitive
and reflexive closure of I, let ég(z) be the initial configuration of machine
AT with input z, we will denote by GC 47(,) the set {¢ € GCar| co(z) F* ¢}
and call it the computation tree of AT with input x. In this paper we
shall only consider time-bounded ATM’s, that is, machines having a finite
computation tree for any input.

Acceptance is defined in a quite involved way for general ATM’s (see
[5]). In the case of time bounded ATM’s, however, a much simpler induc-
tive definition can be given.

Definition 4 (Acceptance). Let AT be a time-bounded ATM, x be a
string, ¢ € GCar(y) be a configuration.

1. If ¢ is a halting configuration, then we say that ¢ is an accepting
configuration if it contains an accepting state, otherwise we say that
it 1s a rejecting configuration.

2. If ¢ is a universal configuration, then we say that it is accepting if all
the configurations in 0(¢) are accepting, otherwise we say that it is
rejecting.

8. If ¢ is an existential configuration, then we say that it is accepting if
at least one configuration in §(¢) is accepting, otherwise we say that
1t 15 rejecting.

We say that AT accepts input z if the initial configuration of AT with
input x is accepting. A language L is decided by an alternating Turing
machine AT if AT accepts z if and only if x € L. The following theorem
has been proved by Chandra, Kozen, and Stockmeyer.

Theorem 2 ([5]). Every language L € LIN-EXP is decidable by an al-
ternating Turing machine ATy, working with linear space and exponential
time.

With standard techniques from the theory of Turing machines, we
may assume without loss of generality that AT is such that, for any
input x of size n, only the cells of the tape containing x are accessed,
all the computation paths of AT(x) have the same length and if ¢ €
GCar(z) is a universal (respectively, existential) configuration, then all
the configurations in §(¢) are existential (respectively, universal). In the
following, we shall call such a machine a canonical linear-space alternating
machine.

4 The EXP-completeness Result

In the following we shall prove the following result.

Lemma 1. Let AT be a canonical linear space ATM. Then, for any string
x of length n, we can compute, in time polynomial in n, two processes P

and Q of L, such that P ~ Q if and only if x is accepted by AT.

In order to prove the above lemma, we shall define three identifiers
A, S, F'. As a first approximation, if ¢ is a configuration of AT, then A(¢)
is a process that simulates the computation of AT starting from config-
uration ¢. In particular, if ¢y is the starting configuration of AT with
input x, then the labeled transition system of A(¢p) is “ isomorphic” to
GC At (y): there is a correspondence between configurations ¢ € GC 47 (4)
and processes A(¢), and between nondeterministic branching of the ATM
and nondeterministic choice in the process. Furthermore, the processes
corresponding to halting configurations ¢ € GC 47(;) can do a single ac-
tion: a if ¢ is accepting and b if ¢ is rejecting. S (respectively, F') is defined
to be identical to A, except that states corresponding to halting configura-
tions always do a (respectively b). Thus, intuitively, A would be bisimilar
to S in case AT accepts, and bisimilar to F' otherwise.

Indeed, the above straightforward construction fails to express alter-
nation of quantifiers in terms of bisimulation, and has to be slightly mod-
ified. For example, assume that an existential configuration ¢ of AT(x)
branches into two configurations, one accepting and one rejecting. Then
¢ is accepting, and we would like the corresponding process A(¢) to be
bisimilar to S(¢). But A(¢) branches into both a rejecting and an accepting
state, while S(¢) branches into two accepting states: thus A(¢) and S(¢)
could not be bisimilar. This inconvenience can be overcome if we assume
that each state corresponding to an existential (respectively, universal)
configuration always branches into at least one state corresponding to a
rejecting (respectively, accepting) configuration.

The actual definition of identifiers A, S, and F' is given in Tables 2—4.
It is convenient to split into three lemmas the proof that those processes
indeed exhibit the desired behaviour.

Since no confusion can arise, in the following we will use GC as a
shorthand for GC A7 ().

Lemma 2. Let ¢1,¢2 € GC be any two (not necessarily distinct) config-
urations that halt within the same number of steps, then the following
holds.

! A stands for ATM, S for success and F for failure.

A($172417 < '7$n7yn) =

Z [x’b = S][y’é = q]a'A(xlvyh sy Li—1, q’v Sl? J—ami+1ayi+17 cee ,xn,yn)
ie{l,..., n}, ¢€QE
(a,s,q",s",L)y€s

+ [1’1 = 8][% = q]a,F(xl,yl, C ,xi_l,q/,SI,J_,il?i+1,yi+1,...,:Bn,yn)

+ Z [‘rl:s][y’t :q]a'A(mlvyla"'7xi*17yi*17slaj—7xi+17q/a'"7mn7y’"«)
i€{l,...,n}, ¢€EQE
(a,s,4',s" \R) €6

+ [z = s]lys = qla-F(z1,91,. -, Ti—1,¥i-1,8", L, Tix1,q, ..., Ty Yn)

+ Z [zi = sllyi = gla-A(x1, Y1, Tim1,¢', 8y L, Tig1, Yit1,- -+, Tn, Yn)
i€{l,....,n}, ¢€QU
(g,s,q',s",L)€S

+ [g;l = 3][% = q]a,S(a:l,yl, .. .,x¢,1,q’,3’,J_,x¢+1,yi+1,...,xn,yn)

+ Z [331':8][%':Q]a.A(achyh~--»xi—lyyi—175/7i:$i+l,q/7""x"’y")
i€{l,...,n}, ¢€QyU
(a,5,9',s" ,R) €6

+ [z = s]lys = qla.S(x1,y1,- -, Tic1,Yi-1,8, L, Tit1,q ..., Ty Yn)

Table 2. Definition of A.

S(:Chyh"':xnyy") <

Z [x’b = S][y’é = q]a'S(xhyla s '7$’i—17q/73/7 J—7$’H-17yi+17 cee ,-Tn7yn)

ie{l,..., n}, ¢€QE
(g,5,9",s",L)€S

+ [:r’b = S][yZ = Q]wF(l’lyyl: s »$i—lvql»5/7l»$i+1:yi+h- .. 7xn7yn)

+ > [z: = sllyi = qla.S(x1,y1, .- xim1,yi-1, 8", L xita, ¢ @, Yn)

+ [x’b = S][yl = q]a'F(xlayh s 7mi—17yi—155/7L7xi+17ql7 s ,:E'ruyn)

+ > [vi = sllyi = gla.S(z1, 91, .., xi-1,0, 8", L, Big1, Yit1, -+, T, Yn)

i€{1,...,n}, ¢€QU
(g,s,q',s",L)€S

+ [z = s][ys = qla.S(x1,y1, . i1, ¥io1, 8, Loz, @ oo B, Un)

Table 3. Definition of S.

1. S(&1) o F(e2).
2. S(El) ~ S(EQ) and F(El) ~ F(Eg).

Lemma 3. For any ¢ € GC, either A(¢) ~ S(c) or A(¢) ~ F(c).

The above two lemmas can be proved by induction on the number of
steps required to move from ¢; (respectively, ¢) to a halting configurations.
Canonicity plays an essential role in the proofs.

Lemma 4. For any ¢ € GC, A(¢) ~ S(¢) if and only if ¢ is an accepting
configuration.

Proof. We proceed again by induction on the number of residual steps. If
C is a halting configuration, then the proof is trivial.

Otherwise, let us assume that, for any @ € 4(¢), ¢ is an accepting
configuration if and only if A(¢) ~ S(&'). We have to distinguish two
cases: either ¢ is existential or it is universal. We show only the first case,
as the second one is very similar.

Since ¢ is existential, then it is accepting if and only if §(¢) contains
at least one accepting configuration. By induction hypothesis, the latter

F(.’El,yl, ..

>

i€{1,...,n}, ¢€EQE
(g,8,9",s",L)€S

>

i€{l,...,n}, ¢€QE
(g,5,9",s" ,R) €6

>

i€{1,...,n}, ¢€QU
(g,8,q",s",L)€S

>

i€{1,...,n}, ¢€EQU
(g,5,9’,s",R)€S

qEQAUQR

-,frnyyn) <

[=][y
[z; = s][y;
[z; = s][y:
+ [z = s][y;
[z; = s][y;
+ [= s][ys
lyi = qlb

i = qla.F(x1,y1,...

e q]a.F(ml,yl,...

= q¢la.S(z1,y1,- .-

=qla.F(z1,y1,..

= gla.S(z1,y1,. ..

; = qla.F(x1,y1,...

! ’
, Li—1,4 , S ,J_,l'i+1,yi+1,. .

/ L /
y Li—1,Yi—1,8 5, L, Tit1,4 5. .-

/ /
yLi—1,4 ,S ,J_,$¢+17y7;+1,. c

! !/
S Ti-1,4, 8, L, Tiv1, Yigr, - -

’ ’
y Li—1,Yi—1,S 7J-7xi+11q yoee

! /
i1, Yi-1,8, L, Tiv1, 4, ...

Table 4. Definition of F'.

,xn,yn)

7$n,yn)

,xn7yn)

,xn,yn)

7‘7/'”7 y’ﬂ)

> Ty yn)

statement holds if and only if:
there is ¢ € 6(¢) s.t. A(@) ~ S(&). (1)

We now prove that (1) holds if and only if A(¢) ~ S(¢). Let us assume
that (1) holds. There are two non-trivial cases.

First, consider the case when A(¢) —— A(¢,), for any ¢, € 6(¢). From
canonicity and Lemma 3, it is A(¢;) ~ S(¢1) or A(¢1) ~ F(¢1): in the
first case the matching move for S(¢) is A(¢) —— S(1), in the second
case it is S(¢) — F(¢1). Consider the case when A(¢) has to match a
transition S(¢) —— S(¢;) from A(¢). Then we have:

Ae) = A@) ~ S(@) ~ S(er)

where the first ~ follows from (1) and the second one from canonicity

and Lemma 2.

Conversely, assume that A(¢) ~ S(¢). Take any ¢; € §(¢) and consider
the transition S(¢) —%+ S(¢1). Then we must have for some & A(¢) ——
K(@) ~ S(¢1), where K = F or K = A. The case K = F cannot arise,
due to canonicity and Lemma 2. Thus it must be K = A. From canonicity

and Lemma 2 it follows A(¢') ~ S(¢1) ~ S(¢), which validates (1). O

Proof. (Of Lemma 1) Let ¢y be the initial configuration of AT with input
x. Since the definition of the identifiers can be clearly constructed in time
polynomial in n, the lemma follows by setting P dof A(¢cp) and @ g (¢o).

g

Lemma 1 and the results recalled in the previous section immediately
imply the EXP-hardness of L,.

Theorem 3. The bisimilarity problem in the language L, is EXP-hard.

We shall indeed see in the next section that the problem is in EXP.
From the above theorem and from Theorem 1 the intractability of bisim-
ilarity in £, follows.

Corollary 1. A constant ¢ > 0 exists such that any algorithm that de-
cides the bisimilarity problem in L, has a worst-case running time no
better than 2"°, where n is the size of the input.

5 The Parallel Composition Operator

In this section we consider adding the parallel composition operator |
(see e.g. [12]) to the language described in Section 2. We will show that,
for a certain restricted syntactic format, the bisimilarity problem with
parallel composition is decidable and EXP-complete. As a consequence,
the bisimilarity problem is in EXP for all the fragments we have considered
in the paper.

The syntax of the language L, , is extended with the clause

P:=P|P.

All definitions and notions given for £, , (such as free variables, subterms
etc.) are extended to the new language in the expected way. Following
[12], the operational semantics of the new operator is given by the rules:

P P J N R Y
(Par) (Com)
PP 5 PP P |P, = PPy

with (¢ = a and ' = @) or (u = a(v) and p' = av), plus the symmetric
versions of the above rules, where the roles of P and P» are exchanged.
Here 7 ¢ Act is a new kind of action, called the silent action.

An important class of parallel processes is that finite-control processes,
where parallel composition never occurs inside recursive definitions. The
corresponding sub-language is indicated with L, ,, while the sublan-
guage of L, , without input/output primitives is indicated by L, ,. By
confining ourselves to finite-control processes, we are able to extend a
reduction from £, ,to £, given in [3] and prove:

Proposition 1. The bisimilarity problem in L, ,, is equivalent to the
bisimilarity problem in L, ,, up to polynomial-time reduction.

Observe that every process P € L,), defined with respect to a set
of identifier definitions Fq, has a finite transition system. More precisely,
first note that the size of every term reachable from P cannot exceed k,
where

& |P| *« max{|R| : R appears in Eq}U {1} .

Therefore, there are at most n* different states in the transition system,
where n is the number of distinct values appearing in P and in Fq. Both
n and k are easily seen to be at most polynomial functions of the size of
the problem. It follows that the bisimilarity problem in £, , can be solved

in exponential time using, for example, the algorithm by Page and Tarjan
[14]. Putting together the latter fact, Theorem 3, the cited result of [3]
and the above Proposition 1, we have the following result of equivalence
between languages.

Theorem 4. The bisimilarity problems for the languages Ly, Ly, Lrp
and Ly p are all EXP-complete.

It is worth to notice that, even in the absence of values, the presence
of parallel composition implies an exponential blow-up of the number of
states. This is implicitly present, for example, in the so-called “expansion
law” [12]: a | b ~ a.b+ b.a. The above theorem tells us that the compu-
tational complexity due to parallel composition itself is not greater than
that caused by the handling of data-values.

6

Conclusions

We studied the complexity of deciding bisimulation equivalence over cal-
culi with recursive definitions, value-passing, and/or limited parallel com-
position. All the considered calculi are EXP-complete, and thus provably
intractable and computationally equivalent.

It would be interesting to consider a calculus £, , with value-passing

and unrestricted parallel composition, but with no recursion. Classifying
the computational complexity of this calculus would give some insight
into the intrinsic hardness of parallel composition, in a setting where it
would not be overwhelmed by the expressiveness of recursive definitions.

References

1.

10.

11.

12.
13.

14.

15.

M. Boreale and R. De Nicola. A symbolic semantics for the m-calculus. Short
version in Proc. of CONCUR’94, LNCS, Springer Verlag. Full version to appear
on Information and Computation.

. M. Boreale and R. De Nicola. Testing equivalence for mobile processes. Information

and Computation, 2(120):279-303, 1995.

M. Boreale and L. Trevisan. On the complexity of bisimilarity for value-passing
processes. In Proceedings of the 15th Conference on Foundations of Software Tech-
nology and Theoretical Computer Science. LNCS, Springer Verlag, 1995.

D.P. Bovet and P. Crescenzi. Introduction to the Theory of Complexity. Prentice
Hall, 1993.

A K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alternation. Journal of the
ACM, 28(1):114-133, 1981.

J. Hartmanis and R.E. Stearns. On the computational complexity of algorithms.
Transactions of the AMS, 117:285-306, 1965.

M. Hennessy and A. Ingolfsdottir. A theory of communicating processes with value
passing. Information and Computation, 2(107):202-236, 1993.

M. Hennessy and H. Lin. Symbolic bisimulations. Theoretical Computer Science,
138:353-389, 1995.

B. Jonsson and J. Parrow. Deciding bisimulation equivalences for a class of non-
finite state programs. Information and Computation, 107:272-302, 1993.

P.C. Kanellakis and S.A. Smolka. CCS expressions, finite sate processes, and three
problems of equivalence. Information and Computation, 86:43—68, 1990.

R. Milner. A Calculus of Communicating Systems. LNCS, 92. Springer-Verlag,
Berlin, 1980.

R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, part 1 and
2. Information and Computation, 100:1-78, 1992.

R. Paige and R.E. Tarjan. Three partition refinement algorithms. STAM Journal
on Computing, 16(6):973-989, 1987.

J. Parrow and D. Sangiorgi. Algebraic theories for name-passing calculi. Informa-
tion and Computation, 120(2):174-197, 1995.

