
XPi: a Typed Process Calculus for XML

Messaging∗

Lucia Acciai Michele Boreale

Dipartimento di Sistemi e Informatica, Università di Firenze

{lacciai;boreale}@dsi.unifi.it

Abstract

We present XPi, a core calculus for XML messaging. XPi features asynchronous communi-
cation, pattern matching, name and code mobility, integration of static and dynamic typing.
In XPi, a type system disciplines XML message handling at the level of channels, patterns,
and processes. A run-time safety theorem ensures that in well-typed systems no service will
ever receive documents it cannot understand, and that the offered services will be consistent
with the declared channel capacities. An inference system is introduced, which is proved
to be in full agreement with type checking. A notion of barbed equivalence is defined that
takes into account information about service interfaces. Flexibility and expressiveness of this
calculus are illustrated by a number of examples, some concerning description and discovery
of web services.

1 Introduction

The explosive growth of the Web has led to the widespread use of de facto standards for naming
schemes (URI, URL), communication protocols (SOAP, HTTP, TCP/IP) and message formats
(XML). These three components are at the basis of the Web Services technology (WS, [35]), which
underlies important application scenarios, like business-to-business applications [7]. The resulting
architectural and programming paradigm, sometimes referred to as Service Oriented Computing,
is centered around XML-message passing. Major reasons for the emergence of message-passing
are its conceptual simplicity, its neutrality with respect to back-ends and platforms of services [8]
and, of course, the widespread availability of effective message-oriented middleware [33, 19].

It is generally recognized that some of the proposed languages and standards for WS draw
their inspiration from the π-calculus [27] , which conveys the message-passing paradigm in a
distilled form (see also [24]). However, until recently, there was a significant gap between theory
(formal models and analysis techniques) and practice (programming). One could find standards
like WSDL [34], apt to describe service interfaces but saying very little about behaviour, or, at
the other extreme, languages like BPEL4WS [4], oriented to detailed descriptions of services, but
hardly amenable to formal analysis.

The situation has changed in the last couple of years, with a number of proposals based on
process calculi, that lay the basis for formal specification and analysis of WS-compliant applications
at diverse levels of abstractions. These proposals and their relationships to our work are discussed
in the final section.

∗This paper is an extended and revised version of [2]. The work reported in this paper was carried out while
the first author was with the Laboratoire d’Informatique Fondamentale de Marseille, Université de Provence, as a
PhD student. Work partially supported by the EU within the FET-GC2 initiative, project SENSORIA.

1

In this paper, we place ourselves at a somewhat basic level to give a concise semantic account
of XML messaging and of the related typing issues. To this purpose, we present XPi, a process lan-
guage based on the asynchronous π-calculus. Prominent features of XPi are: patterns generalizing
ordinary inputs, ML-like pattern matching, and integration of static and dynamic typing. Our
objective is to study issues raised by these features in connection with name and code mobility.
A more precise account of our work and contributions follows.

For the sake of simplicity, syntax and reduction semantics of XPi are first introduced in an
untyped setting (Section 2). In XPi, resource addresses on the net are represented as names, which
can be generally understood as channels at which services are listening. Messages passed around
are XML documents, represented as tagged/nested lists, in the vein of XDuce [22, 23]. Services
and their clients are processes, that may send messages to channels, or query channels to retrieve
messages obeying given patterns. Messages may contain names, which are passed around with only
the output capability [30]. Practically, this means that a client receiving a service address cannot
use this address to re-define the service. This assumption is perfectly sensible, simplifies typing
issues, and does not affect expressive power (see e.g. [9, 25]). Messages may also contain mobile
code in the form of abstractions, roughly, functions that take some argument and yield a process
as a result. More precisely, abstractions can consume messages through pattern matching, thus
supplying actual parameters to the contained code and starting its execution. This mechanism
allows for considerable expressiveness. For example, we show that it permits a clean encoding of
encryption primitives, hence of the spi-calculus [1], into XPi.

Types (Section 3) discipline processing of messages at the level of channels, patterns, and
processes. At the time of its creation, each channel is given a capacity, i.e. a type specifying the
format of messages that can travel on that channel. Subtyping arises from the presence of star
types (arbitrary length lists) and union types, and by lifting at the level of messages a subtyping
relation existing on basic values. The presence of a top type T enhances flexibility, allowing for
such types as “all documents with an external tag f , containing a tag g and something else”,
written T = f [g[T],T]. Subtyping is contravariant on channels: this is natural if one thinks of
services, roughly, as functions receiving their arguments through channels. Contravariance calls
for a bottom type

T

, which allows one to express such sets of values as “all channels that can
transport documents of some type S < T”, written ch(f [g[

T

],

T

]). Abstractions that can safely
consume messages of type T are given type (T)Abs. Interplay between pattern matching, types,
and capacities raises a few interesting issues concerning type safety (Section 4). Stated in terms
of services accessible at given channels, our run-time safety theorem ensures that in well-typed
systems, first, no service will ever receive documents it cannot understand, and second, that the
offered service will comply with the statically declared capacities. The first property simply means
that no process will ever output messages violating channel capacities. The second property means
that no service will hang due to an input pattern (hence a type of incoming messages) that is not
consistent with the channel’s capacity – a form of “pattern consistency”. Note that this property
holds despite the fact that input patterns can partially be defined at run-time. Type checking
is entirely static, in the sense that no run-time type check is required. A simple type-inference
algorithm can be derived from type-checking (Section 5).

Our type system is partially inspired by XSD [20], but it is less rich than, say, the language
of [12]. In particular, we have preferred to omit recursive types. While certainly useful in a full
blown language, recursion would raise technicalities that hinder issues concerning name and code
mobility. Also, our pattern language is quite basic, partly for similar reasons of simplicity, partly
because more sophisticated patterns can be easily encoded.

The calculus described so far enforces a strictly static typing discipline. We also consider an
extension of this calculus with dynamic abstractions (Section 6), which are useful when little or
nothing is known about the actual types of incoming messages. Run-time type checks ensure
that substitutions arising from pattern matching respect the types statically assigned to variables.
Run time safety carries over. We argue that dynamic abstractions, combined with code mobility
and subtyping, can provide linguistic support to such tasks as publishing and querying services:

2

indeed, we show that, relying on these features, dedicated primitives for publishing and discovering
services can be easily encoded into XPi (Section 7).

A behavioural equivalence based on barbed bisimulation [31] is introduced (Section 8). This
equivalence takes into account both type information and the presence of an input interface. The
underlying idea is that systems come equipped with an interface, i.e. a set of input channels at
which services are offered; on these channels external observers do not have the input capability.

There have been a number of proposals for integrating XML manipulation primitives into
statically typed languages. We conclude (Section 9) with some discussion on recent related work
in this field, and with a few directions for future extensions. Appendices A, B, D and E report the
most lengthy or technical proofs, while Appendix F contains a somewhat more concrete example
of service composition in XPi.

2 Untyped XPi

This section presents syntax and reduction semantics of untyped XPi, and a few derived constructs.

2.1 Syntax

We assume a countable set of variables V , ranged over by x, y, z, . . . , a set of tags F , ranged over
by f,g,. . . , and a set of basic values BV ranged over by v, w, We leave BV unspecified (it
might contain such values as integers, strings, or Java objects), but assume that BV contains a
countable set of names N , ranged over by a, b, c, N is partitioned into a family of countable
sets called sorts S ,S ′, We let u range over N ∪V and let x̃, . . . denote a tuple of variables.

Definition 1 (messages, patterns and processes) The set M of XPi messages M, N, . . ., the
set Q of XPi patterns Q, Q′, . . . and the set P of XPi processes P, R, ... are defined by the syntax
in Table 1. In Qx̃, we impose the following linearity condition: x̃ is a tuple of distinct names and
each xi ∈ x̃ occurs at most once in Q.

In the style of XDuce [22, 23] and CDuce [5] XML documents are represented in XPi as tagged
lists that can be arbitrarily nested; these are the messages being exchanged among processes.
A message can be either a basic value, a variable, a tagged message, a list of messages, or an
abstraction. The latter take the form (Qx̃)P, where variables x̃ represent formal parameters, to be
replaced by actual parameters at run-time. A pattern is simply an abstraction-free message. For
the sake of simplicity, we have ignored tag-variables that could be easily accommodated. Also,
note that patterns do not allow for direct decomposition of documents into sublists (akin to the
pattern p, p’ in XDuce). The latter can be easily encoded though, as we show later in this section.

Process syntax is a variation on the π-calculus. In particular, asynchronous (non blocking)
output on a channel u is written u〈M〉, and u is said to occur in output subject position. Nondeter-
ministic guarded summation ∑i∈I ai .Ai waits for any message matching Ai ’s pattern at channel ai ,
for some i ∈ I (I finite), consumes this message and continues as prescribed by Ai ; names ai are said
to occur in input subject position. Note that the syntax forbids variables in input subject position,
hence a received name cannot be used as an input channel; in other words, names are passed
around with the output capability only (the motivation of this choice is discussed in Remark 2).
Parallel composition P1|P2 represents concurrent execution of P1 and P2. Process P else R behaves
like P, if P can do some internal reduction, otherwise reduces to R. This operator will be useful
for coding up, e.g., if-then-else, without the burden of dealing with explicit negation on pattern.
Replication !P represents the parallel composition of arbitrarily many copies of P. Restriction
(νa)P creates a fresh name a, whose initial scope is P.

3

Message M ::= v Value

| x Var

| f (M) Tag

| LM List

| A Abstraction

List of messages LM ::= [] Empty list

| x Var

|M ·LM Concatenation

Abstraction A ::= (Qx̃)P Pattern and Continuation

| x Var

Pattern Q ::= v Value

| x Var

| f (Q) Tag

| LQ List

List of patterns LQ ::= [] Empty list

| x Var

|Q·LQ Concatenation

Process P ::= u〈M〉 Output

| ∑i∈I ai .Ai Guarded Summation

| P else R Else

| P1|P2 Parallel

| !P Replication

| (νa)P Restriction

Table 1: Syntax of XPi messages, patterns and processes.

Binding conventions We stipulate that in every abstraction (Qx̃)P the variables in x̃ bind with
scope P, and that in each restriction (νa)P name a binds with scope P. Accordingly, notions of
alpha-equivalence (=α), free and bound names (fn(·) and bn(·)), free and bound variables (fv(·) and
bv(·)) arise as expected for both messages and processes. We assume that =α is sort-respecting,
in the sense that a bound name can be α-renamed only to a name of the same sort. Whenever
needed, we shall implicitly assume all binding occurrences of names (resp. variables) are distinct
and disjoint from free names (resp. variables). We let M cl be the set of closed messages and P cl

be the set of closed processes.

Notations The following abbreviations for messages and patterns are used: [M1,M2, . . . ,Mk−1,Mk]
stands for M1 · (M2 · (. . .(Mk−1 · (Mk · [])) . . .)), while f [M1, . . . , ,Mk] stands for f ([M1, . . . ,Mk]). The

4

following abbreviations for processes are used: 0, a1.A1 and a1.A1 + a2.A2 + · · ·+ an.An stand
for ∑{i∈I}ai .Ai when |I | = 0, |I | = 1, and |I | = n, respectively; (νa1, . . . ,an)P = (νã)P stands for
(νa1) . . .(νan)P. We sometimes save on subscripts by marking binding occurrences of variables in
abstractions by a “?” symbol, or by replacing a binding occurrence of a variable by a don’t care
symbol, “ ”, if that variable does not occur in the continuation process. E.g. ([f [?x],g[]])P stands
for ([f [x],g[y]]{x,y})P where y /∈ fv(P).

Our list representation of XML ignores algebraic properties of concatenation (such as associa-
tivity, see [23]). We simply take for granted some translation from actual XML documents to our
syntax. The following example illustrates informally what this translation might look like.

Example 1 An XML document encoding an address book (on the left) and its representation in
XPi (on the right)1:

<addrbook> addrbook[

<person> person[

<name>John Smith</name> name("John Smith"),

<tel>12345</tel> tel(12345),

<emailaddrs> emailaddrs[

<email>john@smith</email> email("john@smith"),

<email>smith@john</email> email("smith@john")

</emailaddrs>]

</person>],

<person> person[

<name>Eric Brown</name> name("Eric Brown"),

<tel>678910</tel> tel(678910),

<emailaddrs></emailaddrs> emailaddrs[]

</person>]

</addrbook>]

Note that in XPi a sequence of tagged documents such as <tag1>M</tag1><tag2>N</tag2>· · · is
rendered as a list [tag1(M), tag2(N),· · ·]. A pattern, which extracts name and telephone num-
ber of the first person of the address book above, is: Qxy= addrbook[person[name(?x),tel(?y),_],_].

2.2 Reduction Semantics

A reduction relation describes system evolution via internal communications. Following [26],
XPi reduction semantics is based on structural congruence ≡, defined as the least congruence on
processes satisfying the laws in Table 2. As it is usually the case, structural congruence permits
certain rearrangements of parallel composition, replication, and restriction. Structural congruence
extends to abstractions, hence to messages, in the expected manner. The reduction semantics also
relies on a standard matching predicate, that matches a (linear) pattern against a closed message
and yields a substitution.

Definition 2 (substitutions and matching) Substitutions σ,σ′, ... are finite partial maps from
the set V of variables to the set M cl of closed messages. We denote by ε the empty substitution.
For any term t, tσ denotes the result of applying σ onto t (with alpha-renaming of bound names
and variables if needed.) Let M be a closed message and Q be a linear pattern: match(M,Q,σ)
holds true if and only if dom(σ) = fv(Q) and Qσ = M; in this case, we also say that M matches Q.

Definition 3 (reduction) The reduction relation, →⊆ Pcl ×Pcl, is the least binary relation on
closed processes satisfying the rules in Table 3.

1We shall prefer the typewriter font whenever useful to improve on readability.

5

P =α R⇒ P ≡ R P|R ≡ R|P

(P|R1)|R2 ≡ P|(R1|R2) P|0 ≡ P

!P ≡ P|!P (νa)(P|R) ≡ P|(νa)R if a /∈ fn(P)

(νa)0 ≡ 0 (νa)(νb)P ≡ (νb)(νa)P

Table 2: Structural congruence.

(com)
j ∈ I a j = a, A j = (Qx̃)P, match(M,Q,σ)

a〈M〉 |∑
i∈I

ai .Ai → Pσ

(struct)
P≡ P′, P′→ R′, R′ ≡ R

P→ R (ctx) P→ P′

(νã)(P|R)→ (νã)(P′|R)

(else1)
P→ P′

P else R → P′
(else2)

P 9
P else R → R

Table 3: Reduction semantics.

A few words on the semantics of the else operator are in order. P else R behaves like P only if P
can perform some internal actions, otherwise reduces to R. This semantics allows for the coding of
if-then-else and similar constructs (see the Case defined below), without the need of introducing a
(burdensome) explicit negation in patterns. Note that we forbid interaction of either branches of
the else with the environment: e.g., in av |

(
a.(Q)P else R

)
, we do not allow the left component of

the else to consume the output on channel a. Indeed, by allowing that we would grant processes
with the ability of atomically detecting presence/absence of messages on channels: this ability
is unrealistic in a distributed setting. Moreover, it would have an impact on the observational
semantics of the calculus difficult to assess.

Example 2 Consider the message M and the pattern Qxy defined in Example 1, according to
(com):

a〈M〉 | a.(Qxy)(b〈[name(x),tel(y)]〉 |P)

→

b〈[name(“JohnSmith”),tel(12345)]〉 |(P[“JohnSmith”/x,12345/y]) .

2.3 Derived constructs and examples

XPi allows for straightforward definition of a few powerful constructs, that will be used in later
examples. In the following, we shall freely use recursive definitions of processes, that can be coded
up using replication [26].

Application. A functional-like application for abstractions, A•M, can be defined as (νc)(c〈M〉|c.A),
for any c /∈ fn(M,A).

Case. A pattern matching construct relying on a first match policy, written

Case M of (Q1)x̃1 ⇒ P1, (Q2)x̃2 ⇒ P2, · · · ,(Qk)x̃k ⇒ Pk

6

evolves into P1 if M matches Q1 (with substitutions involved), otherwise evolves into P2 if M
matches Q2, and so on; if there is no match, the process is stuck. This construct can be defined
in XPi as follows (assuming precedence of • on else and right-associativity for else):

(Q1)x̃1P1 •M else (Q2)x̃2P2 •M else · · · else (Qk)x̃kPk •M .

Example 3 Consider the message M defined in Example 1. Suppose that we want to extract and
send along b the name of all persons that have at least one email address, and along c the name
of all persons that do not have an email. Assume M is available on channel a. A process that
performs this task is: a.(addrbook[?x])R(x), where R(x) is:

R(x) =Case x of person[name(?y), ,emailaddrs[email(),]] ·?w ⇒ b〈y〉 |R(w)

person[name(?z),] ·?j ⇒ c〈z〉 |R(j).

Decomposition and list processing. A process that attempts to decompose a message M into
two sublists that satisfy the patterns Qx̃ and Q′

ỹ and proceeds like P (with substitutions for x̃ and
ỹ involved), if possible, otherwise is stuck, written:

M as Qx̃, Q′
ỹ ⇒ P

can be defined as the recursive process R(M), where:

R(x) = Case [] of Qx̃ ⇒Case x of Q′
ỹ ⇒ P

⇒ R′([[],x])

⇒ R′([[],x])

R′([l ,x]) = Case x of ?y·?w⇒ (Case l@y of Qx̃ ⇒ (Case w of Q′
ỹ ⇒ P,

⇒ R′([l@y, w])),

⇒ R′([l@y,w])).

Here we have used a list-append function @, which can be easily defined via a call to a suitable
recursive process.

Example 4 Consider

M = [int(1),int(2),int(3),char(“a”),char(“b”),char(“c”)]

And the patterns: Qx = ?x and Q′
yw = char(?y) ·?w. Then

a〈M〉 | a.(?z) zas Qx, Q′
yw ⇒ b〈x〉 |c〈char(y) ·w〉

−→∗

b〈[int(1),int(2),int(3)]〉 |c〈[char(“a”),char(“b”),char(“c”)]〉

A process that, from a list LM, generates another list containing all messages of the original
list satisfying a certain (closed) pattern Q, assigns this list to a variable y and proceeds like P:

let y = map Q, LM in P

can be defined as the process R([[],LM]), where the following recursive definition is assumed:

R([l ,x]) = Case x of ?z·?w ⇒ (Case zof Q ⇒ R([z· l ,w]),

⇒ R([l ,w])),

⇒ P[l/y].

7

Example 5 Consider the message M of Example 1, available at a. Here is a process that consumes
M, creates a list of all persons that have at least one email address and sends this list along b:

a.(addrbook[?x])(let y =map person[, ,emailaddrs[email(),]],x in b〈y〉)

Most common list manipulation constructs can be easily coded up in this style. We shall not
pursue this direction any further.

Example 6 (a web service) Consider a web service WSthat offers two different operations:

• an audio streaming service, offered at channel stream;

• a player download service, offered at channel download.

Clients that request the first kind of service must specify a streaming channel and its bandwidth
(“high” or “low”), so that WScan stream one of two files (vlow and vhigh), as appropriate. Clients
that request to download must specify a channel at which the player will be received. A client can
run the downloaded player locally, supplying it appropriate parameters (a local streaming channel
and its bandwidth). We represent streaming on a channel simply as an output action along that
channel:

WS
4
=!

(
stream.(req stream[bandwidth(“low”),channel(?x)])x〈vlow〉

+ stream.(req stream[bandwidth(“high”),channel(?y)])y〈vhigh〉

+ download.(req down(?z))z〈Player〉
)
.

Player is an abstraction:

Player
4
= (req stream[bandwidth(?y′),channel(?z′)])

(
Case y′ of “low” ⇒ z′〈vlow〉

“high” ⇒ z′〈vhigh〉
)
.

Note that the first two summands of WSare equivalent to stream.Player. However, the extended
form written above makes a static optimization of channels possible (see Example 10). A client
that asks for low bandwidth streaming, listens at s and then proceeds like C is:

C1
4
= (νs)(stream〈req stream[bandwidth(“low”),channel(s)]〉 |s.(?v)C).

Another client that asks for download, then runs the player locally, listening at a local high
bandwidth channel s is C2 defined as:

C2
4
= (νd, s)

(
download〈req down(d)〉

| d.(?xp)(xp •req stream[bandwidth(“high”),channel(s)]

| s.(?v)C)
)
.

2.4 Expressiveness: encoding of encryption and decryption

Cryptographic primitives are sometimes used in distributed applications to guarantee secrecy and
authentication of transmitted data. As a testbed for expressiveness of XPi, we show how to encode
shared-key encryption and decryption primitives à la spi-calculus [1] into XPi. We first introduce
XPicr, a cryptographic extension of XPi that subsumes shared-key spi-calculus, and then show how
to encode XPicr into XPi. Message syntax is extended with the following clause, that represents
encryption of M using N as a key:

M ::= · · · |{M}N (encryption)

8

where N does not contain neither abstractions nor encryptions. Process syntax is extended with
a case operator, that attempts decryption of M using N as a key and if successful binds the result
to a variable x :

P ::= · · · |case M of {x}N in P (decryption)

where N does not contain neither abstractions nor encryptions, M is a variable or a message of
the form {M′}N′ and x binds in P. Patterns remain unchanged, in particular they may not contain
encryptions nor abstractions. The additional reduction rule is:

(Dec) case {M}N of {x}N in P→ P[M/x].

Next, two translation functions, one for messages ([[·]]) and one for processes (〈| · |〉), are defined
from XPicr to XPi. The translations of messages follow a familiar continuation-passing style. The
relevant clauses of the definition, by structural induction, are as follows (on the others the functions
just go through the structure of terms):

[[u]] = u

[[{M}N]] = ([N,?x])x〈[[M]]〉

〈|u〈M〉|〉 = u〈[[M]]〉

〈|case M of {x}N in P|〉 = (ν r)([[M]]• [N, r] | r.(?x)〈|P|〉).

Before proving the correctness of the encoding, we need to introduce some preliminary def-
initions. Following [31], let us define the observation predicate (barb) P ↓a, which detects the
possibility for P of immediately interacting along port a. Being in an asynchronous setting, we
restrict our attention to output ports (see e.g. [3]). Thus, in XPi, P ↓a holds true if P has an
output action a〈M〉, for some M, which is not in the scope of another prefix, or of (νa) or of an else
operator; P⇓a means that for some P′, P→∗ P′ and P′ ↓a. Below, P→̂P′ stands for either P→ P′

or P = P′. In the following we define a barbed equivalence and a barbed expansion preorder.

Definition 4 (barbed bisimulation) A symmetric binary relation on closed processes is a barbed
bisimulation if (P,R) ∈ R implies:

• whenever P→ P′ then there is R′ such that R→∗ R′ and (P′,R′) ∈ R ;

• whenever P ↓a then R⇓a.

Two processes P and R are barbed bisimilar, written P≈̇R, if (P,R) ∈ R for some barbed bisimu-
lation R .

Following [10], we obtain barbed equivalence by closing barbed bisimulation under static con-
texts (in π-calculus, one gets ordinary early bisimulation this way.)

Definition 5 (barbed equivalence) Two processes P1 and P2 are barbed equivalent, written
P1 ≈ P2, if for each h̃ and each R it holds that (νh̃)(P1|R)≈̇(νh̃)(P2|R).

In a similar vein, we define the barbed expansion preoder :

Definition 6 (barbed expansion preorder) .̇ is the largest preorder such that P.̇R implies:

• whenever P→ P′ then there is R′ such that R→∗ R′ and P′ .̇R′;

• whenever R→ R′ then there is P′ such that P→̂P′ and P′ .̇R′;

• whenever P ↓a it holds that R⇓a and whenever R↓a then P ↓a.

9

We say that a process R expands P, written P . R, if for each h̃ and for each P′ it holds that
(νh̃)(P|P′).̇(νh̃)(R|P′).

Finally, for reasoning on the encoding, we introduce barbed 〈| · |〉-equivalence, which is obtained
by closing barbed bisimulation under contexts that respect the encoding, that is, that are encodings
of XPicr contexts (cfr. e.g. [9]).

Definition 7 (barbed 〈| · |〉-equivalence) Two processes P1 and P2 are barbed 〈| · |〉-equivalent,
written P1 ≈〈|·|〉 P2, if for each h̃ and each R it holds that (νh̃)(P1|〈|R|〉)≈̇(νh̃)(P2|〈|R|〉).

The encoding defined above is correct, in the sense that it preserves reductions and barbs
in both directions, as stated by the following results (the proofs are reported in Appendix A).
This implies that secrecy is preserved when moving from XPicr to XPi, provided in the latter only
contexts that respect the encoding are taken into account.

Proposition 1 Let P be a closed process in XPicr.

1. if P→ P′ then 〈|P|〉 →∗ 〈|P′|〉;

2. if 〈|P|〉 → P′ then ∃P′′ ∈ XPicr s.t. P→ P′′ and 〈|P′′|〉. P′;

3. P ↓ a implies 〈|P|〉 ⇓ a and 〈|P|〉 ↓ a implies P⇓ a.

Theorem 1 Let P be a closed process in XPicr. P≈̇〈|P|〉.

Corollary 1 Let P1 and P2 be closed processes in XPicr. P1 ≈ P2 if and only if 〈|P1|〉 ≈〈|·|〉 〈|P2|〉.

3 A type system

In this section, we define a type system that disciplines messaging at the level of channels, patterns
and processes in XPi. The system guarantees that well-typed processes respect channels capacities
at runtime. In other words, services are guaranteed to receive only requests they can understand,
and conversely, services offered at a given channel will be consistent with the type declared for that
channel. XPi’s type system draws its inspiration from, but is less rich than, XML-Schema [20].
Our system permits to specify types for basic values (such as string or int) and provides tuple
types (fixed-length lists) and star types (arbitrary-length lists); moreover, it provides abstraction
types for code mobility. For the sake of simplicity, we have omitted attributes and recursive types.

3.1 Message types and subtyping

We assume an unspecified set BT of basic types bt, bt’,... that might include int, string, boolean,
or even Java classes. We assume that BT contains a countable set of sort names in one-to-one
correspondence with the sorts S ,S ′, ... of N ; by slight abuse of notation, we denote sort names by
the corresponding sorts.

Definition 8 (types) The set T of types, ranged over by T, S, . . . , is defined by the syntax in
Table 4.

Note the presence of the union type T+T’, that is the type of all messages of type T or T’, and
of the star type ∗T, that is the type of all lists of elements of type T. (T)Abs is the type of all
abstractions that can consume messages of type T. Finally, note the presence of T and

T

types.
T is simply the type of all messages. On the contrary, no message has type

T

, but this type is
extremely useful for the purpose of defining channel types, as we shall see below.

10

Types T ::= bt Basic type (bt ∈ BT)

|T Top

|

T

Bottom

| f (T) Tag (f ∈ F)

| LT List

| T+T Union

| (T)Abs Abstraction

List types LT ::= [] Empty

| ∗T Star

| T ·LT Concatenation

Table 4: Syntax of types.

Notation The following abbreviations for types are used: [T1,T2, . . . ,Tk−1,Tk] stands for T1 ·
(T2 · (. . .(Tk−1 · (Tk · [])) . . .)), while f [T1, . . . ,Tk] stands for f ([T1, . . . ,Tk]).

Example 7 A type for address books, on the left (see message M in Example 1), and a type for
all SOAP messages, consisting of an optional header and a body, enclosed in an envelope, on the
right:
addrbook[*person[name(string), envelope[[] + header(T),

tel(int), body(T)

emailaddrs(*email(string))]]].

Next, we associate types with channels, or more precisely with sorts. This is done by introducing
a “capacity” function.

Definition 9 A capacity function is a surjective map from the set of sorts to the set of types.

In the sequel, we fix a generic capacity function. We shall denote by ch(T) a generic sort that
is mapped to T. Note that, by surjectivity of the capacity function, for each type T there is a
sort ch(T). In particular, ch(T) is the sort of channels that can transport anything. In practice,
determining capacity T of a given channel a, i.e. that a belongs to ch(T), might be implemented
with a variety of mechanisms, such as attaching to a an explicit reference to T’s definition. We
abstract away from these details.

List and star types and the presence of T and

T

naturally induce a subtyping relation. For
example, a service capable of processing messages of type T = f (∗int) must be capable of processing
messages of type T′ = f [int, int], i.e. T′ is a subtype of T. Subtyping also serves to lift a generic
subtyping preorder on basic types, ≺, to all types.

Definition 10 (subtyping) The subtyping relation <⊆ T ×T is the least reflexive and transi-
tive relation closed under the rules of Table 5.

Note that we disallow subtyping on abstractions. The reason for this limitation will be discussed
shortly after presenting the type checking system (see Remark 1). Also note that subtyping is
contravariant on sorts capacities (rule (Sub-Sort)): this is natural if one thinks of a name of
capacity T as, roughly, a function that can take arguments of type T. As a consequence of
contravariance, for any T, we have ch(T) < ch(

T

), that is, ch(

T

) is the type of all channels.

11

(Sub-Sort)
T < T’

ch(T′) < ch(T)

(Sub-Top)
T < T

(Sub-Bottom) T

< T

(Sub-Basic)
bt1≺ bt2

bt1 < bt2
(Sub-Tag)

T′ < T

f (T′) < f (T)

(Sub-Star1) [] < ∗T
(Sub-Star2)

T′ < T, LT < ∗T
T’ ·LT < ∗T

(Sub-Star3)
T′ < T

∗T’ < ∗T
(Sub-List)

T1 < T′
1, LT < LT′

T1 ·LT < T′
1 ·LT′

(Sub-Union1)
T < T′ or T < T′′

T < T’+T”
(Sub-Union2)

T′ < T, T′′ < T

T’+T”< T

Table 5: Rules for subtyping.

3.2 Type checking

A basic typing relation v : bt on basic values and basic types is presupposed, which is required to
respect subtyping, i.e. whenever bt ≺ bt’ and v : bt then v : bt’. We further require that for each
bt there is at least one v : bt, and that for each v the set of bt’s s.t. v : bt has a minimal element.
On names, the basic typing relation is the following:

a : S iff a∈ S ′ for some S ′ < S .

Contexts Γ,Γ′, ... are finite partial maps from variables V to types T , sometimes denoted as
sets of variable bindings {xi : Ti}i∈I (xi ’s distinct). We denote the empty context by /0. Let x̃ be a
set of variables; we denote by Γ−x̃ the context obtained from Γ by removing the bindings for the
variables in x̃, and by Γ|x̃ the context obtained by restricting Γ to the bindings for the variables
in x̃. The subtyping relation is extended to contexts by letting Γ1 < Γ2 iff dom(Γ1) = dom(Γ2) and
∀x∈ dom(Γ1) it holds that Γ1(x) < Γ2(x). Union of contexts Γ1 and Γ2 having disjoint domains is
written as Γ1∪Γ2 or as Γ1, Γ2 if no ambiguity arises. Sum of contexts Γ1 and Γ2 is written as Γ1+Γ2

and is defined as (Γ1 +Γ2)(x) = Γ1(x)+Γ2(x) if x∈ dom(Γ1)∩dom(Γ2), and (Γ1 +Γ2)(x) = Γi(x) if
x∈ dom(Γi), for i = 1,2, otherwise.

Type checking relies on a type-pattern matching predicate, tpm(T,Q,Γ), whose role is twofold:
(1) it extracts from T the types expected for the variables in Q after matching against messages
of type T, yielding the context Γ, (2) it checks that Q is consistent with type T, i.e. that the type
of Q is of a subtype of T under Γ.

Definition 11 (type-pattern match) The predicate tpm(T,Q,Γ) is defined by the rules in Ta-
ble 6.

It is worth noticing that the condition Q 6= x in rule (tpm-Top) is there just to enforce the use
of (tpm-Var) in case Q = x and T = T, so as to preserve the syntax-driven nature of the system.
Rule (tpm-Union) deals with union types. Note in particular that if the pattern matches both
components of the union, the resulting context will be given by the sum of the contexts produced
by both matchings.

As expected, type checking works on an annotated syntax for processes and patterns, where
each Qx̃ is decorated by a context Γ for its binding variables x̃, written Qx̃ : Γ, with x̃ = dom(Γ), or
simply Q : Γ, where it is understood that the binding variables of Q are dom(Γ). For notational
simplicity, we shall use such abbreviations as a.(f [?x : T,?y : T′])P for a.(f [x,y] : {x : T,y : T′})P, and

12

(tpm-Top)
Q 6= x

tpm(T,Q,Γ) , ∀x∈ fv(Q) : Γ(x) = T

(tpm-Empty)
tpm([], [], /0) (tpm-Var)

tpm(T,x,{x : T})

(tpm-Value) v : bt
tpm(bt,v, /0) (tpm-Tag)

tpm(T,Q,Γ)
tpm(f (T), f (Q),Γ)

(tpm-Star1) tpm(∗T, [], /0) (tpm-Star2)
tpm(T,Q,Γ1), tpm(∗T,LQ,Γ2)

tpm(∗T,Q·LQ,Γ1∪Γ2)

(tpm-List)
tpm(T,Q,Γ1), tpm(LT,LQ,Γ2)

tpm(T ·LT,Q·LQ,Γ1∪Γ2)

(tpm-Union)
tpm(T0,Q,Γ0) or tpm(T1,Q,Γ1)

tpm(T0 +T1,Q,Γ) , where:

Γ =
{

Γ0 +Γ1 if tpm(T0,Q,Γ0) and tpm(T1,Q,Γ1)
Γi if tpm(Ti ,Q,Γi) and for no Γ′ tpm(Ti+1mod2,Q,Γ′), i = 0,1

Table 6: Matching types and patterns.

(tm-Empty) Γ ` [] : [] (tm-Top) Γ ` M : T

(tm-Value) v : bt
Γ ` v : bt

(tm-Var)
Γ(x) < T
Γ ` x : T

(tm-Tag) Γ ` M : T
Γ ` f (M) : f (T) (tm-List)

Γ `M : T, Γ ` LM : LT
Γ ` (M ·LM) : (T ·LT)

(tm-Star1) Γ ` [] : ∗T (tm-Star2)
Γ `M : T, Γ ` LM : ∗T

Γ ` (M ·LM) : ∗T

(tm-Union) Γ `M : T or Γ `M : T′

Γ `M : T+T′

(tm-Abs)
tpm(T,Q,Γ1), (Γ1)|x̃ < ΓQ, (Γ1)|ỹ > Γ|ỹ, Γ,ΓQ ` P : ok

Γ ` (Q : ΓQ)P : (T)Abs

where x̃ = dom(ΓQ), ỹ = fv(Q)\ x̃ and (Γ1)|ỹ is abstraction-free

Table 7: Type system for messages.

assume that don’t care variables “ ” are always annotated with T. Reduction semantics carries
over to annotated closed processes formally unchanged.

In what follows, we shall use the following additional notation and terminology. We say that a
type T is abstraction-free if T contains no subterms of the form (T′)Abs. A context Γ is abstraction-
free if for each x∈ dom(Γ), Γ(x) is abstraction-free. We use Γ ` u∈ ch(T) as an abbreviation for:
either u = a∈ ch(T) or u = x∈ V and Γ(x) = ch(T).

The type checking system, defined on open terms, consists of two sets of inference rules, one
for messages and one for processes, displayed in Table 7 and 8, respectively. These two systems
are mutually dependent, since abstractions may contain processes, and processes may contain
abstractions. Note that the system is entirely syntax driven, i.e. the process P (resp. the pair
(M,T)) determines the rule that should be applied to check Γ ` P : ok (resp. Γ `M : T).

The most interesting of these rules is (tm-Abs). Informally, Γ ` A : (T)Abs ensures that under
Γ the following is true: (1) abstraction A = (Qx̃ : ΓQ)P behaves safely upon consuming messages

13

(t-In) a∈ ch(T), Γ ` A : (T)Abs
Γ ` a.A : ok

(t-Out) Γ ` u∈ ch(T), Γ `M : T
Γ ` u〈M〉 : ok

(t-Sum)
∀i ∈ I , Γ ` ai .Ai : ok |I | 6= 1

Γ `∑
i∈I

ai .Ai : ok

(t-Rep) Γ ` P : ok
Γ ` !P : ok (t-Par)

Γ ` P : ok, Γ ` R : ok
Γ ` (P|R) : ok

(t-Res) Γ ` P : ok
Γ ` (νa)P : ok

(t-Else)
Γ ` P : ok, Γ ` R : ok

Γ ` P else R : ok

Table 8: Type system for processes.

of type T (because the type at which the actual parameters will be received is a subtype of the
type declared for formal parameters, (Γ1)|x̃ < ΓQ, and because of Γ,ΓQ ` P : ok); (2) the pattern
Q is consistent with type T, i.e. essentially the run-time type of Q is a subtype of T (because of
type-pattern match and of Γ|ỹ < (Γ1)|ỹ). This guarantees existence of a message of type T that
matches the pattern. Moreover, no ill-formed pattern will arise from Q (abstraction-freeness).
Examples 8 and 9 further illustrate the premises of this rule.

Rule (t-In) checks that an abstraction A residing at channel a ∈ ch(T) can safely consume
messages of type T, and that there do exist messages of type T that match the pattern of A.
Conversely (t-Out) checks that messages sent at u are of type T. Input and summation (rule
(t-Sum)) are dealt with separately only for notational convenience. Finally, it is worth to notice
that, by definition of a : S , rule (tm-Value) entails subsumption on channels (i.e. Γ ` a : S and
S < S ′ implies Γ ` a : S ′.) The remaining rules should be self-explanatory.

In the sequel, for closed annotated processes P, we shall write P : ok for /0 ` P : ok, and say that
P is well-typed. Similarly for M : T, for annotated closed M.

Example 8 (condition (Γ1)|x̃ < ΓQ in TM-Abs) Consider the following process:

P = a.(?x : int)b〈x〉 |a〈[1,2,3]〉 .

Suppose a ∈ ch(∗int) and b ∈ ch(int). If condition (Γ1)|x̃ < ΓQ is omitted then process P above
results well-typed, but the subject reduction property would be violated because at run-time we
would have b〈[1,2,3]〉, which is ill-typed according to (t-Out).

Example 9 (condition (Γ1)|ỹ > Γ|ỹ in TM-Abs) Assume a ∈ ch(∗int) and b ∈ ch(f [int,∗int]).
Then P : ok, where:

P = a.(?y : ∗int)b.(f [?x : int,y])a〈x ·y〉 | a〈[4,5]〉 | a〈[4,5,6]〉.

Suppose condition (Γ1)|ỹ > Γ|ỹ is omitted. The sort associated to b could be changed into ch(f [int, [int, int]])
and process P would still result well-typed, but the subject reduction property would be violated
because at run-time we could have b.(f [?x : int, [4,5,6]])a〈x · [4,5,6]〉 | a〈[4,5]〉, which is ill-typed
according to (t-In), because f [?x : int, [4,5,6]] is not consistent with the capacity associated to b,
that is f [int, [int,int]].

To illustrate the use of ch(

T

), and contravariance on sort names, consider a “link process”
([9]) that constantly receives any name on a and sends it along b. This can be written as !a.(?x :
ch(

T

))b〈x〉. This process is well-typed provided a∈ ch(ch(T)), for some T, and that b∈ ch(ch(

T

)).

Remark 1 (on abstractions and subtyping) To see why we disallow subtyping on abstrac-
tions, consider the types T = [f (int), f (int)] and ∗ f (int) = T′. Clearly T < T′. Assume we had
defined subtyping covariant on abstractions, so that (T)Abs < (T’)Abs. Now, clearly A = (?x :

14

T)0 :(T)Abs, but not A : (T′)Abs (the condition (Γ1)|x̃ < ΓQ of (tm-Abs) fails). In other words,
the basic principle of subtyping (that a supertype types more terms than a subtype) would be
violated.

On the other hand, assume we had defined subtyping contravariant on abstractions, so that
(T’)Abs < (T)Abs. Consider A′ = (Q : ΓQ)0, where Q : ΓQ = [f (?x : int), f (?y : int), f (?z : int)]; clearly
A′ : (T′)Abs, but not A′ : (T)Abs (simply because there is no type-pattern match between T and
Q, hence Q won’t be T-consistent.) This would violate again the basic principle of subtyping and
the safety property.

Remark 2 (on input locality) To illustrate input locality, assume we allowed a process to use
a received name as input subject, like in P below

P = a.(?x : ch(S))x.(?y : S)c〈y〉 |a〈b〉 |b〈[1,2,3]〉 .

Assume a : ch(ch(S)), c : ch(S) and b : ch(T) for S = [int] and T = ∗int. By (Sub-Star2), S < T and
by (Sub-Sort) ch(T) < ch(S). Process P is well-typed by rules (t-Par), (t-In), (t-Out) and
(tm-Abs). But here a reduction violates the subject reduction property. In fact, P→ P′ → P′′

with P′ = b.(?y : S)c〈y〉 | b〈[1,2,3]〉 and P′′ = c〈[1,2,3]〉 and process P′′ is not well-typed because
c : ch(S) but not [1,2,3] : S. (Note that P′ is not well-typed either, because tpm(T,?y,{y : T}) and
not S > T as required by (tm-Abs)).

3.3 Typing rules for Application and Case

The rules below can be easily derived from the translation of derived constructs application and
case to the base syntax. In the following, we let TM,Γ denote the exact type of M under Γ, obtained
from M by replacing each x by Γ(x), each name a∈ ch(T) by ch(T), each other v by the least type
bt s.t. v : bt, and, recursively, each abstraction subterm (Q : ΓQ)P by (TQ, Γ∪ΓQ)Abs. The rule for
application is:

(t-Appl)
Γ ` A : (TM,Γ)Abs

Γ ` A•M : ok .

that is easily proven sound recalling that A•M = (νc)(c.A|c〈M〉) (c fresh), and assuming that c is
chosen s.t. c∈ ch(TM,Γ).

Concerning Case, first note that the typed version of this construct contemplates annotated
patterns, thus:

Case M of Q1 : ΓQ1 ⇒ P1,

Q2 : ΓQ2 ⇒ P2,

...

Qk : ΓQk ⇒ Pk .

Then, relying on the rule for application, the typing rule for case can be written as:

(t-Case)
∀i = 1, . . . ,k : Γ ` (Qi : ΓQi)Pi •M : ok

Γ `Case Mof Q1 : ΓQ1 ⇒ P1, . . . ,Qk : ΓQk ⇒ Pk : ok.

Example 10 (a web service, continued) Consider the service defined in Example 6. Assume
a basic type stream of all files, such that vlow, vhigh : stream, and a basic type low− stream of low
quality files, s.t. vlow : low− stream, but not vhigh : low− stream. Assume low− stream < stream;
note that this implies that ch(stream) < ch(low-stream), i.e. if a channel can be used for streaming
generic files, it can also be used for streaming low-quality files, which fits intuition. Let T be
req stream[bandwidth(string),channel(ch(stream))] and fix the following capacities for channels
streamand download: stream∈ ch(T) and download∈ ch(req down(ch((T)Abs))). An annotated
version of WS, which permits in principle a static optimization of channels (assuming allocation
of low-quality channels is less expensive than generic channels’):

15

WS=!
(

stream.(req stream[bandwidth(“low”),channel(?x : ch(low− stream))])x〈vlow〉

+stream.(req stream[bandwidth(“high”),channel(?y : ch(stream))])y〈vhigh〉

+download.(req down[?z : ch((T)Abs)])z〈Player〉
)

where Player is the obvious annotated version of the player of Example 6. It is easy to check that
Player: (T)Abs and that WS: ok.

4 Run-time safety

The safety property of our interest can be defined in terms of channel capacities, message types,
and consistency. First, a formal definition of pattern consistency.

Definition 12 (T-consistency) A type T is consistent if

T

does not occur in T. A pattern Q
is T-consistent if there is a message M : T that matches Q.

Note that all sort names, including ch(

T

), are consistent types by definition. A safe process is
one whose output and input actions are in agreement with channel capacities, as stated by the
definition below. It is worth noticing that condition (2) guarantees accessibility of services. Of
course, for input actions it makes sense to require consistency (condition (2)) only if the input
channel capacity is consistent.

Definition 13 (safety) Let P be an annotated closed process. P is safe if and only if for each
name a∈ ch(T):

1. whenever P≡ (ν h̃)(a〈M〉 |R) then M : T;

2. suppose T is consistent. Whenever P≡ (ν h̃)(S|R), where S is a guarded summation, a.A a
summand of S and Q is A’s pattern, then Q is T-consistent.

A first, expected result about the type system is type safety which relies on the following
lemma (omitted proofs are reported in Appendix B).

Lemma 1 Suppose T is consistent. If tpm(T,Q,Γ) for some Γ then Q is T-consistent.

Theorem 2 (type safety) Let P be an annotated closed process and suppose P : ok, then P is
safe.

Subject reduction relies on the following lemmas. The first lemma states that typing does respect
the subtyping relation:

Lemma 2 (subtyping) If T’ < T then for any M such that Γ `M : T′ we have Γ `M : T.

The following lemma ensures, roughly, that type-pattern match agrees with message-pattern
match. In particular, if a closed message of type T matches a pattern Q, then the values taken on
by Q’s variables after matching will be of the type predicted by tpm.

Lemma 3 (matching) Let M : T be a closed message. If match(M,Q,σ) and tpm(T,Q,Γ) then
∀x∈ dom(σ) : σ(x) : Γ(x).

The next lemmas ensure that typing is preserved by substitutions and structural congruence.

Lemma 4 (substitution) (a) If Γ, x : T ` P : ok and Γ ` M : T then Γ ` P[M/x] : ok; (b) if Γ, x :
T ` N : S and Γ `M : T then Γ ` N[M/x] : S.

16

Lemma 5 (structural congruence) Let P and Q be annotated closed processes. If P : ok and
P≡Q then Q : ok.

Theorem 3 (subject reduction) Let P be an annotated closed process. If P : ok and P→ P′

then P′ : ok.

Proof: By induction on the derivation of P→ P′. We distinguish the last reduction rule applied:

(com) a〈M〉|∑i∈I ai .Ai → Pσ where, for some j ∈ I :

• a = a j ;

• A j = (Qx̃ : ΓQ)P;

• match(M,Q,σ).

We have to prove that Pσ : ok. From a〈M〉|∑i∈I ai .Ai : ok and the premises of the rule (t-
Par), we deduce that a〈M〉 : ok. By the latter and the premises of the rule (t-Out), for
some T:

• a∈ ch(T);

• M : T.

Hence, from ∑i∈I ai .Ai : ok and the premises of rules (t-Sum) and (t-In), we deduce that
A j : (T)Abs.

From this, and the premises of the rule(tm-Abs), we infer:

• tpm(T,Q,Γ1), (Γ1)|x̃ < ΓQ;

• ΓQ ` P : ok.

By Lemma 3 (matching), M : T, match(M,Q,σ), and tpm(T,Q,Γ1) we have ∀x ∈ dom(σ) :
σ(x) : Γ1(x), hence, by Lemma 2 (subtyping), σ(x) : ΓQ(x). In conclusion, by ΓQ ` P : ok and
Lemma 4 (substitution) we have Pσ : ok.

(struct) by P→Q and the premises of the rule, we get P≡ P′, P′→Q′ and Q′ ≡Q. P′ : ok and
Lemma 5 imply Q′ : ok, and Q′ ≡Q implies Q : ok;

(ctx) by (νã)(P|R)→ (νã)(P′|R) and the premises of the rule, we get P→ P′. By the premises
of the rule (t-Res) and (νã)(P|R) : ok, we get P|R : ok, and by (t-Par) P : ok and R : ok. By
induction P→ P′ and P : ok implies P′ : ok, that is (νã)(P′|R) : ok by (t-Par) and (t-Res);

(else1) by P else Q→ P′ and the premises of the rule, we get P→ P′. By the premises of the
rule (t-Else) and P else Q : ok, we get P : ok and Q : ok. By induction P→ P′ and P : ok
imply P′ : ok;

(else2) P else Q→ Q; by the premises of the rule (t-Else) and P else Q : ok, we get P : ok and
Q : ok.

�

As a consequence of subject reduction and type safety we get run-time safety.

Corollary 2 (run-time safety) Let P be an annotated closed process. If P : ok and P→∗ P′ then
P′ is safe.

Proof: By Theorem 2 (Type Safety) and 3 (Subject Reduction). �

17

(tiM-Empty)
tiM([], [],Γ, /0) (tiM-Top)

tiM(T,M,Γ,Γ′) , ∀x∈ bv(M) : Γ′(x) =

T

(tiM-Value) v : bt
tiM(bt,v,Γ, /0) (tiM-Var)

Γ(x) < T
tiM(T,x,Γ, /0)

(tiM-Tag)
tiM(T,M,Γ,Γ′)

tiM(f (T), f (M),Γ,Γ′) (tiM-List)
tiM(T,M,Γ,Γ1), tiM(LT,LM,Γ,Γ2)

tiM(T ·LT,M ·LM,Γ,Γ1∪Γ2)

(tiM-Star1) tiM(∗T, [],Γ, /0) (tiM-Star2)
tiM(T,M,Γ,Γ1), tiM(∗T,LM,Γ,Γ2)

tiM(∗T,M ·LM,Γ,Γ1∪Γ2)

(tiM-Union)
tiM(T0,M,Γ,Γ0) or tiM(T1,M,Γ,Γ1)

tiM(T0 +T1,M,Γ,Γ′) , where:

Γ′ =
{

Γ0 +Γ1 if tpm(T0,Q,Γ0) and tpm(T1,Q,Γ1)
Γi if tpm(Ti ,Q,Γi) and for no Γ′′ tpm(Ti+1mod2,Q,Γ′′), i = 0,1

(tiM-Abs)
tpm(T,Q,Γ1), (Γ1)|ỹ > (Γ)|ỹ, tiP(P,Γ∪ (Γ1)|x̃,Γ2)

tiM((T)Abs, (Qx̃)P, Γ, (Γ1)|x̃∪Γ2)

where ỹ = fv(Q)\ x̃ and (Γ1)|ỹ abstraction-free

Table 9: Inference for messages.

(tiP-In)
a∈ ch(T), tiM((T)Abs,A,Γ,Γ1)

tiP(a.A,Γ,Γ1)

(tiP-Out)
Γ ` u∈ ch(T), tiM(T,M,Γ,Γ′)

tiP(u〈M〉,Γ,Γ′) (tiP-Sum)
∀i ∈ I : tiP(ui .Ai ,Γ,Γi), |I | 6= 1

tiP(∑
i∈I

ui .Ai ,Γ,
[
i∈I

Γi)

(tiP-Rep)
tiP(P,Γ,Γ′)
tiP(!P,Γ,Γ′) (tiP-Par)

tiP(P1,Γ,Γ1), tiP(P2,Γ,Γ2)
tiP(P1|P2,Γ,Γ1∪Γ2)

(tiP-Res)
tiP(P,Γ,Γ′)

tiP((νa)P,Γ,Γ′) (tiP-Else)
tiP(P,Γ,Γ1), tiP(R,Γ,Γ2)

tiP(P else R,Γ,Γ1∪Γ2)

Table 10: Inference system.

5 Inferring process annotations

Once channel capacities have been fixed, a suitable type for each pattern variable occurring in an
abstraction can be extracted from those capacities. We present here a simple inference system
intended to relieve programmers from explicit type annotation. Note, however, that there are
cases where a programmer might prefer to use explicit type annotations (see Example 11 below).

Below, we presuppose a non-annotated syntax of processes and messages. The inference system
is defined by two sets of mutually dependent rules, for messages and processes, presented in Table 9
and 10, respectively. The message inference system is defined as a predicate tiM(T,M,Γ,Γ′): this
yields a context Γ′ for the bound variables2 in M, such that M annotated with Γ′ is of type T
under Γ. The process inference system is defined as a predicate tiP(P,Γ,Γ′): this yields a context
Γ′ for the bound variables in P, such that P annotated with Γ′ is well-typed under Γ. The rules
follow closely those of type checking, are syntax-driven and should be self-explanatory.

Let us discuss the relationship between inference and type checking. We use the following
2Note that we do not identify processes or messages up to α-equivalence, which would make bv(·) not well-

defined.

18

additional notation. Given a non annotated P, such that bv(P)∩ fv(P) = /0, and a context Γ s.t.
bv(P) ⊆ Γ, we let PΓ be the annotated process resulting by annotating each binding occurrence
of any x∈ bv(P) with the type Γ(x); similarly for MΓ. Note in particular that if M = (Qx̃)P then
MΓ = (Qx̃ : Γ|x̃)PΓ|bv(P) . The proofs of the following results are reported in Appendix C.

Theorem 4 (correctness) Suppose fv(P) ⊆ dom(Γ0) and fv(M) ⊆ dom(Γ0). If tiP(P,Γ0,Γ) then
Γ0 ` PΓ : ok and if tiM(T,M,Γ0,Γ) then Γ0 `MΓ : T.

Theorem 5 (completeness) Suppose bv(P)⊆ dom(Γ′) and bv(M)⊆ dom(Γ′). Then: (a) If Γ0 `
PΓ′ : ok then there is Γ s.t. tiP(P,Γ0,Γ) and Γ′|bv(P) > Γ, and (b) If Γ0 ` MΓ′ : T then there is Γ s.t.
tiM(T,M,Γ0,Γ) and Γ′|bv(M) > Γ.

Inference for derived constructs. The following rules for Application and Case can easily be
proven admissible, i.e. if the premises are provable so is the conclusion, assuming, for application,
that a bound name c∈ ch(T) is chosen in the translation to the base syntax:

(tiP-Appl)
tiM(T,M,Γ,Γ1), tiM((T)Abs,A,Γ,Γ2)

tiP(A•M,Γ,Γ1∪Γ2)
.

(tiP-Case)
∀i ∈ {1, . . . ,k} : tiP(((Qi)x̃i)Pi •M,Γ,Γi)

tiP(Case Mof (Q1)x̃1 ⇒ P1, . . . ,(Qk)x̃k ⇒ Pk, Γ,
[

i=1,...,k

Γi)
.

Example 11 Consider the process WSdefined in Example 6 and the sorting assumptions defined
in Example 10. If we apply the inference algorithm to WS, we obtain the following context:

Γ = {x : ch(stream),y : ch(stream),z : ch((T)Abs),y′ : string,z′ : ch(stream)}.

i.e., it holds tiP(WS, /0,Γ). In particular we have that Γ(x) = ch(stream), which is a subtype of the
type assigned to x in Example 10 (ch(low− stream) > ch(stream)). It may be argued that allocation
of a channel variable at a subtype is more expensive than allocation of a channel variable at a
supertype. This shows that explicit type annotation can sometimes be preferable to inference.

6 Dynamic abstractions

Although satisfactory in many situations, a static typing scenario does not seem appropriate in
those cases where little is known in advance on actual types of data that will be received from the
network.

Example 12 (a directory of services) Suppose one has to program an online directory of (ref-
erences to) services. Upon request of a service of type T, for any T, the directory should lookup
its catalog and respond by sending a channel of type ch(T) along a reply channel. If the reply
channel is fixed statically, it must be given capacity ch(

T

), that is, any channel. Then, a client that
receives a name at this channel must have some mechanism to cast at runtime this generic type
to the subtype ch(T), which means going beyond static typing. If the reply channel is provided
by clients the situation does not get any better. E.g. consider the following service (here we use
some syntactic sugar for the sake of readability):

! request.(req[?t : Td,?xrep : ch(Tr)]) let y = lookup(t) in xrep〈y〉 (1)

where lookup is a function from some type Td of type-descriptors to the type of all channels,
ch(

T

). It is not clear what capacity Tr the return channel variable xrep should be assigned.
The only choice that makes the above process well typed is to set Tr = ch(

T

), that is, xrep can
transport any channel. But then, a client’s call to this service like request〈req[vtd,r]〉, where r

19

has capacity ch(T), is not well typed (because r ∈ ch(ch(T)) and ch(ch(T)) is not a subtype of
ch(Tr) = ch(ch(

T

))).
Even ignoring the static vs. dynamic issue, the schemas sketched above would imply some

form of encoding of type and subtyping into XML, which is undesirable if one wishes to reason at
an abstract level. As we shall see below, dynamic abstractions can solve these difficulties.

The scenario illustrated in the above example motivates the extension of the calculus presented
in the preceding sections with a form of dynamic abstraction. The main difference from ordinary
abstractions is that type checking for pattern variables is moved to run-time. This is reflected into
an additional communication rule, that explicitly invokes type checking. We describe below the
necessary extensions to syntax and semantics. We extend the syntactic category of Abstractions
thus:

A ::= · · · |(|Qx̃ : Γ|)P Dynamic abstraction

with x̃ = dom(Γ). We let D range over dynamic abstractions and A over all abstractions. We add
a new reduction rule:

(com-d)
j ∈ I , a j = a, A j = (|Qx̃ : Γ|)P, match(M,Q,σ), ∀y∈ dom(σ) : σ(y) : Γ(y)

a〈M〉 |∑
i∈I

ai .Ai → Pσ
.

We finally add a new type checking rule. For this, we need the following additional notation.
Given Γ1 and Γ2, we write Γ1 ≶ Γ2 if dom(Γ1) = dom(Γ2) and ∀x∈ dom(Γ1) there is a consistent
type T s.t. T < Γ1(x) and T < Γ2(x).

(tm-abs-d)
tpm(T,Q,Γ1), (Γ1)|x̃ ≶ ΓQ, (Γ1)|ỹ > Γ|ỹ, Γ,ΓQ ` P : ok

Γ ` (|Qx̃ : ΓQ|)P : (T)Abs

where ỹ = fv(Q)\ x̃ and (Γ1)|ỹ is abstraction free. The existence of a common consistent subtype
for ΓQ and (Γ1)|x̃ ensures a form of dynamic consistency for Q, detailed below.

We discuss now the extension of run-time safety. The safety property needs to be extended to
inputs formed with dynamic abstractions. A stronger form of pattern consistency is needed.

Definition 14 (dynamic T-consistency) An annotated pattern Q : Γ (fv(Q) = dom(Γ)) is dy-
namically T-consistent if there is a message M : T s.t. match(Q,M,σ) and ∀x∈ dom(σ) we have
σ(x) : Γ(x).

Definition 15 (dynamic safety) Let P be an annotated closed process. P is dynamically safe
if for each name a ∈ ch(T) conditions 1 and 2 of Definition 13 hold, and moreover the follow-
ing condition is true: Suppose T is consistent. Whenever P≡ (ν h̃)(S|R), where S is a guarded
summation, a.D is a summand of S and Q : Γ is D’s annotated pattern, then Q : Γ is dynamically
T-consistent.

It is straightforward to prove the extensions of Theorem 2 and Corollary 2 to the dynamic case,
i.e.: every closed annotated well-typed P is dynamically safe, and dynamic safety is preserved by
reductions (See Appendix D).

Corollary 3 (run-time dynamic safety) Let P be an annotated closed process. If P : ok and
P→∗ P′ then P′ is dynamically safe.

Example 13 (a directory of services, continued) Consider again the directory of services.
Clients can either request a (reference to a) service of a given type, by sending a message to
channel discovery, or request the directory to update its catalog with a new service, using the
channel publish. Each request to discoveryshould contain some type information, which would
allow the directory to select a (reference to a) service of that type, taking subtyping into account.
Types cannot be passed around explicitly. However one can pass a dynamic abstraction that will

20

do the selection on behalf of the client and return the result back to the client at a private channel.
The catalog is maintained on a channel cat local to the directory. Thus the directory process can
be defined as follows, where ∏i∈I ! cat〈ci〉 stands for ! cat〈c1〉 | · · · | ! cat〈cn〉 (for I = 1, . . . ,n) and the
following capacities are assumed: discovery∈ ch((ch(

T

))Abs), publish,cat∈ ch(ch(

T

)).

Directory
4
= (νcat)(∏i∈I ! cat〈ci〉 | ! publish.(?y : ch(

T

))! cat〈y〉

| ! discovery.(?x : (ch(

T

))Abs)cat.x)

Note that (ch(

T

))Abs is the type of all abstractions that can consume some channel. A client that
wants to publish a new service S that accepts messages of some type T at a new channel a∈ ch(T)
is:

C1
4
= (νa)(publish〈a〉 |S).

A client that wants to retrieve a reference to a service of type T, or any subtype of it, is:

C2
4
= (ν r)(discovery〈(|?z : ch(T)|)r〈z〉〉 | r.(?y : ch(T))C′) .

Note that we have preferred not to define C2 as (ν r)(discovery〈(|?y : ch(T)|)C′〉) so to avoid to
charge the server with non-local computations. In fact C′ may have to use resources which are
local to C2 and access to these resources from the server location could be expensive.

Suppose r ∈ ch(ch(T)). Assuming S and C′ are well typed (the latter under {y : ch(T)}), it is
easily checked that the global system

P
4
= Directory|C1 |C2

is well typed too.

7 Publishing and discovering services

In this section, we further elaborate on the theme of publishing and discovering that we used
as a motivating example for dynamic abstractions in the preceding section. We first define an
extension of XPi, that we name XPiE, with primitives for publishing and discovering. Then we
show that XPiE can be encoded into XPi.

In XPiE an uddi directory of services available at channel d is written d〈S〉, where S⊆ f in N
is the finite set of published services. The primitive d

(p)〈c〉 allows to publish the service c on d,
while d

(q)〈T,a〉 allows to query d for services of type T ∈ T . Channel a is used by the directory
as reply channel. In what follows, we presuppose a distinct sort D ⊆ N , ranged over by d,d′, . . .,
of directory identifiers. The set of XPiE processes is defined by extending the syntax of XPi with
the clauses below (recall that u∈ N ∪V):

P ::= · · ·
∣∣d〈S〉

∣∣u(p)〈c〉
∣∣u(q)〈T,u〉.

where we require T to be of the form ch(T′) for some T′. It is worth noticing that a name d ∈ D
received in input cannot be used to define a new direcory. The reduction semantics of the new
operators is given by the following rules:

(pub) d〈S〉 |d(p)〈c〉 → d〈S∪{c}〉

(query-T) ∃c∈ S c: T

d〈S〉 |d(q)〈T,a〉 → d〈S〉 | ∏
{c∈S|c:T}

a〈c〉
(query-F)

6 ∃c∈ S: c : T

d〈S〉 |d(q)〈T,a〉 → d〈S〉 |a〈ff〉

where ff stands for the boolean value “false”. When a client queries a directory for services
complying with a certain type, the directory either replies ff, if no service of that type is available

21

(rule (query-F)), or displays all possibilities to the client (rule (query-T)). The client may then
decide to use one or more of the offered services (e.g., choosing the one with the most precise type,
or trying them all for estimating their performances, etc.).

For the sake of simplicity, in the following we shall freely use recursive definitions in both XPiE

and XPi, which can be easily coded up by using replication [26].

Example 14 A client C queries a directory d for a service that is ready to receive a streamed file
(to, e.g., in turn stream it to a set of subscribed users). Assume stream is the type of streamed
files and low− stream is the type low-rate streams, and low− stream < stream. Hence ch(stream) <
ch(low− stream). As already discussed in Example 10, it can be the case that using a channel of the
subtype ch(stream) requires more resources than using a channel of the supertype ch(low− stream).
A client C with scarce resources, waiting to stream a low-quality file f , might even decide to stick
to ch(low− stream) services. The client C defined below, after querying the directory, discards
all services of type ch(stream) (first branch of C′’s else). If no service of type ch(low− stream) is

available, eventually C blocks. The whole system is Sys
4
= C|D, with:

C
4
= (νr)

(
d

(q)〈ch(low− stream), r〉
∣∣ r.(|?x : bool|)abort

∣∣C′)
C′ 4= r.(|?x : ch(low− stream)|)(νt)

(
(t〈x〉 | t.(|?y : ch(stream)|)C′)

else(t〈x〉 | t.(|?y : ch(low− stream)|)y〈 f 〉)
)

D
4
= d〈S〉

where S is the set of offered services.
It would be easy to modify this example to describe a more realistic scenario, where clients

do not simply block if ch(low− stream) services are not available. Indeed, the directory could be
modified to also provide the clients with the number n of different services being offered. Then a
client could search among these n services to e.g. find the one with the greatest or cheapest type.

It is easy to extend XPi’s type system to cope with the new primitives. First, we assume the
capacity function maps D to type

T

, that is, names of sort D cannot transport anything, hence
cannot be used as channels. Recall that we write Γ ` u ∈ D if either u = d ∈ D or u = x and
Γ(x) = D. The system in Table 8 is extended by adding the following rules:

(t-Dir) Γ ` d〈S〉 : ok (t-Pub) Γ ` u∈ D
Γ ` u(p)〈c〉 : ok

(t-Query)
Γ ` u∈ D Γ ` u′ ∈ ch(T+bool)

Γ ` u(q)〈T,u′〉 : ok

Run-time safety with these new typing rules carries over. In what follows, we use barbed equiv-
alence (Definition 5) for reasoning on XPiE processes. We observe not only outputs, but also
publish and query actions, hence we extend the definition of barbs as expected, in particular it
holds that d

(p)〈c〉 ↓d and d
(q)〈T,a〉 ↓d.

We define now a translation function, [[·]]E, from XPiE to XPi. In what follows, we use the

following abbreviation: chan
4
= ch(

T

). The relevant clauses of the definition are the following:

[[d〈S〉]]E = D(S) where

D(S)
4
= d.(publish(?x : chan))D(S∪{x})

+ d.(query(?y : (chan+bool)Abs))(
(νt)

(
(∏c∈St〈c〉 | !t.y) else (t〈ff〉 | t.y)

)
|D(S)

)
[[u(p)〈c〉]]E = u〈publish(c)〉

[[u(q)〈T,a〉]]E = u〈query((|?z : T+bool|)a〈z〉)〉

22

in the other cases the function just goes through the structure of terms.
Concerning types of the translated processes (in XPi), we make the following assignments

d,u : ch
(
publish(chan)+query((chan+bool)Abs)

)
and t : ch(chan+bool) (2)

while type associations for the other names and variables remain unchanged.

Example 15 In this example we show the encoding of the system Sysdefined in Example 14.
[[Sys]]E = D(S) | [[C]]E where D(S) is given by the encoding above and

[[C]]E = d〈query((|?x : ch(low− stream)+bool|)r〈x〉)〉
∣∣ r.(|?x : bool|)abort

∣∣C′ .

In the following we denote by ≈[[·]]E the barbed equivalence obtained by closing barbed bisimu-
lation (Definition 4) under contexts that are translations of XPiE contexts (cfr. Definition 7). The
corollary below guarantees the correctness of the encoding. Note that we close barbed equivalence
by considering only contexts that are encodings of XPiE contexts: the intuitive content of this fact
is that programs written in XPiE can be faithfully translated into XPi. The proofs of the following
results are reported in Appendix E.

Lemma 6 Suppose P∈ P E.

1. P→ P′ implies that ∃R such that [[P]]E → R and [[P′]]E . R;

2. [[P]]E → R implies that ∃P′ ∈ XPiE such that P→ P′ and [[P′]]E . R;

3. P ↓a if and only if [[P]]E ↓a.

Theorem 6 Suppose P∈ P E. P≈̇[[P]]E.

Corollary 4 Suppose P,P1,P2 ∈ P E.

1. P well-typed implies [[P]]E well-typed under the type assumptions in (2);

2. P1 ≈ P2 if and only if [[P1]]E ≈[[·]]E [[P2]]E.

8 I-Barbed equivalence

In [31], Milner and Sangiorgi propose barbed bisimulation as a tool for uniformly defining bisimulation-
based equivalences. Barbed equivalence is useful for its “portability”when studying a new calculus
or a refinement of an existing one, as we are doing here.

Barbed bisimulation is a very coarse relation. According to a common pattern, one closes
barbed bisimulation under all contexts, thus getting barbed congruence. Here, we find it useful to
depart from this pattern so as to capture an input locality property for the observed processes (in
the same vein as [28]). Approximately, one may think of each observed process P as equipped with
an “interface” I , a set of input channels at which services are offered. Input channels in I should
remain confined to P, in other words, only external observers that do not own the input capability
on channels in I should be considered when closing barbed equivalence by contexts. Moreover,
one wants to consider only well-typed processes and observers. These considerations motivate a
form of barbed equivalence presented in the sequel.

The definition relies on the reduction relation of the calculus and on an barbs, P ↓a, which
have been already defined in Section 2.4. We define here a version of barbed bisimulation that
respects an input interface I . This means that output at names in I are not observed, because the
observer has not the corresponding input capability.

Definition 16 (I-barbed bisimulation) Let I ⊆N . A symmetric binary relation on annotated
closed processes is a I -barbed bisimulation if (P,R) ∈ R implies:

23

• whenever P→ P′ then there is R′ such that R→∗ R′ and (P′,R′) ∈ R ;

• whenever P ↓a and a /∈ I then R⇓a.

Two processes P and R are I -barbed bisimilar, written P≈̇I R, if (P,R) ∈ R for some I-barbed
bisimulation R .

Note that one gets ordinary barbed bisimulation (Definition 4) by setting I = /0. The next step
is closing I -barbed bisimulation under appropriate contexts, while respecting input locality for
names in I . In the sequel, let us denote by isubj(P) the set of names that occur free in P in input
subject position; similarly for isubj(M).

Definition 17 (I-barbed equivalence) Let I ⊆ N . Two well-typed processes P1 and P2 are I -
barbed equivalent, written P1 ≈I P2, if for each h̃ and each well-typed R s.t. isubj(R)∩ I = /0, it
holds that (νh̃)(P1|R)≈̇I (νh̃)(P2|R).

Ordinary barbed equivalence (Definition 5) is obtained by setting I = /0. Note that I -barbed
equivalence is not a congruence (not even ordinary barbed equivalence is), but it is preserved by
restriction, and by parallel composition with those well-typed R s.t. isubj(R)∩ I = /0.

Example 16 This example illustrates the effect of considering only well-typed contexts. Suppose
I = /0 and a∈ ch(f [int]) and consider

P = a.(?x : f (∗int)) Case x of f [] ⇒ P1

⇒ P2 .

Note that, according to (tm-Abs), well-typedness of the Case continuation in the process P above
is evaluated under the assumption x : f (∗int).

Clearly, P≈I a.(?x : f (∗int))P2, because no well-typed context ever sends f [] along a, hence
the first branch of the Case is never triggered. Note that this equality does not hold for untyped
barbed equivalence.

Example 17 (a web service, continued) Consider the web service WSand the clients C1 and
C2 defined in Example 6, and let I = {stream,download}. The following equality states that, not
surprisingly, requesting WSa streaming service is functionally equivalent to requesting download
and then running the player locally, regardless of the capacity of the employed channels (high or
low):

WS|C1 ≈I WS|C2 .

The above equality does not hold for ordinary (I = /0) barbed equivalence, because, e.g. C1 has an
output barb on stream, which C2 does not.

Note that, albeit defined over all closed processes, ≈I only makes sense for those processes that
do not export input capability of names in I . This may happen by “packaging” input channels
in abstractions that are passed around, as in P = a〈([])b.([])0〉|P′ and I = {b}: P | a.(?x)(x• []) →∗

P′ |b.([])0.

9 Conclusions and related work

We have presented XPi, a core calculus for XML messaging, featuring asynchronous communica-
tions, pattern matching, name and code mobility, static and dynamic typing. We have proved
results on run-time safety, and presented a notion of barbed equivalence that is useful to validate
interesting equations. Flexibility of the language has been demonstrated by a number of examples,
mainly concerning description and discovery of services.

24

As for further work, it would be interesting to devise tractable characterizations of I -barbed
equivalence, in terms of a labelled bisimulation. One major obstacle towards this result is the
presence of pattern matching, which makes existing techniques (se e.g. [29]) not directly applicable.

A number of proposals aim at integrating XML processing primitives in the context of tradi-
tional, statically typed sequential languages or logics. The ones most closely related to our work
are XDuce [23] and CDuce, [5], two (functional) languages for XML document processing. XPi’s
list-like representation of documents draws its inspiration from them. TQL [12] is both a logic
and a query language for XML, based on a spatial logic for the Ambient calculus [13]. All these
languages support query primitives more sophisticated than XPi’s patterns, but issues raised by
communication and code/name mobility, which are our main focus, are of course absent.

The presence of abstractions makes XPi somehow related to higher-order π-calculus [29], an
extension of the π-calculus where processes can be passed around. In fact, XPi might also be
viewed as a typed version of higher-order π with structured messages and pattern matching.

Early works aiming at integration of XML and process calculi are [21] and [6]. Xdπ [21] is a
calculus for describing interaction between data and processes across distributed locations; it is
focused on process migration rather than on communication and pattern matching. A type system
for Xdπ with security types ensuring secrecy of data (by means of access and movements rights)
is provided in [18]. Iota [6] is a concurrent XML scripting language for home-area networking.
It relies on syntactic subtyping, like XPi, but is characterized by a different approach to XML
typing. In particular, Iota’s type system just ensures well-formedness of XML documents, rather
than the stronger validity, which we consider here.

Roughly contemporary to ours, and with similar goals, are [11] and [17]. The language
πDuce [11] features asynchronous communication and name mobility. Similarly to XDuce’s,
πDuce’s pattern matching embodies built-in type checks, which may be expensive at run-time.
The language in [17] is basically a π-calculus enriched with a rich form of“semantic” subtyping and
pattern matching. Code mobility is not addressed. Pattern matching, similarly to πDuce’s, per-
forms type checks on messages. By contrast, in XPi static type checks and plain pattern matching
suffice, as types of pattern variables are checked statically against channel capacities. We confine
dynamic type checking to dynamic abstractions, which can be used whenever no refined typing
information on incoming messages is available (e.g. at channels of capacity T). The type systems
in [17] and [11] also guarantee a form of absence of deadlock, which however presupposes that
basic values do not appear in patterns. In XPi, we thought it was important to allow basic values
in patterns for expressiveness reasons (e.g., they are crucial in the encoding of the spi-calculus
presented in Section 2).

Finally, we mention some recent proposals oriented to the definition of contract languages
for Web Services focusing both on documents’ schemas [14] and on contract behaviour [15, 16].
Essentially, the schema language in [14] allows to describe XML documents containing references
to remote operations. The contract language in [16] is an evolution of those in [15]. The main
focus of both works is on compliance of clients and servers to exposed contracts. Specifically,
they put forward techniques to extrapolate the behaviours of services and clients in terms of CCS
processes and then check their agreement to the given contract by means of a compliance relation.

References

[1] M. Abadi, and A.D. Gordon. A Calculus for Cryptographic Protocols: The Spi Calculus.
Information and Computation, 148(1):1-70, Academic Press, 1999.

[2] L. Acciai, and M. Boreale. XPi: a Typed Process Calculus for XML Messaging. In Proceedings
of FMOODS’05, LNCS 3535:47–66. Springer, 2005.

25

[3] R. Amadio, I. Castellani, and D. Sangiorgi. On Bisimulation for the Asynchronous π-calculus,
1997. In Proceedings of CONCUR ’96, LNCS 1119:147–162, Springer Verlag. A revised version
has appeared in Theoretical Computer Science 195(2):291–324, 1998.

[4] T. Andrews, F. Curbera, and S. Thatte. Business Process Execution Language for Web
Services, v1.1, 2003. http://ifr.sap.com/bpel4ws.

[5] V. Benzaken, G. Castagna, and A. Frisch. Cduce: An XML-Centric General-Purpose Lan-
guage. In Proceedings of the ACM International Conference on Functional Programming, pp.
51–63, 2003.

[6] G.M. Bierman and P. Sewell. Iota: A concurrent XML scripting language with applica-
tions to Home Area Networking. Technical Report 577, University of Cambridge Computer
Laboratory, 2003.

[7] Biztalk Server Home. http://www.microsoft.com/biztalk/.

[8] S. Bjorg, and L.G. Meredith. Contracts and Types. Communication of the ACM, 46(10):41–
47, 2003.

[9] M. Boreale. On the Expressiveness of Internal Mobility in Name-Passing Calculi. Theoretical
Computer Science 195(2):205–226, 1998.

[10] M. Boreale, and D. Sangiorgi. Bisimulation in Name-Passing Calculi without Matching. In
Proceedings of LICS ’98, pp. 165–175, 1998.

[11] A. Brown, C. Laneve, and L.G. Meredith. πDuce: A process calculus with native XML
datatypes. EPEW/WS-FM 2005, LNCS 3670:18–34. Springer, 2005.

[12] L. Cardelli, and G. Ghelli. TQL: A Query Language for Semistructured Data Based on the
Ambient Logic. Mathematical Structures in Computer Science 14(3):285–327, 2004.

[13] L. Cardelli and A.D. Gordon. Mobile ambients. Theoretical Computer Science 240(1):177-213,
2000.

[14] S. Carpineti and C. Laneve. A basic contract language for Web Services. In Proceedings of
ESOP ’06, LNCS 3924:197–213. Springer, 2006.

[15] S. Carpineti, G. Castagna, C. Laneve, and L. Padovani A formal account of contracts for
Web Services. In Proceedings of WS-FM ’06, LNCS 4184:148–162. Springer, 2006.

[16] G. Castagna, N. Gesbert, and L. Padovani. A Theory of Contracts for Web Services. In
Proceedings of POPL’08, pp. 261–272, 2008.

[17] G. Castagna, R. De Nicola, and D. Varacca. Semantic subtyping for the π-calculus. In Proc.
of LICS’05, pp. 92–101, 2005.

[18] M. Dezani-Ciancaglini, S. Ghilezan and J. Pantovic, Security types for Dynamic Web Data.
In Proceeding of TGC’06, LNCS 4661:263–280, Springer, 2007.

[19] W. Emmerich, M. Aoyama and J. Sventek. The impact of research on middleware technology.
SIGSOFT Software Engineering Notes 32(1):21–46, 2007.

[20] D.C. Fallside. XML Schema Part 0: Primer. W3C Recommendation, 2001. http://www.w3.
org/TR/2001/REC-xmlschema-0-20010502.

[21] P. Gardner, and S. Maffeis. Modelling Dynamic Web Data. In Proceedings of DBPL 2003,
LNCS 2921:130–146. Springer, 2003. A revised version has appeared in Theoretical Computer
Science, 342(1):104-131, 2005.

26

[22] H. Hosoya, and B. Pierce. Regular Expression Pattern Matching for XML. Journal of
Functional Programming 13(6):961–1004, 2003.

[23] H. Hosoya, and B. Pierce. Xduce: A Statically Typed XML Processing Language. In Pro-
ceedings of ACM Transaction on Internet Technology 3(2):117–148, 2003.

[24] R. Lucchi and M. Mazzara. A pi-calculus based semantics for WS-BPEL. Journal of Logic
and Algebraic Programming 70(1):96–118, 2007.

[25] M. Merro. Locality and polyadicity in asynchronous name-passing calculi. In Proceedings of
FoSSaCS 2000, LNCS 1784:238–251. Springer, 2000.

[26] R. Milner. The Polyadic π-Calculus: a Tutorial. Technical Report ECS-LFCS-91-180, LFCS,
Dept. of Computer Science, Edinburgh University, 1991.

[27] R. Milner, J. Parrow, and D. Walker. A calculus of Mobile Processes, part I and II. Infor-
mation and Computation 100:1–41 and 42–78, 1992.

[28] D. Sangiorgi. The name discipline of uniform receptiveness. Theoretical Computer Science
221(1-2): 457–493, 1999.

[29] D. Sangiorgi. Bisimulation in higher-order calculi. Information and Computation 131(2), 1996.

[30] B. Pierce, and D. Sangiorgi. Typing and Subtyping for Mobile Process. Mathematical Struc-
tures in Computer Science 6(5): 409-453, 1996.

[31] D. Sangiorgi, and R. Milner. Barbed bisimulation. In Proceedings of ICALP’92, LNCS
623:685–695. Springer, 1992.

[32] D. Sangiorgi, and R. Milner. Techniques of “weak bisimulation up to”. In Proceedings of
CONCUR’92, LNCS 630. Springer, 1992.

[33] S. Steinke. Middleware Meets the Network. LAN: The Network Solutions Magazine 10, 13,
December 1995.

[34] W3C. Web Services Description Language 2.0. W3C Recommendation, 2007. http://www.
w3.org/TR/wsdl20/.

[35] Web services activity web site, 2002. http://www.w3.org/2002/ws.

27

A Proofs of Section 2

Recall from [32] that a weak barbed bisimulation up to expansion is a relation satisfying the
condition given in Definition 4, but with the clause “P′≈̇R′” replaced by the weaker “P′ & ≈̇. R′”.
From the results in [32], it follows that if R is a weak barbed bisimulation up to to expansion then
R ⊆ ≈̇.

Proposition A.1 (Proposition 1) Let P be a closed process in XPicr.

1. if P→ P′ then 〈|P|〉 →∗ 〈|P′|〉;

2. if 〈|P|〉 → P′ then ∃P′′ ∈ XPicr s.t. P→ P′′ and 〈|P′′|〉. P′;

3. P ↓ a implies 〈|P|〉 ⇓ a and 〈|P|〉 ↓ a implies P⇓ a.

Proof:

1. The proof is straightforward by induction on the derivation of P→ P′. We consider the
last reduction rule applied; the most interesting case is rule (Dec), in the other cases 〈|P|〉
reduces directly into 〈|P′|〉.
case {M}N of {x}N in P→ P[M/x] and

〈|case {M}N of {x}N in P|〉=(νr)
(
[[{M}N]]• [N, r] | r.(?x)〈|P|〉

)
by def. of 〈| · |〉

=(νr)
(
([N,?x])x〈[[M]]〉 • [N, r] | r.(?x)〈|P|〉

)
by def. of [[·]]

=(νr)
(
(νc)(c.([N,?x])x〈[[M]]〉 |c〈[N, r]〉) | r.(?x)〈|P|〉

)
by def. of •

→(νr)
(
r〈[[M]]〉 | r.(?x)〈|P|〉

)
by (com)

→〈|P|〉[[[M]]/x] by (com)

=〈|P[M/x]|〉 by def. of 〈| · |〉.

2. The proof is straightforward by induction on 〈|P|〉→P′. We proceed by distinguishing the pos-
sible cases for the structure of P. The most interesting case is when P=case {M}N of {x}N′ in R.
There is only one possibility for 〈|P|〉 → P′, that is

〈|P|〉 = (νr)
(
(νc)(c.([N,?x])x〈[[M]]〉 |c〈[N′, r]〉) | r.(?x)〈|R|〉

)
→ (νr)

(
(νc)(r〈[[M]]〉 |0) | r.(?x)〈|R|〉

)
= P′ .

Here is a communication on c has been inferred by rules (com) and then (ctx). By the
premise of (com), we have match([N′, r], [N,x],σ), hence N′ = N, σ(x) = r. By N = N′ and rule
(Dec), we have case {M}N of {x}N′ in R→R[M/x] = P′′. It is a matter of routine to prove, by
exhibiting a suitable expansion relation, that 〈|P′′|〉. P′.

3. The proof is straightforward by induction on the structure of P and by (1) and (2).

�

Theorem A.1 (Theorem 1) Let P be a closed process in XPicr. P≈̇〈|P|〉.

28

Proof: We show that the relation

R =
{
〈P,〈|P|〉〉

∣∣P∈ XPicr}
is a weak barbed bisimulation up to ..

First of all, By Proposition A.1 (3), P ↓ a implies 〈|P|〉 ⇓ a and 〈|P|〉 ↓ a implies P⇓ a.
If P→ P′, by Proposition A.1 (1), 〈|P|〉 →∗ 〈|P′|〉 and 〈P′,〈|P′|〉〉 ∈ R .
If 〈|P|〉 → P′, by Proposition A.1 (2), P→ P′′ with 〈|P′′|〉 . P′. 〈P′′,〈|P′′|〉〉 ∈ R ; hence P′′R . P′.

That is R ⊆ ≈̇. �

Corollary A.1 (Corollary 1) Let P1 and P2 be closed processes in XPicr. P1 ≈ P2 if and only if
〈|P1|〉 ≈〈|·|〉 〈|P2|〉.

Proof:

(⇒): Take any R and b̃, we have to prove that (νb̃)(〈|P1|〉|〈|R|〉)≈̇(νb̃)(〈|P2|〉|〈|R|〉).
By definition of≈, P1≈P2 implies that (νb̃)(P1|R)≈̇(νb̃)(P2|R). By Theorem A.1, (νb̃)(P1|R)≈̇〈|(νb̃)(P1|R)|〉
and (νb̃)(P2|R)≈̇〈|(νb̃)(P2|R)|〉. By transitivity of ≈̇, 〈|(νb̃)(P1|R)|〉≈̇〈|(νb̃)(P2|R)|〉, that is (νb̃)(〈|P1|〉|〈|R|〉)≈̇(νb̃)(〈|P2|〉|〈|R|〉).
Hence, by Definition 7 (≈〈|·|〉), 〈|P1|〉 ≈〈|·|〉 〈|P2|〉.

(⇐): the proof proceeds similarly.

�

B Proofs of Section 4

Lemma B.1 (Lemma 1) Suppose T is consistent. If tpm(T,Q,Γ) then Q is T-consistent.

Proof: The proof is straightforward by induction on the derivation of tpm(T,Q,Γ). The following
base cases are the most interesting:

(tpm-Top): Consider the message M obtained by replacing every variable in Q with a value; by
(tm-Top) M : T and M matches Q, thus Q is T-consistent.

(tpm-Var): by tpm(T,x,{x : T}) and the premises of the rule, we get Q= x and Q is T-consistent
because we can prove that for every consistent type T there is a message M : T (the proof is
immediate assuming that for each basic type bt there is at least one v : bt).

�

Theorem B.1 (Theorem 2) Let P be an annotated closed process and suppose P : ok, then P is
safe.

Proof: The proof is straightforward by induction on the derivation of P : ok, by distinguishing
the last typing rule applied. Case (t-In) relies on Lemma B.1. �

Lemma B.2 (Lemma 2) If T’ < T then for any M such that Γ `M : T’ we have Γ `M : T.

Proof: We distinguish two cases:

M = x: by Γ ` M = x : T’ and the premises of the rule(tm-Var), Γ(x) < T’; but T’ < T, therefore
Γ(x) < T and by rule (tm-Var) we obtain Γ `M = x : T.

M 6= x: in this case the proof is straightforward by induction on the sum of the depths of the
derivations of T’ < T and Γ ` M : T’. We distinguish the last subtyping rule applied; the
most interesting cases are the following:

29

(Sub-Sort): by ch(T’) < ch(T) and the premises of the rule, we get T < T’. By Γ ` M :
ch(T’) and the premises of the rule (tm-Value), we get M = a : S = ch(T’) and by
definition ∃S ′ < S : a∈ S ′. By transitivity S ′ < ch(T) and by definition a : ch(T), that
is, by rule (tm-Value), Γ `M : ch(T).

(Sub-Top): T < T and by rule (tm-Top) Γ `M : T.

(Sub-Bottom):

T

< T. 6 ∃M :

T

.

(Sub-Basic): by bt1 < bt2 and the premises of the rule, we get bt1≺ bt2. By the premises
of the rule (tm-Value) and Γ `M : bt1, we get M = v : bt1 and by bt1≺ bt2 we obtain
v : bt2. By rule (tm-Value) we have Γ `M = v : bt2.

�

Lemma B.3 Let M be a closed message. M : T and match(M,Q,σ) imply tpm(T,Q,Γ).

Proof: The proof is straightforward by induction on typing rules for messages, distinguishing
the cases Q = x and Q 6= x. �

Lemma B.4 (Lemma 3) Let M : T be a closed message. If match(M,Q,σ) and tpm(T,Q,Γ) then
∀x∈ dom(σ) : σ(x) : Γ(x).

Proof: The proof proceeds by induction on the derivation of tpm(T,Q,Γ). We distinguish the
last rule applied:

(tpm-Empty) (tpm-Value) (tpm-Star1): in these cases Γ = /0 and σ = ε.

(tpm-Top): by tpm(T,Q,Γ) and the premises of the rule, we have ∀x ∈ fv(Q) : Γ(x) : T; and
∀x∈ dom(σ) : σ(x) : T = Γ(x).

(tpm-Var): by tpm(T,x,Γ) and the premises of the rule, we have Γ = {x : T}. Moreover, M : T
and match(M,x,σ) with dom(σ) = {x} and σ(x) = M : T = Γ(x).

(tpm-Tag): by tpm(f (T), f (Q),Γ) and the premises of the rule, we have tpm(T,Q,Γ); by the
premises of the rule (tm-Tag) and f (M) : f (T), we get M : T and match(f (M), f (Q),σ)
implies match(M,Q,σ). Therefore, by induction we have ∀x∈ dom(σ) : σ(x) : Γ(x).

(tpm-Star2): by tpm(∗T,Q ·LQ,Γ1∪Γ2) and the premises of the rule, we get tpm(T,Q,Γ1) and
tpm(∗T,LQ,Γ2). By the premises of the rule (tm-Star2) and M ·LM : ∗T we get M : T and
LM : ∗T. match(M ·LM,Q ·LQ,σ1∪σ2) implies match(M,Q,σ1) and match(LM,LQ,σ2). By
induction we have (i = 1,2) ∀x ∈ dom(σi) : σi(x) : Γi(x), thus ∀x ∈ dom(σ1∪σ2) : σ1,σ2(x) :
Γ1,Γ2(x) (recall that dom(σ1)∩dom(σ2) = /0 because of the linearity of patterns).

(tpm-List): This case is similar to the previous one.

(tpm-Union): by tpm(T’+T”,Q,Γ) and the premises of the rule, we distinguish three cases:

• there exist Γ0 and Γ1 such that tpm(T’,Q,Γ0), tpm(T”,Q,Γ1) and Γ = Γ0 + Γ1. By
M : T’+T” and the premises of the rule (tm-Union), we get M : T’ and/or M : T”, by
induction match(M,Q,σ) implies ∀x ∈ dom(σ) : σ(x) : Γ0(x) and/or σ(x) : Γ1(x). From
σ(x) : Γ0(x) and/or σ(x) : Γ1(x) and rule (tm-Union) we obtain σ(x) : Γ0+Γ1(x) = Γ(x);

• there exists Γ0 and for all Γ1 we have tpm(T’,Q,Γ0), not tpm(T”,Q,Γ1) and Γ = Γ0. By
M : T’+T”and the premises of the rule (tm-Union), we get M : T’ and/or M : T”. M : T’
because if M : T”by match(M,Q,σ) and Lemma B.3 we have tpm(T”,Q,Γ1) and this is
not the case; thus by induction match(M,Q,σ) implies ∀x∈ dom(σ) : σ(x) : Γ0(x) = Γ(x);

30

• there exists Γ1 and for all Γ0 we have tpm(T”,Q,Γ1), not tpm(T’,Q,Γ0) and Γ = Γ1. By
M : T’+T”and the premises of the rule (tm-Union), we get M : T’ and/or M : T”. This
case is similar to the previous.

�

Lemma B.5 Suppose M closed and abstraction free. If M : T then tpm(T,M, /0).

Proof: The proof is straightforward by induction on the derivation of M : T. �

Lemma B.6 Let M be closed and abstraction free. If tpm(T,Q,Γ) and M : Γ(x) then tpm(T,Q[M/x],Γ−{x}).

Proof: The proof is straightforward by induction on the derivation of tpm(T,Q,Γ), the base case
(tpm-Var) relies on Lemma B.5. �

Lemma B.7 (Lemma 4) (a) If Γ, x : T ` P : ok and Γ ` M : T then Γ ` P[M/x] : ok; (b) if Γ, x :
T ` N : S and Γ `M : T then Γ ` N[M/x] : S.

Proof: By induction on the depth of the derivation. We consider the last rule which we apply
for deducing Γ,x : T ` P : ok or Γ,x : T ` N : S. The most interesting cases are the following:

(t-In): by Γ,x : T` a.A : okand the premises of the rule, we get a∈ ch(T’) and Γ,x : T`A : (T’)Abs.
By induction Γ ` A[M/x] : (T’)Abs, thus, by rule (t-In), we have Γ ` (a.A)[M/x] : ok.

(t-Out): by Γ, x : T ` u〈M′〉 : ok and the premises of the rule, we get:

- Γ,x : T ` u∈ ch(T’):

u 6= x: then Γ ` u[M/x] = u∈ ch(T’);
u = x: then T = ch(T’), Γ ` x[M/x] = M : ch(T’) and M = a for some channel a : ch(T’).

This implies that a∈ ch(T”) with ch(T”) = ch(T’) or ch(T”) < ch(T’); that is, by the
premises of the rule (Sub-Sort), T”= T’ or T”> T’. If T”> T’, by Γ,x : T `M′ : T’
and by Lemma B.2 (subtyping), Γ,x : T `M′ : T”

- either Γ,x : T ` M′ : T’, if u 6= x, or Γ,x : T ` M′ : T”, with T”> T’, if u = x, and by
induction we deduce either Γ `M′[M/x] : T’ or Γ `M′[M/x] : T”.

Finally, by rule (t-Out), Γ ` (u〈M′〉)[M/x] : ok.

(tm-Var): Γ,x : T ` y : T’; we distinguish two cases:

x = y: by the premises of the rule: T < T’. By Lemma B.2 (subtyping) Γ `M : T and T < T’
imply Γ `M : T’ and Γ ` x[M/x] = M : T’;

x 6= y: in this case Γ ` y[M/x] = y : T’;

(tm-Abs): by Γ,x : T ` (Qx̃ : ΓQ)P : (S)Abs and the premises of the rule, we get:

- tpm(S,Q,Γ1);

- (Γ1)|x̃ < ΓQ;

- (Γ1)|ỹ > (Γ,x : T)|ỹ, (Γ1)|ỹ is abstraction free;

- Γ,ΓQ,x : T ` P : ok; by induction Γ,ΓQ ` P[M/x] : ok.

We distinguish two cases:

x /∈ v(Q): then Q[M/x] = Q.

x∈ ỹ: (Γ1)|ỹ > (Γ,x : T)|ỹ, M : T and Lemma 2 (subtyping) imply that M : Γ1(x), therefore,
by Lemma B.6 (matching), we have tpm(S,Q[M/x],(Γ1)−{x}).

31

In conclusion, by rule (tm-Abs), Γ ` ((Q[M/x])x̃ : ΓQ)P[M/x] : (S)Abs.

�

Lemma B.8 (Lemma 5) Let P and Q be annotated closed processes. If P : ok and P≡ Q then
Q : ok.

Proof: The proof is straightforward by distinguishing on structural rules. �

C Proofs of Section 5

Theorem C.1 (Theorem 4) Suppose fv(P) ⊆ dom(Γ0) and fv(M) ⊆ dom(Γ0). If tiP(P,Γ0,Γ)
then Γ0 ` PΓ : ok and if tiM(T,M,Γ0,Γ) then Γ0 `MΓ : T.

Proof: The proof proceeds by mutual induction on the depth of the derivation of tiP(P,Γ0,Γ) and
tiM(T,M,Γ0,Γ) by distinguishing the last rule applied:

(tiP-In): by tiP(a.A,Γ0,Γ) and the premises of the rule:

• a∈ ch(T);

• tiM((T)Abs,A,Γ0,Γ) and, by inductive hypothesis, Γ0 ` AΓ : (T)Abs.

By rule (t-In), Γ0 ` (a.A)Γ : ok.

(tiP-Out): by tiP(u〈M〉,Γ0,Γ) and the premises of the rule:

• Γ0 ` u∈ ch(T);

• tiM(T,M,Γ0,Γ) and, by inductive hypothesis, Γ0 `MΓ : T.

By rule (t-Out), Γ0 ` u〈MΓ〉= (u〈M〉)Γ : ok.

(tiM-Abs): by tiM((T)Abs,(Qx̃)P,Γ0,(Γ1)|x̃∪Γ2) and the premises of the rule:

• tpm(T,Q,Γ1) with (Γ1)|ỹ > (Γ0)|ỹ and (Γ1)|ỹ abstraction free;

• tiP(P,Γ0∪ (Γ1)|x̃,Γ2) and, by inductive hypothesis, Γ0,(Γ1)|x̃ ` PΓ2 : ok.

By rule (tm-Abs), Γ0 ` (Qx̃ : (Γ1)|x̃)PΓ2 = ((Qx̃)P)(Γ1)|x̃∪Γ2
: (T)Abs.

�

For proving completeness, we need a subtyping and a narrowing property. The first lemma
states that inference respects subtyping. The second states that a subtype can be used wherever
a supertype is expected.

Lemma C.1 (subtyping for inference) If T < T′ and tiM(T,M,Γ,Γ1) then tiM(T′,M,Γ,Γ′1) and
Γ′1 < Γ1.

Proof: We distinguish two cases:

M = x: by tiM(T,x,Γ,Γ1) and and the premises of the rule (tiM-Var) we have Γ1 = /0 and Γ(x) < T.
By transitivity of subtyping Γ(x) < T′, and, by rule (tiM-Var), tiM(T′,x,Γ,Γ′1) and Γ′1 = /0.

M 6= x: We proceed by induction on the sum of the depths of the derivation of T < T′ and
tiM(T,M,Γ,Γ1). We distinguish the last subtyping rule applied:

32

(Sub-Sort): by ch(T′) < ch(T) and the premises of the rule, we get T < T′. In this case
M = a and, by the premises of the rule (tiM-Value) and tiM(ch(T′),a,Γ, /0), we get
a : ch(T′). By definition ∃S ′ < ch(T′) s.t. a∈ S ′; by transitivity S ′ < ch(T), therefore
a : ch(T). In conclusion, by rule (tiM-Value), tiM(ch(T),a,Γ, /0).

(Sub-Top): T < T and tiM(T,M,Γ,Γ1). By (tiM-Top) and its premises, tiM(T,M,Γ,Γ′1)
and ∀x∈ bv(M) : Γ′1(x) =

T

; hence, by rule (Sub-Bottom), Γ′1(x) < Γ1(x).

(Sub-Bottom):

T

< T and not tiM(

T

,M, . . .).

(Sub-Basic): by bt1 < bt2 and the premises of the rule, we get bt1≺ bt2. By the premises
of the rule (tiM-Value) and tiM(bt1,M,Γ,Γ1), we get Γ1 = /0 and M = v : bt1. By the
subtyping relation on basic types, v : bt2 and, by rule (tiM-Value), tiM(bt2,v,Γ,Γ′1)
with Γ′1 = /0.

(Sub-Tag): by f (T) < f (T′) and the premises of the rule, we get T < T’. By the premises of
the rule (tiM-Tag) and tiM(f (T), f (M),Γ,Γ1), we get tiM(T,M,Γ,Γ1) and, by inductive
hypothesis, there is a Γ′1 such that tiM(T′,M,Γ,Γ′1) with Γ′1 < Γ1. In conclusion, by rule
(tiM-Tag), tiM(f (T′), f (M),Γ,Γ′1).

(Sub-Star1): [] < ∗T. By the premises of the rule (tiM-Empty) and tiM([],M,Γ,Γ1), we
get M = [] and Γ1 = /0. By rule (tiM-Star1), tiM(∗T, [],Γ,Γ′1) and Γ′1 = /0.

(Sub-Star2): by T′ ·LT < ∗T and the premises of the rule, we get T′ < T and LT < ∗T. By
the premises of the rule (tiM-List) and tiM(T′ ·LT,M ·LM,Γ,Γ1∪Γ2):

• tiM(T′,M,Γ,Γ1), and, by induction, there is a Γ′1 such that tiM(T,M,Γ,Γ′1) with
Γ′1 < Γ1;

• tiM(LT,LM,Γ,Γ2), and, by induction, there is a Γ′2 such that tiM(∗T,LM,Γ,Γ′2) with
Γ′2 < Γ2.

In conclusion, by rule (tiM-Star2), tiM(∗T,M ·LM,Γ,Γ′1∪Γ′2) and Γ′1∪Γ′2 < Γ1∪Γ2.

(Sub-Star3): by ∗T < ∗T’ and the premises of the rule, we get T < T’. We distinguish
two cases:

M = []: by rule (tiM-Star1), tiM(∗T, [],Γ,Γ1), tiM(∗T′, [],Γ,Γ′1) and Γ1 = Γ′1 = /0;
M = M ·LM: by the premises of the rule (tiM-Star2) and tiM(∗T,M ·LM,Γ,Γ1∪Γ2):

• tiM(T,M,Γ,Γ1), and, by induction, there is a Γ′1 such that tiM(T′,M,Γ,Γ′1) with
Γ′1 < Γ1;

• tiM(∗T,LM,Γ,Γ2), and, by induction, there is a Γ′2 such that tiM(∗T′,LM,Γ,Γ′2)
with Γ′2 < Γ2.

In conclusion, by rule (tiM-Star2), tiM(∗T′,M ·LM,Γ,Γ′1∪Γ′2) and Γ′1∪Γ′2 < Γ1∪Γ2.

(Sub-List): by T ·LT < T′ ·LT′ and the premises of the rule, we get T < T′ and LT < LT′.
By rule the premises of the rule (tiM-List) and tiM(T ·LT,M ·LM,Γ,Γ1∪Γ2):

• tiM(T,M,Γ,Γ1), and, by induction, there is a Γ′1 such that tiM(T′,M,Γ,Γ′1) with
Γ′1 < Γ1;

• tiM(LT,LM,Γ,Γ2), and, by induction, there is a Γ′2 such that tiM(LT′,LM,Γ,Γ′2) with
Γ′2 < Γ2.

In conclusion, by rule (tiM-List), tiM(T′ ·LT′,M ·LM,Γ,Γ′1∪Γ′2) and Γ′1∪Γ′2 < Γ1∪Γ2.

(Sub-Union1): by T < T’+T” and the premises of the rule, we get T < T′ or T < T”, we
distinguish three cases:

T < T′ and T < T′′: tiM(T,M,Γ,Γ1) implies, by induction, that there are Γ′ and Γ′′ such
that tiM(T′,M,Γ,Γ′), tiM(T′′,M,Γ,Γ′′), Γ′ < Γ1 and Γ′′ < Γ1. By rule (tiM-Union)
and (Sub-Union), tiM(T’+T”,M,Γ,Γ′+Γ′′) and Γ′+Γ′′ < Γ1;

33

T < T′ and not T < T′′: tiM(T,M,Γ,Γ1) implies, by induction, that there is a Γ′1 such
that tiM(T′,M,Γ,Γ′1) and Γ′1 < Γ1, and, by rule (tiM-Union), tiM(T’+T”,M,Γ,Γ′1);

T < T′′ and T < T′: in this case the proof proceeds similarly.

(Sub-Union2): by T’+T”< T and the premises of the rule, we get T’ < T and T”< T.
By the premises of the rule (tiM-Union) and tiM(T’+T”,M,Γ,Γ1), we distinguish three
cases:

tiM(T′,M,Γ,Γ11), tiM(T′′,M,Γ,Γ12) and Γ1 = Γ11 +Γ12: by inductive hypothesis there
is Γ′1 such that tiM(T,M,Γ,Γ′1) with Γ′1 < Γ11 and Γ′1 < Γ12; therefore, by rule (Sub-
Union1), Γ′1 < Γ11 +Γ12 = Γ1;

tiM(T′,M,Γ,Γ11) and for each Γ12 no tiM(T′′,M,Γ,Γ12): by induction there is a Γ′1 such
that tiM(T,M,Γ,Γ′1) with Γ′1 < Γ11 = Γ1;

tiM(T′′,M,Γ,Γ12) and for each Γ11 no tiM(T′,M,Γ,Γ11): By induction there is a Γ′1
such that tiM(T,M,Γ,Γ′1) with Γ′1 < Γ12 = Γ1.

�

Lemma C.2 (narrowing for inference) If Γ′ < Γ then:

• if tiM(T,M,Γ,Γ1) then tiM(T,M,Γ′,Γ′1) and Γ′1 < Γ1;

• if tiP(P,Γ,Γ1) then tiP(P,Γ′,Γ′1) and Γ′1 < Γ1.

Proof: By mutual induction on the depth of the derivation of tiM(T,M,Γ,Γ1) and tiP(P,Γ,Γ1);
the proof proceeds by distinguishing the last rule applied. The most interesting cases are rules
(tiP-Out) and (tiM-Abs):

(tiP-Out): by tiP(u〈M〉,Γ,Γ1) and the premises of the rule, we get Γ`u∈ ch(T) and tiM(T,M,Γ,Γ1).
We distinguish two cases:

u = a: Γ ` u∈ ch(T) implies a∈ ch(T). By inductive hypothesis, tiM(T,M,Γ,Γ1) implies that
there is a Γ′1 such that tiM(T,M,Γ′,Γ′1) with Γ′1 < Γ1. By rule (tiP-Out), tiP(u〈M〉,Γ′,Γ′1);

u = x: Γ(x) = ch(T) > Γ′(x) = ch(T′) therefore T′ > T, by premises of the rule (Sub-Sort).
By Lemma C.1 (subtyping for inference), tiM(T,M,Γ,Γ1) implies that there is a Γ′1 such
that tiM(T’,M,Γ,Γ′1) and Γ′1 < Γ1. In conclusion, by rule (tiP-Out), Γ′ ` u : ch(T′) and
tiM(T′,M,Γ,Γ′1) imply tiP(u〈M〉,Γ′,Γ′1) with Γ′1 < Γ1.

(tiM-Abs): by tiM((T)Abs,(Qx̃)P,Γ,Γ1) and the premises of the rule, we have:

• there is a Γ2 such that tpm(T,Q,Γ2), (Γ2)|ỹ > (Γ)|ỹ and (Γ2)|ỹ is abstraction free;

• there is a Γ3 such that tiP(P,Γ∪ (Γ2)|x̃,Γ3);

• Γ1 = (Γ2)|x̃∪Γ3.

By transitivity of subtyping (Γ2)|ỹ > (Γ′)|ỹ. Moreover, by inductive hypothesis, there is a Γ′3
such that tiP(P,Γ′∪(Γ2)|x̃,Γ′3) with Γ′3 < Γ3. In conclusion, by rule (tiM-Abs), tiM((T)Abs,(Qx̃)P,Γ′,Γ′1)
with Γ′1 = (Γ2)|x̃∪Γ′3 < Γ1 = (Γ2)|x̃∪Γ3.

�

Theorem C.2 (Theorem 5) Suppose fv(P)⊆ dom(Γ′) and fv(M)⊆ dom(Γ′).

• If Γ0 ` PΓ′ : ok then there is Γ s.t. tiP(P,Γ0,Γ) and Γ′|bv(P) > Γ.

• If Γ0 `MΓ′ : T then there is Γ s.t. tiM(T,M,Γ0,Γ) and Γ′|bv(M) > Γ.

34

Proof: The proof proceeds by mutual induction on the depth of the derivation of Γ0 ` PΓ′ : ok
and Γ0 `MΓ′ : T, by distinguishing the last rule applied. The most interesting cases are:

(t-In): by Γ0 ` (a.A)Γ′ = a.AΓ′ : ok and the premises of the rule:

• a∈ ch(T);

• Γ0 ` AΓ′ : (T)Abs; by inductive hypothesis there is a Γ such that tiM((T)Abs,A,Γ0,Γ)
with Γ < Γ′|bv(A).

By rule (tiP-In), tiP(a.A,Γ0,Γ) with Γ < Γ′|bv(A).

(t-Out): by Γ0 ` (u〈M〉)Γ′ = u〈MΓ′〉 : ok and the premises of the rule:

• Γ0 ` u∈ ch(T);

• Γ0 ` MΓ′ : T and, by inductive hypothesis, there is a Γ such that tiM(T,M,Γ0,Γ) with
Γ < Γ′bv(M).

By rule (tiP-Out), tiP(u〈M〉,Γ0,Γ) with Γ < Γ′|bv(M).

(tm-Abs): by Γ0 ` ((Qx̃)P)Γ′ = (Q : Γ′|x̃).PΓ′|bv(P)
: (T)Abs and the premises of the rule:

• there is Γ1 such that tpm(T,Q,Γ1) with (Γ1)|x̃ < Γ′|x̃, (Γ1)|ỹ > (Γ0)|ỹ and (Γ1)|ỹ abstraction
free (recall that bv(Q) = x̃);

• Γ0,Γ′|x̃ ` PΓ′|bv(P)
: ok.

By inductive hypothesis, Γ0,Γ′|x̃ ` PΓ′|bv(P)
: ok implies that there is a Γ2 such that tiP(P,Γ0∪

Γ′|x̃,Γ2) with Γ2 < Γ′|bv(P). By Lemma C.2 (narrowing for type inference) and (Γ1)|x̃ < Γ′|x̃ it
holds that there is a Γ′2 such that tiP(P,Γ0∪(Γ1)|x̃,Γ′2) with Γ′2 < Γ2 < Γ′|bv(P). Finally, by rule
(tiM-Abs), tiM((T)Abs,(Qx̃)P,Γ0,(Γ1)|x̃∪Γ′2) with (Γ1)|x̃∪Γ′2 < Γ′|bv(Q)∪bv(P).

�

D Proofs of Section 6

Proofs of Lemmas B.2, B.4 and B.7 carry over essentially unchanged to the language with dynamic
abstractions.

Theorem D.1 (extension of Theorem 2) Let P be an annotated closed process and suppose
P : ok, then P is dynamically safe.

Proof: By induction on the derivation on P : ok. The unique change is in rule (t-In) when
a.D : ok. The latter implies:

• a∈ ch(T);

• ` D : (T)Abs.

By the premises of the rule (tm-abs-d):

• D = (|Qx̃ : ΓQ|)P;

• tpm(T,Q,Γ1);

• (Γ1)|x̃ ≶ ΓQ, that is ∀y∈ x̃ exists a consistent type T’ s.t. T’ < ΓQ(y) and T′ < Γ1(y).

35

Consider the message M obtained by replacing in Q every variable y∈ x̃ by some message M′
y : T′

(M′
y exists because T′ is consistent). Obviously match(M,Q,σ) and σ(y) = M′

y : T′ < ΓQ(y), ∀y∈ x̃.
Therefore Q is dynamically T-consistent and by Definition 15 the process a.D is dynamically safe.
�

Theorem D.2 (Extension of Theorem 3) Let P be an annotated closed process. If P : ok and
P→ P′ then P′ : ok.

Proof: By rule (com-d) by a〈M〉|∑i∈I ai .Ai → Pσ and the premises of the rule, we have that for
some j ∈ I :

• a = a j ;

• A j = (|Qx̃ : ΓQ|)P;

• match(M,Q,σ);

• ∀y∈ dom(σ) : σ(y) : ΓQ(y).

We have to prove that Pσ : ok. From a〈M〉|∑i∈I ai .Ai : ok and the premises of the rule (t-Par),
we have ∑i∈I ai .Ai : ok. Hence, by (t-Sum), (t-Inp) and (tm-abs-d) we have A j : (T)Abs and
ΓQ ` P : ok. Recalling that ∀y ∈ dom(σ) we have σ(y) : ΓQ(y), by Lemma B.7 (substitution) we
obtain Pσ : ok. �

Corollary D.1 (Corollary 3) Let P be an annotated closed process. If P : ok and P→∗ P′ then
P′ is dynamically safe.

Proof: By Theorem D.1 and D.2. �

E Proofs of Section 7

We need two preliminary lemmas.

Lemma E.1 Let S be a finite of set names and suppose that for no c∈ S it holds that c : bool.
Define

A
4
= (νt)

(
(∏
{c∈S}

t〈c〉 | !t.(|?x : T+bool|)a〈x〉) else (t〈ff〉 | t.(|?x : T+bool|)a〈x〉)
)
.

1. If there is a c∈ S such that c : T then [[∏{c∈S|c:T}a〈c〉]]E . A;

2. if there are no c∈ S such that c : T then [[a〈ff〉]]E . A.

Proof:

1. Let B , [[∏{c∈S|c:T}a〈c〉]]E. Let us first prove that B.̇A. It is enough to prove that the
relation R defined below is a barbed expansion. Define, for each set of names S′,

AS′
4
= (νt)(∏

{c∈S|c/∈S′}
t〈c〉 | !t.(|?x : T+bool|)a〈x〉 | ∏

{c∈S′}
a〈c〉) .

and
R 4

= {〈A, B〉} ∪
{
〈AS′ ,B〉

∣∣S′ ⊆ {c∈ S
∣∣c : T}

}
.

Both A and any AS′ can only reduce by communicating on t, hence generating a new output
on a and evolving into some AS′′ : then the pair 〈AS′′ ,B〉 is still in R . Moreover, the only barb

36

of A, AS′ and B is ↓a. This proves that that the relation R is a barbed expansion, hence
R ⊆ .̇ .

The proof then proceeds by closing .̇ under each static context. That is, one proves that
for each b̃ ∈ N and D it holds that (νb̃)(A|D)&̇(νb̃)(B|D): this is proved by exhibiting a
relation R ′ ⊆ .̇ containing the pairs 〈(νb̃)(A|D),(νb̃)(B|D)〉, for each b̃ ∈ N and D, and
proving it a barbed expansion.

Let us define, for any S′,S′′ ⊆ S s.t. S′∩S′′ = /0, the following processes

BS′
4
=[[∏{c∈S\S′ |c:T}a〈c〉]]E

AS′,S′′
4
=(νt)

(
∏{c∈S\(S′∪S′′)} t〈c〉 | !t.(|?x : T+bool|)a〈x〉 | ∏{c∈S′′}a〈c〉

)
.

The relation R ′ is defined as follows:

R ′ 4=
{
〈(νb̃)(A|D),(νb̃)(B|D)〉 ,

〈(νb̃)(AS′,S′′ |D),(νb̃)(BS′ |D)〉
∣∣S′ ⊆ {c∈ S|c : T} and S′′ ⊆ {c∈ S\S′|c : T}

}
.

R ′ is an expansion relation. As to barbs, the only barb of AS′,S′′ and BS′ are AS′,S′′ ⇓a

and BS′ ↓a, while D gives rise to the same barbs on both components of the pairs. As for
reductions, each reduction of a process in a pair of R ′ can be only derived by a reduction of
one of its subcomponents as follows:

• A→ A/0,{c}, with c∈ S,c : T. Then 〈(νb̃)(A/0,{c} |D),(νb̃)(B/0 |D)〉 ∈ R ′ by definition;

• AS′,S′′ → AS′,S′′′ , with S′′ ⊂ S′′′. Then 〈(νb̃)(AS′,S′′′ |D),(νb̃)(BS′ |D)〉 ∈ R ′ by definition;

• D→ D′. Then 〈(νb̃)(AS′,S′′ |D′),(νb̃)(BS′ |D′)〉 ∈ R ′ by definition;

• the synchronizations AS′,S′′ |D→AS′∪{c},S′′\{c} |D′ and BS′ |D→BS′∪{c} |D′ match up with
each other, as 〈(νb̃)(AS′∪{c},S′′\{c} |D′),(νb̃)(BS′∪{c} |D′)〉 ∈ R ′ by definition.

2. Again, we first prove that [[a〈ff〉]]E .̇A. It is enough to note that R ⊆ .̇ , where R is defined
as follows:

R 4
=

{
〈A, [[a〈ff〉]]E〉;〈A′, [[a〈ff〉]]E〉,〈A′′, [[a〈ff〉]]E〉

}
with

A′
4
= (νt)(t〈ff〉 | t.(|?x : T+bool|)a〈x〉) and A′′

4
= (νt)(a〈ff〉) .

We proceed by proving that [[a〈ff〉]]E . A by closing .̇ for each context. We prove that for
each b̃∈ N and D it holds that (νb̃)(A|D)&̇(νb̃)([[a〈ff〉]]E |D). It suffices to note that the
relation R below is a .̇ .

R =
{
〈(νb̃)(A|D),(νb̃)([[a〈ff〉]]E |D)〉 , 〈(νb̃)(A′ |D),(νb̃)([[a〈ff〉]]E |D)〉

〈(νb̃)(A′′ |D),(νb̃)([[a〈ff〉]]E |D)〉 , 〈(νb̃)((νt)0|D),(νb̃)(D)〉
}

Hence, [[a〈ff〉]]E . A.

�

Lemma E.2 (Proof of Lemma 6) Suppose P∈ P E.

1. P→ P′ implies that ∃R such that [[P]]E → R and [[P′]]E . R;

2. [[P]]E → R implies that ∃P′ ∈ XPiE such that P→ P′ and [[P′]]E . R;

37

3. P ↓a if and only if [[P]]E ↓a.

Proof:

1. The proof proceeds by induction on the derivation of P→ P′. The most interesting cases are
the following. In the others, each reduction from P is matched by the same reduction from
[[P]]E.

(pub): d〈S〉 |d(p)〈c〉 → d〈S∪{c}〉.

[[d〈S〉 |d(p)〈c〉]]E = D(S) |d〈publish(c)〉 → D(S∪{c}) = [[d〈S∪{c}〉]]E

(query-T): from d〈S〉 |d(q)〈T,a〉 → d〈S〉 | ∏{c∈S|c:T}a〈c〉 and the premises of the rule, we
have ∃c∈ S such that c : T.

[[d〈S〉 |d(q)〈T,a〉]]E = D(S) |d〈query((|?z : T+bool|)a〈z〉)〉

→

A|D(S)

with

A
4
= (νt)

(
(∏
{c′∈S}

t〈c′〉 | !t.(|?z : T+bool|)a〈z〉) else (t〈ff〉 | t.(|?z : T+bool|)a〈z〉)
)
,

hence by Lemma E.1 (1) [[∏{c∈S|c:T}a〈c〉]]E . A and, by definition of ., [[d〈S〉 | ∏{c∈S|c:T}a〈c〉]]E .
[[d〈S〉]]E |A = D(S) |A.

(query-F): the proof proceeds as in the previous case by applying Lemma E.1 (2).

(ctx): by (νd̃)(P|R) → (νd̃)(P′ |R) and the premises of the rule, we have P → P′. By
inductive hypothesis, there is a P′′ such that [[P]]E → P′′ with [[P′]]E . P′′. By (ctx),
(νd̃)([[P]]E | [[R]]E)→ (νd̃)(P′′ | [[R]]E) and (νd̃)([[P′]]E | [[R]]E) . (νd̃)(P′′ | [[R]]E) by definition
of ..

2. The proof is straightforward by induction on the derivation [[P]]E →R. The proof proceeds by
distinguishing the last reduction rule applied. The most interesting cases are the following:

(com): we consider the following cases:

• [[P]]E = D(S) |d〈publish(c)〉→D(S∪{c}). P= d〈S〉 |d(p)〈c〉→d〈S∪{c}〉 and [[d〈S∪{c}〉]]E =
D(S∪{c}).

• [[P]]E = D(S) |d〈query((|?x : T+bool|)a〈x〉)〉→D(S) |A with A
4
=(νt)

(
(∏c∈St〈c〉 | !t.(|?x :

T+bool|)a〈x〉)else(t〈ff〉 | t.(|?x : T+bool|)a〈x〉)
)
.

Suppose there is at least one c∈Ssuch that c : T. By (query-T), P= d〈S〉 |d(q)〈T,a〉→
d〈S〉 | ∏{c∈S|c:T}a〈c〉. By Lemma E.1 (1), [[∏{c∈S|c:T}a〈c〉]]E . A and [[d〈S〉 | ∏{c∈S|c:T}a〈c〉]]E .
[[d〈S〉]]E |A by definition of ..
Suppose that there is no c∈ S such that c : T. By (query-F), P→ d〈S〉 |a〈ff〉. By
Lemma E.1 (2), [[a〈ff〉]]E . A and [[d〈S〉 |a〈ff〉]]E . [[d〈S〉]]E |A again by definition
of ..

• in the other cases P→ P′ with [[P′]]E ≡ R.

(ctx): by [[(νd̃)(R|P)]]E → (νd̃)(R′ | [[P]]E) and the premises of the rule, we have [[R]]E →R′.
By inductive hypothesis, R→ R′′ with [[R′′]]E . R′. (νd̃)(R|P) → (νd̃)(R′′ |P) by (ctx)
and [[(νd̃)(R′′ |P)]]E . (νd̃)(R′ | [[P]]E) by definition of ..

38

3. The proof is straightforward by induction on the structure of P. The interesting cases are
the following:

P = d〈S〉: [[d〈S〉]]E = D(S) and both have no barbs;

P = d
(p)〈c〉: [[d(p)〈c〉]]E = d〈publish(c)〉 ↓d and d

(p)〈c〉 ↓d by definition of barb;

P = d
(q)〈T,a〉: [[d(q)〈T,a〉]]E = d〈query((|?z : T+bool|)a〈z〉)〉 ↓d and d

(q)〈T,a〉 ↓d by definition
of barb.

�

Proofs of Theorem 6 and Corollary 4 proceed as the proofs of Theorem A.1 and Corollary A.1
by using Lemma E.2 and ≈[[·]]E instead of Proposition A.1 and ≈〈|·|〉, respectively.

F Service composition: an extended example

We propose here an example of service composition in a somewhat more realistic scenario than
those considered in previous sections. A Search Web service offers various operations, among
which a book price search operation, as described by the fragment of wsdl document below.

<description ...>

...

<interface name = "SearchServices" >

...

<operation name="opSearchPrice"

pattern="http://www.w3.org/ns/wsdl/in-out" >

<input messageLabel="In"

element="searchPrice" />

<output messageLabel="Out"

element="searchPriceReply" />

</operation>

...

</interface>

...

</description>

The operation opSearchPrice receives in input a book title, contacts an on-line bookstore for
obtaining its price and returns it to the client. The type associated to message searchPrice can be
defined, using XPi syntax for conciseness, as book[title(string)], while the type associated to
message searchPriceReply is bookPriceReply[title(string),store(string),price(real)].

The on-line store is described by the following wsdl document fragment.

<description ...>

...

<interface name = "BookStoreServices" >

...

<operation name="opCheckAvailability"

pattern="http://www.w3.org/ns/wsdl/in-out">

<input messageLabel="In"

element="title" />

<output messageLabel="Out"

element="checkReply" />

</operation>

<operation name="opBookPrice"

pattern="http://www.w3.org/ns/wsdl/in-out" >

<input messageLabel="In"

39

element="title" />

<output messageLabel="Out"

element="priceReply" />

</operation>

</interface>

...

</description>

The bookstore offers at least two operations. A check availability operation, to check the
availability of a given book, and a book price operation that lets a client know the price of
a specified book. Message title is supposed to be of type book[title(string)], message
checkReply and priceReply of type availabilityReply[title(string),copies(int)] and
priceReply[title(string),price(real)] respectively.

We proceed now by defining two XPi processes that implement these services. Note that, in
XPi, the actual types of operation messages we consider are slightly different from those defined
in the wsdl documents above: indeed, the sole difference is that in XPi the input message of each
operation also contains a reply channel, where the caller waits for the reply (these reply channels
could be automatically inserted by a compiler). So the types we are going to use are the following:

• Tsp is the type of input messages for the search price operation (WebSearch). Messages of
this type contains not only the title of the book, but also a reply channel of type ch(Trsp):

Tsp
4
= bookPrice[title(string),rep(ch(Trsp))]

• Trsp is the type of reply messages informing the client about the title, the bookstore and the
price:

Trsp
4
= bookPriceReply[title(string),store(string),price(real)]

• Tca is the type of messages received by the check availability operation (Bookstore). Again,
this operation receives not only the title of the book, but also a reply channel carrying
messages of type Trca:

Tca
4
= bookAvailability[title(string),rep(ch(Trca))]

• Trca is the type of reply messages informing the client about the availability and the title of
the book:

Trca
4
= availabilityReply[title(string),copies(int)]

• Tbp is the type of messages received by the check book price operation (Bookstore). Again,
this operation receives not only the title of the book, but also a reply channel carrying
messages of type Trbp:

Tbp
4
= bookPrice[title(string),rep(ch(Trbp))]

• Trbp is the type of reply messages informing the client about the price and the title of the
book:

Trbp
4
= priceReply[title(string),price(real)] .

We assume that the bookstore has a private channel implementing its catalog

cat : ch([title(string),copies(int),price(real)])

which can be queried to know the price/availability of each book. For simplicity, we assume that
each title occurs exactly once in the catalog.

40

The bookstore service can be defined in XPi as follows:

B
4
= (νcat)

(
∏i∈I cat〈[title(ti),copies(ci),price(pi)]〉∣∣ !opCheckAvailability.(bookAvailability[title(?xt : string),rep(?xr : ch(Trca))])

cat.([title(xt),copies(?y : int),price(?z : real)])

(cat〈[title(xt),copies(y),price(z)]〉

|xr〈availabilityReply[title(xt),copies(y)]〉)∣∣ !opBookPrice.(bookPrice[title(?xt : string),rep(?xr : ch(Trbp))]))

cat.([title(xt),copies(?y : int),price(?z : real)])

(cat〈[title(xt),copies(y),price(z)]〉

|xr〈priceReply[title(xt),price(z)]〉)∣∣ !opBookOrder. · · ·∣∣ . . .

with opCheckAvailability: ch(Tca) and opBookPrice: ch(Tbp).
The Search Web service could be defined as follows:

S
4
= !opSearchPrice.(bookPrice[title(?xt : string),rep(?xr : ch(Trsp))])

(νs)
(
opBookPrice〈bookPrice[title(xt),rep(s)])〉

|s.(priceReply[title(xt),price(?z : real)])

xr〈bookPriceReply[title(xt),store(B),price(z)]〉
)∣∣ . . .

with opSearchPrice: Tsp and s : Trbp.
The client C below looks for the price of book “Title” (we use freely an if · · · then construct

that can be coded up in the same vein as Case):

C
4
= (νr)

(
opBookPrice〈bookPrice[title(“Title”),rep(r)]〉∣∣ r.(bookPriceReply[title(“Title”),store(?x : string),price(?y : real)])

if (y < maxPrice) thenopBookOrder(· · ·)
)

with r : Trsp. Assuming there is a j ∈ I such that “Title” = t j , we have the following evolution of
the system

S|B|C→∗ S|B|
(
if (p j < maxPrice) thenopBookOrder(· · ·)

)
.

This example can be generalised to more complex scenarios. For instance, we can define a
Search Web that contacts more than one bookstore and offers its client all possible choices, both
in terms of availability and price.

41

