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ABSTRACT 
We present STA (Symbolic Trace Analyzer). a tool for the analysis 
of security protocols. STA relies on symbolic techniques that avoid 
explicit construction of the whole, possibly infinite, state-space of 
protocols. This results in accurate protocol modeling, increased 
efficiency and mere direct formalization, when compared to finite- 
state techniques. We illustrate the use of STA by analyzing the 
well-known asymmetric Needham Schroeder protocol. We discuss 
the results of this analysis, and contrast them with previous work 
based on finite-state model checking. 

1. INTRODUCTION 
In recent years, formal methods have proven useful to analyze 

security protocols, often revealing previously unknown attacks. 
One of the most successful approaches is based on model check- 

ing [14, 16, 17]. Within a model checker, both the honest par- 
ticipants and the adversary are modeled as communicating pro- 
cesses, described in some appropriate language, such as CSP, and 
the whole system is just  the parallel composition of all these pro- 
cesses. A finite-state operational model for this system is then ex- 
plicitly generated and explored, to check whether any insecure state 
can ever be reached. Properties like secrecy and authentication can 
be analyzed in this way. In order to keep the model finite and use 
standard model checking, two simplifying requirements are neces- 
sat'y: (a) there is a fixed number of participants and, (b) there is a 
bound on the number of possible messages the adversary can gen- 
erate at any moment. Discarding one of these two requirements 
leads to infinite models. Moreover, the chosen bounds have to be 
very tight to avoid state-explosion. In general, while it is known 
that discarding requirement (a) leads to undecidability of protocol 
analysis, even under very mild hypotheses (see e.g. [8]). it is not 
clear to what extent requirement Co) can be relaxed, while preserv- 
ing decidability and effectiveness. 
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In this paper, we present STA (Symbolic Trace Analyzer), an ML- 
based tool for the analysis of security protocols. What distinguishes 
STA from finite-state model checkers is its use of symbolic tech- 
niques that avoid explicit construction of the whole state-space of 
the protocol. This resulm in: 

• More accurate protocol models. In particular, while keep- 
ing requirement (a), we discard requirement (b). The whole, 
possibly infinite, protocol model can be searched for attacks. 

• Increased efficiency, both in terms of memory occupation 
and execution time. In particular, state-explosion induced 
by message exchange belween participants is avoided. 

• More straightforward protocol formalization. In particu- 
lar, there is no need for carefully crafted message types or 
bounds, and no explicit description of the adversary must be 
provided. 

The theory underlying STA is developed and explained in full de- 
tail in [4, 5]. In the present paper, we mainly intend to illustrate the 
use of STA and the significance of the above listed features in prac- 
tice. To do so, we analyze the well-known asymmetric Needham- 
Schroeder protocol [18]. Examining this protocol gives us a chance 
of explaining the STA's model and specification method, comment- 
ing on the results of the analysis and contrasting them with those 
obtained using finite-state model checkers. An extended version of 
this paper also reports our results of the analysis of Kerberos [12] 
(consult the URL [3]). 

The rest of the paper is organized as follows. In Section 2, we 
explain the model underlying STA. The syntax of STA's specifica- 
tions is briefly outlined in Section 3. In Section 4 we report our 
results of  the STA analysis of the Needham-Schroeder protocol. 
Section 5 contains a discussion on STA's main features, contrasted 
with finite-state model-checkers. A few concluding remarks and 
a comparison with related work on symbolic analysis are given in 
Section 6. 

2. O V E R V I E W  OF THE M O D E L  
Akin to many others (e.g., [14, 17, 16]), our formal model is 

close in spirit to the Dolev-Yao model of security protocols [7]. In- 
formally, agents executing the protocol are viewed as concurrent 
processes that communicate through an insecure network. It is as- 
sumed that an adversary has total control over the network. Send- 
ing a message just means handing the message to the adversary; 
conversely, receiving a message just means accepting any message 
among those the adversary can produce. The adversary records all 
messages that transit over the network, and can produce a mes- 
sage by either replaying an old one, or by combining old messages 
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(e.g. by pairing, encryption and decryption) and/or by generating 
fresh quantities-. Both the honest agents and the adversary obey the 
rules of  perfect encrypdoa (by which, e.g., secret keys cannot be 
guessed; see [t]). 

2.1 C o n f i g u r a t i o n s  a n d  t r a n s i t i o n  r e l a t i o n  
As noted, a protocol is modeled as a system of concurrent pro- 

cesses. A state of the system is a pair (s, P), called configuration. 
Here, the trace J is a sequence of I/O events (actions), and rep- 
resents the current adversary's knowledge; P is a process term, de- 
scribing the intended behavior of honest participants. The language 
used for process description is a dialect of the spi-calculus [1]. The 
set of all configurations is denoted by C. The dynamics of configu- 
rations is given by a transition relation ~ C_ C x C. that describes 
elementary steps of computations. In Table 1 we report the oper- 
ational semantics for the case of shared-key encryption. Rules for 
the other eryptographic primitives can be easily added. Rules (INP) 
and (OUT) concern sending and receiving messages, respectively. 
In these rules, a represents a user-defined label. Labels are attached 
to I/O actions for ease of reference, and are useful when specifying 
protocol properties, as we shall see below. Since sending a message 
just means handing the message to the adversary, in rule (OUT), af- 
ter an output action ~(M) is fired by a process, it is recorded in the 
adversary's current knowledge s. Conversely, receiving a message 
just means accepting any message among those the adversary can 
produce. Therefore, in rule (INP) the variable x can be replaced 
by any message M (this is the meaning of [M/x]), nondeterminis- 
tically chosen among those the adversary can synthesize from its 
current knowledge s. The synthesis of a message M from a set of 
known messages S is formalized by a deduction relation I-. Here 
is a sample of deduction rules defining I- (see [4]): 

MES St-M St't St-(M}, St-* 

S t- M S t- {M}t S t- M 

Basically, the full knowledge of the adversary consists of the mes- 
sages exchanged over the network plus anything that can be ob- 
tained by pairing, projection, encryption and decryption of known 
messages, provided the right key is itself part of the knowledge. 

The other operational rules in Table 1 govern how a process de- 
crypts a message (caseMof {y},v inA), compares two messages for 
equality ([M ~- H]A), splits a pair (pair (M. H) of  (x,y) inA) and in- 
terleaved execution of parallel threads (A ][ B). 

It is worthwhile to point out that there is no need for an explicit 
description of the adversary's behavior, as the latter is wholly de- 
termined by its current knowledge - the .v in (x, P) - and by the 
deduction relation I-. This is somehow in contrast with other pro- 
posals [14, 17], where the adversary must be explicitly described. 

2.2 P r o p e r t i e s  
Given a configuration (s, P) and a trace s p, we say that (s, P) 

generates ~ if (s, P) )* (s r , /~ )  for some P~ ( )* is the reflex- 
ive and transitive closure of ----¢, i.e. zero or more steps of ---4 ). 
We express properties of the protocol in terms of the traces it gen- 
erates. In particular, we focus on correspondence assertions of the 
kind 

for every generated trace, if action [~ occurs in the 
trace, then action ct must have occurred at some previ- 
ous point in the trace 

that is concisely written as ct +--, I~. More accurately, we allow ct 
and I~ to contain free variables, that may be instantiated to ground 

(INP) 

(ouT)  

(CASE) 

(SELECT) 

(MATCH) 

(e^~) 

O, a(~).e) ~ (s. a(M), P[M/~I) • t- M, M cto~-d 

O, 1(~) .P)  ~ (s . l (M),  e) 

(~, ose{~}NoF{y}M i.P) ~ O, P[M/yl) 

(.,-, pai, (M,,'V) or (..,,.~) i ,  P) ~ (.,-, p[,'v/~, ,,v/),]) 

(~, [M = ,'.]P) - - ,  (.~, .'.) 

(.,-, P) ~ (.,r', P') 

O, PIIQ) - " '  (~, ,"' II Q) 

plus symmetric version of (PAR). 

Table 1: Transi t ion relation ( ~) 

values. Thus ct ¢--, 13 actually means that every instance ofl~ must be 
preceded by the corresponding instance of el, for every generated 
trace. We write (s, P) ~ ct ¢---, ~ if the configuration (s, P) satis- 
ties this requirement. This kind of assertions is flexible enough to 
express interesting secrecy and authentication properties. As an ex- 
ample, the final step of many key-establishment protocols consists 
in A's sending a message of the form {N}ig to B. where N is some 
authentication information, and g the newly established key. A 
typical property one wants to verify is that any messageencrypted 
with K that is accepted by B at the final step should actually origi- 
nate from A (this ensures B he is really talking to A, and that K is 
authentic). If we call finalA and final B the labels attached toA's and 
B's final action, respectively, then the property might be expressed 
by finaiA({X}g) t-" f inale({x},g), for x a variable. In practice, all 
forms of authentication in Lowe's hierarchy [15] are captured by 
the scheme ct ¢--- [3. except the most demanding one that requires 
one-to-one bijection between ct's and 13"s. However, our scheme 
can be easily adjusted to include this stronger form, 

The scheme also permits expressing secrecy, in the style of [2]. 
To this purpose, it is convenient to fix a conventional "absurd' ac- 
tion _1_ that is nowhere used in agent expressions. Thus the for- 
mula .1_ +--, ct expresses that no instance of action ct should ever 
take place. The fact that a protocol P does not leak a sensible 
datum d can be expressed also by saying that the adversary will 
never be capable of synthesizing d. This can be formalized by con- 
sidering an extended protocol that also includes a 'guardian' that 
can at any time pick up one message from the network, P ~ g(x). 0. 
and then requiring that this guardian will never receive d, that is: 
(E, p U g(x). 0) ~ .t_ ¢--, g(~0, where E is the empty trace. 

2 . 3  S y m b o l i c  e x e c u t i o n  

When synthesizing new messages, the adversary can apply op- 
erations like pairing, encryption generation of fresh names, an ar- 
bitrary number of times. Thus the set of messages the adversary 
can synthesize at any time is actually infinite. Any such message 
can be non-deterministically chosen by the adversary and sent to 
a participant willing to receive it, therefore every model based on 
Dolev and Yao's is in principle infinite. Our model makes no ex- 
ception: in rule (INP) the set o f M  s.t. s I-- M is always infinite, and 
this makes the model infinitely-branching. This can be regarded as 
a state explosion problem induced by message exchange. 

To overcome this problem, STA implements a verification 
method based on a notion of symbolic execution. A new transition 
relation (written ) . ,  below) is introduced in order to condense 
the infinitely many transitions that arise from an input action (rule 
(INP) in Table 1) into a single, symbolic transition. The received 
message is now represented simply by a free variable, whose pos- 
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sible values are gradually constrained as the execution proceeds. 
Technically, a-constraint takes the form of most general unifier 
(mgu), i.e., the most general substitution that makes two expres- 
sions equal. The set of traces generated using the symbolic transi- 
tion relation constitutes the .symbolic model of the protocol. Differ- 
ently from the standard model given by ---*, the symbolic model 
is finite, because each input action just gives rise to one symbolic 
transition and agents cannot loop. 

The rules of the symbolic transition relation ---+, are reported 
in [4, 5]. For a flavor of how symbolic execution works, let us con- 
sider an example focusing on shared-key encryption. Suppose that 
agent P, after receiving a message, tries decryption of this message 
using key k; if this succeeds and y is the result, the agent checks 
whether y equals b and, if so, proceeds like P~. This is written 

as Pde=fa(x) .casexof{y} t ln[y= b]P t, for y fresh. Let us explain 
how the symbolic execution proceeds, starting from the initial con- 
figuration (~, P). After the first input step, in the second step the 
decryption casexof {y}tin . .-  is resolved by unifying x and {Y}t, 
which results in the substitution [[Y}t/z]. In the third step, the equal- 
ity test [y = b] is in turn resolved by unifying y and b, that results 
in [b/y]. Formally, 

(E, P) "---'>, (a(x), casexof {y} t in ly=b] /~ ' )  
- ~ ,  (a({y}k), [y = He'[lyh/.,]) 
---,, (a({b},), e'[b,}V:,][b/y]). 

in [4, 5] the method based on symbolic execution is proven sound 
and complete, in the sense that every attack detected in the sym- 
bolic model (relation >, ) corresponds to some attack in the stan- 
dard model (relation ---+), and vice-versa. In other words, the 
symbolic model captures all and only the attacks of the standard 
model. For instance, the method detects type-dependent attacks, 
which usually escape finite-state analysis. In this kind of attacks, 
the adversary cheats on the type of some messages, e.g. by in- 
setting a nonce where a key is expected according to the protocol 
description. 

3. STA SPECIFICATIONS 
Protocol specification in STA follows closely the syntax and se- 

mantics of the formal model, with a few minor differences. Con- 
cerning cryptographic operations, shared-key encryption of X with 
K is written {X}K. Asymmetric encryptioo is written (X) "+K. Here, 
+K is the encryption key; the corresponding decryptioo key is writ- 
ten -K. Asymmetric encryption can be used to model both public- 
key cryptography (if ÷K is public and -K is kept private) and digital 
signature (if +K is kept private and -g  is public). Hashing of X is 
written as H(X). For process syntax, we have.' 

• output actions are written as aiM; 

• input actions are written as e.?M. Here, N can be a generic 
message pattern, with variables. This means input of any 
adversary-generated message whose form matches up ~1. 

• sequencing of actions is written >>; 

• testing for equality of two messages lq and S is written (N i,, 
N). Operationally (N £s N) >> P means "unify 14 and N, if 
possible, and then proceed like P, otherwise stop'. Test for 
syntactic equality of two messages is a special case of this 
operation. 

• parallel composition of P and CI is written Pl IQ- 

There are a few more process operations (non-deterministic choice 
and a facility for generating fresh names), but those listed above are 

enough to illustrate our approach. Configurations am written as (L 
@ P), where L is a list of  input/output actions, which typically pro- 
vides the adversary with its initial knowledge. Finally, properties 
are wriucn like A < - -  B, with t and B being actions. 

It is worthwhile to note that, in the formal model, an input pat- 
tern can be rendered as an input action followed by an appropriate 
sequence of decryptions and/or equality tests. For example, recep- 
tion of a piece of information encrypted with +K (i.e., reception of 
anything that can be correctly decrypted using the key -K) is writ- 
ten in the formal model as a(y ) . caseyo f {x}_K inP. In STA, this 
can be simply written as ~? (x) -+I( >> P. 

4. EXAMPLE" N E E D H A M - S C H R O E D E R  
We consider here two versions of the asymmetric Needham- 

Schroeder protocol. The first one is a simplified version (the same 
considered e.g. in [14, 17]), that leaves out the initial steps neces- 
sary to distribute the participants' public keys. The second version 
considers these steps too. The extended version is interesting be- 
cause it exhibits a type-dependent flaw (which was well-known, 
though). 

4.1 Basic Needham-Schroeder  
Below, we give the informal description of the protocol. A acts 

as the initiator and B as the responder. The notation {X}+~cy de- 
notes encryption of X with the public key of Y. As the protocol 
begins, +KA and +KB are assumed to be already known by any 
participant. 

1. A > B : {NA,A}+xa  (NA fresh nonce) 
2. B > A : {NA,NB}+KA (NB fresh nonce) 
3. A > B:  {Na}+xa 

There is a well-known attack on this protocol (see [14]) in case A 
may also run the protocol with a malicious insider I, i.e. a prin- 
cipal that has disclosed its keys to the adversary. In Table 2 we 
give the complete STA script for the above version of the protocol. 
(By convention, names begin by a capital letter, variables begin by 
one of letters u, x, y, e or z; the rest are labels. The name of each 
variable is meant to remind its expected value.) Int ,  plays the role 
of A and consists of two parallel threads, one for talking to B and 
one for talking to !. In both threads, I n k  sends a nonce challenge 
and then expects a pair of encrypted nonces in response, the first of 
which must be the one InA previously issued. The third step of both 
these threads consists in sending out the second nonce, encrypted 
with the responder's public key. InA uses two different nonces (NA 
and N'A) for its two threads. Ben plays a role somehow specular 
to I n t ' s  first thread. The insider ! is not explicitly described, be- 
cause its role is implicitly impersonated by the adversary, which 
knows l ' s  keys. In other words, the behavior of ! is subsumed by 
the behavior of the adversary. Thus, the whole system is the par- 
allel composition of initiator and responder, ('rnA I I RoB). The 
initial configuration, NS, consists of a list containing one action 
plus the system. The d t - c l o - e  ! action supplies the environment 
with the appropriate initial knowledge: identities of the participants 
( t , B , I ) ,  public keys ofA (+IL~) and B (+KB), and the "seed' ICI to 
synthesize both the public (+1(1) and the private (-KI)  key of !. The 
property tuZhAteB means that any message accepted by B at step 
3 should indeed originate from A, since A is supposedly the only 
initiator: this means that B is really talking toA. Au~lxetoA can be 
explained similarly. 

When required to check whether NS satisfies tu thAl :en ,  STA 
finds a trace of NS, reported below, that violates the property 
AuzhX~oR. The adversary, which intercepts all messages, re-uses 
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(* Inltia~or and ~eaponder *) 

val lnA = aII(NA,&)-*KB >> a2?(H&,zNB)-+KA >> 
a3!(xNB)-+RB >> e~cop 

I I  
a'I!(N'A,A)'+KI >> a'2?(N'A,x)iI)-+KA >> 
a'3!(xNI)-~KI >> atop; 

val RuB = bl?(yNA,A)'+KB >> b2! (yNA,NB)-~KA >> 
b 3 ? ( ~ B ) - + K B  >> a t o p ;  

(* The initial cenfiEuration *) 
val NS : C [ diacloee!(KI,+KA,+KB,A,B,I) ] 

• (InA II R~6)  ) ; 
(e Prop.  X: A i s c o r r e c t l y  , .u l :hen l ; i ca ted 1;o B e) 

v a l  AuthA~oB : ( a3 !u  < - -  b3?u) ;  
(*  P r o p . 2 :  B i s  c o r r e c t l y  a u t h e n t i c a t e d  ~o A *)  

v a l  ku l : h l t oA  : ( b 2 l u  < - -  a2?u) ;  

Table 2: STA script for  Needham Schroeder protocol  

the nonce N'A (issued by A when interacting w i t h / )  when imper- 
sonating the role erA talking to B. Then, the adversary induces A to 
decrypt message (N' &,liB)-+KA, thus getting tlB (actions a '  2 and 
a '  3). This attack was found after examining 26 symbolic configu- 
rations, which took slightly more than half a second. (This and the 
following examples were run on a PC with a 350 Ml-lz Pentium III 
and 64Mb RAM.) The actual output of STA is given below. Note 
that the symbolic execution causes 7NA to be instanfiated to )i '  A. 

An ett.l:mck wan f o u n d :  
d i a c l o s e l ( g I , + K A , + K B , A , B . I ) -  a'I!(K'A,A)-+KI- 
alI(NA,&)-+KB, bl?(N'A,A)'+KB, b2!(N'A,NB)-+KA. 
a'2?(N'&,NB)-+KA, am3!(NB)-+KI- b3?(NB)-+KB. 

26 s y m b o l i c  c o n f i E u x ' a t i o n a  reached.. 

After repairing the flaw as suggested in [14], i.e. by inserting 
explicit identities inside each encrypted message, STA finds no ad- 
ditional attack, either on property &ul:hAl:on. or on t u t h n t e A .  In 
both cases, the exploration reached all the 60 configurations that 
constitute the complete symbolic state-space of the protocol, and 
this took again slightly more than half a second. We also tried other 
instances of the protocol (see Table 3). without finding any attack. 

4 . 2  A t y p e  f l a w  
We now consider a more accurate version of Needham- 

Schroeder, in which both A and B also communicate with a trusted 
server S to get a signed certificate of the other party's public key. 
Below, 5igr(X)  denotes X digitally signed by agent Y. 

1. A >S :  B 
2. 5 ~ A : ~igs(+KB,  B) 
3. A ~ B : {NA,A}+KB (HA fresh nonce) 
4. 8 - - - + 5 :  A 
5. S - - 4  8 :  5 ig$(+KA,A)  
6. B ~ A : {NA,HB, B}+xA (NB fresh nonce) 
7. A ~ B: {NB}+XS 

This example is interesting because it exhibits a type-dependent 
flaw. This kind of flaws is normal|y not detected using traditional 
finite-state techniques, unless the specification is tailored towards 
finding specific, hence, a priori known bugs (see, e.g., [6]). 

We analyze two parallel runs of the protocol: A acts as responder 
and as initiator, respectively, while B acts only as responder. The 
interaction of S with A and B can be interleaved. This version of 
the protocol can be specified in STA by modifying the scripts for 
the previous example. E.g., the specification of the responder B is: 

val RoB : blY(yNA,A)-+KB >> b2lA >> 

b3?(ypkA,A)-+SigS  >> b4! (yNA,NB,B)'(ypkA) >> 
bS?Ch'B)-+K6 >> a top ;  

Note that, in action b3, ]tee implicitly uses -S igS  as a verifi- 
cation key for messages signed by S (the signing key is +SigS). 
We asked STA to check the property aS ! u < - -  be?u,  being a5 
the label of IuA's final action (when acting as an initiator). Such 
property guarantees the initiator A is correctly authenticated to B. 
After searching 16,275 configurations, STA found a trace violating 
the property, reported below. In this trace, I n t  is involved in two 
parallel runs. in the first of these runs, where A acts as the initiator. 
the adversary gets the b4 message (yNg,H8 ,B) -+gg. In the second 
run, where A acts as The responder, the adversary replays this mes- 
sage to A (action a'X). A interprets the pair (IfB,B) as an agent's 
name and sends it to the server (a '  2). The adversary can then in- 
tercept (lfB ,B) and reply the nonce lIB to the nonce challenge (be). 
Note that in the trace below the variable yNA can be instantiated m 
any value. 

d i s c l o s e !  (A,B,-S';-gS,'t 'K&.'I 'KB). a l ! B .  b l ? ( I N A , & ) - + B .  
b2!A.a'I?A, s'2!(+KA,k)'+SigS, b3?(+XA,A)-eSigS. 
b4!(yNA,NB,B)-+KA, al?B. a2!(+KB,B)-*SigS. 
a'I?(yNA,NB,B)-+KA, a'2[ (NB,B). bS?(NB)-+KB 

This attack can be prevented by simply changing {NA,A}+K8 in 
step 3 of the protocol into {NA, (id.A)}+gs,  for id an arbitrary tag 
indicating its intended type. This tag avoids any confusion between 
messages in step 3 and 6 of different runs. 

5 .  D I S C U S S I O N  
We try an assessment of our approach, by discussing what we 

think are its main benefits, and by contrasting our work with those 
of finite-state methods (e.g. [14. 16, 17]). 

5 . 1  A c c u r a c y  o f  t h e  m o d e l  
Finite-state model checking of security protoeol relies on finite 

approximations of the actual model obtained, e.g., by imposing 
some fixed typing to the adversary-generated messages [17]. For 
example, it might be assumed that, at a given stage, the adversary 
can only send messages that fit in the format {nonce)key. The 
number of such possible messages is finite, as long as the number 
of distinct nonces and keys is finite. These typing assumptions may 
be sensible under certain circumstances (see [I I]), but they cannot 
be established automatically: it seems that some a priori knowl- 
edge is required of how the protocol works. This makes the whole 
analysis process potentially error-prone. 

On the contrary, our approach makes no assumption on typing, or 
on the number of messages the adversary may generate. In fact, as 
a consequence of the completeness result, the symbolic model that 
STA explores makes no approximation with respect to the infinite- 
state standard model. 

5 . 2  E f f i c i e n c y  
Symbolic analysis does not suffer from any state explosion prob- 

lem depending on message exchange. Conversely, in finite-state 
model checkers, even if clever assumptions may reduce the state 
space to explore (see e.g. [20]), branching factor still remains. For 
instance, if in some state the adversary can only send messages 
of type {nonce.nonce}key, then at least n x n × k transitions will 
branch from that state (being n and k the number of possible nonces 
and keys). As the number of participants, and consequently of pos- 
sible data values, increases, the size of the model is expected to 
increase dramatically. 

In view of these considerations, STA seems to have some ad- 
vantage over finite-state model checkers. This is reflected on those 
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Initiators Responders Mur(p STA 
I 1 1706 60 
2 1 17,277 411 
2 2 514,550 24,655 

Table 3: Number of reachable states for the correct version of 
Needhans-Schrocder protocol. 

instances of Needham-Schroeder analyzed here and in [17]. Some 
figures on the number of states are reported in Table 3. Execution 
times heavily depend on the number of states, but also on a variety 
of  technological factors, thus exact figures for them are less mean- 
ingful. Indicatively, our execution times are from 5 to 70 times 
shorter than those reported in [ 17]. Memory occupation is very well 
controlled in STA because a depth first search strategy is adopted. 

It is well known that a form of state-explosion is also induced 
by interleaving. However, this is not specific to security protocols. 
There exist standard techniques m deal with this problem, but they 
have not been considered in our implementation. 

The aspect of efficiency deserves, anyway, a comprehensive 
comparison study. Of course, the word 'efficiency' should be taken 
in a practical sense, here, rather than in the formal sense of 'worst- 
case complexity efficiency'. In fact, the problem is NP-hard [19], 
and pathological examples can always be exhibited, for STA like 
for other tools. 

5.3 Usability 
The user interface of STA is at the moment rather rudimen- 

tary, thus specifying a protocol requires a certain acquaintance with 
process algebras. However, no deep understanding of security is 
needed: in particular, no a priori knowledge of  the protocol to an- 
alyze is required. Another point worth noticing is that no descrip- 
tion of the adversary must be explicitly given, apart form its ini- 
tial knowledge. For an experienced user, once the configuration to 
be tested has been chosen, translating the informal description of 
the protocol into the STA specification takes about half an hour, 
and then everything is automatic. The whole specification process 
could be made more user-friendly by developing some high-level 
user interface in the same fashion as Lowe's Casper [13]. 

6. CONCLUDING REMARKS 
We have presented STA, a tool based on symbolic semantics for 

automatic verification of security protocols. We have tested our tool 
by analyzing a few properties of the Needham-Schmeder protocol. 
We have then compared our methods and results to those obtained 
by other authors with finite-state model checking. 

STA can be currently considered little more than a prototype (it 
can be downloaded [3]). Future work includes development of a 
user-friendly interface, optimization of data structures and transla- 
tion into C language. 

The papers [4, 5] develop the theory underlying STA. Initial 
work on symbolic analysis is due to Huima [1(3]. Symbolique tech- 
niques are also exploited in [2, 9], but the algorithms they use are 
quite different from ours. In particular, some brute force instantia- 
tion of variablas is still necessary to guarantee the completeness of 
their methods. 
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