
Proof Techniques for Cryptographic Processes∗

Michele Boreale Rocco De Nicola Rosario Pugliese

Dipartimento di Sistemi e Informatica, Università di Firenze

e-mail: {boreale,denicola,pugliese}@dsi.unifi.it

Abstract

Contextual equivalences for cryptographic process calculi, like the spi-calculus, can
be used to reason about correctness of protocols, but their definition suffers from quan-
tification over all possible contexts. Here, we focus on two such equivalences, namely
may-testing and barbed equivalence, and investigate tractable proof methods for them.
To this aim, we design an enriched labelled transition system, where transitions are con-
strained by the knowledge the environment has of names and keys. The new transition
system is then used to define a trace equivalence and a weak bisimulation equivalence,
that avoid quantification over contexts. Our main results are soundness and completeness
of trace and weak bisimulation equivalence with respect to may-testing and barbed equiv-
alence, respectively. They lead to more direct proof methods for equivalence checking.
The use of these methods is illustrated with a few examples, concerning implementation
of secure channels and verification of protocol correctness.

Keywords: Process calculi, Reasoning about security, Semantics, Formal methods.

∗Appeared in SIAM Journal on Computing, vol. 31(3), pp. 947-986, 2002. Extended and revised version

of [9].

1

Contents

1 Introduction 3

2 The Language 6
2.1 Syntax . 7
2.2 Operational semantics . 9
2.3 May-testing and barbed equivalence . 11

3 Trace and Bisimulation Semantics 11
3.1 An environment-sensitive lts . 12
3.2 Trace and bisimulation semantics . 13

4 Soundness and Completeness 16
4.1 May-testing and trace semantics . 17
4.2 Barbed equivalence and bisimilarity . 20

5 Applications 25
5.1 Some useful laws . 25
5.2 Secure channels implementation . 27
5.3 Verification of a small protocol . 30

6 A Calculus with Pairs 32

7 Final Remarks and Related Work 34

A Results on Environment Equivalence 37

B Results on Trace and Bisimulation Semantics 41
B.1 Trace semantics . 42
B.2 Bisimilarity . 43

C Characteristic Formula: Calculus with Pairing 45

References 47

2

1 Introduction

Recently, there has been much interest toward using formal methods for analysing crypto-
graphic protocols. Here, we focus on a specific approach, which aims at modelling protocols
as concurrent processes, described as terms of a process calculus (e.g. the spi-calculus [7, 5],
a cryptographic version of the π-calculus [17]). As an example, consider the very simple pro-
tocol where two principals A and B share a private key k, and A wants to send B a datum
d encrypted under k, through a public channel c:

Message 1 A→ B: {d}k on c.

This informal notation can be expressed in the spi-calculus as follows:

A(d) def= c{d}k.0

B
def= c(x).F (x)

P (d) def= (ν k)(A(d) |B).

Here, c{d}k. means output of message {d}k at channel c and 0 stands for termination. The
prefix c(x). indicates the intention to input a message at channel c and to bind it to x, and
F (x) is some expression describing the behaviour of B after the reception of x. The whole
protocol P (d) is the parallel composition A(d) |B, with the restriction (ν k) indicating that
the key k is only known to A(d) and B.

The main advantage of this kind of description is that process calculi have a formal yet
simple semantics that permits rendering rigorously such notions as ‘attacker’ and ‘secrecy’.
Continuing with the example above, a way of asserting that P (d) keeps d secret is requiring
that P (d) be equivalent to P (d′), for every other d′. An appropriate notion of equivalence is
may-testing [11, 8, 7]; its intuition is precisely that no external context (which in the present
setting can be read as ‘attacker’) may notice any difference when running in parallel with
P (d′) or P (d). A similar intuition is supported by other contextual equivalences, like barbed
equivalence [18]. While rigorous and intuitive, the definitions of these equivalences suffer from
universal quantification over contexts (attackers), that makes equivalence checking very hard.
It is then important to devise proof techniques that avoid such quantification. Results in this
direction have been obtained for traditional process calculi (for example, in CCS [11, 15] and
in π-calculus [17], may-testing is easily proven to coincide with trace equivalence), but little
has been done for cryptographic calculi.

In this paper, we consider may-testing and barbed equivalence for a variant of the spi-
calculus with shared-key encryption primitives [7]. We develop an ‘environment-sensitive’
labelled transition system (lts), whose transitions are constrained by the knowledge the envi-
ronment has of names and keys. A trace-based equivalence and a purely co-inductive notion
of weak bisimulation, that avoid quantification over contexts, are defined on the new lts and
it is shown that they are in agreement with may-testing and barbed equivalence, respectively.
A more detailed account of our work follows.

The handling of names is a crucial aspect in the semantics of process calculi. Let us
first consider the nature of the transitions in the non-cryptographic π-calculus. There are
three kinds of basic moves which correspond to: output of a message, input of a message

3

and internal computation. An output transition like P
(ν b)a〈b〉−−−−−−→ P ′ says that process P

passes a new (or fresh, (ν ·) means ‘new’) name b to the environment along channel a, and
becomes P ′ in doing so. The environment can use at will names he has got to know. For

example, the two-steps sequence P
(ν b)a〈b〉−−−−−−→ P ′ b c−−→ P ′′ (where b c means ‘input c along

b’) is possible. In general, if a process is ready to perform some action, the environment
will always be able to react. The reason is that, in the π-calculus, environment and process
share at each stage the same knowledge of names. Thus, to determine whether two processes
are, say, may-testing equivalent it is sufficient to establish that they can perform the same
sequences of (input/output) actions.

The correspondence between environment and process knowledge is lost when moving to
the spi-calculus, i.e. when adding encryption and decryption primitives to the π-calculus.
Indeed, two new facts must be taken into account.

(a) When the environment receives a new name encrypted under a fresh key, it does not
acquire the knowledge of that name immediately. For instance, after P outputs a new

name b encrypted under a fresh key k (written P
(ν b,k)a〈{b}k〉−−−−−−−−−→ P ′), name b is part of

the knowledge of P ′, but not part of the knowledge of the environment. Thus, if P ′

is willing to input something at b (say P ′ = b(c).P ′′), the environment cannot satisfy

P ′’s expectations: a sequence like P
(ν b,k)a〈{b}k〉−−−−−−−−−→ P ′ b c−−→ P ′′ (that is possible in

the traditional-style transition system) cannot be considered as meaningful in the spi-

calculus. For similar reasons, a sequence like P
(ν b,k)a〈{b}k〉−−−−−−−−−→ P ′ a′ b−−−→ P ′′, where

the environment is expected to send back the cleartext b, cannot be considered as
meaningful.

(b) Equivalent processes need not exhibit the same sequences of transitions. The process
that performs the single output (ν k)a〈{b}k〉 and terminates, and the one that performs
(ν k)a〈{c}k〉 and terminates, are equivalent, because messages {b}k and {c}k cannot
be distinguished by the environment (as it cannot open something encrypted with k).
However, the two messages could be distinguished if the environment got the key k.
Thus, the two processes (ν k)a{b}k. ak.0 and (ν k)a{c}k. ak.0 are not equivalent.

To cope with these issues and recover the correspondence between environment and process
actions, we introduce an enriched labelled transition system that explicitly keeps track of
the environment’s knowledge. The states of the new lts are configurations σ � P , where P
is a process and σ is the current environment’s knowledge, modelled as a mapping from a
set of variables to a set of messages. Informally, σ plays the role of a database storing the
messages received by the environment; each entry of the database is referenced by a distinct
variable. Transitions represent interactions between the environment and the process and
take the form

σ � P
µ

|−−→
δ

σ′ � P ′

where µ is the action of process P and δ is the ‘complementary’ environment action.
We have three different kinds of situations.

4

1. The process performs an output and the environment an input. As a consequence, the
environment’s knowledge gets updated. For instance:

σ � P
(νeb)a〈M〉

|−−−−−−−→
z(x)

σ[M/x] � P ′

here σ[M/x] is the update of σ with the new entry [M/x], for a fresh variable x. Moreover,eb is the set of new names the process has just created. For the transition to take place,
channel a must belong to the knowledge of σ, which in this case amounts to saying that
σ(z) = a.

2. The process performs an input and the environment an output. As discussed previously,
messages from the environment cannot be arbitrary, they must be built, via encryption
and decryption, using only the knowledge stored in σ. Thus, a transition might be:

σ � P
a M

|−−−−−−→
(νeb)z〈ζ〉 σ[eb/eb] � P ′.

Informally, eb is the set of new names the environment has just created and added to
its knowledge, while ζ is an expression describing how M has been built out of σ andeb. For example, if σ(x1) = {c}k and σ(x2) = k and M = c then ζ might be decx2(x1),
indicating that message c results from decrypting the x1-entry using the x2-entry as a
key. Again, a must belong to the knowledge of σ, thus σ(z) = a.

3. The process performs an internal move and the environment does nothing:

σ � P
τ

|−−→
−

σ � P ′.

When defining trace and bisimulation semantics (Section 3) on the top of the new lts, the
point of view is taken that equivalent configurations should exhibit the same environment
actions. As an example, take σ with entries σ(x) = a, σ(y) = b and σ(z) = c and consider
the configurations C1

def= σ � (ν k)a{b}k.0 and C2
def= σ � (ν k)a{c}k.0. These configurations

are both trace and bisimulation equivalent, because the only transitions they have are:

C1

(ν k)a〈{b}k〉
|−−−−−−−−→

x(w)
σ[{b}k/w] � 0

and

C2

(ν k)a〈{c}k〉
|−−−−−−−−→

x(w)
σ[{c}k/w] � 0

which exhibit the same environment action, x(w). On the other hand, as discussed above,
C3

def= σ � (ν k)a{b}k. ak.0 and C4
def= σ � (ν k)a{c}k. ak.0 should not be regarded as equiva-

lent. Indeed, after two steps, C3 reaches a state where the environment is σ[{b}k/w][k/v], which
cannot be considered ‘equivalent’ to the environment reachable from C4, i.e. σ[{c}k/w][k/v]:
The decryption of the entry w, that is now possible because k is known, yields distinct names,

5

b and c, in the two cases. Equivalence on environments is a notion crucial to our approach,
and will be formalized in terms of logical equivalence. For both trace and bisimulation
equivalence, we shall insist that matching transitions should take equivalent environments
to equivalent environments. We shall show that these equivalences imply their contextual
counterparts (soundness), hence the formers can be used as proof techniques for the latters.
The converse implication (completeness) is also proven for trace equivalence. As to bisimu-
lation, we establish completeness relatively to a broad class of processes (which includes all
the image-finite ones [15]).

Trace and bisimulation equivalences avoid quantification over contexts and only require
considering transitions of the enriched lts. As such, they make reasoning on processes much
easier than the contextual definitions. While trace semantics is sufficient for expressing many
security properties (especially secrecy and autenthicity ones, [7]), bisimulation is sometimes
preferrable because it embodies a notion of fairness and is supported by a nice, purely co-
inductive proof technique. The latter can be enhanced by tailoring, as we do, some ‘up-to’
techniques [21, 10] to the cryptographic setting. Another advantage of our semantics are the
congruence rules that make compositional proofs possible. The use of trace and bisimulation
semantics as proof techniques is illustrated with a few examples; some of them concern
the problem of implementing secure channels using encrypted public channels (like in [4]).
Some of the equalities we establish are hard and lengthy to prove if relying on the original,
contextual definitions (see, e.g., the secure channel implementations in Section 5).

The rest of the paper is organized as follows. The language is presented in Section 2;
there, we also introduce the contextual semantics, may-testing and barbed equivalences.
Section 3 introduces the new lts for the spi-calculus and, based on that, trace and bisimulation
semantics. In Section 4, we establish soundness and completeness of trace semantics with
respect to may-testing, and of bisimulation with respect to barbed equivalence. Section 5
presents a number of properties of trace and bisimulation semantics and their applications. In
Section 6, we present the extension of the theory to a richer calculus, that permits handling
pairs of messages. Comparisons to related works and a few concluding remarks are reported
in Section 7. The most technical proofs and definitions are relegated to appendices A, B and
C.

2 The Language

We first present syntax and (conventional) operational semantics of the language, which is a
variant of the spi-calculus. We then define the contextual semantics, may-testing and barbed
equivalence. In the definition of the language, there are a few implicit assumptions on the
underlying system of shared-key cryptography. We make them explicit below:

1. A message M encrypted under a key k, written {M}k, can only be decrypted using k.
The only way to produce the ciphertext {M}k is to encrypt M under k. If k is secret,
the attacker cannot guess or forge k (perfect encryption).

2. There is enough redundancy in the structure of messages to tell whether decryption of
a message with a given key has actually succeeded or not.

6

3. There is enough redundancy in the structure of messages to tell their role (key or
compound ciphertext).

4. The only way to form a new key is to get a fresh name from a primitive set of names.

These assumptions are quite common in the literature. In particular, the first two are also
found in the original spi-calculus [7]. The third and fourth assumptions might be regarded
as a limitation over the practice of crypto-protocols, where new keys are sometimes formed
by assembling pieces of old messages together (especially if random bits are considered as an
expensive resource). However, many interesting protocols do fulfill these assumptions.

2.1 Syntax

The syntax of the calculus is summarized in Table 1. A countable set N of names
a, b . . . , h, k, . . . , x, y, z . . . is assumed. Names can be used as communication channels, prim-
itive data or encryption keys: we do not distinguish between these three kinds of objects
(notationally, we prefer letters h, k, . . . , when we want to stress the use of a name as a key).
In the standard π-calculus, names are the only transmissible objects. In the spi-calculus
the possibility has been added to communicate messages obtained via shared-key encryption:
message {M}k represents the ciphertext obtained by encrypting message M under key k,
using a shared-key encryption system. Encryptions can be arbitrarily nested. Expressions
are obtained applying encryption and decryption operators to names and ciphertexts. For
example, the result of evaluating decη(ζ) is the text obtained by decrypting the ciphertext ζ
using the value of η as a key. Expressions are also used to represent dummy terms that can be
generated at run but do not represent proper messages (such as {a}{b}k

, where a compound
term {b}k is used as a key instead of an atomic name). Logical formulae generalize the usual
equality operator of the π-calculus with a predicate name(·), which tests for the format of
the argument (plain name or a compound ciphertext), and with a let construct that binds
the value of some expression ζ to a name z. Processes are built using a set of operators which
include those from the standard π-calculus, plus two new operators: boolean guard and a
let construct. An informal explanation of the operators might be the following:

• 0 is the process that does nothing;

• η(x).P represents input of a generic message x along η: the only useful case is when η
is a name, otherwise the whole process is stuck;

• ηζ.P represents output of ζ along η: the only useful case is when η is a name and ζ is
a message, otherwise the whole process is stuck;

• P + Q can behave either as P or Q: the choice might either be triggered by the
environment, or by internal computations of P or Q;

• P |Q is the parallel execution of P and Q;

• (ν a)P creates a new name a which is only known to P ;

• !P behaves like unboudedly many copies of P running in parallel, i.e. P | P | P | · · · ;

7

a, b . . . , h, k, . . . , x, y, z . . . names N

M, N ::= a | {M}k messagesM

η, ζ ::= a | {η}ζ | decη(ζ) expressions Z

φ, ψ ::= tt | name(ζ) | [ζ = η] formulae Φ
| let z = ζ in φ | φ ∧ ψ | ¬φ

P, Q ::= processes P
0 (null)

| η(x). P (input prefix)
| ηζ. P (output prefix)
| P +Q (non− deterministic choice)
| P |Q (parallel composition)
| (ν a)P (restriction)
| !P (replication)
| φP (boolean guard)
| let z = ζ in P (encryption/decryption)

It is assumed that dec·(·) does not occur in name(ζ), [ζ = η], η(x). and ηζ..
Operators a(x).·, (ν a)· and let z = ζ in · are binders, with the obvious scope, for names
x, a and z, respectively. In let z = ζ in ·, it is assumed that z does not appear in ζ.

Table 1: Syntax of the calculus

• φP behaves like P if the formula φ is logically true, otherwise it is stuck;

• let z = ζ in P attempts evaluation of ζ: if the evaluation succeeds the result is bound
to z within P , otherwise the whole process is stuck.

There are a few differences from Abadi and Gordon’s spi-calculus [7]. In particular:

• Our decryption keys cannot be compound messages, as already noted.

• For decryption, we use a ‘let’ construct instead of the ‘case’ construct of [7]. This
enables us to write process expressions in a more compact form: for instance, the
spi-calculus process case M of {k}h in (case N of {z}k in P) can be written as
let z = decdech(M)(N) in P in our syntax.

• We have included a non-deterministic choice +, which is sometimes useful for specifi-
cation purposes. Another – technical – reason for including + in the language is that
this operator appears to be necessary when proving coincidence of barbed equivalence
and bisimilarity.

• We do not consider public key and hash functions, which are present in the original
spi-calculus.

8

A minor difference is that the syntax above does not mention tuples, which we have
preferred to treat separately (in Section 6). This permits a cleaner presentation of the overall
approach.

We shall often abbreviate α.0 as α, where α is an input or output prefix, and (ν a)(ν b)P
as (ν a, b)P . We shall use the tilde e· to denote tuples of objects (e.g. ex is a generic tuple
of names); this will sometimes be written as exi∈I , for an appropriate index-set I. If ex =
(x1, . . . , xn) and ey = (y1, . . . , ym) then exey will denote the tuple (x1, . . . , xn, y1, . . . , ym). When
convenient, we shall regard a tuple simply as a set (writing e.g. ex ⊆ S to mean that all
components of ex are in S). All our notations are extended to tuples component-wise. In
particular, if ek = (k1, . . . , kn), then {M}ek means {· · · {M}k1 · · ·}kn and decek(M) means
deckn(· · · deck1(M) · · ·).

Notions of free names of a process P , fn(P), of bound names of P , bn(P), and of alpha-
equivalence arise as expected; n(P) is fn(P)∪ bn(P). Often, we shall write fn(P,Q) in place
of fn(P) ∪ fn(Q) (similarly for bn(·) and n(·)). Similar notations are used for formulae,
expressions and messages.

A substitution σ is a finite partial map from N to the set of messages M. The domain
and proper co-domain of σ are written dom(σ) and range(σ), respectively. We let n(σ) =
dom(σ)∪ (∪

M∈range(σ)n(M)). Given a tuple of distinct names ex = (x1, . . . , xn) and a tuple

of messages fM = (M1, . . . ,Mn), the substitution mapping each xi to Mi will be sometimes
written as [fM/ex] or [Mi/xi]i∈1..n . When ex ∩ dom(σ) = ∅ , we write σ[fM/ex] for the substitution

σ′ which is the union of σ and [fM/ex] (in this case we say that σ′ extends σ). For a given
V ⊆fin N , we write εV for the substitution with dom(εV) = V that acts as the identity
on V . For any term (name/expression/formula/process) t, tσ denotes the term obtained by
simultaneously replacing each x ∈ fn(t) ∩ dom(σ) with σ(x), with renaming of bound names
of t possibly involved to avoid captures.

2.2 Operational semantics

The (conventional) operational semantics defined below only accounts for process intentions.
In fact, the subsequent definitions of contextual equivalences only use the part of this seman-
tics that describes ‘internal computation’ (denoted by τ−−→) of processes.

First, we need two evaluation functions: one for expressions, the other for formula. The
evaluation function for expressions, b· : Z → M ∪ {⊥} (where ⊥ is a distinct symbol), is
defined by induction on ζ as follows:

• ba = a

• Ö{ζ1}ζ2 =

(
{M}k if Òζ1 = M and Òζ2 = k ∈ N , for some M and k
⊥ otherwise

•Údecζ2(ζ1) =

(
M if Òζ1 = {M}k and Òζ2 = k ∈ N , for some M and k
⊥ otherwise

Note that the evaluation of an expression ‘fails’, i.e. returns the value ⊥, whenever an
encryption/decryption with something different from a name is attempted, or whenever a

9

(Inp) a(x). P a M−−−−→ P [M/x] (Out) aM.P
a〈M〉−−−−→ P

(Sum)
P

µ−−→ P ′

P +Q
µ−−→ P ′

(Rep)
P | !P

µ−−→ P ′

!P
µ−−→ P ′

(Par)
P

µ−−→ P ′

P |Q µ−−→ P ′ |Q
(Com)

P
(νeb)a〈M〉−−−−−−−→ P ′ Q a M−−−−→ Q′

P |Q τ−−→ (ν eb)(P ′ |Q′)

(Res)
P

µ−−→ P ′

(ν c)P
µ−−→ (ν c)P ′

c /∈ n(µ) (Open)
P

(νeb)a〈M〉−−−−−−−→ P ′

(ν c)P
(νebc)a〈M〉−−−−−−−−→ P ′

c 6= a, c ∈ n(M)−eb
(Guard)

[[φ]] = tt P
µ−−→ P ′

φP
µ−−→ P ′

(Let)
bζ 6= ⊥ P [bζ/z] µ−−→ P ′

let z = ζ in P
µ−−→ P ′

Table 2: Operational semantics (symmetric versions of (Sum), (Par) and (Com) omitted)

decryption with something different from the encryption key is attempted. For instance, the
evaluation of {a}{b}c

and decb({a}c) is ⊥, while decc({a}c) evaluates to a.
The evaluation function for formulae, [[·]] : Φ → {tt, ff}, is defined by induction on φ.

The only non-standard clauses are those for name(ζ) and for let z = ζ in φ:

• [[name(ζ)]] =
¨
tt if ζ ∈ N
ff otherwise.

• [[let z = ζ in φ]] =

(
[[φ[bζ/z]]] if bζ 6= ⊥
ff otherwise.

For any substitution σ, σ |= φ means that [[φσ]] = tt.
The operational semantics is defined by the early-style inference rules of Table 2. All

rules but the last two are standard from π-calculus. Rule (Guard) says that process φP
behaves like P provided that φ evaluates to true; otherwise, process φP is stuck. Rule (Let)
attempts evaluation of expression ζ: if the evaluation succeeds, then process let z = ζ in P

behaves like process P [bζ/z], otherwise let z = ζ in P is stuck.
Process actions (i.e. labels of the transition system), ranged over by µ, λ, . . ., can be of

three forms: τ (internal action), aM (input at a where message M is received) and (ν eb)a〈M〉
(output at a where message M containing the fresh, private names eb is sent). We shall write
a〈M〉 instead of (ν eb)a〈M〉 whenever eb = ∅. Input and output actions will be called visible
actions. We use s to range over sequences of visible actions (traces), and write =⇒ or ε==⇒
to denote the reflexive and transitive closure of τ−−→ and, inductively, s==⇒ for =⇒ µ−−→ s′==⇒
when s = µ · s′. P s==⇒ will stand for ‘there is P ′ s.t. P s==⇒ P ′ for some P ′’.
From now on, we shall adopt the following:

Convention 2.1 We identify alpha-equivalent processes and formulae. Moreover, both in
actions and in sequences of actions, we shall assume that bound names can be freely renamed

10

with fresh names. In particular, we shall always assume that bound names are distinct from
each other and from the free names, and not touched by substitutions.

2.3 May-testing and barbed equivalence

We instantiate the general framework of may-testing [11] to our calculus. Observers, ranged
over by O,O′, . . ., are processes that can perform a distinct ‘success’ action ω. Informally,
the latter is used to signal that the observed process has passed a test. For instance, the
observer (ν b)ab. b(x). [x = c]ω, when run in parallel with any process, tests for the ability
of the process to receive a new name b on channel a and then to send name c along b. The
may-testing preorder is defined in terms of the ability of processes to pass tests proposed
by observers. Since we work in a non-deterministic setting, a process may or may not pass
a specific test. If one interprets ‘passing a test’ as ‘revealing a piece of information’, then
two processes that may pass the same tests may potentially reveal the same information to
observers: as such, they should be considered as equivalent from a security point of view. We
can formalize this concept solely in terms of sequences of internal computations (=⇒) and
success action (ω).

Definition 2.2 (may-testing preorder)
P <∼Q if, for every observer O, P |O ω==⇒ implies Q |O ω==⇒. 3

The equivalence obtained as the kernel of the preorder <∼ is denoted by ' (' = <∼ ∩
<∼

−1) and is called testing equivalence.

The intuition behind barbed equivalence [18] is somehow similar to that of testing, but
is based on a notion of step-by-step simulation between two processes. In what follows, we
say that a process P commits to a, and write P ↓ a, if P a M−−−→ or P

(νeb)a〈M〉−−−−−−−→, for some
M and eb. We also write P ⇓ a if P =⇒ P ′ and P ′ ↓ a, for some P ′.

Definition 2.3 (barbed equivalence) A symmetric relation S ⊆ P×P is a barbed bisim-
ulation if whenever PSQ then:

1. for each P ′, if P τ−−→ P ′ then there is Q′ such that Q =⇒ Q′ and P ′SQ′, and

2. for each a, if P ↓ a then Q ⇓ a.

Barbed bisimilarity, written ·∼= , is the largest barbed bisimulation relation. Two processes P
and Q are barbed equivalent, written P ∼= Q, if for all R we have that P |R ·∼=Q |R. 3

It is worthwhile to notice that neither <∼ nor ∼= are (pre-)congruences, because they are
not preserved by input prefix: this is standard in name-passing languages (see, e.g., [17, 10]).

3 Trace and Bisimulation Semantics

In this section we shall first introduce an ‘environment-sensitive’ lts for our calculus and then
define trace and bisimulation equivalences over the new lts.

11

It is assumed that n(η) ⊆ dom(σ) and that names in eb are fresh for σ and P .

(E-Out)
P

(νeb)a〈M〉−−−−−−−→ P ′ cησ = a

σ � P
(νeb)a〈M〉

|−−−−−−−→
η(x)

σ[M/x] � P ′
(E-Tau)

P τ−−→ P ′

σ � P
τ

|−−→
−

σ � P ′

(E-Inp)
P a M−−−−→ P ′ cησ = a M = cζσ eb def= (n(ζ)− dom(σ))

σ � P
a M

|−−−−−−→
(νeb)η〈ζ〉 σ[eb/eb] � P ′

Table 3: Rules for the environment-sensitive lts

3.1 An environment-sensitive lts

States are configurations of the form σ � P , where P is a process and substitution σ rep-
resents the environment (from now on, terms ‘substitution’ and ‘environment’ will be used
interchangeably). Transitions take the form

σ � P
µ

|−−→
δ

σ′ � P ′

and represent atomic interactions between process P and environment σ, µ is the process
action (i.e. input, output or τ) and δ is the complementary environment action. The latter
can be of three forms, output, input and ‘no action’:

δ ::= (ν eb)η〈ζ〉 | η(x) | − .

The upper transition labels are not strictly necessary for the development of our theory.
However, they are useful because they show the process action that triggers the transition.

Free names and bound names of δ are defined as expected, in particular bn(η(x)) =
{x}. The visible environment actions are input and output. We shall use u to range over

sequences of visible environment actions. The inference rules for the transition relation
µ

|−−→
δ

are displayed in Table 3. Note that judgements from the conventional transition system are
used in the premises.

In rule (E-Out), the environment receives a message M and updates its knowledge ac-
cordingly. For the transition to take place, channel a must belong to the knowledge of the
environment, thus η is some expression describing how a can be obtained out of σ (this is
what Óησ = a means). In rule (E-Inp), the environment sends a message M to the process:
expression ζ describes how message M is built out of σ and eb. The update [eb/eb] records the
creation of the new names eb1. Like in the previous rule, a must belong to the knowledge of
σ.

In the following, we write |==⇒ to denote the reflexive and transitive closure of
τ

|−−→
−

and,

inductively, write s
|==⇒

u
for |==⇒

µ
|−−→

δ

s′
|===⇒

u′ when s = µ · s′ and u = δ · u′.

1Actually, any update [
eb/ex] – with ex a tuple of fresh names – could have been used instead.

12

3.2 Trace and bisimulation semantics

In order to define observational semantics based on
µ

|−−→
δ

, we have to precisely define when

two environments, represented by substitutions σ and σ′, can be considered as equivalent.
Informally, two environments σ and σ′ are equivalent whenever they are logically indistin-
guishable.

Definition 3.1 (equivalence on environments) Two substitutions σ and σ′ are equiva-
lent, written σ ∼ σ′, if dom(σ) = dom(σ′) and for each formula φ with fn(φ) ⊆ dom(σ), it
holds that σ |= φ if and only if σ′ |= φ. 3

This logical characterization is difficult to check, as it contains a quantification on all formulae.
Below, we shall give an equivalent definition that is easy to check. To do this, we start by
making precise the concept of knowledge of an environment σ, that is, all the information
that can be deduced from σ.

Definition 3.2 (decryption closure and knowledge) Let W be a set of messages. The
decryption closure of W , written dc(W), is the set of messages defined inductively as follows:

(i) W ⊆ dc(W), and

(ii) if k ∈ dc(W) and {M}k ∈ dc(W) then M ∈ dc(W).

The knowledge of W , written kn(W), is the set of names in dc(W), i.e.: kn(W) def= dc(W)∩
N .

Let σ be a substitution; we let dc(σ) def= dc(range(σ)) and kn(σ) def= kn(range(σ)). 3

Note that kn(σ) can be computed in a finite number of steps. For instance, it is not
difficult to see that kn([{b}l/w, {a}k/x, {k}h/y, h/z]) = {a, h, k}. Next, a couple of notational
shorthands.

• Given any substitution σ = [Mi/xi]i∈I and i ∈ I, we denote by core(σ, xi) what is left of
Mi after decrypting as much as possible using the keys in kn(σ). Formally, we define
core(σ, xi) as the message N such that: for some ek ⊆ kn(σ), it holds Mi = {N}ek and
either N is a name, or N = {N ′}h for some N ′ and h /∈ kn(σ). For example, given
σ = [{a}hk/x1, k/x2], then core(σ, x1) = {a}h and core(σ, x2) = k.

• Given a tuple ex = xi∈I and a tuple of indices e = (j1, . . . , jk) ⊆ I, we let ex[e] denote
the tuple (xj1 , . . . , xjk

). For instance, if ex = (x1, x2, x3) and e = (3, 1, 1, 2) then ex[e] =
(x3, x1, x1, x2).

We are now set to give an alternative definition of equivalence on environments. The
intuition behind the definition below is that, for any two equivalent environments, it should
not be possible to tell apart two messages Mi and M ′

i referenced by the same variable xi, by
(a) trying decryption with different keys, or by (b) format mismatch (name vs. compound
ciphertext), or by (c) syntactic comparison.

13

Definition 3.3 (equivalence on environments: alternative definition) Let σ =
[Mi/xi]i∈I and σ′ = [M ′

i/xi]i∈I be two substitutions with the same domain. For each i ∈ I,
let Ni = core(σ, xi) and N ′

i = core(σ′, xi), and let ÜN = Ni∈I and ÜN ′ = N ′
i∈I . We write

σ ∼′ σ′, if for each i ∈ I the following three conditions hold:

(a) for some tuple of indices ei ⊆ I, it holds that Mi = {Ni} eN [ei] and M ′
i = {N ′

i} eN ′[ei];
(b) Ni ∈ N iff N ′

i ∈ N ;

(c) for each j ∈ I, it holds that Ni = Nj iff N ′
i = N ′

j. 3

As an example, σ1 = [b/x1, c/x2, {b}k/x3] and σ2 = [b/x1, c/x2, {c}k/x3] are equivalent. On the
contrary, σ3 = σ1[k/x4] and σ4 = σ3[k/x4] are not equivalent, because core(σ3, x3) = b =
core(σ3, x1), while core(σ4, x3) = c 6= core(σ4, x1), thus condition (c) is violated2. Also note
that equivalent environments need not have the same kn(·): for instance, the environments
[{b}kh/x1, h/x2] and [{b}k′h′/x1, h

′
/x2] are equivalent, though they have different knowledge.

Environment pairs of this sort may arise when comparing two processes (this is due to the
interplay between encryption and restriction – see Example 3.9).

The following theorem, whose proof can be found in Appendix A, allows us to freely
interchange the use of ∼ and of ∼′ in the rest of the paper.

Theorem 3.4 (coincidence of ∼ and ∼′) For any two substitutions σ and σ′, it holds that
σ ∼ σ′ if and only if σ ∼′ σ′.

We are now ready to define a trace-based preorder. Recall that bound names of s and u
below are assumed to be fresh. A similar remark applies to µ and δ in Definition 3.8.

Definition 3.5 (trace preorder)
Let σ1 ∼ σ2. Given two processes P and Q, we write (σ1, σ2) ` P � Q if whenever

σ1 � P
s

|===⇒
u

σ′1 � P ′ then there are s′, σ′2 and Q′ such that σ2 �Q
s′

|===⇒
u

σ′2 �Q′ and σ′1 ∼
σ′2 . 3

Note that, when comparing configurations, just the lower transition labels are considered,
while the upper labels (in s and s′) are ignored: we give them to help reading the definition.
We revise below the example given in the Introduction.

Example 3.6 Define σ = [a/x, b/y, c/z]. Then σ � (ν k)a{b}k and σ � (ν k)a{c}k are �-
equivalent. On the contrary, σ � (ν k)a{b}k.ak and σ � (ν k)a{c}k.ak are not related, because
σ[{b}k/v, k/w] 6∼ σ[{c}k/v, k/w], for any fresh v, w.

2In general, once kn(σ1) and kn(σ2) have been computed, σ1 ∼′ σ2 can be very easily checked. In particular,

the existential on (a) does not imply any search among the tuples e: given i ∈ I, we just choose any tuple ei
s.t. Mi = {Ni}eN [ei]

and check whether M ′
i = {N ′

i}eN′[ei]
. If this is the case then condition (a) is verified for

i, otherwise we can immediately conclude that σ 6∼′ σ′: indeed, if condition (a) were validated by a different

tuple e′, then we would get that ÜN [ei] = ÜN [e′i], but ÜN ′[ei] 6= ÜN ′[e′i], thus condition (c) would be violated.

14

Example 3.7 A subtler example. Consider

P
def= (ν a, k)c{k}k.ca and Q

def= (ν a, k)c{k}ak.ca.

It is easy to check that, for σ def= [c/c], it holds both that (σ, σ) ` P � Q and that (σ, σ) `
Q � P . The difference between P and Q is that Q’s first message contains a private name
(a) that is later disclosed to the environment: however the environment cannot detect this
difference without the key k, which is never disclosed. Indeed, P and Q are may (and barbed)
equivalent.

More examples will be given in Section 5. Let us switch to bisimulation. In what follows

σ � P
bµ

|==⇒
δ

σ′ � P ′ stands for σ � P
µ

|==⇒
δ

σ′ � P ′ if µ 6= τ , and for σ � P |==⇒ σ′ � P ′ if

µ = τ (the b· defined here has of course nothing to do with the evaluation function on expres-
sions defined in the previous section). We say that a pair of configurations (σ1 � P , σ2 �Q)
is compatible if σ1 and σ2 are equivalent. A relation R is compatible if it only contains
compatible pairs of configurations. Given a binary relation R, we write (σ1, σ2) ` P RQ if
(σ1 � P , σ2 �Q) ∈ R.

Definition 3.8 (weak bisimulation) Let R be a binary compatible relation of configura-

tions. We say that R is a weak bisimulation if whenever (σ1, σ2) ` P RQ and σ1 � P
µ

|−−→
δ

σ′1 � P ′ then there are µ′, σ′2 and Q′ such that σ2 �Q
Òµ′

|===⇒
δ

σ′2 �Q′ and (σ′1, σ
′
2) ` P ′RQ′,

and the converse on the transitions of Q and P . Bisimilarity, written ≈, is the largest weak
bisimulation relation. 3

Example 3.9 This example shows that, when establishing process equivalence, pairs of
equivalent environments with different kn(·) may arise, even when starting from a pair of
identical environments. Consider

P
def= (ν a, k)c{k}k.ca.ac and Q

def= (ν a, k)c{k}ak.ca.ac

and let σ def= [c/c]. It is easy to see that (σ, σ) ` P ≈ Q. In particular, the move

σ � P
(ν k)c〈{k}k〉

|−−−−−−−−→
c(x)

σ[{k}k/x] � (ν a)ca.ac def= P ′

is matched by

σ �Q
(ν k,a)c〈{k}ak〉

|−−−−−−−−−−→
c(x)

σ[{k}ak/x] � ca.ac
def= Q′

where (σ[{k}k/x], σ[{k}ak/x]) ` P ′ ≈ Q′. Thus, the move

σ[{k}k/x] � P ′
(ν b)c〈b〉

|−−−−−−→
c(y)

σ[{k}k/x, b/y] � bc
def= P ′′

(where we have alpha-renamed a into a fresh b) must be matched by

σ[{k}ak/x] �Q′
c〈a〉

|−−−→
c(y)

σ[{k}ak/x, a/y] � ac
def= Q′′

where (σ[{k}k/x, b/y], σ[{k}ak/x, a/y]) ` P ′′ ≈ Q′′. In particular, the process action b〈c〉 origi-
nating from P ′′ is matched by the process action a〈c〉 originating from Q′′.

15

To end the section, we note that bisimilarity ≈ is strictly included in the trace preorder
�. This fact holds for labelled transition systems in general, it is not specific to cryptography.
As an example, it is easily checked that, if V = {a, b, c}, then

(εV , εV) ` P def= aa.(ν z)((zz.bb | zz.cc) | z(x)) � (ν z)((zz.aa.bb | zz.aa.cc) | z(x)) def= Q

but
(εV , εV) ` P 6≈ Q .

Indeed, εV � P has a aa-move that εV �Q cannot match.

4 Soundness and Completeness

In this section we show the agreement between the contextual semantics of Section 2 and the
semantics based on the environment-sensitive lts of Section 3. More precisely, we will prove
that:

• the trace preorder (�) coincides with the may-testing preorder (<∼), and that:

• bisimilarity (≈) is included in barbed equivalence (∼=), while the opposite inclusions
holds for the class of structurally image-finite processes (defined later in this section).

The inclusions �⊆ <∼ and ≈⊆∼= will be referred to as soundness, while the opposite
inclusions will be referred to as completeness. There are a few basic ingredients for the proofs
of soundness and completeness, which we list below. First, it is technically convenient to
introduce a notion of structural equivalence, ≡ , in the same vein of [16].

Definition 4.1 (structural equivalence) Structural equivalence is the least equivalence
relation ≡ over processes that is preserved by parallel composition and restriction, and sat-
isfies the structural laws of [16], i.e.

• the monoid laws for parallel composition: P |0≡P , P |Q≡Q|P and P |(Q|R)≡ (P |Q)|R,

• the laws for restriction: (ν b)0≡0, (ν a)(ν b)P ≡ (ν b)(ν a)P and (ν a)(P |Q)≡P |(ν a)Q
if a 6∈ fn(P),

• the law for replication: !P ≡P | !P ,

plus the law:

(let z = ζ in P) ≡ P [bζ/z] if bζ 6= ⊥ . 3

A property of structural equivalence that we shall widely use in the sequel is that ≡ commutes
with

µ−−→, i.e.: if P ≡Q and P
µ−−→ P ′ then there exists Q′ such that Q

µ−−→ Q′ and P ′≡Q′

(the proof goes by inspection of the rules; see also [16]).

The key to soundness is the following proposition, that relates equivalence on environ-
ments (∼) to the (conventional) operational semantics of Table 2 (its proof can be found in
Appendix B).

16

Proposition 4.2 Consider two equivalent substitutions σ1 and σ2. Let R be any process or
observer such that fn(R) ⊆ dom(σ1).

1. Suppose that Rσ1
(νeb)a〈M〉−−−−−−−→ R1. Then: (i) there is η s.t. n(η) ⊆ dom(σ1) andÔησ1 = a;

(ii) there are ζ and R′ s.t. fn(ζ,R′) ⊆ dom(σ1) ∪ eb and M =dζσ1 and R1≡R′σ1; (iii)

it holds that Rσ2
(νeb)a′〈M ′〉−−−−−−−−→ R2, where a′ =Ôησ2, M ′ =dζσ2 and R2≡R′σ2.

2. Suppose that Rσ1
a M−−−−→ R1. Then: (i) there is η s.t. n(η) ⊆ dom(σ1) andÔησ1 = a; (ii)

taken any fresh y and σ′1
def= σ1[M/y], there is R′ s.t. fn(R′) ⊆ dom(σ′1) and R1≡R′σ′1;

(iii) for any M ′, it holds that Rσ2
a′ M ′

−−−−−→ R2, where a′ = Ôησ2 and R2≡R′σ′2 and
σ′2

def= σ2[M
′
/y].

3. Suppose that Rσ1
µ−−→ R1 with µ = τ or µ = ω. Then: (i) there is R′ s.t. fn(R′) ⊆

dom(σ1) and R1≡R′σ1; (ii) we have Rσ2
µ−−→ R2, where R2≡R′σ2.

The main ingredient for completeness is the notion of characteristic formula of an envi-
ronment σ, written φσ. The exact definition of φσ can be found in Appendix A. Here, we
only wish to remind the properties that will be used below: it holds that n(φσ) ⊆ dom(σ)
and that σ |= φσ; moreover, the following crucial theorem (whose proof can be found in
Appendix A) says that φσ characterizes all and only those environments σ′ equivalent to σ.

Theorem 4.3 Let σ and σ′ be two substitutions such that dom(σ) = dom(σ′). We have that
σ ∼ σ′ if and only if σ′ |= φσ.

We will now proceed to prove soundness and completeness, first for may-testing and then for
barbed equivalence.

4.1 May-testing and trace semantics

Soundness

It is convenient to prove soundness of � with respect to a notion more general than <∼ ,
which is introduced below.

Definition 4.4 (generalized may-testing) For equivalent σ1 and σ2, we write (σ1, σ2) `
P <∼Q if, for each observer O with fn(O) ⊆ dom(σ1), P |Oσ1

ω==⇒ implies Q |Oσ2
ω==⇒. 3

The above definition subsumes that of may preorder, as P <∼Q holds if and only if (εV , εV) `
P <∼Q for some V ⊇ fn(P,Q). The ‘only if’ part of this statement is trivial. To see that the
‘if’ part is true, use the fact that, for any R and O, R |O ω==⇒ iff (ν eb)(R |O)≡R |(ν eb)O ω==⇒,
where eb = fn(O)− fn(R).

We need some properties of sequences of transitions. To state these properties we intro-
duce some additional notions.

Notation 4.5 Given two process actions µ and λ, we write µ compl λ when µ = aM and
λ = (ν eb)a〈M〉, or vice-versa, for some a, eb and M . The notation extends to sequences of
visible actions of the same length (s compl r) as expected.

17

Note that whenever P | O ω==⇒, then we can find s and r (possibly empty) s.t. P s==⇒,
O rω===⇒ and s compl r. Conversely, P s==⇒ and O rω===⇒ with s compl r can be composed to
yield P |O ω==⇒.

Definition 4.6 Given an environment action δ and an environment σ, cδσ is the process
action defined as:

cδσ =

8><>:
(ν eb)a〈M〉 if δ = (ν eb)η〈ζ〉, Óησ = a and M =Óζσ
aM if δ = η(x), Óησ = a and M = xσ

undefined otherwise.

Given a trace u with n(u) ⊆ dom(σ), Óuσ is defined as expected. 3

For proving the soundness theorem we make use of the following three auxiliary lemmas
whose proofs can be found in Appendix B. The first lemma is a generalization of Proposi-
tion 4.2 to sequences of transitions.

Lemma 4.7 Suppose σ1 ∼ σ2 and let O be any observer such that fn(O) ⊆ dom(σ1). Suppose
that Oσ1

r==⇒ O1, where, for some u and σ′1 extending σ1, it is r =Ôuσ′1. Then, there is O′

with fn(O′) ⊆ dom(σ′1) such that O1≡O′σ′1. Furthermore, for any σ′2 extending σ2 and such
that σ′2 ∼ σ′1, it holds that Oσ2

r′===⇒ ≡O′σ′2, with r′ =Ôuσ′2.
The next lemma gives a sufficient condition to infer the existence of a sequence of transi-

tions σ � P
s

|==⇒
u

σ′ � P ′.

Lemma 4.8 Consider σ, P and any observer O with fn(O) ⊆ dom(σ). Suppose that P s==⇒
P ′ and that Oσ r==⇒ with s compl r. Then there are u and σ′ extending σ such that r =duσ′
and σ � P

s
|===⇒

u
σ′ � P ′.

Finally, a simple result relates the form of s to that of u in a sequence of transitions s
|==⇒

u
.

Lemma 4.9 Suppose that σ � P
s

|===⇒
u

σ′ � P ′. Then it holds that P s==⇒ P ′, that σ′ extends

σ and that s compl r, where r =duσ′.
We can now state and prove the soundness theorem.

Theorem 4.10 (soundness of trace semantics) If (σ1, σ2) ` P � Q then (σ1, σ2) `
P <∼Q.

Proof: Suppose that (σ1, σ2) ` P � Q and let O be any observer with fn(O) ⊆ dom(σ1).
Suppose that P | Oσ1

ω==⇒; we have to show that Q | Oσ2
ω==⇒. Since P | Oσ1

ω==⇒ we can
find P ′, s and r such that

P s==⇒ P ′ and Oσ1
rω===⇒ with s compl r

18

(as usual, we suppose that bn(s, r) are fresh). Due to Lemma 4.8, we can find u and σ′1
extending σ1 such that

σ1 � P
s

|==⇒
u

σ′1 � P ′ and r =Ôuσ′1 .
Thus, by hypothesis, there are s′, σ′2 extending σ2 and Q′ such that

σ2 �Q
s′

|==⇒
u

σ′2 �Q′ with σ′1 ∼ σ′2 .

Moreover, due to Lemma 4.9, it holds that Q s′==⇒ Q′ and s′ compl r′ where r′ = Ôuσ′2.
From Lemma 4.7 applied to Oσ1

rω===⇒ and to σ′2, we get that Oσ2
r′ω===⇒ . From this fact,

Q s′==⇒ Q′ and s′ compl r′, we get the wanted Q |Oσ2
ω==⇒. 2

Completeness

We begin by introducing some notation. We write 〈ηζ〉.P instead of
let z1 = η in (let z2 = ζ in z1z2.P), and 〈η(x)〉.P instead of let z = η in z(x).P (z, z1,
and z2 fresh). The output-bound names of δ, obn(δ), are defined as follows: obn((ν eb)ηζ) = eb
and obn(δ) = ∅ if δ is not an output action. This notations extend to traces (obn(u)) as
expected. Given u and σ, we say that u is consistent with σ if: (i) n(u) ⊆ dom(σ), and (ii)
σ extends [eb/eb] where eb = obn(u), and (iii) Óuσ is defined.
Based on φσ, we can define a class of canonical observers o(u, σ), depending on specific u and
σ.

Definition 4.11 (canonical observers) Consider u consistent with σ. The observers
o(u, σ) are defined by induction on u as follows:

o(ε, σ) def= φσω

o((ν eb)η〈ζ〉 · u, σ) def= (ν eb) 〈ηζ〉.o(u, σ)

o(η(x) · u, σ) def= 〈η(x)〉.o(u, σ). 3

Note that fn(o(u, σ)) ⊆ dom(σ)− bn(u). We need now two technical lemmas.

Lemma 4.12 Consider u consistent with σ. Let σ0 be the restriction of σ to dom(σ)−bn(u).

1. We have o(u, σ)σ0
rω===⇒, where r =Óuσ.

2. Consider any σ′0 ∼ σ0. If o(u, σ)σ′0
rω===⇒ then (up to renaming of bound names of r)

r =duσ′ for some σ′ extending σ′0 and s.t. σ ∼ σ′.

Proof: Both parts are proven by straightforward induction on u and relying on Theorem 4.3
for the base case. 2

Lemma 4.13 Consider P , σ and σ′ extending σ. Suppose that P s==⇒ P ′, with s complduσ′,
for some u consistent with σ′ and s.t. bn(u) = dom(σ′)−dom(σ). Then σ � P

s
|===⇒

u
σ′ � P ′.

19

Proof: A straightforward induction based on u which relies on Proposition 4.2. 2

We are now ready to prove completeness.

Theorem 4.14 (completeness for may-testing) If (σ1, σ2) ` P <∼Q then (σ1, σ2) `
P � Q.

Proof: Suppose that (σ1, σ2) ` P <∼Q and that σ1 � P
s

|==⇒
u

σ′1 � P ′, where as usual

bn(s, u) are taken fresh. We have to show that for some s′, σ′2 and Q′, it holds that

σ2 �Q
s′

|==⇒
u

σ′2 �Q′ and σ′1 ∼ σ′2.

Due to Lemma 4.9, we know that s compl r def=Ôuσ′1. Furthermore, it is easy to show that
u is consistent with σ′1. Since σ1 is the restriction of σ′1 to dom(σ′1) − bn(u), by virtue of
Lemma 4.12(1) we get that o(u, σ′1)σ1

rω===⇒. From this, P s==⇒ P ′ and s compl r we get that
P | o(u, σ′1)σ1

ω==⇒. Thus, by hypothesis, we have also Q | o(u, σ′1)σ2
ω==⇒. This implies that

there are s′, Q′ and r′ such that

Q s′==⇒ Q′ and o(u, σ′1)σ2
r′ω===⇒ with s′ compl r′ .

From this and Lemma 4.12(2), we obtain that r′ =Ôuσ′2, for some σ′2 extending σ2 and s.t.

σ′1 ∼ σ′2. From this fact, Q s′==⇒ Q′ and Lemma 4.13 we get the wanted σ2 �Q
s′

|==⇒
u

σ′2 �Q′.
2

4.2 Barbed equivalence and bisimilarity

Soundness

It is convenient to generalize Definition 2.3 of barbed equivalence.

Definition 4.15 (generalized barbed equivalence)
Let σ1 = [Mi/xi]i∈I and σ2 = [M ′

i/xi]i∈I be equivalent substitutions. For each i ∈ I, let
Ni = core(σ1, xi) and N ′

i = core(σ2, xi). A binary relation S of processes is a (σ1, σ2)-barbed
bisimulation if whenever PSQ then:

1. for each P ′, if P τ−−→ P ′ then there is Q′ such that Q =⇒ Q′ and P ′SQ′, and

2. for each i ∈ I, if P ↓ Ni then Q ⇓ N ′
i

and the converse on the transitions and commitments of Q and P .

Two processes P and Q are (σ1, σ2)-barbed bisimilar, written (σ1, σ2) ` P
·∼=Q, if (P,Q)

belongs to the largest (σ1, σ2)-barbed bisimulation.

Two processes P and Q are (σ1, σ2)-barbed equivalent, written (σ1, σ2) ` P ∼= Q, if for all
R with fn(R) ⊆ dom(σ1) we have that (σ1, σ2) ` P |Rσ1

·∼=Q |Rσ2. 3

Note the differences of this definition from Definition 2.3. First, the ‘barbs’ (the ↓ predi-
cate) are only checked relatively to those names that are known to the environments, which
are precisely those Ni’s and those N ′

i ’s that are in N . Second, for each i ∈ I, names Ni

20

and N ′
i are not required to be the same, but are just required to be the ‘cores’ of the same

environment entry xi. Most important, ·∼= is just closed under those contexts that can be
obtained via instantiation with σ1 and σ2. Of course, P ∼= Q holds iff (εV , εV) ` P ∼= Q, for
some V containing fn(P,Q).

The purely co-inductive formulation of ≈ given in Definition 3.8 gives us a powerful
proof technique when proving equalities between two processes: it is sufficient to exhibit any
bisimulation relation containing the given pair. This technique can be enhanced using the
so called up-to techniques (similar to those in, e.g., [21, 10]), which often permit to reduce
the size of the relation to exhibit. We introduce below some useful up-to techniques, which
will be used in later proofs and examples. Up to structural equivalence allows one to freely
identify structurally equivalent processes; up to weakening permits discarding environment
entries, while up to contraction permits adding redundant (hence harmless) entries to the
environments. Finally, up to restriction and up to parallel composition permit cutting away
top-level restrictions and common parallel contexts, respectively, in process derivatives.

Definition 4.16 (up-to techniques) Given a compatible relation R, define Rt, for t ∈
{s, w, c, r, p}, as the least binary relations over configurations that satisfy the following rules:

• Up to structural equivalence

P ′≡P , Q′≡Q and (σ1, σ2) ` P ′RQ′

(σ1, σ2) ` P RsQ
.

• Up to weakening:
(σ1[fM/ex], σ2[fM ′

/ex]) ` P RQ

(σ1, σ2) ` P Rw Q
.

• Up to contraction:

(σ1, σ2) ` P RQ, ⊥ 6∈Ôeσ1ζ and n(eζ)− dom(σ1) are fresh for σ1, σ2, P and Q

(σ1[
Ôeσ1ζ/ey], σ2[

Ôeσ2ζ/ey]) ` P RcQ

.

• Up to restriction:eh ∩ n(σ1) = ∅ , ek ∩ n(σ2) = ∅ and (σ1, σ2) ` P RQ

(σ1, σ2) ` (ν eh)P Rr (ν ek)Q .

• Up to parallel composition:

A ≡ P |Rσ1, B ≡ Q |Rσ2 and (σ1, σ2) ` P RQ and fn(R) ⊆ dom(σ1)

(σ1, σ2) ` ARpB
.

A relation R is a weak bisimulation up to structural equivalence if R satisfies the definition
of weak bisimulation (Definition 3.8), but with the condition on the derivatives ‘(σ′1, σ

′
2) `

P ′RQ′’ replaced by the weaker ‘(σ′1, σ
′
2) ` P ′RsQ

′’. Weak bisimulation up to weakening,
contraction, restriction, and parallel composition are defined similarly. 3

21

Thus an up-to technique t is essentially a functional (·)t from compatible relations to com-
patible relations. We say that an up-to technique t is sound if, whenever R is a bisimulation
up to t, then R ⊆≈. Our first task is therefore to prove that the techniques we have defined
above are sound. Next, it should be obvious that different up to techniques can be combined
to get new techniques: as an example, weak bisimulation up parallel composition and contrac-
tion is defined by replacing ‘(σ′1, σ

′
2) ` P ′RQ′’ with ‘(σ′1, σ

′
2) ` P ′(Rp)cQ

′’ in Definition 3.8.
Formally, a combination of techniques is a composition of the corresponding functionals (see
[21]). The results of [21] ensure that, if the techniques we have introduced in Definition 4.16
are sound, then any combination of them is sound too3. The next proposition, whose proof
can be found in Appendix B, states soundness of our up-to techniques.

Proposition 4.17 Let R be a weak bisimulation up to structural equivalence (resp. weaken-
ing, contraction, restriction, parallel composition). Then R ⊆ Rs ⊆≈ (resp. R ⊆ Rt ⊆≈,
for t = w, c, r, p).

We are now ready to prove the soundness theorem.

Theorem 4.18 (soundness of weak bisimilarity) Let P and Q be processes and σ1 and
σ2 be equivalent substitutions. If (σ1, σ2) ` P ≈ Q then (σ1, σ2) ` P ∼= Q.

Proof: Note that≈ is trivially a weak bisimulation up to parallel composition, thus (≈)p ⊆≈
due to Proposition 4.17. Hence (σ1, σ2) ` P ≈ Q implies (σ1, σ2) ` P | Rσ1 ≈ Q | Rσ2 for
each R with fn(R) ⊆ dom(σ1). Since ≈ is finer than ·∼= , this fact implies the wanted
(σ1, σ2) ` P ∼= Q. 2

Completeness

We shall prove completeness of ≈ relatively to a class of processes that have an image-
finiteness property (defined below). This property makes the proof relatively simple (and not
far from, e.g., the proof for asynchronous bisimilarity given in [3]). On the other hand, the
class of processes enjoying the property is broad enough to ensure that ≈ is a fairly general
proof technique. At present, we do not know whether the proof can be extended to the full
language.

Formally, a process P is structurally image-finite if for each visible trace s, the set of
equivalence classes {P ′ : P s==⇒ P ′}/≡ is finite. Note that this notion is slightly more
general than the usual image-finiteness (as considered, e.g., in [3]): this is due to our use of
≡ to quotient the set of s-derivatives. As an example, process P def= ! a(x).bx is structurally
image-finite but not image-finite: indeed, for each s, P has infinitely many s-derivatives,
which are however finite up to structural equivalence (use the law !P | P ≡ !P). On the
contrary, process Q def= ! (τ.a + τ.b) is not structurally image-finite (hence not image-finite):
for instance, for any n,m ≥ 0, Q has an ε-derivative of the form a | · · · | a | b | · · · | b |Q, with
n a’s and m b’s in parallel.

3Technically, our techniques enjoy the ‘respectfulness’ property of [21] w.r.t. the transition relation
µ

|−−→
δ

.

22

Next, it is convenient to introduce a chain of relations ≈i, i ≥ 0, which are used to
approximate bisimilarity ≈ over configurations. In the sequel, |E| is used to denote the
syntactic size of some term E. Given any σ, we let rk(σ) def= |φσ|.

Definition 4.19 The binary relations ≈i over configurations are defined by induction on i

as follows:

• (σ1, σ2) ` P ≈0 Q if σ1 ∼ σ2;

• (σ1, σ2) ` P ≈i Q, for i > 0 and σ1 ∼ σ2, if whenever σ1 � P
µ

|−−→
δ

σ′1 � P ′ with |δ| ≤ i

and rk(σ′1) ≤ i, then there are µ′, σ′2 and Q′ s.t. σ2 �Q
µ̂

|==⇒
δ

σ′2 �Q′ and rk(σ′2) ≤ i

and (σ′1, σ
′
2) ` P ′ ≈i−1 Q

′, and the converse on the transitions of Q and P .

We let ≈ω
def= ∩i≥0 ≈i. 3

The following is a variation on a standard result for bisimulation (see e.g. [15, 20]).

Lemma 4.20 Let P and Q be structurally image-finite processes. Then (σ1, σ2) ` P ≈ Q if
and only if (σ1, σ2) ` P ≈ω Q.

We show now that ∼= implies ≈ω, from which completeness of ≈ for structurally image-
finite processes will follow. In order to do this, we exploit the formula φσ and define a
class of canonical contexts Ri,σ, depending on some i ≥ 0 and σ, which can be used to
test whether two configurations are related by ≈i. In what follows, we shall use some of
the process notation introduced at the beginning of the subsection on completeness for may
testing. Furthermore, we shall sometimes omit the object part of action prefixes, writing
e.g. c instead of cx, when x is not relevant. We will let τ.P denote the process (ν c)(c.P | c)
(c /∈ fn(P)) and, for any finite set of processes {P1, . . . , Pk}, we will let

P
{P1, . . . , Pk} denote

the process P1 + · · ·+ Pk (the exact way the summands are arranged does not matter).

Definition 4.21 (canonical contexts) Define the processes Ri,σ, for i ≥ 0, by induction

on i as follows. R0,σ
def= 0 and, for i > 0:

Rn,σ
def=
P
{Rinp

η +Rout
η : n(η) ⊆ dom(σ), Óησ ∈ N and |η| < i } +Rε + ei, where:

Rinp
η

def= 〈η(x)〉.
P
{φσ′(fη,φσ′ ,i

+ τ.Ri−1,σ′) : there is M s.t. σ′ = σ[M/x], and rk(σ′) ≤ i }

Rout
η

def=
P
{ (ν eb)〈ηζ〉.(gη,ζ,i + τ.Ri−1,σ′) : fn((ν eb)η〈ζ〉) ⊆ dom(σ), σ′ = σ[eb/eb] and |ζ| < i }

Rε
def= τ.(hi + τ.Ri−1,σ)

where the names ej, fη,φσ′ ,j, gη,ζ,j and hj (0 ≤ j ≤ i) are all distinct and fresh. 3

Note that, in the above definition, the sum in Rinp
η is finite, because, for fixed ex and i,

there are finitely many φσ’s and Ri,σ s.t. dom(σ) = ex and rk(σ) ≤ i (this is formally proven
by induction on i). The sum in Rout

η is finite as well, because actions (ν eb)η〈ζ〉 are considered
up to alpha-equivalence. Note also that fn(Ri,σ) ⊆ dom(σ)∪el, where el is the set of all names
ej , fη,φσ′ ,j , gη,ζ,j and hj (0 ≤ j ≤ i) occurring in Ri,σ.

An easy lemma on characteristic formulae (the proof can be found in Appendix B).

23

Lemma 4.22 If σ ∼ σ′ then rk(σ) = rk(σ′).

We are now ready to prove completeness.

Theorem 4.23 (completeness for barbed equivalence) Let P and Q be structurally
image-finite processes. If (σ1, σ2) ` P ∼= Q then (σ1, σ2) ` P ≈ Q.

Proof: By virtue of Lemma 4.20, it is sufficient to prove that for each i ≥ 0 it holds
(σ1, σ2) ` P ≈i Q. Consider Ri,σ1 and let ρ1

def= σ1[el/el] and ρ2
def= σ2[el/el], where el is the set of

all names ej , fη,φσ′ ,j , gη,ζ,j and hj (0 ≤ j ≤ i) occurring in Ri,σ1 (we suppose that el has been
chosen fresh for σ1, σ2, P and Q). We prove that if (ρ1, ρ2) ` (P | Ri,σ1σ1)

·∼= (Q | Ri,σ1σ2),
then (σ1, σ2) ` P ≈i Q. From this fact and (σ1, σ2) ` P ∼= Q the thesis will follow (note
that (σ1, σ2) ` P ∼= Q trivially implies (ρ1, ρ2) ` P ∼= Q).

We proceed by induction on i. The case i = 0 is trivial, thus suppose i > 0. We only
consider the case of a (C-Inp) transition, that is:

σ1 � P
(νeb)a〈M〉

|−−−−−−−→
η(x)

σ′1 � P ′ (1)

with |η(x)| ≤ i, σ′1 = σ1[M/x] and rk(σ′1) ≤ i, as the other cases are similar or easier. We
show the existence of a transition of σ2 �Q that matches this one. From (1) above, we can
infer that:

P |Ri,σ1σ1
τ−−→ (ν eb)(P ′ | (φσ′

1
(fη,φσ′

1
,i + τ.Ri−1,σ′

1
))σ′1)

def= A.

Since (ρ1, ρ2) ` P |Ri,σ1σ1
·∼=Q|Ri,σ1σ2 and A ↓ fη,φσ′

1
,i we deduce the existence of a transition

Q |Ri,σ1σ2 =⇒ (ν eb′)(Q′ | (φσ′
1
(fη,φσ′

1
,i + τ.Ri−1,σ′

1
))σ′2)

def= B

with (ρ1, ρ2) ` A ·∼=B and B ↓ fη,φσ′
1
,i, where σ′2 = σ2[M

′
/x], for some M ′ s.t. Q

(νeb′)a′〈M ′〉
=========⇒

Q′ (a′ =Ôησ2). Hence

σ2 �Q
(νeb′)a′〈M ′〉

|========⇒
η(x)

σ′2 �Q′. (2)

Moreover, since B ↓ fη,φσ′
1
,i, it holds that σ′2 |= φσ′

1
.

Now, from A τ−−→≡ (ν eb)((P ′ |Ri−1,σ′
1
)σ′1)

def= A′ we deduce that B =⇒ B′ with (ρ1, ρ2) `
A′ ·∼=B′. Since A′ ↓ ei−1, it must hold B′ ⇓ ei−1, hence it must be B′ ≡ (ν eb′)((Q′′|Ri−1,σ′

1
)σ′2),

with Q′ =⇒ Q′′. We can strip the restrictions (ν eb) and (ν eb′) away from (ρ1, ρ2) ` A′ ·∼=B′

and deduce that
(ρ1, ρ2) ` (P ′ |Ri−1,σ′

1
σ′1)

·∼= (Q′′ |Ri−1,σ′
1
σ′2)

which, by induction, implies that (σ′1, σ
′
2) ` P ′ ≈i−1 Q

′′. Now, from Q′ =⇒ Q′′ and transition
(2), we deduce

σ2 �Q
(νeb′)a′〈M ′〉

|========⇒
η(x)

σ′2 �Q′′ .

We show that this transition matches (1). Indeed, we have that: σ′1 ∼ σ′2 (by σ′2 |= φσ′
1

and
Theorem 4.3), that rk(σ′2) = rk(σ′1) ≤ i (Lemma 4.22) and that (σ′1, σ

′
2) ` P ′ ≈i−1 Q

′′. 2

24

5 Applications

In this section we first give some properties which are useful when reasoning on cryptographic
processes and then use them in a few examples.

5.1 Some useful laws

We start by stating some simple properties.

Proposition 5.1 Let rel ∈ {≈,�}.

• (Reflexivity) For any σ and P , (σ, σ) ` P relP .

• (Transitivity) If (σ1, σ2) ` P relQ and (σ2, σ3) ` Q relR then (σ1, σ3) ` P relR.

• (Weakening) Suppose that (σ1[M/x], σ2[N/x]) ` P relQ. Then (σ1, σ2) ` P relQ.

• (Contraction) Suppose that (σ1, σ2) ` P relQ and consider any ζ such that n(ζ) ⊆
dom(σ1) and dζσ1 6= ⊥. Then (σ1[dζσ1/x], σ2[dζσ2/x]) ` P relQ.

• (Structural equivalence) Suppose that P ≡Q. Then for any σ (σ, σ) ` P relQ.

Proof: Reflexivity and Transitivity and Structural equivalence are trivial. The other
cases are consequences of Proposition 4.17 for ≈. For �, the proof becomes triv-
ial when one switches to the original definition of <∼ ; for contraction, note that

Oσi[Óζσi/x]≡ (let x = ζ in O)σi for i = 1, 2 and fn(O) ⊆ dom(σi). 2

Some congruence laws are listed in Table 4. These laws are very useful (especially (C-Par)
and (C-Res)) because they permit a kind of compositional reasoning, as we shall see in later
examples in this section.

Proposition 5.2 The laws listed in Table 4 are correct.

Proof: The proof for (C-Inp) and (C-Out) is trivial. Laws (C-Par) and (C-Res) are a
consequence of Proposition 4.17 in the case of ≈. In the case of �, the proof becomes trivial
if one switches to the original definition <∼ . 2

We shall also need a few rules to reason on environments. They are given in the following
two lemmas (whose proofs can be found in Appendix A). The first lemma characterizes kn(σ)
in terms of the expressions that can be formed using the variables in dom(σ).

Lemma 5.3 Let σ be an environment. Then kn(σ) = {Óζσ ∈ N : n(ζ) ⊆ dom(σ) }.

The next lemma is about the effect of evaluating the same expression ζ under two equiv-
alent environments, σ and σ′.

Lemma 5.4 Let σ = [Mi/xi]i∈I and σ′ = [M ′
i/xi]i∈I be two substitutions such that σ ∼′ σ′.

Define ÜN = core(σ, xi)i∈I and ÜN ′ = core(σ′, xi)i∈I . For each ζ s.t. n(ζ) ⊆ ex, either

(a) Óζσ =dζσ′ = ⊥, or

25

Let rel ∈ {≈,�} .

(C-Inp) Suppose that for all ζ such that ey def= (n(ζ)− dom(σ1)) are fresh anddζσ1 6= ⊥
it holds: (σ1[ey/ey], σ2[ey/ey]) ` P [dζσ1/x] rel Q[dζσ2/x].
Suppose ai = Óησi (i = 1, 2) with n(η) ⊆ dom(σ1).
Then (σ1, σ2) ` a1(x).P rel a2(x).Q.

(C-Out) Suppose that (σ1[M1/x], σ2[M2/x]) ` P rel Q and that ai = Óησi (i = 1, 2)
with n(η) ⊆ dom(σ1).
Then (σ1[M1/x], σ2[M2/x]) ` a1M1.P rel a2M2.Q.

(C-Par) Suppose that fn(R) ⊆ dom(σ1) and (σ1, σ2) ` P relQ .
Then (σ1, σ2) ` P |Rσ1 rel Q |Rσ2.

(C-Res) Suppose that (σ1, σ2) ` P rel Q, that ek ∩ n(σ1) = ∅ and that eh ∩ n(σ2) = ∅ .
Then (σ1, σ2) ` (ν ek)P rel (ν eh)Q.

Table 4: Some congruence rules for � and ≈.

(b) there are i ∈ I and a tuple e ⊆ I such that: Óζσ = {Ni} eN [e] anddζσ′ = {N ′
i}fN ′[e].

We end this subsection with a small example (borrowed from [6]) that shows the use of
our congruence laws.

Example 5.5 Let us consider the processes P def= (ν k)c{d}k. c(x). [x = k]c{d}k and Q
def=

(ν k)c{d}k. c(x). Process P creates a private key k, sends d encrypted under k, listens for
an input, and if it receives k then resends {d}k. Process Q behaves like P but, after the
reception of one message, it becomes stuck. Since k is a private key that is never disclosed
to the environment, P will never receive k back at c, as a consequence the matching [x = k]
will never become true: therefore P and Q should be considered as equivalent. Let V =
fn(P,Q) = {c, d}; we want to show that (εV , εV) ` P ' Q.

We can prove that (εV , εV) ` Q� P by simply noting that traces of Q are also traces of
P . To prove that (εV , εV) ` P � Q, let z be any fresh name and let σ def= εV [{d}k/z]. The
crucial step is showing that

(σ, σ) ` c(x). [x = k]c{d}k � c(x).

Indeed, for any ζ with ey def= (n(ζ) − dom(σ)) fresh, it holds that ×ζσ[ey/ey]= Óζσ 6= k (because
of k 6∈ kn(σ) and of Lemma 5.3), hence we have: (σ[ey/ey], σ[ey/ey]) ` [Óζσ = k]c{d}k � 0. The
thesis for this step follows by using (C-Inp). Now, using (C-Out), we have that

(σ, σ) ` c{d}k. c(x). [x = k]c{d}k � c{d}k. c(x).

The thesis follows from this fact, using first weakening and then (C-Res).

26

5.2 Secure channels implementation

In the following examples, we show the use of our framework for proving security properties
of communication protocols. In the same vein of [1, 4], the idea is that of implementing
communication on secure (private) channels by means of encrypted communication on public
channels. Let us consider the π-calculus process:

P
def= (ν c)(cd | c(z). R)

where c does not occur in R. Process P creates a private channel c which is used to transmit
name d. Communication on c is secure because no execution context knows c. Since P consists
of two concurrent subprocesses, the actual implementation could allocate them onto two
different computers, whose interconnections are not guaranteed to be secure. Communication
on c has to be implemented in terms of lower-level, encrypted communication on some public
channel, say p. Thus, process P might be implemented as

IP
def= (ν kc)(p{d}kc | p(x).let z = deckc(x) in R) (kc, x /∈ fn(R))

In IP , name kc is a private encryption key that corresponds to channel c. The behav-
iour of the process is as follows: the process p{d}kc sends d encrypted under kc, while
p(x).let z = deckc(x) in R tries to decrypt a ciphertext x received at p: if the decryption
succeeds, a cleartext is obtained and bound to z and the process behaves like R, otherwise
the process is stuck. Note that this implementation does not guarantee that d will eventually
be passed to R: message {d}kc could be captured by some context (attacker) listening at p.
The last example of this section shall present an implementation that solves this problem.

A secrecy property Assume that R keeps z secret under any context, i.e. for every d and
d′, and σ1 ∼ σ2, it holds (σ1, σ2) ` R[d/z] ' R[d′/z]. Under this hypothesis, we want to prove
that the implementation scheme for P preserves secrecy. To see this, we consider a generic
d′, let Q def= (ν c)(cd′ | c(z). R) and show that:

(εV , εV) ` IP ' IQ

where IQ is the obvious implementation of Q and V = fn(IP , IQ). In order to prove this, let

y be any fresh name and define σ1
def= εV [{d}kc/y] and σ2

def= εV [{d′}kc/y]. First, rule (C-Inp)
allows one to prove that

(σ1, σ2) ` (p(x).let z = deckc(x) in R) ' (p(x).let z = deckc(x) in R)

To prove this, one exploits two facts: (1) for any ζ s.t. n(ζ) − dom(σ1) are fresh, if dζσ1 =
{M}kc then M = d and dζσ2 = {d′}kc (by Lemma 5.4(b) and kc /∈ kn(σ1)); (2) the hypothesis
that R[d/z] is may-equivalent to R[d′/z] under σ1 and σ2. This fact and (C-Par) can be used
to infer that:

(σ1, σ2) ` (p{d}kc | p(x).let z = deckc(x) in R) ' (p{d′}kc | p(x).let z = deckc(x) in R).

Finally, the wanted claim follows by applying weakening and then (C-Res) (with (ν kc)) to
the equality above.

27

Preservation of may semantics Here we show that the previous implementation scheme
also preserves may semantics. We relax the hypothesis that R keeps name z secret, and, for
the sake of simplicity, assume that R def= bz. In π-calculus, process P is may-equivalent to
process bd. We want to show that the implementations of P and of process bd are still may-
equivalent, under the assumption that the communication channel p is both asynchronous
and noisy. Thus, the actual implementation also includes a buffer B def=!p(x).px and a noise
generator N def=!(ν k)p{k}k for p. Both noise and asynchrony are necessary to prevent the
execution context from detecting traffic on the public channel p. Let V = fn(IP , bd,N,B).
To sum up, we want to show that

(εV , εV) ` (IP |N |B) ' (bd |N |B). (3)

(Note that this equation is not valid for ≈). We do this in two steps.

• First, we prove that (εV , εV) ` bd |N |B � IP |N |B. The only possible trace for the
configuration εV � bd is

εV � bd
bd

|−−−→
b(x)

εV [d/x] � 0.

Configuration εV � IP can simulate the action above by first communicating {d}kc on
p, and then decrypting {d}kc :

εV � IP
bd

|====⇒
b(x)

εV [d/x] � (ν kc)0.

Hence, (εV , εV) ` bd� IP and the thesis follows by applying law (C-Par) in Table 4.

• Let us now prove that (εV , εV) ` IP |N |B � bd |N |B. Let y be any fresh name and
let σ def= εV [{d}kc/y].

– The crucial step is showing that

(σ, σ) ` p(x).let z = deckc(x) in bz � p(x).bd. (4)

Indeed, taking any ζ such that Üw def= (n(ζ) − dom(σ)) are fresh names and such
that Óζσ 6= ⊥, we have: (σ[ew/ew], σ[ew/ew]) ` let z = deckc(Óζσ) in bz � bd. In fact,
the only case in which deckc(Óζσ) does not evaluate to ⊥ is when Óζσ = {d}kc

(Lemma 5.4(b) and kc /∈ kn(σ)), which implies let z = deckc(Óζσ) in bz≡ bd.
Then (4) above follows using (C-Inp).

– Now, using (C-Par) and (4) above, we have that

(σ, σ) ` p{d}kc | (p(x).let z = deckc(x) in bz) � p{d}kc | p(x).bd

hence, by weakening and (C-Res):

(εV , εV) ` (ν kc)(p{d}kc | p(x).let z = deckc(x) in bz) �
(ν kc)(p{d}kc | p(x).bd)≡ (ν kc)(p{d}kc) | p(x).bd .

28

In the last step we have used a structural law for restriction ((ν a)(A1 | A2) ≡
((ν a)A1) |A2 if a 6∈ fn(A2)). Using (C-Par) again, we can put the context N |B
in parallel with the two processes:

(εV , εV) ` (ν kc)(p{d}kc | p(x).let z = deckc(x) in bz) |N |B �
(ν kc)(p{d}kc) | p(x).bd |N |B.

Now, (ν kc)(p{d}kc) in the right-hand side above can be turned into a particle of
noise, because (εV , εV) ` (ν kc)(p{d}kc) ' (ν k)(p{k}k). Using the structural law
for replication (!A≡A | !A), this particle of noise can be absorbed by N , hence:

(εV , εV) ` (ν kc)(p{d}kc) | p(x).bd |N |B ' p(x).bd |N |B.

Moreover, as an instance of a general law for asynchronous channels, we have that

(εV , εV) ` p(x).bd |B � bd |B

and the thesis easily follows by (C-Par).

Ensuring message delivery We consider a more sophisticated implementation scheme
for process P , and prove that (under a fairness assumption) this scheme guarantees that a
message sent on channel c is eventually delivered. Again, we implement c with an asynchro-
nous and noisy public channel p. This time, however, we need a more complex source of
noise: N def=!(ν k)!p{k}k. Note the difference from the previous example: N can now spawn
at any time a process (ν k)!p{k}k which emits a constant noise {k}k at p. The buffer B for
p is still B def=!p(x).px.

In this example, we shall use recursive definitions of agent constants, of the kind A⇐= S

where A is an agent constant that may appear in the process expression S (these can be
taken as primitive — the theory extends smoothly — or can be coded up using replication
like in [15]). We also use the shorthand ‘let z = ζ in A else B’ for ‘(let z = ζ in A) +
¬(let z = ζ in tt)B’.

The implementation of P is the process

IP
def= (ν kc)(!p{d}kc |R) where R⇐= p(x).let z = deckc(x) in bz else (px |R).

Component !p{d}kc constantly emits d encrypted under key kc on p, while R repeatedly tries
to decrypt a ciphertext x received on p using kc: when the decryption succeeds, the cleartext
is sent on b.

Let V = fn(IP , bd,B,N); we want to prove that:

(εV , εV) ` (IP |B |N) ≈ (bd |B |N).

In order to see this, define σ1
def= εV [{d}kc/y] and σ2

def= εV [{k}k/y] (y fresh). We first show that

(σ1, σ2) ` T
def= (!p{d}kc |R |B |N) ≈ (bd | !p{k}k |B |N) def= U (5)

from which the thesis will follow by first applying weakening to discard the y-entry, then
(C-Res) (with (ν kc) on the left-hand side and (ν k) on the right-hand side) and then the

29

structural laws for restriction and the structural law for replication (N | (ν k)!p{k}k ≡ N)
on the right-hand side. To prove (5), we consider a relation R consisting of three pairs (w is
fresh):

R = { (σ1 � T , σ2 � U) , (σ1 � bd , σ2 � bd) , (σ1[d/w] � 0 , σ2[d/w] � 0) }
and show that R is a weak bisimulation up to parallel composition and contraction. The
proof consists in analyzing every transition of σ1 � T and σ2 � U and in showing that a
matching transition exists in the other configuration in each case. In particular, note that:

• transitions of σ1 � T originating from !p{d}kc are matched up to contraction via tran-
sitions from !p{k}k in σ2 � U , and vice-versa;

• the transition of σ1 � T originating from R
p {d}kc−−−−−→≡ bd is matched up to paral-

lel composition via B
p {k}k−−−−−→ p{k}k | B in σ2 � U . To see this, first note that

p{k}k | !p{k}k ≡!p{k}k, and then cut away the parallel contexts !p{d}kc | B | N (from
the LHS) and !p{k}k |B |N (from the RHS);

• a transition of σ1 � T originating from R
p M−−−→≡ pM | R, with M = dζσ1 6= {d}kc ,

is matched up to parallel composition and contraction via a transition B
p M ′
−−−−→≡

pM ′ |B in σ2 � U , where M ′ =dζσ2 (contraction may be used to discard any new name
introduced by ζ);

• the transition of σ2 � U originating from bd
b〈d〉−−−→ 0 is matched up to parallel com-

position via a communication between R and !p{d}kc followed by a b〈d〉-transition in
σ1 � T .

Communications between R and !p{d}kc or R and N are treated like in the second and in
the third item above, respectively. It should be now obvious how the other transitions match
with each other.

5.3 Verification of a small protocol

Consider a system where two agents A and B share two secret keys, kAS and kBS respectively,
with a server S. The purpose of the protocol is to establish a new secret key k between A

and B, which A may use to pass some confidential information d to B. This is achieved with
a version of the Wide Mouthed Frog Protocol (see, e.g., [7]). For the sake of simplicity, we
suppose that the protocol is always started by A and that all communications occur on a
public channel, say p. Informally, the protocol can be described as follows:

Message 1 A −→ S : {k}kAS

Message 2 S −→ B : {k}kBS

Message 3 A −→ B : {d}k.

Our intent here is to verify one run of the protocol protocol (that is, we do not consider the
case of multiple agents simultaneously executing the protocol). In our language, the above
notation translates to a process P (d) defined as follows (we use the notation R(w) to stress
that name w may occur free in R; for any M , R(M) abbreviates R[M/w]. Bound names are
all distinct.):

30

A(d) def= p{k}kAS
.p{d}k.0

S
def= p(x).let x′ = deckAS

(x) in p{x′}kBS
.0

B
def= p(y).let y′ = deckBS

(y) in p(z).let z′ = decy′(z) in 0 .

P (d) def= (ν kAS , kBS)(((ν k)A(d)) | S |B) .

Here we assume that A, S and B terminate after the exchange of message 3: this assumption
simplifies the reasoning below, and seems sensible, because the correctness of the protocol
should be assessed independently of the subsequent behaviour of the participants. In the
sequel, following Abadi and Gordon [7], we use the contextual equivalence ∼= to express
properties of secrecy and integrity of P (d) (below, we suppose by alpha-equivalence that
names kAS , kBS , k, x, x′, y, y′, z, z′ do not occur in messages M and M ′):

Secrecy (“P (d) does not leak d”)
For any M and M ′, it holds that P (M) ∼= P (M ′).

Integrity (“if B accepts a message {N}k then N = d”)
For any M , it holds that P (M) ∼= PM

spec, where

PM
spec

def= (ν kAS , kBS)(((ν k)A(d)) | S |BM
spec)

BM
spec

def= p(y).let y′ = deckBS
(y) in p(z).let z′ = decy′(z) in [z′ 6= M] p err.0 .

Output of name err on p is used to signal a violation of integrity, i.e. that some message
{N}k, with N 6= M has been accepted: the fact that P (M) and PM

spec are equivalent means
that action p〈err〉, hence the violation, never occur (in this point our formalization differs a
little from Abadi and Gordon’s). Fix M and M ′ and let V def= fn(P (M), P (M ′)). By virtue
of our soundness results, for secrecy, it will be sufficient to show that

(εV , εV) ` P (M) ≈ P (M ′) (6)

while, for integrity, it will be sufficient to establish that

(εV ∪{err}, εV ∪{err}) ` P (M) ≈ Pspec(M). (7)

We will prove the above equalities by reasoning compositionally on processes. To do this,
we first show a compositionality result for ≈. Let us say that a process R is σ-safe if for each

s, whenever σ �R
s

|==⇒
u

σ′ �R′ (νeb)a〈M〉
|=======⇒

η(x)
, then M ∈ dc(σ′) (hence eb = ∅). Intuitively, R

is σ-safe if R cannot increase the knowledge of σ. The following proposition strengthens the
congruence rule for parallel composition (C-Par), under the assumption that the involved
processes are safe for the appropriate environments (the proof is in Appendix B).

Proposition 5.6 Suppose that (σ1, σ2) ` Q1 ≈ Q2 and that (σ1, σ2) ` R1 ≈ R2. Suppose
that, for i = 1, 2, Qi and Ri are σi-safe. Then (σ1, σ2) ` Q1 |R1 ≈ Q2 |R2.

Let us examine secrecy first. Define

σ
def= εV [{k}kAS/x1, {k}kBS/x2, {M}k/x3] and σ′

def= εV [{k}kAS/x1, {k}kBS/x2, {M
′}k/x3] .

31

Clearly, σ ∼ σ′. As a first step, check that:

(σ, σ′) ` A(M) ≈ A(M ′)
(σ, σ′) ` S ≈ S

(σ, σ′) ` B ≈ B.

The first equality follows from (C-Out), while the second and the third follow from (C-Inp)
and Lemma 5.4. For instance, to establish the second equality, Lemma 5.4 is first used to
check that whenever names n(ζ) − dom(σ) are fresh and dζσi = {N}kBS

then N = k; then
(C-Inp) is applied. Next, it is easy to see that A(M) is σ-safe and that A(M ′) is σ′-safe,
while S and B are both σ- and σ′-safe (again, this requires the use of Lemma 5.4). Applying
Proposition 5.6, we can infer that:

(σ, σ′) ` A(M) | S |B ≈ A(M ′) | S |B.

Next, apply weakening (so as to discard entries x1, x2 and x3) and then (C-Res) with (ν k)
and a structural law ((ν a)(Q |R)≡ ((ν a)Q) |R if a /∈ fn(R)) and deduce that

(εV , εV) ` ((ν k)A(M)) | S |B ≈ ((ν k)A(M ′)) | S |B.

Finally apply (C-Res) with (ν kAS , kBS) to get the wanted (6).

As to integrity, let σ def= εV ∪{err}[{k}kAS/x1, {k}kBS/x2, {M}k/x3]. First, the crucial point
is that (σ, σ) ` B ≈ BM

spec (use twice Lemma 5.4 and (C-Inp)). Next, note that B, BM
spec,

A and S are all σ-safe (use Lemma 5.4 again). Thus we can compose these processes and
proceed like in the case of secrecy to obtain (7).

6 A Calculus with Pairs

Our most relevant omission from the calculus of Abadi and Gordon has been pairing, that is,
the possibility of transmitting pairs of messages of the form 〈M1,M2〉. It is however easy to
extend our theory to a calculus with pairs: the necessary modifications are reported below.

The syntax of messages and of expressions is extended by introducing appropriate con-
structors and selectors for pairs:

M ::= . . . | 〈M1,M2〉
ζ ::= . . . | π1(ζ) | π2(ζ) | 〈ζ1, ζ2〉 .

The evaluation functions for expressions and formulae are extended accordingly (for example,Ùπ1({a}k) = ⊥). The definition of dc(·) is extended with the clause: if 〈M1,M2〉 ∈ dc(S) then
M1,M2 ∈ dc(S). The definition of core needs to be revised: informally, a message M can
now have several cores, which are found at different positions inside M . If we code a position
inside M as a string p ∈ {l, r}∗ (that is, a path through the nested pairs of M), then the core
of M at position p w.r.t. σ, written M [σ, p], can be formally defined as follows by induction
on M :

• a[σ, p] =
¨
a if p = ε

⊥ otherwise

32

• {M}k[σ, p] =

8><>:
{M}k if k /∈ kn(σ) and p = ε

M [σ, p] if k ∈ kn(σ)
⊥ otherwise

• 〈M1,M2〉[σ, p] =

8><>:
M1[σ, p′] if p = lp′

M2[σ, p′] if p = rp′

⊥ otherwise.

As an example, consider message M=〈〈{b}hk, {c}k〉, k〉 and substitution σ = [M/x, {h}d/y].
We have dc(σ) = {M,M ′, k, {h}d, {b}hk, {b}h, {c}k, c}, where M ′ = 〈{b}hk, {c}k〉, and
kn(σ) = {k, c}. Moreover, we have that M [σ, r] = k, M [σ, ll] = {b}h, M [σ, lr] = c and
M [σ, p] = ⊥ for p 6∈ {r, ll, lr}. Note also that the same would hold for every substitution σ′

such that kn(σ) = kn(σ′).
Every core in σ = [Mi/xi]i∈I is now determined by an index pair (index i, position p) which

we write as ip. The following notation is useful: given a function f defined over I × {l, r}∗

and a tuple of index pairs e = (i1p1, . . . , ikpk), we let f [e] denote the tuple (fi1p1 , . . . , fikpk
)

(we write fxy instead of f(x, y) for function application). We can now give the new definition
of ∼.

Definition 6.1 (equivalence on environments: pairing) Consider two substitutions
σ1 = [Mi/xi]i∈I and σ2 = [M ′

i/xi]i∈I . Let ÜN, ÜN ′ : I × {l, r}∗ → M ∪ {⊥} be the functions

defined as Nip
def= Mi[σ1, p] and N ′

ip
def= M ′

i [σ2, p] for each index pair ip. We write σ1 ∼′ σ2 iff
for each i ∈ I the following three conditions hold:

(a) (σ1, σ2) `Mi ∼M ′
i ;

(b) for each p, Nip ∈ N iff N ′
ip ∈ N ;

(c) for each p, j ∈ I and q, Nip = Njq iff N ′
ip = N ′

jq

where the predicate (σ1, σ2) ` M ∼ M ′ (a recursive version of condition (a) in the old
definition) is defined by induction on M as follows:

(σ1, σ2) `M ∼M ′ iff there is a tuple e of index pairs such that M = {M0} eN [e] and
M ′ = {M ′

0} eN ′[e] for some M0,M
′
0 such that either (i) M0 = Nip and M ′

0 = N ′
ip for

some i and p, or (ii) M0 = 〈M1,M2〉, M ′
0 = 〈M ′

1,M
′
2〉 and (σ1, σ2) ` Mj ∼ M ′

j

for j = 1, 2. 3

Note that the new definition of ∼′ is still effective, because for each i ∈ I there are finitely
many p’s s.t. Nip 6= ⊥ (not more than |Mi|). With the new definitions, the results we
obtained in the previous sections carry over smoothly, modulo a few notational changes. For
instance, the crucial Lemma 5.4 enjoys now the more compact formulation:

Suppose that σ1 ∼ σ2 and that n(ζ) ⊆ dom(σ1). Then either dζσ1 = dζσ2 = ⊥ or
(σ1, σ2) `dζσ1 ∼dζσ2.

33

that takes advantage of the predicate (σ1, σ2) `M ∼M ′.
The changes in the other statements and proofs are obvious and omitted, with the excep-

tion of the construction of φσ, which is given in Appendix C.

Example 6.2 The following example is used by Abadi and Gordon to discuss the incomplete-
ness of their proof technique for cryptographic protocols, framed bisimulation [6]. Processes
P and Q defined below are not equated by framed bisimilarity, but Abadi and Gordon conjec-
ture that they are barbed congruent (hence barbed- and testing-equivalent). Here, we indeed
prove that P and Q are barbed equivalent: this fact confirms that framed bisimulation is not
complete w.r.t. barbed equivalence.

Fix some name 0 and define (we write {A,B}c instead of {〈A,B〉}c):

P
def= (ν k, k01) c{k01}k. c(x).P ′

Q
def= (ν k, k0, k1) c{k0, k1}k. c(x).Q′

where
P ′ def= [x = 0]ck01 | [x 6= 0]ck01

Q′ def= [x = 0]ck0 | [x 6= 0]ck1 .

for fresh and distinct k, k0, k1 and k01. The difference between P and Q is that P discloses
a single secret k01, whereas Q may disclose either secret k0 or secret k1, but not both. The
environment cannot detect this difference, because key k, under which the first message is
encrypted, is never disclosed. To prove this, take V = fn(P,Q) and let σ1

def= εV [{k01}k/y] and
σ2

def= εV [{k0, k1}k/y]. Clearly σ1 ∼ σ2 and, furthermore, for each ζ s.t. Üw def= n(ζ)− dom(σ1)
are fresh names and dζσ1 6= ⊥, we have that:

(σ1[ew/ew], σ2[ew/ew]) ` P ′[dζσ1/x] ≈ Q′[dζσ2/x]

In fact, it holds both that σ1[ew/ew][k01/z] ∼ σ2[ew/ew][k0/z] and that σ1[ew/ew][k01/z] ∼ σ2[ew/ew][k1/z],
for any fresh z. Therefore, be dζσ1 equal to 0 or not, we can infer the equivalence above.
(εV , εV) ` P ≈ Q then follows by applying to the equivalence above first law (C-Inp), then
law (C-Out), then weakening to discard the y-entry of the two environments, and finally law
(C-Res) with (ν k, k01) on the left-hand side and (ν k, k0, k1) on the right-hand side. Thus
we can conclude that P ∼= Q.

7 Final Remarks and Related Work

We have studied contextual equivalences and relative proof techniques for a variant of the
spi-calculus, an extension of the π-calculus proposed by Abadi and Gordon [7]. We have
considered a few examples of verification, concerning secure channels implementation and
protocol security, which demonstrate how these techniques can be used in practice.

In this paper, we have applied our techniques to small examples, as the emphasis was
more on theory. However, we believe that our methodology can be used to reason on more
complex systems. In this respect, a major advantage of our approach is the possibility of
compositional reasoning offered by a set of congruence laws. A further step in this direction
would be the design of a sound and complete proof system for the considered equivalences.

34

Another direction for future research is the study of algorithms for mechanical equivalence
checking (especially in the case of bisimilarity). We are also considering extensions of the
theory to public keys and digital signatures. A subtle point that remains to be solved is in
connection with the so-called “known plaintext attack”: for instance, knowing a, b and a
public key k+, an attacker could distinguish by comparison {b}k+ from {a}k+ , even without
knowing the private key k− that ‘opens’ these messages. As a consequence, and in contrast
with the shared key case, two environments like σ = [a/x, {a}k+/y] and σ′ = [a/x, {b}k+/y]
cannot be regarded as equivalent.

The relevance of may-testing to the analysis of security properties has been first pointed
out by Abadi and Gordon in [7]. May-testing was originally introduced for CCS in [11], and
subsequently studied for the π-calculus in [8].

Two papers closely related to our work are [10] and [6]. In [10], Boreale and Sangiorgi
introduce a lts for a typed version of π-calculus, where the environment’s input/output ca-
pabilities on names are explicitly described and updated. Here, we use a similar approach to
model the environment’s knowledge about names and keys.

Abadi and Gordon present in [6] framed bisimulation, a proof technique to analyze cryp-
tographic protocols. In framed bisimulation, when comparing two processes P and Q, a
frame-theory pair (fr, th) is used to represent the knowledge of P ’s and Q’s environments. A
judgement (fr, th) ` M ↔ N is also introduced to express that the effect of message M on
P ’s environment is the same as the effect of message N on Q’s environment. The judgement
is used to check indistinguishability of messages M and N that are exchanged by P and its
environment and by Q and its environment. In our case, the indistinguishability of M and
N is guaranteed by requiring matching transitions to exhibit the same environment action
and to take equivalent environments into equivalent environments. This results in a relevant
difference between the work in [6] and ours when considering output transitions. In our case,
given an output transition, it is sufficient to check (like in standard bisimilarity) whether the
other configuration can perform a matching output transition. Output transitions are, at
least for finite–control processes, finitely many. In the case of [6], one must also build a new
frame-theory pair that relates N to M and consistently extends the old one: this might be
not completely trivial [12]. Moreover, in [6] there seems to be very few tools for compositional
reasoning (congruence laws) and no obvious way of tailoring the ‘up to’ techniques to their
setting. Finally, as shown in Example 6.2, framed bisimulation is not complete for barbed
equivalence.

The process algebraic approach to cryptographic protocols has also been followed by
Roscoe [19], Lowe [14] and Schneider [22], that consider model-checking of security protocols
in a CSP-based framework. This approach requires explicitly designing a specific (powerful
enough) attacker and carrying out the analysis with it. Of course, there is always a certain
amount of arbitrarity in determining the attacker; any modification of the attacker would
require a new analysis. In our paper, like in [7], a more radical approach is taken: the
attacker may be be any process that can be defined in spi-calculus.

In [2], Abadi presents an approach to secrecy that combines the spi-calculus and the use
of type systems: the idea is that a process P (d) that type-checks guarantees secrecy of d (in
a sense made precise via testing equivalence).

35

All the approaches mentioned so far, including ours, work under a perfect encryption
hypothesis: this prevents the attacker from, for example, randomly guessing some bits of
a secret key, or performing statistical analysis of messages. A first step towards relaxing
this hypothesis has been made in [13], where probabilistic versions of the spi-calculus and of
testing equivalence are introduced. Further research is required for a fuller understanding of
these notions and for devising techniques to reason over them.

Acknowledgements We would like to thank the anonymous LICS referees for helpful
comments. Discussions with Martin Abadi, Cedric Fournet and Andrew Gordon have helped
us to improve the paper.

36

A Results on Environment Equivalence

In this appendix we keep the definitions of ∼ (Definition 3.1) and of ∼′ (Definition 3.3)
separate and introduce the notion of characteristic formula, φσ. The main steps taken here
are:

1. φσ characterizes all and only those environments ∼′-equivalent to σ (Theorem A.11);

2. using 1., one proves that ∼ and ∼′ coincide (Theorem 3.4/Theorem A.13);

3. hence, φσ characterizes all and only those environments ∼-equivalent to σ (Theo-
rem 4.3/Theorem A.14).

Along the way, a few properties of ∼ are established which are of independent interest and
are useful for the examples of Section 5 (Lemma 5.3 and Lemma 5.4).

First we show that evaluation b· commutes with substitution.

Lemma A.1 Let ζ and η be two expressions and σ a substitution. If x /∈ dom(σ), n(ζ) ⊆
dom(σ) ∪ {x} and n(η) ⊆ dom(σ) thenÙζσ[Ó/x]ησ =Ù(ζ[η/x])σ.
Proof: Straightforward induction on ζ. 2

The following lemma establishes a first relationship between ζ-expressions and the de-
cryption closure dc(·), and between the knowledge kn(·) and the set of core’s of σ.

Lemma A.2 Let σ = [Mi/xi]i∈I .

1. If M ∈ dc(σ) then there is ζ s.t. n(ζ) ⊆ dom(σ) and Óζσ = M .

2. If a ∈ kn(σ) then a = core(σ, xi), for some i ∈ I.

Proof: Part 1 is easily proven by induction on the definition of dc(·). Part 2 follows from
the following statement, easily proven by induction on the definition of dc(·): If M ∈ dc(σ)
then there are i ∈ I and ek s.t. M = {core(σ, xi)}ek. 2

We proceed by showing that the knowledge kn(σ) of σ is precisely the set of those names
that can be obtained by arbitrary combinations of encryption and decryption operations
(represented by ζ-expressions), starting from messages stored in σ.

Lemma A.3 (Lemma 5.3) Let σ be an substitution. Then kn(σ) = {Óζσ ∈ N : n(ζ) ⊆
dom(σ) }.

Proof: That kn(σ) ⊆ {Óζσ ∈ N : n(ζ) ⊆ dom(σ) } is a consequence of Lemma A.2(1). We
now prove the opposite inclusion. Consider the set S def= {Óζσ 6= ⊥ : n(ζ) ⊆ dom(σ) } and
the set T def= {{M}ek : M ∈ dc(σ) and ek ⊆ kn(σ)}. We prove that S ⊆ T , from which the
thesis follows, because S ∩ N = {Óζσ ∈ N |n(ζ) ⊆ dom(σ) } and T ∩ N = kn(σ). The proof
proceeds by induction on the structure of ζ. We explicitly show only the case ζ = decζ1(ζ2),
as the other cases are similar or easier. Let Óζσ = M . Since Óζσ 6= ⊥, there is a name k such

37

that dζ2σ = {M}k and dζ1σ = k. By induction, we can assume that {M}k ∈ T , which, by
definition of T , implies that there are M ′ ∈ dc(σ) and eh ⊆ kn(σ) such that {M}k = {M ′}eh.
Hence M = {M ′}eh′ , for Üh′ such that eh = Üh′k, and the thesis follows. 2

The next lemma is about the effect of applying two ∼′-equivalent substitutions σ and σ′

onto the same expression ζ.

Lemma A.4 (Lemma 5.4) Let σ = [Mi/xi]i∈I and σ′ = [M ′
i/xi]i∈I be two substitutions such

that σ ∼′ σ′. Define ÜN = core(σ, xi)i∈I and ÜN ′ = core(σ′, xi)i∈I . For each ζ s.t. n(ζ) ⊆ ex,
either

(a) Óζσ =dζσ′ = ⊥, or

(b) there are i ∈ I and a tuple e ⊆ I such that: Óζσ = {Ni} eN [e] anddζσ′ = {N ′
i}fN ′[e].

Proof: The proof proceeds by induction on ζ. We explicitly consider only the case ζ =
decζ2(ζ1); the other cases are similar or easier. If dζ1σ = ⊥ or dζ2σ = ⊥, then by induction
hypothesis it easily follows that Óζσ =dζσ′ = ⊥. Otherwise, by induction hypothesis we have
that for some tuples e, è⊆ I and indices i, j ∈ I:

dζ1σ = {Ni} eN [e] Ôζ1σ′ = {N ′
i} eN ′[e]dζ2σ = {Nj} eN [è] Ôζ2σ′ = {N ′
j} eN ′[è]

There are two cases:

• è 6= ∅ or Nj /∈ N . Then by definitionÓζσ =dζσ′ = ⊥ (note that Nj /∈ N implies N ′
j /∈ N ,

because σ ∼′ σ′).

• è = ∅ and Nj = a ∈ N . Hence N ′
j = a′ ∈ N , because σ ∼′ σ′. Now, if the last

component of e is some j′ s.t. Nj′ = a, say e = (e′, j′), then it is also N ′
j′ = a′, because

σ ∼′ σ′: thus Óζσ = {Ni} eN [e′] anddζσ′ = {N ′
i} eN ′[e′], which is the wanted claim for this

case. Otherwise,Óζσ =dζσ′ = ⊥. 2

The intuition underlying the following lemma is that ∼′-equivalence is preserved when
uniformly adding entries to two equivalent environments.

Lemma A.5 If σ1 ∼′ σ2 then σ1[dζσ1/y] ∼′ σ2[dζσ2/y], provided that dζσ1 6= ⊥ and that
n(ζ) ⊆ dom(σ1).

Proof: Apply Lemma 5.4 to σ1, σ2 and ζ: the thesis then follows by definition of ∼′. 2

We can now prove that of ∼′ implies ∼.

Lemma A.6 Let σ and σ′ be two substitutions. If σ ∼′ σ′ then σ ∼ σ′.

Proof: Suppose that σ ∼′ σ′. We must show that for each φ with fn(φ) ⊆ dom(σ) it
holds that σ |= φ iff σ′ |= φ. The proof proceeds by induction on φ. Here, we explicitly
consider only the case where φ is let z = ζ in φ′, as the other cases are similar or easier.
By definition, σ |= let z = ζ in φ′ means that Óζσ 6= ⊥ and that σ[cζσ/z] |= φ′. Now, we have

38

letj∈I zj = ζj in [

(∗)
V

i,j∈I
[deczj

(zi) = ⊥] ∧

(a)
V
i∈I

[xi = {zi}ez[ei]] ∧
(b)

V
Ni∈N

name(zi) ∧
V

Ni 6∈N
¬name(zi) ∧

(c)
V

i,j∈I s.t. Ni=Nj
[zi = zj] ∧

V
i,j∈I s.t. Ni 6=Nj

[zi 6= zj]

]

Table 5: The formula φσ

thatdζσ′ 6= ⊥ (Lemma A.4) and σ[cζσ/z] ∼ σ′[Óζσ′/z] (Lemma A.5). By induction, σ′[Óζσ′/z] |= φ′

and we can conclude that σ′ |= let z = ζ in φ′. 2

We proceed now to showing the converse implication, that ∼ implies ∼′. Two crucial
ingredients for the proof will be the notion of characteristic formula of an environment σ, φσ,
and Theorem A.11, that will give a logical characterization of ∼′. We need some notational
shorthands.

Notation A.7

• ‘letj∈1..k zj = ζj in φ’ stands for ‘let z1 = ζ1 in (· · · (let zk = ζk in φ) · · ·)’.

• ‘ζ 6= ⊥’ stands for ‘let z = ζ in tt’, for any z, and ‘ζ = ⊥’ stands for ‘¬(ζ 6= ⊥)’.

• ‘w ∈ {M1, . . . ,Mm}’ stands for ‘
Wm

j=1[w = Mj]’.

Definition A.8 (characteristic formula) Let σ = [Mi/xi]i∈I be a substitution. For each
i ∈ I, let Ni = core(σ, xi) and let ζi be the least4 expression such that n(ζi) ⊆ ex anddζiσ = Ni. Let ÜN = Ni∈I and eζ = ζi∈I . Finally, for each i ∈ I, let ei ⊆ I be a tuple such that
Mi = {Ni} eN [ei]. The formula φσ is then defined as in Table 5. 3

About Definition A.8 we have the following:

Remark A.9 Note that the expressions ζi∈I mentioned in the definition above do exist by
virtue of Lemma A.2(1). Furthermore, we are allowed to assume thatMi = {Ni} eN [ei], for some

tuple ei, because, by virtue of Lemma A.2(2), kn(σ) ⊆ ÜN . Finally, note that fn(φσ) ⊆ dom(σ)
and that σ |= φσ.

A lemma that gives conditions under which a tuple of messages ÜZ can be identified as the
tuple of ‘cores’ of a given σ.

4w.r.t. some fixed total ordering of expressions.

39

Lemma A.10 Consider σ = [Mi/xi]i∈I and a tuple ÜZ = Zi∈I s.t. ÜZ ⊆ dc(σ). Suppose that
the following two conditions hold:

(a) for each i, j ∈ I, ÚdecZj (Zi) = ⊥;

(b) for each i ∈ I, there is a tuple e ⊆ I s.t. Mi = {Zi}eZ[e].
Then ÜZ = core(σ, xi)i∈I .

Proof: The proof consists of two steps.

• We first show that kn(σ) ⊆ ÜZ. To this end, consider the set of messages T def= {N :
{N}ek = Mi for some i ∈ I and ek ⊆ ÜZ }. First, one proves by induction on the definition
of dc(·) that dc(σ) ⊆ T . Then, it is easy to see that T ∩N ⊆ ÜZ: indeed if {a}ek = Mi for
some ek ⊆ ÜZ, then it also holds that {a}ek = {Zi}eZ[e] (condition (b)), which, by virtue

of condition (a) implies a = Zi. Therefore we can conclude ÜZ ⊇ kn(σ).

• Let ÜN = core(σ, xi)i∈I and take any i ∈ I: we show that Zi = Ni. By definition of core
and by condition (b), we have that Mi = {Ni}eh = {Zi}eZ[e], for some tuple e ⊆ I andeh ⊆ kn(σ). There are two cases:

– Zi = {Ni}ek with (ek, ÜZ[e]) = eh. Since ek ⊆ kn(σ) (as eh ⊆ kn(σ)), due to kn(σ) ⊆ ÜZ
and condition (a), we deduce that ek = ∅ , hence Zi = Ni.

– Ni = {Zi}ek with (ek, eh) = ÜZ[e]. Again, we have that ek ⊆ kn(σ) (as ek ⊆ ÜZ ∩N andÜZ ⊆ dc(σ)), hence, by definition of core, we get ek = ∅ , hence Zi = Ni. 2

The crucial result on ∼′ and characteristic formulae.

Theorem A.11 Let σ and σ′ be two substitutions such that dom(σ) = dom(σ′). We have
that σ ∼′ σ′ if and only if σ′ |= φσ.

Proof: The ‘only if’ part is a consequence of Lemma A.6 (as σ |= φσ). Let us see the ‘if’
part. Suppose that σ = [Mi/xi]i∈I , and take any σ′ = [M ′

i/xi]i∈I s.t. σ′ |= φσ: we show that
σ′ ∼ σ. With the notation of Table 5, let Zi =Ôζiσ′ and ÜZ = Zi∈I . From σ′ |= φσ, we deduce
that ⊥ /∈ ÜZ and that σ′[eZ/ez] |= (∗) ∧ (a) ∧ (b) ∧ (c). Now, we have that:

• σ′[eZ/ez] |= (∗) means that for each i, j ∈ I, ÚdecZj (Zi) = ⊥.

• σ′[eZ/ez] |= (a) means that for each i ∈ I there is a tuple e ⊆ I s.t. M ′
i = {Zi}eZ[e].

The above two facts and Lemma A.10 imply that ÜZ = core(σ′, xi)i∈I . Thus σ′[eZ/ez] |=
(a) ∧ (b) ∧ (c) precisely says that σ ∼ σ′. 2

We can prove that ∼ implies ∼′.

Lemma A.12 Let σ and σ′ be substitutions. If σ ∼ σ′ then σ ∼′ σ′.

40

Proof: By definition fn(φσ) ⊆ dom(σ) and σ |= φσ. Hence, by hypothesis, σ′ |= φσ and the
thesis immediately follows from Theorem A.11. 2

The coincidence of ∼ and ∼′ is now an immediate consequence of Lemma A.6 and of
Lemma A.12.

Theorem A.13 (Theorem 3.4) Let σ and σ′ be substitutions. Then σ ∼ σ′ if and only if
σ ∼′ σ′.

The following important property of characteristic formulae is an immediate consequence
of Theorem A.11 and of Theorem A.13.

Theorem A.14 (Theorem 4.3) Let σ and σ′ be substitutions such that dom(σ) = dom(σ′).
We have that σ ∼ σ′ if and only if σ′ |= φσ.

We end the section with two technical lemmas. The first lemma is useful for manipulating
environments: it says that equivalence is preserved when uniformly removing entries from
two equivalent environments. Its proof is an easy consequence of the definition of ∼.

Lemma A.15 If σ1[M/y] ∼ σ2[M
′
/y] then σ1 ∼ σ2.

The second lemma is about the size of characteristic formulae (recall that rk(σ) = |φσ|).

Lemma A.16 (Lemma 4.22) If σ ∼ σ′ then rk(σ) = rk(σ′).

Proof: Referring to the notation of Definition A.8, note that the size of φσ and φσ′ may
only differ due a different choice of some ζi, i ∈ I. But Lemma A.4(1) (which ensures that
the same ζi’s can be used in both φσ and φσ′) and the requirement of minimality imply that
the ζi’s in φσ and those in φσ′ are actually the same. 2

B Results on Trace and Bisimulation Semantics

We begin the section with a crucial result on operational semantics.

Proposition B.1 (Proposition 4.2) Consider two equivalent substitutions σ1 and σ2. Let
R be any process or observer s.t. fn(R) ⊆ dom(σ1).

1. Suppose that Rσ1
(νeb)a〈M〉−−−−−−−→ R1. Then: (i) there is η with n(η) ⊆ dom(σ1) s.t.Ôησ1 = a; (ii) there are ζ and R′ with fn(ζ,R′) ⊆ dom(σ1) ∪ eb s.t. M = dζσ1 and

R1≡R′σ1; (iii) it holds that Rσ2
(νeb)a′〈M ′〉−−−−−−−−→ R2, where a′ = Ôησ2, M ′ = dζσ2 and

R2≡R′σ2.

2. Suppose that Rσ1
a M−−−−→ R1. Then: (i) there is η with n(η) ⊆ dom(σ1) s.t.Ôησ1 = a; (ii)

taken any fresh y and σ′1
def= σ1[M/y], there is R′ with fn(R′) ⊆ dom(σ′1) s.t. R1≡R′σ′1;

(iii) for any M ′, it holds that Rσ2
a′ M ′

−−−−−→ R2, where a′ = Ôησ2 and R2≡R′σ′2 with
σ′2

def= σ2[M
′
/y].

41

3. Suppose that Rσ1
µ−−→ R1 with µ = τ or µ = ω. Then: (i) there is R′ with fn(R′) ⊆

dom(σ1) such that R1≡R′σ1; (ii) we have Rσ2
µ−−→ R2, where R2≡R′σ2.

Proof: An induction on the derivation of Rσ
µ−−→ R1. Here, we explicitly consider only the

case where the last rule applied is (Let), which is the most delicate.
Suppose that R is let z = ξ in P and that R

µ−−→ R1 is inferred via (Let) from the
premise Pρ1

µ−−→ R1, where ρ1
def= σ1[dξσ1/z] (dξσ1 6= ⊥). Depending on the form of µ we

have three cases, here we only consider the case when µ is an output, say µ = (ν eb)a〈M〉.
Since dξσ2 6= ⊥ (Lemma A.4) we can define ρ2

def= σ2[dξσ2/z]. Since ρ1 ∼ ρ2 (Lemma A.5), by
induction hypothesis applied to the premise Pρ1

µ−−→ R1 we have that:

(j) there is η′ with dom(η′) ⊆ dom(ρ1) and Ôη′ρ1 = a

(jj) there are ζ ′ and R′′ with fn(ζ ′, R′′) ⊆ dom(ρ1) ∪ eb such that M =Ôζ ′ρ1 and R1≡R′′ρ1

(jjj) Pρ2
(νeb)a′〈M ′〉−−−−−−−−→ R2 where a′ =Ôη′ρ2, M ′ =Ôζ ′ρ2 and R2≡R′′ρ2.

Define η def= η′[ξ/z], ζ def= ζ ′[ξ/z] and R′ def= let z = ξ in R′′. Then we have thatÔησ1 = a,dζσ1 = M (Lemma A.1) and that R′σ1≡R1: this proves parts (i) and (ii) of the claim.
Similarly, it holds thatÔησ2 = a′ and dζσ2 = M ′ and that R′σ2≡R2. Part (iii) follows from

these equalities and applying (Let) to transition Pρ2
(νeb)a′〈M ′〉−−−−−−−−→ R2. 2

B.1 Trace semantics

Lemma B.2 (Lemma 4.7) Suppose σ1 ∼ σ2 and let O be any observer such that fn(O) ⊆
dom(σ1). Suppose that Oσ1

r==⇒ O1, where, for some u and σ′1 extending σ1, it is r =Ôuσ′1.
Then, there is O′ with fn(O′) ⊆ dom(σ′1) such that O1≡O′σ′1. Furthermore, for any σ′2
extending σ2 and such that σ′2 ∼ σ′1, it holds that Oσ2

r′===⇒ ≡O′σ′2, with r′ =Ôuσ′2.
Proof: The proof consists in iterating the statement of Proposition 4.2. Formally one
proceeds by induction on trace u. We only examine the case when u = u′ · η(x). For any
substitution σ, let us write σ−x for the substitution that behaves like σ but is undefined on

x. Then we can write r =×u′σ′−x
1 ·×η(x)σ′1 def= s ·aM for Õησ−x

1 = a and M = xσ′1, and similarly

r′ =×u′σ′−x
2 ·×η(x)σ′2 def= s′ · a′M ′ for Õησ−x

2 = a′ and M ′ = xσ′2 (recall that, by our convention
on bound names, name x does not occur in u′). Applying induction and Proposition 4.2(2)
and (3), the sequence of transitions Oσ1

r==⇒ O1 can be decomposed as follows, for suitable
O′′ with fn(O′′) ⊆ dom(σ

′−x
1), and O′′′ and O′ with fn(O′′′, O′) ⊆ dom(σ′1):

Similarly
Oσ1

s==⇒ ≡ O′′σ
′−x
1

aM−−−→ ≡ O′′′σ′1 =⇒ ≡ O′σ′1≡O1.

Oσ2
s′==⇒ ≡ O′′σ

′−x
2

a′M ′
−−−−→ ≡ O′′′σ′2 =⇒ ≡ O′σ′2

is inferred using again induction and Proposition 4.2(2) and (3) (note that σ
′−x
1 ∼ σ

′−x
2 by

Lemma A.15). This implies Oσ2
r′==⇒ ≡O′σ′2 that concludes the proof for this case. 2

42

Lemma B.3 (Lemma 4.8) Consider σ, P and any observer O with fn(O) ⊆ dom(σ). Sup-
pose that P s==⇒ P ′ and that Oσ r==⇒ with s compl r. Then there are u and σ′ extending σ
such that r =duσ′ and σ � P

s
|===⇒

u
σ′ � P ′.

Proof: The proof consists in iterating the following two statements (the first one is an easy
consequence of Proposition 4.2):

1. Suppose that P
µ−−→ P ′ (µ 6= τ). Suppose that, for some observer O with fn(O) ⊆

dom(σ), it holds that Oσ λ−−→ O1, with µ compl λ. Then there are σ′ extending σ, δ and

O′ with fn(O′) ⊆ dom(σ′) such that: σ � P
µ

|−−→
δ

σ′ � P ′ with λ =dδσ′ and O1≡O′σ′ .

2. Suppose that P τ−−→ P ′. Then σ � P
τ

|−−→
−

σ � P ′. 2

Lemma B.4 (Lemma 4.9) Suppose that σ � P
s

|===⇒
u

σ′ � P ′. Then it holds that P s==⇒

P ′, that σ′ extends σ and that s compl r, where r =duσ′.
Proof: An easy induction on u. 2

B.2 Bisimilarity

Proposition B.5 (Proposition 4.17) Let R be a weak bisimulation up to structural equiv-
alence (resp. weakening, contraction, restriction, parallel composition). Then R ⊆ Rs ⊆≈
(resp. R ⊆ Rt ⊆≈, for t = w, c, r, p).

Proof: It is obvious from the definition that R ⊆ Rt, for any t. Let us examine the other
inclusion. For t ∈ {s, w, c} the proof simply consists in showing thatRt is a weak bisimulation.
This is straightforward by relying on the the fact that (Rt)t = Rt; in the case t = c, we also

use the fact that, when ⊥ 6∈ Óeσζ and n(eζ) ⊆ dom(σ), it holds σ[
Óeσζ/ey] � P

µ
|−−→

δ
σ′[
Óeσζ/ey] � P ′

if and only if σ � P
µ

|−−→
δ′

σ′ � P ′ where: if δ is an input then δ′ = δ[eζ/ey], if δ is an output

then δ′ = (ν eb)δ[eζ/ey], with eb = n(ζ) − dom(σ), and δ′ = δ otherwise (the proof of this fact
uses Lemma A.1). Next, we examine in more detail the two most interesting cases, up to
restriction and parallel composition.

• Up to restriction. The proof is a variation on the proof for π-calculus found, e.g., in [21].
In order to cope with the fact that the output of a name which is bound by a restriction
(like k in (ν k)ak.P) gives rise to infinitely many transitions, all of which differ by some
injective renaming of this bound name, it is convenient to introduce bisimulation up to
injective renaming.

A substitution of names ρ : N → N is injective on V ⊆ N if for each x, y ∈ V , xρ = yρ

implies x = y; given any σ = [Mi/xi]i∈I we denote by σ ◦ ρ the substitution [Miρ/xi]i∈I .

43

We adapt the definition in [21] to our setting and define up to injective renaming as
the technique that corresponds to the functional (·)in defined by the rule:

(σ1, σ2) ` P1RP2 ρi injective on ∪i=1,2 n(σi) ∪ fn(Pi)

(σ1 ◦ ρ1, σ2 ◦ ρ2) ` P1ρ1Rin P2ρ2

.

It is straightforward to show that if R is a bisimulation up to injective renaming then
Rin ⊆≈ (this relies on the fact that the both the transition relation

µ−−→ and the
relation ∼ on environments are preserved by injective renaming). Next, it is easy to
show that if R is a bisimulation up to restriction, then Rr is a bisimulation up to
injective renaming (the proof also uses the fact that (Rr)r = Rr), thus we have that
Rr ⊆≈.

• Up to parallel composition. We will show that Rp is a weak bisimulation up to weak-
ening, restriction and structural equivalence: since these techniques have already been
proven sound, this implies Rp ⊆≈. Suppose that (σ1, σ2) ` ARpB, with A ≡ P |Rσ1

and B ≡ Q |Rσ2 as given by the definition of Rp. One analyzes the possible transitions
from σ1 �A and in each case finds a matching (weak) transition from σ2 �B.

We examine only the most delicate case, which is when P and Rσ1 interact with each

other: σ1 �A
τ

|−−→
−

σ1 �A′, where A ≡ P |Rσ1
τ−−→ (ν eh)(P ′|R1) ≡ A′, P

(νeh)a〈M〉−−−−−−−→ P ′

and Rσ1
a M−−−→ R1. By virtue of Proposition 4.2(2)(i) applied to Rσ1

a M−−−→ R1, there
must be some η with n(η) ⊆ dom(σ1) s.t. Ôησ1 = a. Since (σ1, σ2) ` P RQ and R is a
bisimulation up to parallel composition, it holds that

Q
(νek)a′〈M ′〉

========⇒ Q′ with a′ =Ôησ2 and (σ1[M/x], σ2[M
′
/x]) ` P ′RpQ

′ (x fresh).

Moreover, by virtue of Proposition 4.2(2)(iii) applied to Rσ1
a M−−−→ R1 and M ′, there

is R′ with fn(R′) ⊆ dom(σ1) ∪ {x} s.t. R1 ≡ R′σ1[M/x] and Rσ2
a′ M ′
−−−−→≡ R′σ2[M

′
/x].

Hence
Q |Rσ2 ≡ B =⇒ B′ ≡ (ν ek)(Q′ |R′σ2[M

′
/x]).

By definition, (σ1[M/x], σ2[M
′
/x]) ` (P ′ | R′σ1[M/x])Rp (Q′ | R′σ2[M

′
/x]) (here we have

used the fact that (Rp)p = Rp for anyR), hence, by weakening (to discard the x-entries)
and restriction, we get that

(σ1, σ2) ` (ν eh)(P ′ |R′σ1[M/x]) ((Rp)w)r (ν ek)(Q′ |R′σ2[M
′
/x]);

finally, by structural equivalence, (σ1, σ2) ` A′(((Rp)w)r)sB
′, which is the wanted claim

for this case. 2

The following Proposition strengthens the congruence rule for parallel composition (C-Par),
under the assumption that the involved processes are safe for the appropriate environments.

Recall that a process R is σ-safe if for each s, whenever σ �R
s

|==⇒
u

σ′ �R′ (νeb)a〈M〉
|=======⇒

η(x)
, then

M ∈ dc(σ′) (hence eb = ∅).

Proposition B.6 (Proposition 5.6) Suppose that (σ1, σ2) ` Q1 ≈ Q2 and that (σ1, σ2) `
R1 ≈ R2. Suppose that, for i = 1, 2, Qi and Ri are σi-safe. Then (σ1, σ2) ` Q1 |R1 ≈ Q2 |R2.

44

Proof: Consider the relation R defined by:

(σ1, σ2) ` (Q1 |R1) R (Q2 |R2) if and only if:
(a) (σ1, σ2) ` Q1 ≈ Q2 and (σ1, σ2) ` R1 ≈ R2, and
(b) for i = 1, 2, Qi and Ri are σi-safe.

One shows that R is a weak bisimulation. Suppose that (σ1, σ2) ` Q1 |R1RQ2 |R2. We only
examine the most delicate case, that is when Q1 and R1 interact with one another. Thus,
suppose that

σ1 �Q1 |R1

τ
|−−→
−

σ1 � (ν eh)(Q′
1 |R′

1) (8)

where Q1
(νeh)a〈M〉−−−−−−−→ Q′

1 and R1
a M−−−→ R′

1 (the other cases follow by symmetry). Note
that it must be eh = ∅ , because M ∈ dc(σ1). Since (σ1, σ2) ` Q1 ≈ Q2, we get that
Q2

(νek)a′〈M ′〉
========⇒ Q′

2, for some a′, M ′ andQ′
2, such that (σ′1, σ

′
2) ` Q′

1 ≈ Q′
2 (here σ′1

def= σ1[M/x]
and σ′2

def= σ2[M
′
/x], for a fresh x). Also in this case, ek = ∅ , because M ′ ∈ dc(σ2).

Now, since M ∈ dc(σ1) there is ζ s.t. n(ζ) ⊆ dom(σ1) and M = dζσ1 (Lemma A.2(1)).
From Lemma A.4, it follows that dζσ1 = {Ni} eN [e] and that dζσ2 = {N ′

i} eN ′[e], for appropriate

indices i, e and cores ÜN and ÜN ′. Hence, from σ′1 ∼ σ′2, we get that M ′ = {N ′
i} eN ′[e], hence

M ′ =dζσ2. Similarly, one finds an η s.t. n(η) ⊆ dom(σ1) and a =Ôησ1 and a′ =Ôησ2

Now, using the facts on M and M ′ established above, from R1
a M−−−→ R′

1 we deduce

σ1 �R1

a M
|−−−→

ηζ
σ1 �R′

1; hence, from (σ1, σ2) ` R1 ≈ R2, we get σ2 �R2
a′ M ′

|====⇒
ηζ

σ2 �R′
2,

where (σ1, σ2) ` R′
1 ≈ R′

2. Combining Q2
a′〈M ′〉

=====⇒ Q′
2 and R2

a′ M ′
=====⇒ R′

2, we get Q2 |R2 =⇒
Q′

2 |R′
2, hence

σ2 �Q2 |R2 |===⇒
−

σ2 �Q′
2 |R′

2 .

To see that the above weak transition matches (8), let us check conditions (a) and (b) of
the definition of R. Indeed, (σ1, σ2) ` Q′

1 ≈ Q′
2 (by (σ′1, σ

′
2) ` Q′

1 ≈ Q′
2 and weakening)

and (σ1, σ2) ` R′
1 ≈ R′

2 imply condition (a); moreover, for i = 1, 2, R′
i and Q′

i are σi-safe,
because Ri and Qi are, thus condition (b) is true. 2

C Characteristic Formula: Calculus with Pairing

Definition C.1 Let σ = [Mi/xi]i∈I be a substitution. For each i ∈ I and p ∈ {l, r}∗, let:

• Nip be Mi[σ, p];

• ζip be the least expression s.t. n(ζip) ⊆ ex and Ôζipσ = Nip;

• zip be some fixed fresh name.

Let ÜN be the function that maps each ip to Nip, eζ be the function that maps each ip to ζip
and ez be the function that maps each ip to zip (ez will also denote the set of all zip’s). Let ρσ

be the substitution that maps each zip to Nip, if Nip 6= ⊥.
Finally, for any i ∈ I, let Mσ

i be a message s.t.: n(Mσ
i) ⊆ {zip : p ∈ {l, r}∗} and

(Mσ
i)ρσ = Mi. The formula φσ is then defined as in Table 6. 3

45

letNjq 6=⊥ zjq = ζjq in [

(∗)
V

Nip,Njq 6=⊥
[deczjq

(zip) = ⊥] ∧ [π1(zip) = ⊥] ∧ [π2(zip) = ⊥] ∧

(a)
V
i∈I

[xi = Mσ
i] ∧

(b)
V

Nip∈N
name(zip) ∧

V
Nip 6=⊥ and Nip 6∈N

¬name(zip) ∧

(c)
V

Nip,Njq 6=⊥ and Nip=Njq
[zip = zjq] ∧

V
Nip,Njq 6=⊥ and Nip 6=Njq

[zip 6= zjq]

]

Table 6: The formula φσ (calculus with pairing)

The existence of expressions ζip’s can be easily proven by relying on (the analogue of)
Lemma A.2, while in the case of the Mσ

i ’s, it is sufficient to prove that for each M ∈ dc(σ)
there is M ′ with n(M ′) ⊆ ezip s.t. M ′ρσ = M (induction on M). The interested reader can
easily supply the details. Note that fn(φσ) ⊆ dom(σ) and that σ |= φσ.

The proof of Theorem A.11 is easily extended via the following lemma (the analogue of
Lemma A.10), where we refer to the notation introduced in Definition C.1:

Lemma C.2 Consider σ = [Mi/xi]i∈I and σ′ = [M ′
i/xi]i∈I , and let ρ′ be a substitution s.t.

dom(ρ′) = dom(ρσ) and ÜZ def= range(ρ′) ⊆ dc(σ′). Suppose that the following two conditions
hold:

(a) for each Z1, Z2 ∈ ÜZ,ÛdecZ2(Z1) = ⊥ and Z1 is not a pair,

(b) for each i ∈ I, it holds that M ′
i = (Mσ

i)ρ′.

Then for each i and p s.t. M ′
i [σ

′, p] 6= ⊥, it holds that M ′
i [σ

′, p] = ρ′(zip). Furthermore, for
each i ∈ I it holds that (σ, σ′) `Mi ∼M ′

i .

Proof: We just outline the proof. There are three steps:

• kn(σ′) ⊆ ÜZ. To prove this, consider the set T def= {Mρ′ : n(M) ⊆ dom(ρ′)} and show
that dc(σ′) ⊆ T (by induction on the definition of dc(·)). The thesis then follows
because T ∩N ⊆ ÜZ.

• For any M and context C[·] (a message with a ‘hole’), if C[M] = Mσ
i and (Mρ′)[σ′, p] 6=

⊥, then (Mρ′)[σ′, p] = ρ′(zi(qp)), where q is the position of the hole [·] inside C[·] (this
implies M ′

i [σ
′, p] = ρ′(zip) when C[·] is the empty context [·]). The proof of this fact

proceeds by induction on M and relies, for the base case, on the fact that kn(σ′) ⊆ ÜZ.

• For any M that is a sub-message of Mσ
i it holds that (σ, σ′) `Mρσ ∼Mρ′ (this implies

(σ, σ′) `Mi ∼M ′
i when M is Mσ

i , by virtue of hypothesis (b)). The proof of this fact
proceeds by induction on M , and relies on the fact that M ′

i [σ
′, p] = ρ′(zip), which has

been proven above. 2

46

References

[1] M. Abadi. Protection in Programming-Language Translations. ICALP’98, Proceedings
(K.G. Larsen, S. Skyum, G. Winskel, Eds.), LNCS 1443, pp.868-883, Springer-Verlag,
1998.

[2] M. Abadi. Secrecy by Typing in Security Protocols. STACS’97, Proceedings, LNCS 1281,
pp.611-638, Springer-Verlag, 1997. Full version to appear in Journal of ACM.

[3] R. Amadio, I. Castellani, D. Sangiorgi. On Bisimulations for the Asynchronous π–
calculus. Theoretical Computer Science, 195,Elsevier, 1998.

[4] M. Abadi, C. Fournet, G. Gonthier. Secure implementation of channel abstractions.
In Proc. of the 13th IEEE Symposium Logic In Computer Science (LICS’98), IEEE
Computer Society Press, pp. 105-116, 1998.

[5] M. Abadi, A.D. Gordon. Reasoning about cryptographic protocols in the spi calculus.
CONCUR’97, Proceedings (A. Mazurkiewicz, J. Winkowsky, Eds.), LNCS 1243, pp.59-
73, Springer-Verlag, 1997.

[6] M. Abadi, A.D. Gordon. A Bisimulation Method for Cryptographic Protocols. Nordic
Journal of Computing, 5(4):267-303, 1998.

[7] M. Abadi, A.D. Gordon. A calculus for cryptographic protocols: The spi calculus. In-
formation and Computation, 148(1):1-70, Academic Press, 1999.

[8] M. Boreale, R. De Nicola. Testing equivalence for mobile processes. Information and
Computation, 120:279-303, Academic Press, 1995.

[9] M. Boreale, R. De Nicola, R. Pugliese. Proof Techniques for Cryptographic Processes.
In Proc. of the 14th IEEE Symposium Logic In Computer Science (LICS’99), IEEE
Computer Society Press, pp.157-166, 1999.

[10] M. Boreale, D. Sangiorgi. Bisimulation in Name-Passing Calculi without Matching. In
Proc. of the 13th IEEE Symposium Logic In Computer Science (LICS’98), IEEE Com-
puter Society Press, pp. 165-175, 1998.

[11] R. De Nicola, M.C.B. Hennessy. Testing Equivalence for Processes. Theoretical Comput-
ers Science, 34:83-133, Elsevier, 1984.

[12] A.S. Elkjaer, M. Höhle, H. Hüttel, K.O. Nielsen. Towards Automatic Bisimilarity Check-
ing in the Spi Calculus, Proc. of DMTCS’99+CATS’99, 1999.

[13] P.D. Lincoln, J.C. Mitchell, M. Mitchell, A. Scedrov. A Probabilistic Poly-time Frame-
work for Protocol Analysis, ACM Computer and Communication Security (CCS-5), pp.
112–121, 1998.

[14] G. Lowe. Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using FDR.
TACAS’96, Proceedings (T. Margaria, B. Steffen, Eds.), LNCS 1055, pp. 147-166,
Springer-Verlag, 1996.

47

[15] R. Milner. Communication and Concurrency. Prentice Hall International, 1989.

[16] R. Milner. The Polyadic π-calculus: a Tutorial. In Logic and Algebra of Specification
(F.L. Hamer, W. Brauer, H. Schwichtenberg, Eds.), Springer-Verlag, 1993.

[17] R. Milner, J. Parrow, D. Walker. A calculus of mobile processes, (Part I and II). Infor-
mation and Computation, 100:1-77, Academic Press, 1992.

[18] R. Milner, D. Sangiorgi. Barbed Bisimulation. ICALP’92, Proceedings (W. Kuich, Ed.),
LNCS 623, pp.685-695, Springer-Verlag, 1992.

[19] A.W. Roscoe. Modelling and verifying key-exchange using CSP and FDR. In 8th Com-
puter Security Foundations Workshop, IEEE Computer Society Press, 1995.

[20] M.C. Sanderson. Proof techniques for CCS. Internal Report CST-19-82, Department of
Computer Science, University of Edinburgh, 1982.

[21] D. Sangiorgi. On the Bisimulation Proof Method. Mathematical Structures in Computer
Science, 8:447-479, 1998.

[22] S. Schneider. Verifying Authentication Protocols in CSP. IEEE Transactions on Software
Engineering, 24(8):743-758, IEEE Computer Society Press, 1998.

48

