
Experimenting with STA,
a tool for automatic analysis of security protocols*

Michele Boreale
Dipartimento di Sisterni e Informatica

Universitb di Firenze
Via Lombroso 6/17, 50134 Firenze, Italy

boreale@dsi.unif i . i t

Mar ia Graz ia Buscemi
Dipartimento di Maternatica • Inforrnatica

Universitb di Catania
Viale Doria 6, 95125 Catania, Italy

buscemi@ dmi.unict.it

ABSTRACT
We present STA (Symbolic Trace Analyzer). a tool for the analysis
of security protocols. STA relies on symbolic techniques that avoid
explicit construction of the whole, possibly infinite, state-space of
protocols. This results in accurate protocol modeling, increased
efficiency and mere direct formalization, when compared to finite-
state techniques. We illustrate the use of STA by analyzing the
well-known asymmetric Needham Schroeder protocol. We discuss
the results of this analysis, and contrast them with previous work
based on finite-state model checking.

1. INTRODUCTION
In recent years, formal methods have proven useful to analyze

security protocols, often revealing previously unknown attacks.
One of the most successful approaches is based on model check-

ing [14, 16, 17]. Within a model checker, both the honest par-
ticipants and the adversary are modeled as communicating pro-
cesses, described in some appropriate language, such as CSP, and
the whole system is just the parallel composition of all these pro-
cesses. A finite-state operational model for this system is then ex-
plicitly generated and explored, to check whether any insecure state
can ever be reached. Properties like secrecy and authentication can
be analyzed in this way. In order to keep the model finite and use
standard model checking, two simplifying requirements are neces-
sat'y: (a) there is a fixed number of participants and, (b) there is a
bound on the number of possible messages the adversary can gen-
erate at any moment. Discarding one of these two requirements
leads to infinite models. Moreover, the chosen bounds have to be
very tight to avoid state-explosion. In general, while it is known
that discarding requirement (a) leads to undecidability of protocol
analysis, even under very mild hypotheses (see e.g. [8]). it is not
clear to what extent requirement Co) can be relaxed, while preserv-
ing decidability and effectiveness.

*Research partly supported by the Italian MU'RST Project TOSCA
(Teoria della Concorrenza, Linguaggi di Online Superiore • Strm-
ture di ~ffPO-

Permission to make digital or hard copies of all or part of this work for
personal or classroom ase is granted without fee provided chat copies are
not made or distributed for profit or cornme~ial advantagc and that copies
bear this notice and Ihe full cilation on the first page. To copy otherwise, m
republish, to post on servers or to redis tribute to lists, requires prior specific
permission and/or a fee.
SAC 2002, Madrid, Spain
Copyright 2002 ACM !-58113-445-2/02/03 ...$$.00.

In this paper, we present STA (Symbolic Trace Analyzer), an ML-
based tool for the analysis of security protocols. What distinguishes
STA from finite-state model checkers is its use of symbolic tech-
niques that avoid explicit construction of the whole state-space of
the protocol. This resulm in:

• More accurate protocol models. In particular, while keep-
ing requirement (a), we discard requirement (b). The whole,
possibly infinite, protocol model can be searched for attacks.

• Increased efficiency, both in terms of memory occupation
and execution time. In particular, state-explosion induced
by message exchange belween participants is avoided.

• More straightforward protocol formalization. In particu-
lar, there is no need for carefully crafted message types or
bounds, and no explicit description of the adversary must be
provided.

The theory underlying STA is developed and explained in full de-
tail in [4, 5]. In the present paper, we mainly intend to illustrate the
use of STA and the significance of the above listed features in prac-
tice. To do so, we analyze the well-known asymmetric Needham-
Schroeder protocol [18]. Examining this protocol gives us a chance
of explaining the STA's model and specification method, comment-
ing on the results of the analysis and contrasting them with those
obtained using finite-state model checkers. An extended version of
this paper also reports our results of the analysis of Kerberos [12]
(consult the URL [3]).

The rest of the paper is organized as follows. In Section 2, we
explain the model underlying STA. The syntax of STA's specifica-
tions is briefly outlined in Section 3. In Section 4 we report our
results of the STA analysis of the Needham-Schroeder protocol.
Section 5 contains a discussion on STA's main features, contrasted
with finite-state model-checkers. A few concluding remarks and
a comparison with related work on symbolic analysis are given in
Section 6.

2. O V E R V I E W OF THE M O D E L
Akin to many others (e.g., [14, 17, 16]), our formal model is

close in spirit to the Dolev-Yao model of security protocols [7]. In-
formally, agents executing the protocol are viewed as concurrent
processes that communicate through an insecure network. It is as-
sumed that an adversary has total control over the network. Send-
ing a message just means handing the message to the adversary;
conversely, receiving a message just means accepting any message
among those the adversary can produce. The adversary records all
messages that transit over the network, and can produce a mes-
sage by either replaying an old one, or by combining old messages

281

(e.g. by pairing, encryption and decryption) and/or by generating
fresh quantities-. Both the honest agents and the adversary obey the
rules of perfect encrypdoa (by which, e.g., secret keys cannot be
guessed; see [t]).

2.1 C o n f i g u r a t i o n s a n d t r a n s i t i o n r e l a t i o n
As noted, a protocol is modeled as a system of concurrent pro-

cesses. A state of the system is a pair (s, P), called configuration.
Here, the trace J is a sequence of I/O events (actions), and rep-
resents the current adversary's knowledge; P is a process term, de-
scribing the intended behavior of honest participants. The language
used for process description is a dialect of the spi-calculus [1]. The
set of all configurations is denoted by C. The dynamics of configu-
rations is given by a transition relation ~ C_ C x C. that describes
elementary steps of computations. In Table 1 we report the oper-
ational semantics for the case of shared-key encryption. Rules for
the other eryptographic primitives can be easily added. Rules (INP)
and (OUT) concern sending and receiving messages, respectively.
In these rules, a represents a user-defined label. Labels are attached
to I/O actions for ease of reference, and are useful when specifying
protocol properties, as we shall see below. Since sending a message
just means handing the message to the adversary, in rule (OUT), af-
ter an output action ~(M) is fired by a process, it is recorded in the
adversary's current knowledge s. Conversely, receiving a message
just means accepting any message among those the adversary can
produce. Therefore, in rule (INP) the variable x can be replaced
by any message M (this is the meaning of [M/x]), nondeterminis-
tically chosen among those the adversary can synthesize from its
current knowledge s. The synthesis of a message M from a set of
known messages S is formalized by a deduction relation I-. Here
is a sample of deduction rules defining I- (see [4]):

MES St-M St't St-(M}, St-*

S t- M S t- {M}t S t- M

Basically, the full knowledge of the adversary consists of the mes-
sages exchanged over the network plus anything that can be ob-
tained by pairing, projection, encryption and decryption of known
messages, provided the right key is itself part of the knowledge.

The other operational rules in Table 1 govern how a process de-
crypts a message (caseMof {y},v inA), compares two messages for
equality ([M ~- H]A), splits a pair (pair (M. H) of (x,y) inA) and in-
terleaved execution of parallel threads (A][B).

It is worthwhile to point out that there is no need for an explicit
description of the adversary's behavior, as the latter is wholly de-
termined by its current knowledge - the .v in (x, P) - and by the
deduction relation I-. This is somehow in contrast with other pro-
posals [14, 17], where the adversary must be explicitly described.

2.2 P r o p e r t i e s
Given a configuration (s, P) and a trace s p, we say that (s, P)

generates ~ if (s, P))* (s r , /~) for some P~ ()* is the reflex-
ive and transitive closure of ----¢, i.e. zero or more steps of ---4).
We express properties of the protocol in terms of the traces it gen-
erates. In particular, we focus on correspondence assertions of the
kind

for every generated trace, if action [~ occurs in the
trace, then action ct must have occurred at some previ-
ous point in the trace

that is concisely written as ct +--, I~. More accurately, we allow ct
and I~ to contain free variables, that may be instantiated to ground

(INP)

(ouT)

(CASE)

(SELECT)

(MATCH)

(e^~)

O, a(~).e) ~ (s. a(M), P[M/~I) • t- M, M cto~-d

O, 1(~) .P) ~ (s . l (M), e)

(~, ose{~}NoF{y}M i.P) ~ O, P[M/yl)

(.,-, pai, (M,,'V) or (..,,.~) i , P) ~ (.,-, p[,'v/~, ,,v/),])

(~, [M = ,'.]P) - - , (.~, .'.)

(.,-, P) ~ (.,r', P')

O, PIIQ) - " ' (~, ,"' II Q)

plus symmetric version of (PAR).

Table 1: Transi t ion relation (~)

values. Thus ct ¢--, 13 actually means that every instance ofl~ must be
preceded by the corresponding instance of el, for every generated
trace. We write (s, P) ~ ct ¢---, ~ if the configuration (s, P) satis-
ties this requirement. This kind of assertions is flexible enough to
express interesting secrecy and authentication properties. As an ex-
ample, the final step of many key-establishment protocols consists
in A's sending a message of the form {N}ig to B. where N is some
authentication information, and g the newly established key. A
typical property one wants to verify is that any messageencrypted
with K that is accepted by B at the final step should actually origi-
nate from A (this ensures B he is really talking to A, and that K is
authentic). If we call finalA and final B the labels attached toA's and
B's final action, respectively, then the property might be expressed
by finaiA({X}g) t-" f inale({x},g), for x a variable. In practice, all
forms of authentication in Lowe's hierarchy [15] are captured by
the scheme ct ¢--- [3. except the most demanding one that requires
one-to-one bijection between ct's and 13"s. However, our scheme
can be easily adjusted to include this stronger form,

The scheme also permits expressing secrecy, in the style of [2].
To this purpose, it is convenient to fix a conventional "absurd' ac-
tion _1_ that is nowhere used in agent expressions. Thus the for-
mula .1_ +--, ct expresses that no instance of action ct should ever
take place. The fact that a protocol P does not leak a sensible
datum d can be expressed also by saying that the adversary will
never be capable of synthesizing d. This can be formalized by con-
sidering an extended protocol that also includes a 'guardian' that
can at any time pick up one message from the network, P ~ g(x). 0.
and then requiring that this guardian will never receive d, that is:
(E, p U g(x). 0) ~ .t_ ¢--, g(~0, where E is the empty trace.

2 . 3 S y m b o l i c e x e c u t i o n

When synthesizing new messages, the adversary can apply op-
erations like pairing, encryption generation of fresh names, an ar-
bitrary number of times. Thus the set of messages the adversary
can synthesize at any time is actually infinite. Any such message
can be non-deterministically chosen by the adversary and sent to
a participant willing to receive it, therefore every model based on
Dolev and Yao's is in principle infinite. Our model makes no ex-
ception: in rule (INP) the set o f M s.t. s I-- M is always infinite, and
this makes the model infinitely-branching. This can be regarded as
a state explosion problem induced by message exchange.

To overcome this problem, STA implements a verification
method based on a notion of symbolic execution. A new transition
relation (written) . , below) is introduced in order to condense
the infinitely many transitions that arise from an input action (rule
(INP) in Table 1) into a single, symbolic transition. The received
message is now represented simply by a free variable, whose pos-

2 8 2

sible values are gradually constrained as the execution proceeds.
Technically, a-constraint takes the form of most general unifier
(mgu), i.e., the most general substitution that makes two expres-
sions equal. The set of traces generated using the symbolic transi-
tion relation constitutes the .symbolic model of the protocol. Differ-
ently from the standard model given by ---*, the symbolic model
is finite, because each input action just gives rise to one symbolic
transition and agents cannot loop.

The rules of the symbolic transition relation ---+, are reported
in [4, 5]. For a flavor of how symbolic execution works, let us con-
sider an example focusing on shared-key encryption. Suppose that
agent P, after receiving a message, tries decryption of this message
using key k; if this succeeds and y is the result, the agent checks
whether y equals b and, if so, proceeds like P~. This is written

as Pde=fa(x) .casexof{y} t ln[y= b]P t, for y fresh. Let us explain
how the symbolic execution proceeds, starting from the initial con-
figuration (~, P). After the first input step, in the second step the
decryption casexof {y}tin . .- is resolved by unifying x and {Y}t,
which results in the substitution [[Y}t/z]. In the third step, the equal-
ity test [y = b] is in turn resolved by unifying y and b, that results
in [b/y]. Formally,

(E, P) "---'>, (a(x), casexof {y} t in ly=b] /~ ')
- ~ , (a({y}k), [y = He'[lyh/.,])
---,, (a({b},), e'[b,}V:,][b/y]).

in [4, 5] the method based on symbolic execution is proven sound
and complete, in the sense that every attack detected in the sym-
bolic model (relation >,) corresponds to some attack in the stan-
dard model (relation ---+), and vice-versa. In other words, the
symbolic model captures all and only the attacks of the standard
model. For instance, the method detects type-dependent attacks,
which usually escape finite-state analysis. In this kind of attacks,
the adversary cheats on the type of some messages, e.g. by in-
setting a nonce where a key is expected according to the protocol
description.

3. STA SPECIFICATIONS
Protocol specification in STA follows closely the syntax and se-

mantics of the formal model, with a few minor differences. Con-
cerning cryptographic operations, shared-key encryption of X with
K is written {X}K. Asymmetric encryptioo is written (X) "+K. Here,
+K is the encryption key; the corresponding decryptioo key is writ-
ten -K. Asymmetric encryption can be used to model both public-
key cryptography (if ÷K is public and -K is kept private) and digital
signature (if +K is kept private and -g is public). Hashing of X is
written as H(X). For process syntax, we have.'

• output actions are written as aiM;

• input actions are written as e.?M. Here, N can be a generic
message pattern, with variables. This means input of any
adversary-generated message whose form matches up ~1.

• sequencing of actions is written >>;

• testing for equality of two messages lq and S is written (N i,,
N). Operationally (N £s N) >> P means "unify 14 and N, if
possible, and then proceed like P, otherwise stop'. Test for
syntactic equality of two messages is a special case of this
operation.

• parallel composition of P and CI is written Pl IQ-

There are a few more process operations (non-deterministic choice
and a facility for generating fresh names), but those listed above are

enough to illustrate our approach. Configurations am written as (L
@ P), where L is a list of input/output actions, which typically pro-
vides the adversary with its initial knowledge. Finally, properties
are wriucn like A < - - B, with t and B being actions.

It is worthwhile to note that, in the formal model, an input pat-
tern can be rendered as an input action followed by an appropriate
sequence of decryptions and/or equality tests. For example, recep-
tion of a piece of information encrypted with +K (i.e., reception of
anything that can be correctly decrypted using the key -K) is writ-
ten in the formal model as a(y) . caseyo f {x}_K inP. In STA, this
can be simply written as ~? (x) -+I(>> P.

4. EXAMPLE" N E E D H A M - S C H R O E D E R
We consider here two versions of the asymmetric Needham-

Schroeder protocol. The first one is a simplified version (the same
considered e.g. in [14, 17]), that leaves out the initial steps neces-
sary to distribute the participants' public keys. The second version
considers these steps too. The extended version is interesting be-
cause it exhibits a type-dependent flaw (which was well-known,
though).

4.1 Basic Needham-Schroeder
Below, we give the informal description of the protocol. A acts

as the initiator and B as the responder. The notation {X}+~cy de-
notes encryption of X with the public key of Y. As the protocol
begins, +KA and +KB are assumed to be already known by any
participant.

1. A > B : {NA,A}+xa (NA fresh nonce)
2. B > A : {NA,NB}+KA (NB fresh nonce)
3. A > B: {Na}+xa

There is a well-known attack on this protocol (see [14]) in case A
may also run the protocol with a malicious insider I, i.e. a prin-
cipal that has disclosed its keys to the adversary. In Table 2 we
give the complete STA script for the above version of the protocol.
(By convention, names begin by a capital letter, variables begin by
one of letters u, x, y, e or z; the rest are labels. The name of each
variable is meant to remind its expected value.) Int , plays the role
of A and consists of two parallel threads, one for talking to B and
one for talking to !. In both threads, I n k sends a nonce challenge
and then expects a pair of encrypted nonces in response, the first of
which must be the one InA previously issued. The third step of both
these threads consists in sending out the second nonce, encrypted
with the responder's public key. InA uses two different nonces (NA
and N'A) for its two threads. Ben plays a role somehow specular
to I n t ' s first thread. The insider ! is not explicitly described, be-
cause its role is implicitly impersonated by the adversary, which
knows l ' s keys. In other words, the behavior of ! is subsumed by
the behavior of the adversary. Thus, the whole system is the par-
allel composition of initiator and responder, ('rnA I I RoB). The
initial configuration, NS, consists of a list containing one action
plus the system. The d t - c l o - e ! action supplies the environment
with the appropriate initial knowledge: identities of the participants
(t , B , I) , public keys ofA (+IL~) and B (+KB), and the "seed' ICI to
synthesize both the public (+1(1) and the private (-KI) key of !. The
property tuZhAteB means that any message accepted by B at step
3 should indeed originate from A, since A is supposedly the only
initiator: this means that B is really talking toA. Au~lxetoA can be
explained similarly.

When required to check whether NS satisfies tu thAl :en , STA
finds a trace of NS, reported below, that violates the property
AuzhX~oR. The adversary, which intercepts all messages, re-uses

283

(* Inltia~or and ~eaponder *)

val lnA = aII(NA,&)-*KB >> a2?(H&,zNB)-+KA >>
a3!(xNB)-+RB >> e~cop

I I
a'I!(N'A,A)'+KI >> a'2?(N'A,x)iI)-+KA >>
a'3!(xNI)-~KI >> atop;

val RuB = bl?(yNA,A)'+KB >> b2! (yNA,NB)-~KA >>
b 3 ? (~ B) - + K B >> a t o p ;

(* The initial cenfiEuration *)
val NS : C [diacloee!(KI,+KA,+KB,A,B,I)]

• (InA II R~6)) ;
(e Prop. X: A i s c o r r e c t l y , .u l :hen l ; i ca ted 1;o B e)

v a l AuthA~oB : (a3 !u < - - b3?u) ;
(* P r o p . 2 : B i s c o r r e c t l y a u t h e n t i c a t e d ~o A *)

v a l ku l : h l t oA : (b 2 l u < - - a2?u) ;

Table 2: STA script for Needham Schroeder protocol

the nonce N'A (issued by A when interacting w i t h /) when imper-
sonating the role erA talking to B. Then, the adversary induces A to
decrypt message (N' &,liB)-+KA, thus getting tlB (actions a ' 2 and
a ' 3). This attack was found after examining 26 symbolic configu-
rations, which took slightly more than half a second. (This and the
following examples were run on a PC with a 350 Ml-lz Pentium III
and 64Mb RAM.) The actual output of STA is given below. Note
that the symbolic execution causes 7NA to be instanfiated to)i ' A.

An ett.l:mck wan f o u n d :
d i a c l o s e l (g I , + K A , + K B , A , B . I) - a'I!(K'A,A)-+KI-
alI(NA,&)-+KB, bl?(N'A,A)'+KB, b2!(N'A,NB)-+KA.
a'2?(N'&,NB)-+KA, am3!(NB)-+KI- b3?(NB)-+KB.

26 s y m b o l i c c o n f i E u x ' a t i o n a reached..

After repairing the flaw as suggested in [14], i.e. by inserting
explicit identities inside each encrypted message, STA finds no ad-
ditional attack, either on property &ul:hAl:on. or on t u t h n t e A . In
both cases, the exploration reached all the 60 configurations that
constitute the complete symbolic state-space of the protocol, and
this took again slightly more than half a second. We also tried other
instances of the protocol (see Table 3). without finding any attack.

4 . 2 A t y p e f l a w
We now consider a more accurate version of Needham-

Schroeder, in which both A and B also communicate with a trusted
server S to get a signed certificate of the other party's public key.
Below, 5igr(X) denotes X digitally signed by agent Y.

1. A >S : B
2. 5 ~ A : ~igs(+KB, B)
3. A ~ B : {NA,A}+KB (HA fresh nonce)
4. 8 - - - + 5 : A
5. S - - 4 8 : 5 ig$(+KA,A)
6. B ~ A : {NA,HB, B}+xA (NB fresh nonce)
7. A ~ B: {NB}+XS

This example is interesting because it exhibits a type-dependent
flaw. This kind of flaws is normal|y not detected using traditional
finite-state techniques, unless the specification is tailored towards
finding specific, hence, a priori known bugs (see, e.g., [6]).

We analyze two parallel runs of the protocol: A acts as responder
and as initiator, respectively, while B acts only as responder. The
interaction of S with A and B can be interleaved. This version of
the protocol can be specified in STA by modifying the scripts for
the previous example. E.g., the specification of the responder B is:

val RoB : blY(yNA,A)-+KB >> b2lA >>

b3?(ypkA,A)-+SigS >> b4! (yNA,NB,B)'(ypkA) >>
bS?Ch'B)-+K6 >> a top ;

Note that, in action b3,]tee implicitly uses -S igS as a verifi-
cation key for messages signed by S (the signing key is +SigS).
We asked STA to check the property aS ! u < - - be?u, being a5
the label of IuA's final action (when acting as an initiator). Such
property guarantees the initiator A is correctly authenticated to B.
After searching 16,275 configurations, STA found a trace violating
the property, reported below. In this trace, I n t is involved in two
parallel runs. in the first of these runs, where A acts as the initiator.
the adversary gets the b4 message (yNg,H8 ,B) -+gg. In the second
run, where A acts as The responder, the adversary replays this mes-
sage to A (action a'X). A interprets the pair (IfB,B) as an agent's
name and sends it to the server (a ' 2). The adversary can then in-
tercept (lfB ,B) and reply the nonce lIB to the nonce challenge (be).
Note that in the trace below the variable yNA can be instantiated m
any value.

d i s c l o s e ! (A,B,-S';-gS,'t 'K&.'I 'KB). a l ! B . b l ? (I N A , &) - + B .
b2!A.a'I?A, s'2!(+KA,k)'+SigS, b3?(+XA,A)-eSigS.
b4!(yNA,NB,B)-+KA, al?B. a2!(+KB,B)-*SigS.
a'I?(yNA,NB,B)-+KA, a'2[(NB,B). bS?(NB)-+KB

This attack can be prevented by simply changing {NA,A}+K8 in
step 3 of the protocol into {NA, (id.A)}+gs, for id an arbitrary tag
indicating its intended type. This tag avoids any confusion between
messages in step 3 and 6 of different runs.

5 . D I S C U S S I O N
We try an assessment of our approach, by discussing what we

think are its main benefits, and by contrasting our work with those
of finite-state methods (e.g. [14. 16, 17]).

5 . 1 A c c u r a c y o f t h e m o d e l
Finite-state model checking of security protoeol relies on finite

approximations of the actual model obtained, e.g., by imposing
some fixed typing to the adversary-generated messages [17]. For
example, it might be assumed that, at a given stage, the adversary
can only send messages that fit in the format {nonce)key. The
number of such possible messages is finite, as long as the number
of distinct nonces and keys is finite. These typing assumptions may
be sensible under certain circumstances (see [I I]), but they cannot
be established automatically: it seems that some a priori knowl-
edge is required of how the protocol works. This makes the whole
analysis process potentially error-prone.

On the contrary, our approach makes no assumption on typing, or
on the number of messages the adversary may generate. In fact, as
a consequence of the completeness result, the symbolic model that
STA explores makes no approximation with respect to the infinite-
state standard model.

5 . 2 E f f i c i e n c y
Symbolic analysis does not suffer from any state explosion prob-

lem depending on message exchange. Conversely, in finite-state
model checkers, even if clever assumptions may reduce the state
space to explore (see e.g. [20]), branching factor still remains. For
instance, if in some state the adversary can only send messages
of type {nonce.nonce}key, then at least n x n × k transitions will
branch from that state (being n and k the number of possible nonces
and keys). As the number of participants, and consequently of pos-
sible data values, increases, the size of the model is expected to
increase dramatically.

In view of these considerations, STA seems to have some ad-
vantage over finite-state model checkers. This is reflected on those

2 8 4

Initiators Responders Mur(p STA
I 1 1706 60
2 1 17,277 411
2 2 514,550 24,655

Table 3: Number of reachable states for the correct version of
Needhans-Schrocder protocol.

instances of Needham-Schroeder analyzed here and in [17]. Some
figures on the number of states are reported in Table 3. Execution
times heavily depend on the number of states, but also on a variety
of technological factors, thus exact figures for them are less mean-
ingful. Indicatively, our execution times are from 5 to 70 times
shorter than those reported in [17]. Memory occupation is very well
controlled in STA because a depth first search strategy is adopted.

It is well known that a form of state-explosion is also induced
by interleaving. However, this is not specific to security protocols.
There exist standard techniques m deal with this problem, but they
have not been considered in our implementation.

The aspect of efficiency deserves, anyway, a comprehensive
comparison study. Of course, the word 'efficiency' should be taken
in a practical sense, here, rather than in the formal sense of 'worst-
case complexity efficiency'. In fact, the problem is NP-hard [19],
and pathological examples can always be exhibited, for STA like
for other tools.

5.3 Usability
The user interface of STA is at the moment rather rudimen-

tary, thus specifying a protocol requires a certain acquaintance with
process algebras. However, no deep understanding of security is
needed: in particular, no a priori knowledge of the protocol to an-
alyze is required. Another point worth noticing is that no descrip-
tion of the adversary must be explicitly given, apart form its ini-
tial knowledge. For an experienced user, once the configuration to
be tested has been chosen, translating the informal description of
the protocol into the STA specification takes about half an hour,
and then everything is automatic. The whole specification process
could be made more user-friendly by developing some high-level
user interface in the same fashion as Lowe's Casper [13].

6. CONCLUDING REMARKS
We have presented STA, a tool based on symbolic semantics for

automatic verification of security protocols. We have tested our tool
by analyzing a few properties of the Needham-Schmeder protocol.
We have then compared our methods and results to those obtained
by other authors with finite-state model checking.

STA can be currently considered little more than a prototype (it
can be downloaded [3]). Future work includes development of a
user-friendly interface, optimization of data structures and transla-
tion into C language.

The papers [4, 5] develop the theory underlying STA. Initial
work on symbolic analysis is due to Huima [1(3]. Symbolique tech-
niques are also exploited in [2, 9], but the algorithms they use are
quite different from ours. In particular, some brute force instantia-
tion of variablas is still necessary to guarantee the completeness of
their methods.

7. REFERENCES
[1] M. Abadi, A.D. Gordon. A calculus for cryptographic

protocols: The spi calculus. Information and Computation,
148(1):1-70, 1999.

[2] R.M. Amadio, S. Lugiez. On the reachability problem in
cryptographie protocols, in Proc. ofConcur'O0, LNCS 1877,

Springer, 2000. Full version: RR 3915, INRIA Sophia
Antipolis.

[3] STA: a tool for trace analysis of cryptographic protocols. ML
object code and examples, 2001. Available at
h t t p : / / u ~ v . d a i . u n i f i , i ~ / ~ b o r o a l a / ~ o o l . html.

[4] M. Boreale. Symbolic trace analysis of cryptographic
protocols. In Proc. oflCALP'OI, LNCS 2076, Slinger, 2001.

[5] M. Boreale, M. Buscemi. A framework for the analysis of
security protocols. Submitted. An abstract appears in Proc.
of WSDAAL 2001, Como, Italy.

[6] B. Donovan, 13. Norris, and G- Lowe. Analyzing a library of
security protocols using Casper and FDR. In Proc. of
Workshop on Formal Methods and Security Protocols,
Trento, 1999.

[7] D. Dolev, A. Yao. On the security of public-key protocols.
IEEE Tran.cactions on Information Theory, 2(29): 198-208,
1983.

[g] N. Durgin, P. Lincoln, J. Mitchell, A. Scedmv.
Undecidability of bounded security protocols. In Proc. of
Workshop on Formal Methods and Security Protocols,
Tre nto, 1999.

[9] M.P. Flute and M. Abadi. Computing Symbolic Models for
Verifying C.ryptographic Protocols. In Proc. of 14th
Computer Security Foundations Workshop, IEEE Computer
Society Press, 2001.

[10] A. Huima. Efficient infinite-state analysis of security
protocols. In Proc. of Workshop on Formal Methods and
Security Protocols, Trento, 1999.

[11] J. Heather, G. Lowe, and S. Schneider. How to prevent type
flaw attacks on security protocols. In Proc. ofl3th Computer
Security Foundations Workshop, IEEE Computer Society
Press, 2000.

[12] J. Kohl, B. Neuman. The ~ r o s network authentication
service (version 5). Interoet Request For Comment
RFC-1510, 1993.

[13] G. Lowe. Casper, a compiler for the analysis of security
protocols. In Proc. of lOth IEEE Computer Security
Foundations Work.shop, IEEE Computer Society Press, 1997.

[14] G. Lowe. Breaking and Fixing the Needham-Schroeder
Public-Key Protocol Using FDR. In Proc. of TACAS'96,
LNCS 1055, Springer, 1996.

[15] G. I.owe. A Hierarchy of Authentication Specifications. In
Proc. of lOth IEEE Computer Security Foundations
Work.rhop, IEEE Computer Society Press, 1997.

[16] W. Marrero, E.M. Clarke, S. Jha. Model checking for
security protocols. Technical Report TR-CMU-CS-97-139,
Carnegie Mellon University, 1997.

[17] J.C. Mitchell, M. Mitchell, U. Stern. Automated Analysis of
Cryptographic Protocols Using Murk0. In Proc. of Symp.
Security and Privacy, IEEE Computer Society Press, 1997.

[18] R. Needham, M. Schroeder. Using encryption for
authentication in large networks of computers.
Communication of the ACM, 21(12):993-9, 1978.

[19] M. Rusinowitch, M. Turuani. Protocol Insecurity with Finite
Number of Sessions in NP-Complete. in Proc. ofl4th
Computer Security Foundations Workshop, IEEE Computer
Society Press, 2001.

[20] V. Shmatikov and U. Stern. Efficient finite-state analysis for
large security protocols, in Proc. of l ith Computer Security
Fonndations Workshop, IEEE Computer Society Press, 1998.

285

