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Abstract

We consider πI, a fragment of the π-calculus where only exchange of private names among
processes is permitted (internal mobility). The calculus πI enjoys a simpler mathematical treat-
ment, very close to that of CCS. In particular, πI avoids the concept of substitution. We provide
an encoding from the asynchronous π-calculus to πI and then prove that two processes are barbed
equivalent in π-calculus if and only if their translations in πI cannot be distinguished, under
barbed bisimilarity, by any translated static context. The result shows that, in name-passing
calculi, internal mobility is the essential ingredient as far as expressiveness is concerned.

1 Introduction

By now, the π-calculus [14] is generally recognized as the prototypical algebraic language for de-
scribing concurrent systems with dynamic communication linkage. Dynamic linkage, also called
mobility, is modelled through the passing of channel names among processes (name-passing). The
expressive power of the π-calculus is demonstrated by the existence of simple and faithful transla-
tions into the language for a variety of computational formalisms, including λ-calculus [13], higher-
order process calculi [18] and calculi which permit reasoning on the causal or spatial structure of
concurrent systems [5, 20].

The price to pay for this expressiveness is a rather complex mathematical theory of the π-
calculus. A source of complications is, above all, the need to take name instantiation (or substitu-
tion) into account. Input and output at a of a tuple of names b̃ are written, respectively, as a(b̃).P
(input prefix) and a〈b̃〉.P (output prefix), with P representing the continuation of the prefix. An
input and an output prefix can be consumed in a communication, where a tuple of names is passed
and used to instantiate the formal parameters of the input prefix, thus:

a(c̃).P | a〈b̃〉.Q
τ

−→ P{b̃/̃c} | Q . (∗)

Here {b̃/̃c} denotes the instantiation of names in c̃ with names in b̃. Name instantiation is a central
concern in the mathematical treatment of certain process equivalences. For instance, bisimilarity
in the π-calculus comes in several different forms (early, late and open), depending on the name
instantiation strategy chosen for matching input actions [14, 16, 19], and it is not clear which one
should be preferred. Name instantiation also complicates the pragmatics of the π-calculus, since
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any implementation has to keep track, explicitly (e.g. using environments) or implicitly, of the
bindings among names created by communications like (∗) as the computation proceeds (see e.g.
[9]).

It is therefore natural to seek for fragments of the π-calculus enjoying a simpler treatment of
names instantiation, while retaining a non-trivial expressive power. In this paper, we examine the
calculus πI, a sub-language of the π-calculus proposed by Sangiorgi in [22]. A prominent feature
of πI is that it avoids using name instantiation (other than α-conversion). This fact makes the
mathematical treatment and the pragmatics of πI much simpler than in the π-calculus: indeed, the
only extra ingredient of πI over CCS is α-conversion of names. We show that the “asynchronous”
variant of the π-calculus [11, 4, 21] can be translated, in a natural way, into πI. There is a precise
operational correspondence between source process and translated process. A more precise account
of our work follows.

The language πI is obtained from the full π-calculus by imposing the constraint that only private
names be communicated among processes. Output at a of a tuple of private names b̃ is written
as (ν b̃)(a〈b̃〉.P ), where (ν b̃) is the restriction operator. After the interaction, the communicated
names remain private:

a(c̃).P | (ν b̃)a〈b̃〉.Q
τ

−→ (ν b̃)(P{b̃/̃c} | Q) (∗∗)

Since both a(c̃). and (ν b̃) act as binders for the names c̃ and b̃, respectively, up to α-conversion it
is possible to assume in (∗∗) that b̃ = c̃: thus no name instantiation is needed in πI. The kind of
dynamic reconfiguration corresponding to the passing of private names is called internal mobility
in [22].

In πI it is impossible to directly describe external mobility, i.e., output of public names (or
free output), as given by (∗). On the other hand, in [22], it has been shown that πI is expressive
enough to encode λ-calculus and certain forms of strictly higher-order process calculi. However, no
one of these formalisms exhibits external mobility. In particular, in strictly higher-order calculi, no
name-passing feature is present, since only processes (or abstractions of processes) can be passed
around. It is therefore natural to wonder whether external mobility, at least in some limited form,
can be expressed via the internal one.

In this paper, we consider as a source language the asynchronous π-calculus, πa, introduced
by Honda [11] and Boudol [4]. This is a variant of the π-calculus where: i) the continuation of an
output prefix is always the null process (asynchronous output), and ii) the matching operator, used
to test for equalities between names, and the non-deterministic summation operator [14] are ruled
out. It is meaningful to restrict ourselves to asynchronous output prefix because it has been shown
that the full output prefix can be, in a reasonable sense, encoded in πa [4]. The same holds for a
form of summation that only uses input guards [15]. On the other hand, matching seems to play
a secondary rôle, as far as expressiveness is concerned (e.g. it is not needed to encode λ-calculus,
higher-order calculi etc.). The way the presence of matching would affect our results is discussed
at the end of Section 4.

We define an encoding, [[ . ]], from πa to πI. The basic idea is that the output of a public name
b at a, ab, is replaced, in πI, by the output of a private name x, which acts as a reference to a link
process from x to b, written x → b . Intuitively, x → b behaves like a buffer with entrance at x and
exit at b: however, names transmitted at b are not the same as names received at x, as this would
require free output, but are, in turn, linked to them (the definition of link processes will indeed
be recursive). Since a link x → b transforms outputs at x into outputs at b, a process owning x
can trigger an output at b by interacting with x → b . This approach is somewhat reminiscent of
Sangiorgi’s factorization theorem for higher-order processes, saying that the output of a process
can be replaced by the output of a trigger with a private link to a replicator of the process [18].
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Link processes can be used to naturally encode those πa-processes in which each receiver, say
a(x).P , can only use x in P as an output channel. The subset of πa obeying this “inversion
of polarity” syntactical condition will be called πi

a. Then, the encoding [[ . ]] will be obtained as
the composition of two simple translations: one ({| . |}) from πa to the intermediate calculus πi

a,
and the other (〈| . |〉) from πi

a to πI. Each of these two encodings is proven to establish a close
operational correspondence between source terms and translated terms, as explained below.

To study the operational correspondence established by the encoding, we consider a variety of
semantic equivalences based on barbed bisimilarity [18]. The latter is a uniform notion of equivalence
among processes, whose definition only relies on the existence of a reduction relation on processes
(P

τ
−→ P ′) and of an observation predicate on actions (P ↓ a). Starting from barbed bisimilarity,

more refined notions of equivalences can be obtained, still in a uniform fashion. In fact, given
a family F of language contexts, we can declare two processes F-equivalent if they are barbed
bisimilar whenever plugged in any context of F . One of the most significant relations obtained in
this way is barbed equivalence [18], where static contexts, of the form ν b̃ (R | [·]), are used. This
conveys an idea of “contexts as observers” (similar to that found in the testing scenario of De Nicola
and Hennessy [7]). For our encoding, we prove that two processes in πa are barbed equivalent if
and only if their translations in πI cannot be distinguished using translations of static contexts.
This result precisely says that πa can be faithfully compiled in πI. An important consequence of
this fact is a soundness theorem, saying that whenever two translated terms are barbed equivalent
in πI then the corresponding source terms are barbed equivalent in πa. These results strengthen
the claim of [22]: in the π-calculus, internal mobility is responsible for most of the expressive power,
whereas external mobility is responsible for most of the mathematical complications. Thus πI seems
to be a model of computation more basic than the π-calculus.

The encoding {| . |} is also interesting on its own. The underlying idea is that, whenever a name
b is passed, the sender keeps for himself the right of using b as an input channel. In the translated
process, the receiver is hence passed two things: a “polarized” b, which can be only used for
output, plus the private address of a channel manager, to which all requests of using b as an input
channel must be addressed. Thus, all subsequent communications along b will have the channel
manager as a receiver. This seems to suggest that, without losing much expressive power, it should
be possible to further refine the channel discipline of πi

a in such a way that each channel, once
created, has a single, statically localized receiver; the latter could be understood as an object, in
the sense of object-oriented programming. This “unique receiver” property is particularly desirable
for distributed implementation of concurrent languages: it is, for example, one of the motivations
behind the join-calculus of Fournet and Gonthier [8]. But to fully explore this connection is outside
the scope of the present paper.

The rest of the paper is organized as follows. Section 2 contains some background material
on πa, πI and on the behavioural relations used throughout the paper. Section 3 presents the
encoding from πa to πi

a. Section 4 presents the encoding from πi
a to πI and some remarks about

the matching operator and observation equivalence semantics. The paper ends with a few conclusive
considerations in Section 5.

2 Background

In this section we introduce the languages πa, πi
a and πI1, their operational semantics and some

behavioural relations on them.

1Actually, we will introduce the summation-free fragment of πI, which is enough for our purposes.
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2.1 The languages πa, π
i
a and πI

The name-passing languages πa, πi
a and πI can be regarded as fragments of a common π-calculus

subset, which we call P. Below, we shall first describe P and then, by constraining the output
constructs, we shall isolate out of it the fragments of our interest.

The countable set N of names is ranged over by a, b, . . . , x, y, . . .. The set of names and co-
names, N ∪ {a | a ∈ N}, is ranged over by p. A countable set of agent constants, each having a
non-negative integer arity, is ranged over by A. Processes are ranged over by P,Q and R. The
subset of the π-calculus syntax we shall consider is built out of the operators of action prefix,
restriction, parallel composition, replication and agent constant:

P := S | ν aP | P1 | P2 | !P | A(a1, . . . , ak)

S := a(b̃).P | a(b̃).P | a〈b̃〉.0 .

where k is the arity of A. The prefixes a(b̃)., a(b̃). and a〈b̃〉. are called, respectively, input prefix,
bound output prefix and (asynchronous) free output prefix and are ranged over by α; in the input
prefix a(b̃) and in the bound output prefix a(b̃), the components of b̃ are pairwise distinct. In the
free output a〈b̃〉, we omit the surrounding brackets 〈〉 when b̃ has one or zero components. We
abbreviate α.0 to α and ν a ν bP to (ν a, b )P .

Following [22], we have explicitly introduced the bound output prefix a(b̃).P : in the full π-
calculus, this would only be syntactic sugar for ν b̃ (a〈b̃〉.P ), when a /∈ b̃.

Input prefix a(b̃). and restriction ν a act as binders for names b̃ and a, respectively. Free names
and bound names of a process P , written fn(P ) and bn(P ) respectively, arise as expected; the
names of P , written n(P ) are fn(P ) ∪ bn(P ). Substitutions, ranged over by σ, σ′ . . . are functions
from N to N ; for any expression E, we write Eσ for the expression obtained applying σ to E,

while Eσσ′ stands for (Eσ)σ′ and {b̃/̃c} stands for the substitution which maps c̃ onto b̃ and is the
identity elsewhere. We assume the following decreasing order of precedence when writing process
expressions: substitution, prefix, replication, restriction, parallel composition.

Each agent constant has an associated defining equation, A(x1, . . . , xk) ⇐ P , where k is the
arity of A, the xi’s are all distinct and fn(P ) ⊆ {x1, . . . , xk}.

The transition rules for the language operators are given in Table 1. Actions, ranged over by
µ, can be of four forms: τ (interaction), a(b̃) (input), ν b̃′ a〈b̃〉 (output) or a(b̃) (bound output). By
convention, we shall identify actions ν b̃ a〈b̃〉 and a(b̃). Functions bn(·), fn(·) and n(·) are extended
to actions as expected, once we set bn(a(b̃)) = b̃ and bn(ν b̃′ a〈b̃〉) = b̃′.

Throughout the paper, we shall work up to α-conversion on names so to avoid tedious side
conditions in transition rules and bisimulation clauses. Therefore:

• in processes, bound names are assumed to be different from each other and from the free
names;

• α-equivalent processes are identified. In particular, they are assumed to have the same tran-
sitions;

• substitutions do not touch bound names.

Following Milner [12], we only admit well-sorted processes: the sorting is necessary to prevent
arity mismatching in communications, like in a〈b, c〉. P |a(x). Q. Moreover, substitutions must map
names onto names of the same sort. We do not present the sorting system because it is not essential
to understand the content of this paper.

We say that a name a occurs in P in input- (resp. output-) subject position if P contains a
prefix a(b̃) (resp. a〈b̃〉 or a(b̃)) not inside the scope of a binder for a. We call:
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Act : α.P
α

−→ P Rep :
P | ! P

µ
−→ P ′

! P
µ

−→ P ′

Par :
P1

µ
−→ P ′

1

P1 | P2
µ

−→ P ′
1 | P2

Com :
P1

(ν b̃′)a〈̃b〉
−→ P ′

1 P2
a(̃c)
−→ P ′

2

P1 | P2
τ

−→ ν b̃′ (P ′
1 | P

′
2{b̃/̃c})

Res :
P

µ
−→ P ′

ν c P
µ

−→ ν c P ′
, c /∈ n(µ) Open :

P
(ν b̃′)a〈̃b〉
−→ P ′

ν c P
(ν b̃′c)a〈̃b〉

−→ P ′

, c 6= a, c ∈ b̃ − b̃′

Ide :
P{b̃/̃x}

µ
−→ P ′

A(̃b)
µ

−→ P ′
if A(x̃) ⇐ P

Table 1: Operational semantics of P (symmetric versions of Par and Com omitted).

• P the above defined set of π-calculus processes;

• πa the subset of P with no bound output prefixes and no agent constants;

• πi
a the subset of πa in which, for terms of the form a(b̃).P , no bi ∈ b̃ occurs in P in input

subject position;

• πI the subset of P without free output prefix.

Each of the subsets πa, πi
a and πI is easily seen to be closed w.r.t. the transition relation

µ
−→ .

Note that the language πI contains both replication and agent constants: contrary to what happens
in the π-calculus, these two primitives are not equivalent in πI (see [22]). Even though replication
can be defined in terms of agent constants, we decided to keep it for notational convenience.

2.2 Behavioural relations on processes

Weak barbed bisimilarity and the equivalences based on it [18] are the relations we are most
interested in. In some of the proofs we will, however, use a few auxiliary relations: standard
(strong and weak) bisimilarities and the expansion preorder.

In the sequel, we let =⇒ be the reflexive and transitive closure of
τ

−→ , let
µ

=⇒ be =⇒
µ

−→=⇒,

and let P
µ̂

=⇒ Q be P
µ

=⇒ Q, if µ 6= τ , and P =⇒ Q, if µ = τ .

2.2.1 Barbed bisimilarity and equivalence

Barbed bisimulation [18] represents a uniform mechanism for defining meaningful behavioural equiv-
alences, which relies on two concepts common to different process calculi: the reduction relation

τ
−→ and an observation predicate ↓ p. In π-calculus, we say that P commits to a (resp. to a), and
write P ↓ a (resp. P ↓ a), if P contains a prefix a(b̃), (resp. a〈b̃〉 or a(b̃)) which is not underneath
another prefix or in the scope of a ν a restriction operator. This means that P is capable of inter-
acting immediately on channel a. We write P ⇓ p if P is capable of interacting on p possibly after
a few invisible steps, i.e. if P =⇒↓ p.
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Definition 2.1 (weak barbed bisimilarity) A symmetric binary relation R ⊆ P×P is a weak
barbed bisimulation if and only if, whenever P RQ:

1. P
τ

−→ P ′ implies there exists Q′ s.t. Q =⇒ Q′ and P ′ RQ′, and

2. P ↓ p implies Q ⇓ p, for any p.

We say that P and Q are barbed bisimilar, written P
.
≃ Q, if and only if P RQ for some barbed

bisimulation R .

Weak barbed bisimilarity is a rather coarse relation. For example, the processes P
def
= a and

Q
def
= a.b are barbed bisimilar. A way of getting a finer relation is that of “closing”

.
≃ under a

family of language contexts. Indeed, P and Q above are distinguished as soon as they are plugged
in the context a | [·]. By closing barbed bisimilarity under all static contexts, one obtains barbed
equivalence. Static contexts are of the form (ν b̃)(R | [·]), for any b̃ and R.

Definition 2.2 (barbed equivalence) For each language L ∈ { πa, πi
a, πI}, we define barbed

equivalence on L, ≃L, as follows: P ≃L Q if and only if for each static context (ν b̃)(R | [·]) of L,
it holds that (ν b̃)(R | P )

.
≃ (ν b̃)(R | Q).

From the above definition, it is clear that barbed equivalence is preserved by restriction and
parallel composition operators. Indeed, it is easy to prove that ≃πI is a congruence, and we strongly
conjecture that the same holds for ≃ πa and ≃

πi
a
. In the sequel, we shall omit the subscript L

when it is clear which language we are referring to.

2.2.2 Standard bisimilarities

Several forms of bisimulation-based equivalences have been proposed for the π-calculus, notably the
late, early and open bisimilarities [14, 16, 19]: the difference among these depends on the specific
name instantiation strategy adopted for input actions. Here, we take advantage of the fact that,
over the subsets of the π-calculus we are interested in (πI, πa and hence πi

a), these forms coincide
with each other and with another, simpler form of bisimilarity, called ground2 bisimilarity (see also
[10, 11, 21, 6]). In the latter, no name instantiation of the input formal parameter is required when
matching input actions, apart from α-conversion. We recall its definition below.

Definition 2.3 (strong bisimilarity) A symmetric relation R⊆ P×P is a strong ground bisim-

ulation if whenever P RQ and P
µ

−→ P ′3 then there exists Q′ s.t. Q
µ

−→ Q′ and P ′RQ′. Two
processes P and Q are strongly ground bisimilar, written P ∼ Q, if P RQ for some strong ground
bisimulation R.

Some elementary laws for strong bisimulation:

Proposition 2.4

1. ν x (P | Q) ∼ (ν xP ) | Q, if x /∈ fn(Q);

2. ! a(ỹ).P ∼ a(ỹ).(P | ! a(ỹ).P ), if a /∈ ỹ;

2In [14], ground bisimilarity indicates a different equivalence.
3We omit the requirement bn(µ) ∩ fn(Q) = ∅, since we work up-to alpha conversion.
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3. ν z̃ (α.P |Πi∈Iai(ỹi).Qi) ∼ α.ν z̃ (P |Πi∈Iai(ỹi).Qi), if α = a(ỹ) or α = a〈ỹ〉 for some ỹ, and
a /∈ z̃ and ỹ ∩ z̃ = ∅ and {ai | i ∈ I} ⊆ z̃.

The weak versions of this bisimulation, where one ignores silent steps in matching transitions,
is obtained in the usual way: weak ground bisimilarity is defined by replacing in Definition 2.3 the

transition Q
µ

−→ Q′ with Q
µ̂

=⇒ Q′. We use ≈ for weak ground bisimilarity.
Since we are only interested in the πa and πI fragments of P, where all the mentioned forms

of standard bisimilarity coincide, in the sequel we shall drop the adjective ‘ground’ when referring
to ∼ and ≈. Both ∼ and ≈ are congruences on the fragments of the π-calculus of our interest
[10, 11, 21, 6].

2.2.3 Expansion preorder

The expansion relation <
∼ [2, 23] is an asymmetric variant of ≈ which allows one to “count” the

number of τ -actions performed by the processes. Thus, P <
∼ Q holds if P ≈ Q, and Q has at least

as many τ -moves as P . As for standard bisimilarities, different (ground, early, late, open) forms of
expansion can be defined on the π-calculus, depending on the chosen name instantiation strategy.
Again, it is easily seen that all these forms coincide on the subsets of the π-calculus of our interest,
πa and πI (the proof parallels that given in [10, 11, 21, 6] for standard bisimilarities). We give
below the definition of ground expansion preorder, omitting the adjective ‘ground’.

Definition 2.5 (expansion preorder) A relation R ⊆ P×P is an expansion if P RQ implies:

1. Whenever P
µ

−→ P ′, there exists Q′ s.t. Q
µ

=⇒ Q′ and P ′RQ′;

2. whenever Q
µ

−→ Q′, there exists P ′ s.t. P
µ̂

−→ P ′ and P ′RQ′.

We say that Q expands P , written P <
∼ Q, if P RQ, for some expansion R .

For instance, P <
∼ τ. P , but τ. P 6<∼ P since τ. P has to perform more τ -actions than P in order

to mimic its actions. The relation <
∼ is indeed a preorder. We often write Q >

∼ P in place of
P <

∼ Q.
The following proposition summarizes a few properties of the behavioural relations considered

in the paper, and some useful relationships between them:

Proposition 2.6

a) In πa and πI, the relations ∼, ≈ and <
∼ are preserved by all operators and by name

instantiation.

b) In πa, πi
a and πI, the following is an increasing chain of relations w.r.t. inclusion: ∼, <

∼ ,
≈, ≃,

.
≃.

Proof: Part a) is standard. For b), the inclusion ≈⊆≃ is easily derived from the congruence
properties of ≈ and from the definition of ≃. All the remaining inclusions are straightforward. 2
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Let ρ be an injective finite partial function from N to N . {|P |}ρ is defined as:

{|a(x).P |}ρ
def
=

{
a(x, z).{|P |}ρ[z/x] if ρ is undefined on a, with z fresh

ν h (zh | h(x, y).{|P |}ρ[y/x]) if ρ(a) = z, with h, y fresh

{|ab|}ρ
def
= ν z (a〈b, z〉 | z →֒ b ) with z fresh {|ν xP |}ρ

def
= ν x {|P |}ρ

{|P | Q|}ρ
def
= {|P |}ρ | {|Q|}ρ {| !P |}ρ

def
= ! {|P |}ρ

Define: {|P |}
def
= {|P |}∅ .

Table 2: Definition of the encoding {| . |} from πa to πi
a.

3 From πa to π
i
a

Let us illustrate informally the way a πa-process can be translated in πi
a. The basic idea is that

whenever a name b is passed, the receiver, say R, is also passed the (private) address z of an “input
manager” process, z →֒ b . The latter receives at z all requests of using b as an input channel. In
particular, whenever activated at z, z →֒ b performs the requested input and then gives the control
and the result of the input operation back at a private return address, h. Hence, all input actions
of R at b are transformed, via the encoding, into output at z that activate z →֒ b .

For notational simplicity, below we will first present the encoding for the monadic fragment
of πa. Hence from now on in the section and until otherwise stated, πa refers to the monadic
fragment. The polyadic case will be accommodated later. First, the formal definition of the input
manager process:

Definition 3.1 (input manager process) Let z and b be two names. An input manager for b
at z is the πi

a process:

z →֒ b
def
= ! z(h).b(x, y).h〈x, y〉 .

The encoding {| . |} from (monadic) πa to (polyadic) πi
a is defined in Table 2. The definition

makes use of an auxiliary parameter, ρ, which is an injective finite partial function from N to N .
Function ρ is used in the input clause (a(x).P ) to record the transformation of input actions at
x into interactions at z with links of the form z →֒ b . The notation ρ[y/x] denotes the partial
function which yields y on x and behaves like ρ elsewhere. Furthermore, ran(ρ) denotes the set
{y : ρ(x) = y, for some x}. When, in some statement, we declare a name to be fresh we mean it
is different from any name occurring in any process or in any function ρ previously mentioned in
the statement. Bound names are always assumed to be fresh.

Example 3.2 Consider the πa-process P
def
= a(x).x(y).yv | ab | bc and its reductions:

P
τ

−→ b(y).yv | bc
τ

−→ cv .
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Let us see how these reductions are mimicked by {|P |}:

{|P |} = (definition of {| . |})

a(x, z).ν h (zh | h(y, y′).{|yv|}[y
′
/y]) | ν z (a〈b, z〉 | z →֒ b ) | {|bc|}

τ
−→∼ (interaction at a, laws for ν x )

ν z (ν h (zh | h(y, y′).{|yv|}[y
′
/y]) | z →֒ b ) | {|bc|}

τ
−→∼ (interaction at z, laws for ν z )

ν h (h(y, y′).{|yv|}[y
′
/y] | b(t, w).h〈t, w〉) | ν w (b〈c, w〉 | w →֒ c ) τ

−→ (interaction at b)

(ν w, h)(h(y, y′).{|yv|}[y
′
/y] | h〈c, w〉 | w →֒ c ) τ

−→∼ (interaction at h, laws for ν h )

ν w ({|yv|}[y
′
/y]{c, w/y, y′} | w →֒ c ) ∼ (laws for ν w and def. of {| . |})

{|cv|} .

Before proving our main result about {| . |} we need to fix a few basic properties of this mapping.
First, a technical lemma. Part 1 and 2 state well-known distributivity laws for ! , due to Milner
[12], while part 3 and 4 are distributivity properties for input managers.

Lemma 3.3 Let P , P1 and P2 be processes in πa such that z may occur free in P , P1 and P2 only
in output-subject position.

1. ν z ( ! z(x).P | P1 | P2) ∼ ν z ( ! z(x).P | P1) | ν z ( ! z(x).P | P2).

2. ν z ( ! z(x).P | !P1) ∼ ! ν z ( ! z(x).P | P1).

3. ν z ( z →֒ b | P1 | P2) ∼ ν z ( z →֒ b | P1) | ν z ( z →֒ b | P2), where z 6= b.

4. ν z ( z →֒ b | !P) ∼ ! ν z ( z →֒ b | P), where z 6= b.

Proof: Part 1 and 2 are shown by exhibiting the appropriate bisimulation relations (see e.g. [12]).
Part 2 and 3 are direct consequences of part 1 and 2, respectively. 2

In the next lemma, part 1 states a simple syntactical property of the encoding, while part 2
asserts that an input manager z →֒ b , if z is hidden, somehow acts like a substitution of z with b,
but just for those names appearing in input position (therefore, when combined with an appropriate
substitution for names in output position, z →֒ b has just the effect of a full substitution).

Lemma 3.4 Let P be a πa-process, let ρ be undefined on a and b, let fn(P ) ∩ ran(ρ) = ∅ . Let z
be fresh.

1. z may appear free in {|P |}ρ[z/a] only in output-subject position.

2. ν z ( z →֒ b | {|P |}ρ[z/a]){b/a} >
∼ {|P{b/a}|}ρ.

Proof: Part 1 is proven by a straightforward induction on P . Part 2 is proven by induction on P .
The output case is trivial, since the parameter ρ[z/a] is simply ignored. For the inductive step cases,
those different from input prefix easily follow from the induction hypothesis. In particular, in the
parallel composition and in the replication cases, we first distribute the input manager z →֒ b over
subterms (applying part 1 of this lemma and part 3 or 4 of Lemma 3.3), and then use induction
hypothesis.

The most interesting case concerns input prefix, when P = c(x).P ′, for some c and P ′. We
distinguish two situations, namely c 6= a and c = a (Below, we shall implicitly use Proposition 2.6).

c 6= a. According to the definition in Table 2, we distinguish two possibilities: ρ is undefined on c and
ρ(c) = w, for some w. We only deal with the latter, which is a bit more difficult. By definition,
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{|P |}ρ[z/a] = ν h (wh | h(x, y).R), where R
def
= {|P ′|}ρ[z/a][y/x]. Rearranging subterms, we can

write:
ν z ( z →֒ b | {|P |}ρ[z/a]){b/a} ∼ ν h (wh | ν z ( z →֒ b | h(x, y).R){b/a}). (1)

By Proposition 2.4(2)-(3), we get:

ν z ( z →֒ b | h(x, y).R) ∼ h(x, y).ν z ( z →֒ b | R)

which, when replaced in the RHS of (1), yields

ν z ( z →֒ b | {|P |}ρ[z/b]){b/a} ∼ ν h (wh | h(x, y).ν z ( z →֒ b | R){b/a}).

This, by definition of R, the induction hypothesis and definition of encoding, easily implies
the thesis for this case.

c = a. We have:

ν z ( z →֒ b | {|P |}ρ[z/a]){b/a} =

(definition of {|P |}ρ[z/a])

ν z ( z →֒ b | ν h (z〈h〉 | h(x, y).{|P ′|}ρ[z/a][y/x])){b/a} ∼

(moving ν h to the outermost position, in virtue of Prop. 2.4(1))

ν h ν z ( z →֒ b | z〈h〉 | h(x, y).{|P ′|}ρ[z/a][y/x]){b/a} ∼

(distributing z →֒ b , in virtue of part 1 and of Lemma 3.3(3))

ν h (ν z ( z →֒ b | z〈h〉) | ν z ( z →֒ b | h(x, y).{|P ′|}ρ[z/a][y/x])){b/a} >
∼

(given that ν z ( z →֒ b | z〈h〉) >
∼ b(x, y).h〈x, y〉)

ν h (b(x, y).h〈x, y〉 | ν z ( z →֒ b | h(x, y).{|P ′|}ρ[z/a][y/x])){b/a} ∼

(Proposition 2.4(2)-(3))

b(x, y).ν h (h〈x, y〉 | h(x, y).ν z ( z →֒ b | {|P ′|}ρ[z/a][y/x]){b/a}) >
∼

(induction hypothesis)

b(x, y).ν h (h〈x, y〉 | h(x, y).{|P ′{b/a}|}ρ[y/x]) >
∼

(a simple law for >
∼ )

b(x, y).{|P ′{b/a}|}ρ[y/x] =

(by definition of {| . |} and the fact that ρ is undefined on b).

{|P{b/a}|}ρ .

2

The following proposition shows the tight correspondence between transitions of P and transi-
tions of {|P |}.

Proposition 3.5 (correspondence on transitions) Let P be a πa-process.
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a) Suppose that P
µ

−→ P ′. Then we have:

1. µ = a(x) implies {|P |}
a(x,y)
−→ >

∼ {|P ′|}[y/x];

2. µ = ab implies {|P |}
ν y a〈b,y〉
−→ >

∼ y →֒ b | {|P ′|}, with y /∈ fn(P ′);

3. µ = ν b ab implies {|P |}
(ν b,y)a〈b,y〉

−→ >
∼ y →֒ b | {|P ′|}, with y /∈ fn(P ′);

4. µ = τ implies {|P |}
τ

−→ >
∼ {|P ′|}.

b) Suppose that {|P |}
µ

−→ P1. Then there are P ′ ∈ πa and a such that one of the followings
holds:

1. µ = a(x, y), for some x and y, and P
a(x)
−→ P ′, with P1

>
∼ {|P ′|}[y/x];

2. µ = ν y a〈b, y〉, for some b and y, and P
ab
−→ P ′, with y /∈ fn(P ′) and P1

>
∼ y →֒ b |{|P ′|};

3. µ = (ν b, y)a〈b, y〉, for some b and y, and P
ν b ab
−→ P ′, with y /∈ fn(P ′) and P1

>
∼ y →֒

b | {|P ′|};

4. µ = τ and P
τ

−→ P ′, with P1
>
∼ {|P ′|}.

Proof: Parts 1, 2 and 3 of a) and b) are proven by straightforward transition induction. The
only subtle points arise in the proof of parts a)(4) and b)(4), where also Lemma 3.4(2) is used. We
show part a)(4), since b)(4) is handled similarly. The proof proceeds by transition induction on
P

τ
−→ P ′.
The cases different from Com easily follow by induction hypothesis. The only non-trivial case is

when the last rule applied is Com (we suppose for simplicity that the communicated name is free;
the case when it is restricted can be easily accommodated):

Com :
P1

ab
−→ P ′

1, P2
a(x)
−→ P ′

2

P1 | P2
τ

−→ P ′
1 | P

′
2{b/x}

.

where we suppose, as usual, that x is fresh. By applying parts 1 and 2 of this lemma to the
transitions in the premise of the rule, we have that:

{|P1|}
ν y a〈b,y〉
−→ >

∼ y →֒ b | {|P ′
1|} with y /∈ fn(P ′

1) and {|P2|}
a(x,y)
−→ >

∼ {|P ′
2|}[y/x] . (2)

Note now, that, for any Q, if x /∈ fn(Q) then {|Q|}[y/x] = {|Q|}. This fact is exploited in the second
line below. We have:

{|P1 | P2|}
τ

−→ >
∼ ν y ( y →֒ b | {|P ′

1|} | {|P
′
2|}[y/x]{b/x}) (from (2) and Com)

= ν y ( y →֒ b | {|P ′
1 | P

′
2|}[y/x]){b/x} (x /∈ fn(P ′

1) and def. of {| . |})
>
∼ {|P ′

1 | P
′
2{b/x}|}ρ (Lemma 3.4(2) and x /∈ fn(P ′

1))

2

As a consequence of the previous proposition, we get the following correspondence on commit-
ments and weak invisible transitions:

Proposition 3.6

a) P ↓ p if and only if {|P |} ↓ p.
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b) P =⇒ P ′ implies {|P |} =⇒ >
∼ {|P ′|};

c) {|P |} =⇒ P1 implies that there is P ′ s.t. P =⇒ P ′ and P1
>
∼ {|P ′|}.

d) P ⇓ p if and only if {|P |} ⇓ p.

Proof: Part a) is a trivial consequence of the previous lemma. Part d) is a consequence of parts
a), b) and c). Part b) and c) are shown by exploiting Proposition 3.5, parts a(4) and b(4), and the
properties of <

∼ . As an example, we show part c).

For some n ≥ 0 it holds that {|P |}
τn

−→ P1. We proceed by induction on n. The case n = 0 is

trivial. If n > 0, the for some Q, we have {|P |}
τn−1

−→ Q
τ

−→ P1. By the induction hypothesis, we
have, for some P ′′ in πa,

P =⇒ P ′′ with Q >
∼ {|P ′′|} .

From this and Q
τ

−→ P1, we deduce that, for some R in πi
a,

{|P ′′|}
τ̂

−→ R with P1
>
∼ R .

Now, by Proposition 3.5(b)(4), there is P ′ in πa s.t.

P ′′ τ̂
−→ P ′ with R >

∼ {|P ′|}.

Thus, we have found P ′ s.t. P =⇒ P ′ and P1
>
∼ {|P ′|}, and proved the thesis. 2

Remark 3.7 In the proof of item (c) of the above proposition the use of the expansion relation
turns out to be necessary to close up the induction. Had we used weak bisimilarity ≈ in place of
>
∼ in the above proof, from Q ≈ {|P ′′|} and Q

τ
−→ P1, we could have only inferred {|P ′′|} =⇒ R

(in place of the stronger {|P ′′|}
τ̂

−→ R); as a consequence, we could not have applied Proposition
3.5(b)(4) to close up the induction. 2

A simple proof technique for barbed bisimilarity:

Definition 3.8 A symmetric binary relation R ⊆ P×P is a barbed bisimulation up to expansion
if, whenever P RQ it holds:

a) P
τ

−→ P ′ implies that there exist P1, Q′ and Q1 s.t.: P ′ >
∼P1 and Q =⇒ Q′ >

∼Q1 and P1 RQ1 .

b) P ↓ p implies Q ⇓ p.

Lemma 3.9 If R is a barbed bisimulation up to expansion then R ⊆
.
≃.

Proof: Show that the relation

S = {(P,Q) : P >
∼ R <

∼ Q}

is a barbed bisimulation. Straightforward. 2

We arrive at the main theorem of the section:

Theorem 3.10 Let P and Q be processes in πa. Then P
.
≃ Q if and only if {|P |}

.
≃ {|Q|}.
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Proof: For the ‘if’ part, exploiting the above Proposition 3.6 it is easy to show that the relation:

R = {({|P |}, {|Q|}) : P
.
≃ Q}

is a barbed bisimulation up to expansion in πi
a.

For the ‘only if’ part, again exploiting the above Proposition 3.6 it is easy to see that the
relation:

R = {(P,Q) : {|P |}
.
≃ {|Q|}}

is a barbed bisimulation up to expansion in πa. 2

As already explained in the introduction, the behavioural equivalence we consider on πi
a is

the closure of barbed bisimilarity under the family of translated static contexts. Encoding {| . |} is
applied to static contexts in the expected way: given a static context C[·] = (ν b̃)(R | [·]), {|C|}[·] is
(ν b̃)({|R|} | [·]).

Definition 3.11 (≃tr1 equivalence) Let P and Q be in πi
a. We define P ≃tr1 Q if and only if

for each static context C[·] in πa, it holds that {|C|}[P ]
.
≃ {|C|}[Q].

An easy consequence of the previous theorem is the following corollary, where part 2 states a
relevant soundness property for {| · |}.

Corollary 3.12 Let P and Q be two processes in πa.

1. P ≃ Q if and only if {|P |} ≃tr1 {|Q|};

2. {|P |} ≃ {|Q|} implies P ≃ Q.

Proof: Part 1 is an easy consequence of Theorem 3.10, of the congruence properties of ≃ and of
the compositionality of {| . |} for restriction and parallel composition. Part 2 follows from part 1,
given that ≃⊆≃tr1. 2

Note that Corollary 4.9(2) and the fact that in πi
a ≈⊆≃ (Proposition 2.6) imply that we can

use ≈ on πi
a to reason about ≃ on πa: in other words, {|P |} ≈ {|Q|} implies P ≃ Q.

3.1 The polyadic case

We indicate now the modifications necessary to extend {| . |} to the full polyadic πa. We use the
following notations: for ũ = (u1, . . . , uk) and ṽ = (v1, . . . , vk), [ũ/̃v] stands for [u1/v1] · · · [uk/vk] and
ũ →֒ ṽ stands for u1 →֒ v1 | · · · | uk →֒ vk . Recall that each name has an associated arity, which
is the number of parameters it carries. Definition 3.1 of input manager process and the clauses for
input and output prefixes of Table 2 are replaced by the following:

z →֒ b
def
= ! z(h).b(x̃, ỹ).h〈x̃, ỹ〉 with x̃, ỹ fresh

{|a(x̃).P |}ρ
def
=

{
a(x̃, z̃).{|P |}ρ[x̃/̃z] if ρ is undefined on a, with z̃ fresh

ν h (zh | h(x̃, ỹ).{|P |}ρ[x̃/̃y]) if ρ(a) = z, with h and ỹ fresh

{|a〈b̃〉|}ρ
def
= (ν z̃)(a〈b̃, z̃〉 | z̃ →֒ b̃ ) z̃ fresh.

The requirements on the number of the (distinct) components of x̃, ỹ and z̃ are obvious. In
particular, in the definition of input manager, the number of components of x̃ and of ỹ must
equal the arity of name b in the original sorting. The proofs carry over with some straightforward
notational changes. We omit the details.
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〈|P |〉 is defined as:

〈|a(x).P |〉
def
= a(x).〈|P |〉 〈|ab|〉

def
= a(x). x → b , x fresh

〈|P | Q|〉
def
= 〈|P |〉 | 〈|Q|〉 〈|ν xP |〉

def
= ν x 〈|P |〉

〈| !P |〉
def
= ! 〈|P |〉 .

Table 3: Definition of the encoding 〈| . |〉, from πi
a to πI.

4 From π
i
a to πI

Let us explain informally the second step of our translation, from πi
a to πI. The basic idea is that

the output of a free name b is replaced by the output of a bound name x that points to a link from
x to b, x → b . The latter transforms outputs at x into outputs at b. Intuitively, x → b behaves
like a buffer with entrance at x and exit at b: however, the name transmitted at b is not the same
as the one received at x, but just, recursively, linked to it. Link processes have been introduced in
[22], where they have been used to encode the lazy λ-calculus into πI.

Definition 4.1 (link processes, [22]) Let a and b be two names. A link from a to b is the
recursively defined πI process:

a → b ⇐ ! a(x).b(y). y → x .

The encoding 〈| . |〉 from πi
a to πI is defined in Table 3. Again, we present the encoding for the

monadic fragment of πi
a. From now on, until otherwise stated, we will work in monadic πi

a. The
polyadic calculus will be accommodated later.

Example 4.2 Consider the process in πi
a P

def
= a(x).xc | ab | b(y).yv and its reductions:

P
τ

−→ bc | b(y).yv
τ

−→ cv .

Let us see how these reductions are mimicked by 〈|P |〉, using properties of link processes which are
explained below and established in Lemma 4.3:

〈|P |〉 = (definition of 〈| . |〉)

a(x).〈|xc|〉 | a(x). x → b | b(y).〈|yv|〉
τ

−→ (interaction at a and def. of 〈|xc|〉)

ν x(x(w). w → c | x → b ) | b(y).〈|yv|〉
τ

−→∼ (def. of x → b , interaction at x, laws for ν x )

ν w (w → c | b(y). y → w ) | b(y).〈|yv|〉
τ

−→∼ (interaction at b)

(ν yw)(w → c | y → w | 〈|yv|〉) ∼ (laws for ν w and | )

ν y (ν w ( y → w | w → c ) | 〈|yv|〉) >
∼

ν y ( y → c | 〈|yv|〉) >
∼

〈|cv|〉 .

In order to prove our main theorem about 〈| . |〉, we need to fix a few properties of link processes.
In the next lemma, part 1 is taken from [22] and says that whenever the exit point of one link
coincides with the entrance point of another one, and this common point is hidden, then the two
links are, so to speak, connected. This means that they behave as a single link. Part 2 of the
lemma states that, under certain conditions, a link acts as a substitution.
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Lemma 4.3

1. Let x and z be different from y. Then ν y (x → y | y → z ) >
∼ x → z .

2. Let P be a process in πi
a and suppose that y does not occur in P in input-subject position

and y 6= a. Then ν y ( y → a | 〈|P |〉) >
∼ 〈|P{a/y}|〉.

Proof: Part 1 is proven by showing that the relation:

R = {( x → z , ν y (x → y | y → z ) ) : x and z are different from y }

is an expansion up to context and expansion. Details can be found in [22].
Part 2 is proven by induction on P and exploiting part 1. All cases of the inductive step

are simple. In particular, in the parallel composition and replication cases, we exploit the fact
that, given that y does not appear in input-subject position in P , y can only appear in output-
subject position in 〈|P |〉, which is in πI; exploiting this fact, we can apply Lemma 3.3 (1) and (2),
(respectively for parallel composition and replication) to distribute the link process y → a over
the subterms, and then use the induction hypothesis.

The most interesting case is when P = yc, for some c. Then we have (below we will implicitly
use Proposition 2.6):

ν y ( y → a | 〈|P |〉) = ν y ( y → a | y(x). x → c )

(definition of 〈| . |〉)

∼ ν y (y(x).(a(w). w → x | y → a ) | y(x). x → c )

(since y → a ∼ y(x).(a(w). w → x | y → a ), by Prop. 2.4(2))

>
∼ (ν y, x)(a(w). w → x | y → a | x → c )

(a simple law for >
∼ )

∼ a(w).(ν y, x)(w → x | x → c | y → a )

(Proposition 2.4(2)-(3))

∼ a(w).ν x (w → x | ν y (x → c | y → a ))

(laws for ν y )

def
= P1 .

Now, we have to distinguish whether c = y or c 6= y. If c = y applying part 1 of the lemma we get
ν y (x → c | y → a ) >

∼ x → a , by which we have:

P1
>
∼ a(w).ν x (w → x | x → a )
>
∼ a(w). w → a (applying part 1 again)
= 〈|xx{a/x}|〉 (def. of 〈| . |〉).

If c 6= y, by simple laws for restriction we get that ν y (x → c | y → a ) ∼ x → c , by which we
have:

P1 ∼ a(w).ν x (w → x | x → c )
>
∼ a(w). w → c (applying part 1)
= 〈|xc{a/x}|〉 (def. of 〈| . |〉).
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2

The following proposition shows the tight correspondence between transitions of P and transi-
tions of 〈|P |〉.

Proposition 4.4 (correspondence on transitions) Let P be a process in πi
a.

a) Suppose that P
µ

−→ P ′. Then we have:

1. µ = a(x) implies 〈|P |〉
a(x)
−→ >

∼ 〈|P ′|〉;

2. µ = ab implies 〈|P |〉
a(x)
−→ >

∼ x → b | 〈|P ′|〉, with x /∈ fn(P ′);

3. µ = a(b) implies 〈|P |〉
a(x)
−→ >

∼ ν b (x → b | 〈|P ′|〉), with x /∈ fn(P ′);

4. µ = τ implies 〈|P |〉
τ

−→ >
∼ 〈|P ′|〉.

b) Suppose that 〈|P |〉
µ

−→ P1. Then there are P ′ ∈ πi
a and a such that one of the followings

holds:

1. µ = a(x), for some x, and P
a(x)
−→ P ′, with P1

>
∼ 〈|P ′|〉;

2. µ = a(x), for some x, and either:

2.a) P
ab
−→ P ′, for some b, with x /∈ fn(P ′) and P1

>
∼ x → b | 〈|P ′|〉, or

2.b) P
a(b)
−→ P ′, for some b, with x /∈ fn(P ′) and P1

>
∼ ν b (x → b | 〈|P ′|〉);

3. µ = τ and P
τ

−→ P ′, with P1
>
∼ 〈|P ′|〉.

Proof: Each part of the lemma is proven by transition induction. The only subtle points arise in
the proof of parts a)(4) and b)(3), where also Lemma 4.3(2) is used. As an example, we show part
a)(4), since b)(3) is handled similarly. The only non-trivial case is when the last rule applied for
deriving P

τ
−→ P ′ is Com (we suppose for simplicity that the communicated name is free; the case

when it is restricted can be easily accommodated):

Com :
P1

ab
−→ P ′

1, P2
a(x)
−→ P ′

2

P1 | P2
τ

−→ P ′
1 | P

′
2{b/x}

.

By applying parts (a)1 and(a) 2 of this lemma to the transitions in the premises of the rule, we
have that:

〈|P1|〉
a(x)
−→ >

∼ x → b | 〈|P ′
1|〉 with x /∈ fn(P ′

1), and 〈|P2|〉
a(x)
−→ >

∼ 〈|P ′
2|〉 . (3)

Then we have that:

〈|P1 | P2|〉
τ

−→ >
∼ ν x (x → b | 〈|P ′

1 | P
′
2|〉) (from (3) and Com)

>
∼ 〈|(P ′

1 | P
′
2){b/x}|〉 (Lemma 4.3(2)).

= 〈|P ′
1 | P

′
2{b/x}|〉 (since x /∈ fn(P ′

1)).

2

Remark 4.5 Note in the above proof that, since P2 is a πi
a-process, the name x does not appear

in P ′
2 in input-subject position: this fact permits applying Lemma 4.3(2). This is the point in the

technical development where the “inversion of polarity” property of πi
a turns out to be crucial.
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The proof of the next three results is similar to the corresponding proofs for {| . |}.

Proposition 4.6

a) P ↓ p if and only if 〈|P |〉 ↓ p.

b) P =⇒ P ′ implies 〈|P |〉 =⇒ >
∼ 〈|P ′|〉;

c) 〈|P |〉 =⇒ P1 implies that there is P ′ s.t. P =⇒ P ′ and P1
>
∼ 〈|P ′|〉.

d) P ⇓ p if and only if 〈|P |〉 ⇓ p.

Theorem 4.7 Let P and Q be processes in πi
a. Then P

.
≃ Q if and only if 〈|P |〉

.
≃ 〈|Q|〉.

The closure of barbed bisimilarity under translation of static contexts of πi
a, ≃tr2, is defined

over πI in analogy with ≃tr1.

Corollary 4.8 Let P and Q be processes in πi
a.

1. P ≃ Q if and only if 〈|P |〉 ≃tr2 〈|Q|〉;

2. 〈|P |〉 ≃ 〈|Q|〉 implies P ≃ Q.

4.1 The polyadic case

In order to extend the encoding 〈| . |〉 to polyadic πi
a, it is enough to replace Definition 4.1 of link

processes and input prefix and output prefix clauses of Table 3 with the following:

a → b ⇐ ! a(x̃).b(ỹ). ỹ → x̃ , with x̃, ỹ fresh

〈|a(x̃).P |〉
def
= a(x̃).〈|P |〉, 〈|a〈b̃〉|〉

def
= a(x̃). x̃ → b̃ , x̃ fresh

where, for x̃ = (x1, . . . , xk) and b̃ = (b1, . . . , bk), x̃ → b̃ stands for x1 → b1 | · · · | xk → bk . In the
definition of link process, the number of components of x̃ and ỹ must equal the arity of a and b,
which must be the same. Again, the proofs are easily extended. We omit the details.

Let us define now the encoding [[ . ]] from polyadic πa to polyadic πI as the composition of {| . |}
and 〈| . |〉, thus:

[[P ]]
def
= 〈|{|P |}|〉 .

The closure of barbed bisimilarity under translated (via [[ . ]]) static contexts of πa, ≃tr, is defined
over πI in analogy with ≃tr1 and ≃tr2. As an easy consequence of (the extension to the polyadic
case of) Theorems 3.10 and 4.7, of the congruence properties of ≃ over πa and πI and of the
compositionality of [[ . ]] for parallel composition and restriction, we get:

Corollary 4.9 Let P and Q be processes in πa.

1. P ≃ Q if and only if [[P ]] ≃tr [[Q]];

2. [[P ]] ≃ [[Q]] implies P ≃ Q.

Again, note that Corollary 4.9(2) and the fact that in πI ≈⊆≃ (Proposition 2.6) allow us to
use ≈ on πI to reason about ≃ on πa: in other words, [[P ]] ≈ [[Q]] implies P ≃ Q.
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Remark 4.10 (on the matching operator) In this paper we have considered a language with-
out the matching operator, written [a = b], which allows one to test for the identity of two names.
There are indeed many situations in which it is convenient to assume that the observer cannot
compare the received names (this is typically the case when passing references to objects or con-
sidering names with I/O typing, like in [17]). For this reason it is meaningful to consider a notion
of barbed equivalence in which matching is excluded, as we did in the paper. Now, we want to
discuss how the presence of matching would affect the results presented so far.

The operational semantics for matching is given by the rule:

Match :
P

µ
−→ P ′

[a = a]P
µ

−→ P ′
.

The extension of our translation to accommodate matching seems to be problematic. In the
first place, in πI it is meaningless to consider matching (which is in fact ruled out in [22]). The
reason is that any two distinct names x and y never get instantiated to the same name in πI. This
is a consequence of the fact that only bound (hence ‘new’) names are passed around and received.

Thus, for example, given P
def
= ab | cb | a(x).c(y).[x = y]p in πi

a, we have that P ⇓ p, while the
(naive) tentative translation of P in πI

a(x). x → b | c(y). y → b | a(x).c(y).[x = y]p

never commits to p, because the bound names x and y are deemed to remain different. The
problem here is that, in the translated process, we are trying to compare the references (x and
y) to the received names, instead of the names themselves. We seem to need here some kind of
“dereferencing” mechanism for link processes, which would allow us to access the data pointed to
by x and y and compare them. But how to achieve this in the context of our translation is far from
obvious. Maybe πI is simply too weak to express matching.

Remark 4.11 (non-soundness of 〈| . |〉 for ≈) The following counter-example shows that 〈| . |〉 is
not sound for ≈. Consider the processes in πi

a:

P
def
= Eq(a, b) | ca and Q

def
= Eq(a, b) | cb

where
Eq(a, b)

def
= ! a(x).bx | ! b(x).ax

is Honda’s equalizer [11]. Of course, P 6≈ Q, as P can do an output ca which Q cannot reply to.
However, 〈|P |〉 ≈ 〈|Q|〉, as we prove below.

First, we show that, for any z different from a and b, the relation

R = { (〈|Eq(a, b)|〉 | z → b , 〈|Eq(a, b)|〉 | z → a ) , (〈|Eq(a, b)|〉 | z → a , 〈|Eq(a, b)|〉 | z → b ) }

is a weak bisimulation up to expansion and up to context (defined below) and hence is contained in
≈ [5, 22]. From the latter fact, it easily follows that the relation {(〈|P |〉, 〈|Q|〉), (〈|Q|〉, 〈|P |〉)}∪ ≈ is a
weak bisimulation up to context (see [5]), and hence is again included in ≈. Thus 〈|P |〉 ≈ 〈|Q|〉.

Recall that R is a weak bisimulation up to expansion and up to context iff, whenever ARB
and A

µ
−→ A′, then there are a static context C[ . ] = (ν d̃)(R | [ . ]), and processes A1 and B1 s.t.

A′ ∼ C[A1], B
µ̂

=⇒ >
∼ C[B1] and A1 RB1. (4)
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Suppose now that A = 〈|Eq(a, b)|〉 | z → b and B = 〈|Eq(a, b)|〉 | z → a (the other case is symmetri-

cal). The only non-trivial case arises when µ = z(w). Then we have A
z(w)
−→ A | b(x). x → w

def
= A′.

The matching transitions for B are:

B
z(w)
−→ B | a(y). y → w
τ

−→∼ ν y (B | y → w | b(x). x → y ) (interaction at a)
∼ B | b(x).ν y (x → y | y → w ) (laws for | and ν x )
>
∼ B | b(x). x → w (Lemma 4.3(a)).

Defining A1
def
= A, B1

def
= B and C[ . ]

def
= [ . ] | b(x). x → w , we see that (4) is fulfilled.

Incidentally, our counter-example shows that ≈ and ≃ are different on πi
a. Indeed, 〈|P |〉 ≈ 〈|Q|〉

implies that 〈|P |〉 ≃tr 〈|Q|〉, which in turn implies P ≃ Q in πi
a, in virtue of Corollary 4.8(2). From

an observational point of view, in the absence of matching it is perfectly reasonable to regard the
processes P and Q as equivalent: Eq(a, b) can transform any use of a into a use of b, and vice-versa.
There is no means of distinguishing a and b for an external observer without matching.

5 Conclusions

In this paper, we have provided an encoding from the asynchronous π-calculus to πI and proved
that two πa-processes are barbed equivalent if and only if their translations are in the closure
of barbed bisimilarity under translated static contexts. This shows that external mobility can be
programmed via internal mobility.

A problem left open by the present paper is full abstraction of our encoding for barbed equiva-
lence in πa and πI: i.e. whether the translations of two barbed equivalent processes in πa cannot
be distinguished by any static context in πI (not just by the translated ones). We suspect that, at
least for πi

a, this is true.
Another interesting problem is that of finding a tractable, bisimulation-like characterization of

≃ on πa, which would allow us to reason about this equivalence in a more direct fashion. In [1],
such a characterization is obtained for a version of πa which includes matching and input-guarded
summation. As already noted, in absence of matching processes such as P and Q in Remark 4.11
are equated by ≃.

Relationships between πa and the join-calculus should be investigated. The simplicity of our
second encoding (which is fully compositional) indicates that the complications due to external
mobility mainly arise because some terms of πa do not follow the type discipline of πi

a. Now,
the join-calculus naturally enjoys an “inversion of polarity” discipline similar to that of πi

a. This
suggests that a translation of the join-calculus into πI might be even simpler than the translation of
πa presented in this work. Moreover, the first of our encodings suggests that it might be possible
to recast, in a traditional name-passing setting, some features of the join-calculus (like the unique-
receiver property), by simply imposing to πa some natural type discipline. Some work in this
direction has been made by R. Amadio [3].
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