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Abstract

Many variants of must-testing semantics have been put forward that are equally sensitive to
deadlock, but di5er for the stress they put on divergence, i.e. on the possibility for systems of
getting involved in in6nite internal computations. Safe-testing is one such variant, that naturally
pops up when studying the behavioural pre-congruences induced by certain basic observables.
Here, we study the relationship between safe-testing and Olderog’s readiness semantics, a se-
mantics induced by a natural process logic. We show that safe-testing is 6ner than readiness,
and coincides with a re6nement of readiness obtained by tuning Olderog’s de6nition. For both
safe-testing and the original readiness semantics we propose simple complete axiomatizations,
which permit a fuller appreciation of their similarities and di5erences. c© 2001 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Divergence represents the possibility for a system of getting involved in an in6nite
sequence of internal communications. Since divergence could lead a system to ignoring
all subsequent external stimuli, it plays a central role in the semantics of process
description languages.

In [1] we have studied the di5erent equivalences obtained by considering the maximal
precongruences induced over TCCS [4] by three basic observables (predicates), two of
which are based on divergence:
• P ↓ tests whether a process cannot get involved in an in6nite sequence of internal

actions (converges);
• P ↓ ‘ tests whether a process converges and does so also after performing the speci6c

action ‘;
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• P ! ‘ tests whether a process, by internal actions, can only reach states from which
action ‘ can be performed.

We have shown that the three predicates above naturally induce 6ve contextual pre-
orders, four of which coincide with well-known behavioural preorders over processes
studied in the literature. In particular, the contextual preorder induced by ! ‘ coincides
with the pre-congruence induced by the fair=should preorder of [2, 9] and the contextual
preorder induced by ↓ and ! ‘ coincides with nM , the original must preorder of [3, 5].

When considering the conjunction of ↓ ‘ and ! ‘, a new preorder pops up, that
we named safe-must, nSM . This preorder is supported by an intuitive testing sce-
nario, where a computation from a pair observer-process is deemed successful if a
success state is reached strictly before a “catastrophic” (divergent) one. This condition
is stronger than the one considered by De Nicola and Hennessy [3] and amounts to
requiring that the observed process does not diverge even after the 6nal communication
that takes the observer to success. The adjective safe is there to suggest that one can
“safely” aim at success.

Olderog, in [10], introduces a similar requirement (must engage) and uses it in
conjunction with other conditions to de6ne when a process satis6es a set of logical
formulae expressing a trace speci6cation. This logical notion is then proven to be in
full agreement with a set–theoretic de6nition of readiness semantics, in the sense that
two processes have the same semantics if and only if they satisfy the same set of
logical formulae.

As an example, both readiness equivalence and safe-testing validate the equality
a:�= a:�⊕ 0. Reading from left to right, this can be explained by saying that an
unsafe action (the a leading to � – divergence) cannot be guaranteed, due to the
possibility of deadlock introduced by the internal choice ⊕ . This is in sharp contrast
with both must [3] and fair testing [2, 9].

Here, we make the relationship between safe-testing and readiness semantics precise.
In particular,
• we show that safe-testing is 6ner than readiness, and coincides with a tuning of

Olderog’s de6nition;
• we present complete axiomatizations for both safe-testing and the original readiness

semantics.
Interestingly, each of the two axiomatizations is obtained by adding a single new law
to an axiomatization of must testing (see, e.g., [5]). This permits a full appreciation of
the similarities between the three semantics, and highlights the central role played by
the original testing theory.

As a base language, we shall consider a simple variant of CCS, named Tau-less CCS
(TCCS [4]) that replaces the operators for internal transitions and for choice with the
operators for internal choice and for purely external choice. 1 We have chosen TCCS
for the sake of simplicity and for avoiding the well known congruence problem that

1 These choice operators were originally introduced by Hoare, see e.g. [7], and their operational semantics
was described in [11].
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arises in presence of silent transitions and choice. All of our results can, however, be
easily extended to CCS and similar calculi.

The rest of the paper is organized as follows. In Section 2, we brieKy recall syn-
tax and semantics of TCCS and the alternative characterizations of the observational
semantics that will be used in later proofs. In Section 3, we prove that safe-testing
is 6ner than readiness semantics and that it coincides with a 6ne tuning of the latter.
In Section 4, we present complete equational characterizations of both safe-testing and
readiness semantics. The 6nal section contains some concluding remarks.

2. TCCS and its semantics

In this section, we brieKy present syntax and semantics of TCCS (	-less CCS [4, 5]).
We let
• N, ranged over by a; b; : : : ; be an in6nite set of names and LN= { La | a∈N}; ranged

over by La; Lb; : : : ; be the set of co-names. N and LN are disjoint and are in bijection
via the complementation function (L·); we de6ne: ( La) = a;

• L=N ∪ LN, ranged over by ‘; ‘′; : : : ; be the set of labels (or actions); we shall
use A, B and F to range over subsets of L and we de6ne LA= { L‘ | ‘∈A};

• X, ranged over by X; Y; : : : ; be a countable set of process variables.

De�nition 2.1 (TCCS syntax). The set of TCCS terms is generated by the grammar:

E ::= 0 |� | ‘:E |E[ ]F |E ⊕ F |E|F |E\A |E{f} |X | recX : E

where f : L → L, is a relabelling function such that {‘ |f(‘) �= ‘} is 6nite, f(a)∈N

and f(‘) =f(‘). We let Proc, ranged over by P, Q, etc., denote the set of closed
terms or processes (i.e. those terms where every occurrence of any process variable X
lies within the scope of some rec X: operator).

For comments about the meaning of the operators above, we refer the reader to
[4, 5, 11], here we simply explain basic notations. As usual, we shall write ‘ instead of
‘:0, and write E[E1=X1; : : : ; En=Xn] for the term obtained by simultaneously substituting
each occurrence of Xi in E with Ei (while possibly renaming bound process variables).
We write

∑
i∈{1;:::; n} Ei as a shorthand of E1[] · · · [ ]En (the order in which the operands

Ei are arranged is irrelevant, as [] is associative and commutative in every semantics
considered in the paper); when n= 0, this term will by convention indicate 0. Similarly,
for n¿0, we write

∑◦ i∈{1;:::; n}Ei as a shorthand of E1 ⊕ · · ·⊕En (again, ⊕ is associative
and commutative in every semantics considered in the paper).

The structural operational semantics of TCCS is de6ned via the two transition rela-

tions ‘→ (visible actions) and � (internal actions) de6ned in Table 1. As usual, we
use ⇒ or �⇒ to denote the reKexive and transitive closure of � and use s⇒ , with

s∈L+, for ⇒ ‘→ s′⇒ when s= ‘s′. Moreover, we write P s⇒ if there exists P′ such
that P s⇒P′ (P ‘→ and P� will be used similarly). We say that a process is stable if
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Table 1
TCCS SOS rules (symmetric variants of rules AR4, AR5, IR5, IR6 and IR7 omitted)

AR1 ‘:P ‘→ P

AR2
P ‘→ P′

P{f} f(‘)→ P′{f}
AR3

P ‘→ P′; ‘ =∈A ∪ LA

P\A ‘→ P′\A

AR4
P ‘→ P′

P[ ]Q ‘→ P′
AR5

P ‘→ P′

P|Q ‘→ P′|Q

IR1 ��� IR2 rec X:E�E[recX:E=X ]

IR3
P�P′

P{f}�P′{f} IR4
P�P′

P\A�P′\A

IR5 P ⊕ Q�P IR6
P�P′

P [ ] Q�P′ [ ] Q

IR7
P�P′

P|Q�P′|Q IR8
P ‘→ P′; Q

L‘→ Q
P|Q�P′|Q′

it cannot perform internal actions. We will call sort of P the set of labels occurring in

P (see, e.g., [8]) and initial actions of P the set I(P) = {‘∈L |P ‘⇒}. In the actual
proofs we will rely on the fact that, since we only consider 6nite relabelling operators,
every TCCS process has a 6nite sort.

Now, we shall introduce the original testing scenario of [3, 5], the variant that leads
to safe-must and its alternative characterizations.

Like in the original theory of testing [3, 5], we have that:
• observers, ranged over by O;O′; : : : ; are processes capable of possibly performing

an additional distinct “success” action w =∈L;
• computations from P|O are sequences of internal transitions

P | O (= P0 |O0) � P1 |O1 � · · ·
which are either in6nite or such that there exists k¿0 with Pk |Ok ��.

De�nition 2.2 (Testing predicates). Let P be a process and O be an observer.
(1) P must M O if for each computation from P|O, say P|O�P1|O1� · · · ; there is

some i¿0 such that Oi
w→ .

(2) P must SM O if for each computation from P|O, say P|O�P1|O1� · · · ; there is
some i¿0 such that Oi

w→ and Pi ↓ .

The 6rst de6nition of successful computation given above is that of [3]. The second
one, introduced in [1], considers successful only those computations that can report a
success strictly before the observed process diverges. These notions lead to nM , the
must preorder of [3, 5], and to nSM , the safe-must preorder of [1].



M. Boreale et al. / Theoretical Computer Science 266 (2001) 237–248 241

De�nition 2.3 (Testing preorders). Let P and Q be processes and X ∈{M; SM} then

PnX Q if and only if for every observer O: P must X O implies Qmust X O:

Given a preorder nX , the corresponding equivalence �X , is de6ned as �X = nX ∩
(nX)

−1.

The preorders must and safe-must can be equipped with alternative characteriza-
tions that support simpler methods for proving (or disproving) that two processes are
behaviourally related.

De�nition 2.4. Let s∈L∗, B⊆6n L and P be a set of processes.
• The convergence predicate, ↓ s, is de6ned inductively as follows:

◦ P ↓ � (or P ↓ ) if there is no in6nite sequence of internal actions

P � P1 � P2 � · · · ;
◦ P ↓ ‘s′ if P ↓ � and for each P′ : P ‘⇒P′ implies P′ ↓ s′.

We write P ↑ s (P ↑ ) if P ↓ s (P ↓ ) does not hold.
• (P after s) is the set of processes {P′ |P s⇒P′}.
• P ↓B means P ↓ ‘ for each ‘∈B.
• P ↓B means P ↓B for each P ∈P.
• P accepts

M
B means that there exists ‘∈B such that P ‘⇒ .

• P accepts
M
B means P accepts

M
B for each P ∈P.

• P accepts
SM

B means P ↓B and P accepts
M
B.

De�nition 2.5 (Alternative characterizations). Let X ∈{M; SM}. For processes P and
Q, we write P �X Q if for each s∈L∗ such that P ↓ s, it holds that:
(a) Q ↓ s, and
(b) for every B⊆6n L: (P after s) accepts

X
B implies (Q after s)accepts

X
B.

The proof of the following results is reported in [1, 3, 5].

Theorem 2.6. For all processes P and Q; P nM Q if and only if P�M Q.

Theorem 2.7. For all processes P and Q; P nSM Q if and only if P�SM Q.

By taking advantage of the above alternative characterizations it is easy to prove
that the must and the safe-must preorders are pre-congruences and that nM is 6ner
than nSM (see, e.g., [1]).

We conclude the section by introducing the readiness semantics of TCCS processes
as a literal translation of Olderog’s de6nition (presented in De6nition 4:4:1, p. 125
of [10]). Actually, our de6nition turns out to be slightly simpler because the TCCS
operator for parallel composition does not make use of the sorts of the component
processes, like in [10], and the previously mentioned “congruence problem” is absent.
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De�nition 2.8 (Readiness). The readiness semantics of a process P, R <P=, is de6ned
as the union of three sets (which we label as (a)–(c) for ease of reference):

R <P= = {(s; F) | ∃F ′: (s; F ′) ∈ $(P); F ′ ⊆F ⊆ succ(s; P)} (a)

∪ {(s; X ) | ∃s′ � s : (s′; ↑) ∈ $(P); (X ⊆L or X =↑)} (b)

∪ {(s; F) | ∃‘ : (s‘; ↑) ∈ $(P); F ⊆ succ(s; P)} (c)

where
– s′ � s if s′ is a pre6x of s;
– succ(s; P) = ∪ {I(P′) |P′ ∈ (P after s)};

– $(P) = {(s; I(P′)) |P s⇒P′ and P′ is stable}∪ {(s; ↑) |P s⇒P′ and P′ ↑}.

In the above de6nition, the set succ(s; P) is the set of possible initial actions of P after
trace s, i.e. visible actions that P can perform after s. Set F , where (s; F)∈$(P), is a
ready set, i.e. a set of communications in which the process is ready to engage when it
has become stable after s. Trace s is a divergent point for P whenever (s; ↑ )∈$(P).
The three sets, (a−c) are the outcome of three closure operations:
(a) acceptance closure: any superset (composed of possible initial actions) of a ready

set is a ready set as well;
(b) chaotic closure: divergent points add impredictability to all subsequent process

behaviours (i.e. after a divergent point the e5ective process behaviour is ignored,
indeed it is X ⊆L rather than X ⊆ succ(s; P)), hence divergence is considered as
catastrophic;

(c) radiation closure: divergence a5ects the ready sets one level up.
The readiness preorder is then de6ned as follows:

for all processes P and Q; PnRQ if and only if R <Q=⊆R<P=:

The corresponding equivalence is called readiness equivalence and denoted by �R . 2

3. A comparison of safe-must and readiness

To show that nSM is 6ner than nR , we need a technical lemma, whose proof
follows directly from the de6nitions.

Lemma 3.1. (1) P ↑ s if and only if there is s′ � s s.t. (s′; ↑ )∈$(P).
(2) If P ↓ s and (s; F)∈R <P= then F ⊆ succ(s; P).
(3) If P nSM Q and P ↓ s then succ(s; Q)⊆ succ(s; P).

Theorem 3.2. For all processes P and Q; P nSM Q implies P nR Q.

2 Olderog directly introduces the equivalence without stepping on the preorder.
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Proof. Suppose that P nSM Q and that (s; X )∈R <Q=. We will show that (s; X )∈R <P=
as well. We distinguish two cases, namely P ↑ s and P ↓ s.

If P ↑ s, then there is s′ � s s.t. (s′; ↑ )∈$(P), by Lemma 3.1(1), hence (s; X )∈R <P=,
by clause (b) of the de6nition of R < · =.

Suppose now that P ↓ s. From the alternative de6nition �SM , we have that Q ↓ s
too; thus, by Lemma 3.1(1), it must be the case that X �= ↑ , say X =F . Furthermore,
by P nSM Q and Lemma 3.1(2)–(3) we have that F ⊆ succ(s; Q)⊆ succ(s; P). We have
now two subcases.
(a) For each ‘, P ↓ s‘. From the alternative de6nition �SM , we have that, for each

‘, Q ↓ s‘ as well. Thus for no ‘ (s‘; ↑ )∈$(Q), by Lemma 3.1(1). Since clauses
(b) and (c) of De6nition 2.8 do not apply for (s; F), by virtue of clause (a),
there must exist Q′ stable such that Q s⇒Q′ and I(Q′)⊆F . By contradiction,
suppose now that (s; F) =∈R <P=. This fact implies that whenever P s⇒Pi there
is some ai ∈ I(Pi) − F (by virtue of clause (a) and of F ⊆ succ(s; P)); more-
over there are 6nitely many such ai’s, say n, because of sort-6niteness of P.
Take now F ′ = {a1; : : : ; an}: we have that (P after s) accepts

SM
F ′, while (Q after s)

�accepts
SM

F ′, because Q s⇒Q′ and I(Q′)∩F ′ = ∅. But this contradicts P nSM Q.

(b) There is ‘ such that P ↑ s‘. Since P ↓ s, this implies that there is P′ s.t. P s‘⇒P′

and P′ ↑ , i.e. (s‘; ↑ )∈$(P). Since F ⊆ succ(s; P), by virtue of clause (c) of
De6nition 2.8 we get (s; F)∈R <P=.

To show that the converse of the theorem above does not hold, we exhibit a counter-
example.

Counterexample 3.3. Take the processes P = a:�[ ]b and Q = (a:�[ ]b)⊕ 0. We have
$(P) = {(�; {a; b}); (a; ↑ ); (b; ∅)} and $(Q) = {(�; {a; b}); (a; ↑ ); (b; ∅); (�; ∅)}. Hence

R <P== {(�; {a; b}); (a; ↑); (b; ∅); (�; ∅); (�; {a}); (�; {b})}
∪{(as; ↑)|s ∈ L∗} ∪ {(as; F)|s ∈ L∗; F ⊆L} = R <Q=

that, in particular, implies that P nR Q. However, taking the observer O = Lb:w, we have
P must SM O, but Q �must SM O, thus P �nSM Q.

Note that both Theorem 3.2 and the counterexample above can be established for the
equivalences too. Hence, we have that �SM is 6ner than �R . The di5erence between
Olderog’s semantics and our safe-must is indeed very small, and is due to set (c) of
R < =·; a mild restriction of this set leads to safe-must.

De�nition 3.4 (Readiness revisited). The revisited readiness semantics of a process
P, S <P=, is de6ned by changing set (c) of De6nition 2.8 into set (c′):

{(s; F)|F ⊆ succ(s; P) and
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∃F ′: (s; F ′) ∈ $(P); F ′ − F �= ∅ and ∀‘ ∈ F ′ − F : (s‘; ↑) ∈ $(P)}; (c′)

where $(P) and succ(s; P) are as in De6nition 2.8.

It is possible to give a simpler de6nition of S <·= by unifying clauses (a) and (c′), but
the one we chose highlights precisely the di5erence from Olderog’s. In passing, note
that ignoring (c) would lead to a semantics which is fully abstract for must testing. Of
course, Lemma 3.1 (in particular, case 2), still holds when replacing R < · = with S < · =.

Theorem 3.5. P nSM Q if and only if S <Q=⊆S <P=.

Proof. The proof that P nSM Q implies S <Q=⊆S <P= has the same structure as that
of Theorem 3.2, with R < · = replaced by S < · = and (c) by (c′), but the case when P ↓ s
is dealt with di5erently; this we do below.

Suppose by contradiction that (s; F) =∈S <P=. This implies that whenever P s⇒Pi there
is some ai ∈ I(Pi) − F s.t. P ↓ sai: otherwise, we could deduce that (s; F)∈S <P= by
virtue of F ⊆ succ(s; P) and of clauses (a) or (c′). Due to sort-6niteness, there are
6nitely many ai’s, say F ′ = {a1; : : : ; an}. By construction, F ∩F ′ = ∅ and (P after s)
accepts

SM
F ′. On the other hand, (s; F)∈S <Q= implies that there exists Q′ stable

such that Q s⇒Q′ and for each ‘∈ I(Q′) − F : (s‘; ↑ )∈$(Q) (union of clauses (a)
and (c′) of the de6nition of S < · =); hence, from F ∩F ′ = ∅, we deduce that for each
‘∈ I(Q′)∩F ′ we have Q′ ↑ ‘. This allows us to deduce the contradiction (Q after s)
�accepts

SM
F ′: indeed, either I(Q′)∩F ′ = ∅ or there is ‘∈ I(Q′)∩F ′ such that Q′ ↑ ‘.

The proof of the converse (S <Q=⊆S <P= implies P nSM Q), is an easy conse-
quence of the following fact, whose simple proof is omitted. Suppose that P ↓ s; then
(P after s) accepts

SM
B if and only if the following properties hold:

– P ↓ s‘, for each ‘∈B,
– F ∩B �= ∅, for each (s; F)∈S <P=.

4. Axiomatizations

In this section we shall present two complete axiomatizations, one for nSM , the
other for nR (they will also give complete axiomatizations for =SM and =R , re-
spectively). Each of the two axiomatizations will be obtained by adding a single new
law to an existing axiomatization for the original must preorder, nM . The precise
axiomatization chosen for nM is irrelevant. Let M be any such axiomatization (e.g.,
the axiomatization presented in [5]): we shall write P �M Q (resp. P =M Q) if P�Q
(resp. both P�Q and Q�P) can be proven within M.

4.1. Safe-testing

The axiomatization for safe-testing is obtained by adding the law

‘:� � ‘:� ⊕ 0 (S)
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to the complete axiomatization M of must testing. Below, we prove this result while
con6ning ourselves to 6nite processes, but we do not foresee much diPculty in ex-
tending the result to general processes by relying on a (non-e5ective) !-induction rule,
like in [3, 5]. In the sequel, we shall write P �SM Q (resp. P =SM Q) if P�Q (resp.
both P�Q and Q�P) can be proven within M∪{S}.

The key to the proof is showing that must and safe-must coincide over standard forms
for processes, saturated with respect to left-to-right applications of law ‘:�= ‘:� ⊕ 0,
which is derived from S and from P⊕Q�P (the latter holds for all the preorders we
consider).

De�nition 4.1 (Safe sum-forms).
• Sum-forms are inductively de6ned as follows:

◦ � is a sum-form;
◦ ∑◦ A∈A

∑
‘∈A ‘:P‘ is a sum-form if P‘ is a sum-form for each ‘∈ ∪{A : A∈A}

and A �= ∅.
• A sum-form S is safe if whenever S =

∑◦ A∈A

∑
‘∈A ‘:P‘ then

(a) if P‘0 ⇒�, for some ‘0 ∈A with A∈A, then A− {l0}∈A

(b) each P‘ is safe.

Note that the terms P‘ only depend on the label ‘ and that, by de6nition, � is a
safe sum-form. Also note that

∑◦ A∈A

∑
‘∈A ‘:P‘ ⇒

∑
‘∈A ‘:P‘, for each A∈A. In the

proof of the following lemma, we shall use the notation “P s⇒⇒P′” as a shorthand of

“P =P′” if s= � or “P s′⇒ ‘→ P′” if s= s′‘.

Lemma 4.2. Let S be a safe sum-form and suppose that S ↓ s and S ↑ s‘0. Then it
holds that:

(S after s)accepts
M
B if and only if (S after s)accepts

M
B− {‘0}

Proof. The ‘if’ direction is trivial. Suppose now that (S after s) accepts
M
B, we want

to show that (S after s) accepts
M
B − {‘0}. Let U ∈ (S after s), we must prove that

I(U )∩ (B−{‘0}) �= ∅. Since by hypothesis it must be I(U )∩B �= ∅, it will be suPcient
to show that I(U )∩B �= {‘0}. By contradiction, assume that I(U )∩B= {‘0}. Since S
is a sum-form, we can easily prove (by induction on s) that there is a unique T such
that

S s⇒⇒T:

T is a safe sum-form (since S is). Furthermore, since T ⇒U and I(U ) �= ∅, it is
T �=�, say T =

∑◦ A∈A

∑
‘∈A ‘:P‘. Now, since I(U )∩B= {‘0}, we deduce that there

is A∈A such that A∩B= {l0}. Since S ↓ s, S ↑ s‘0 and T is unique, we deduce that
T ↑ ‘0, hence P‘0 ⇒�. But T is safe, thus we get that A − {‘0}∈A. Therefore we

get T ⇒ ∑
‘∈A−{‘0} ‘:P‘

def= U ′, with I(U ′)∩B=A−{‘0}∩B= ∅: but this contradicts
(S after s) accepts

M
B.
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Proposition 4.3. Let S be a safe sum-form. Then; for any Q; S nM Q if and only if
S nSM Q.

Proof. One direction is trivial, as nM is 6ner than nSM . Conversely, suppose that
S nSM Q, that S ↓ s and that (S after s) accepts

M
B for any s and B: we show that Q ↓ s

and that (Q after s) accepts
M
B, thus proving that S nM Q.

Q ↓ s trivially follows from the de6nitions of the alternative characterizations. Next,

de6ne B′ def= {‘∈B : S ↓ s‘}. Applying (repeatedly) Lemma 4.2, since B and thus B−B′

are 6nite, we obtain (S after s) accepts
M
B′. Since S ↓ s‘ for each ‘∈B′, we get by

de6nition also that (S after s) accepts
SM

B′. Since S nSM Q and S ↓ s, we deduce that
(Q after s) accepts

SM
B′. But this implies (Q after s) accepts

M
B′, since accepts

SM
is

stronger than accepts
M

. Finally, since B⊇B′, we get that (Q after s) accepts
M
B, the

wanted claim.

Theorem 4.4 (soundness and completeness for safe-must). P nSM Q if and only if P
� SQ.

Proof. For proving soundness it is suPcient to check validity of law S, which is
immediate. Let us examine completeness. From [5], we know that there exists a
sum-form S such that P =M S. Then, applying repeatedly law ‘:�= ‘:� ⊕ 0 and law
(‘:�⊕ 0)[]Q =M (‘:�[ ]Q)⊕Q, we can get out of S a safe sum-form S ′ such that
S=SM S ′. By soundness S ′ nSM Q, hence, by Proposition 4:3, S ′ nM Q. From com-
pleteness of must preorder, we get that S ′ �M Q. This allow us to infer the wanted
P �SM Q.

Obviously, M∪{S} also give a complete axiomatization for �SM : to prove that
P�SM Q, it is enough to prove both P �SM Q and Q �SM P.

4.2. Readiness semantics

The axiomatization for readiness semantics is obtained by adding the law

‘:�[]P � (‘:�[]P) ⊕ 0 (R)

to the complete axiomatization M of must testing. Below, we con6ne ourselves to
6nite processes (again, we do not foresee much diPculty in extending the result to
general processes by relying on an !-induction rule). In the sequel, we shall write
P � R Q (resp. P =R Q) if P�Q (resp. both P�Q and Q�P) can be proven within
M∪{R}.

Again, the key step is showing that must and readiness semantics coincide over
normal forms saturated with respect to left-to-right applications of the law ‘:�[ ]P =
(‘:�[ ]P)⊕ 0, which trivially follows from R and from P⊕Q�P. In the de6nition
below, recall that a summation

∑
over an empty set of indices denotes 0 by convention.
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De�nition 4.5 (Ready sum-forms). A sum-form S is ready if whenever S =
∑◦ A∈A∑

‘∈A ‘:P‘ then
(a) if P‘0 ⇒�, for some ‘0 ∈A with A∈A, then ∅∈A

(b) each P‘ is ready.

Note that, by de6nition, � is a ready sum-form. The proof of the following lemma
follows directly from the de6nitions.

Lemma 4.6. Let S be a ready sum-form and suppose that S ↓ s. Then:
(1) If S ↑ s‘; for some ‘; then for no B it holds that (S after s) accepts

M
B.

(2) Suppose that S ↓ s‘; for each ‘. Then (S after s) accepts
M
B if and only if for

each (s; F)∈R <P= it holds that F ∩B �= ∅.

Proposition 4.7. Let S and R be a ready sum-forms. Then S nM R if and only if
S nR R.

Proof. One direction is trivial, as nM is 6ner than nSM that is 6ner than nR . Con-
versely, suppose that S nR R, that S ↓ s and that, for any s and B, (S after s) accepts

M
B:

we show that R ↓ s and that (R after s) accepts
M
B, thus proving that S nM R.

R ↓ s trivially follows from Lemma 3.1(1). Next, from Lemma 4:6(1) and (S after s)
accepts

M
B, we deduce that for each ‘ it is S ↓ s‘, hence R ↓ s‘. From Lemma 4:6(2)

we get that for each (s; F)∈R <S= it holds that F ∩B �= ∅. Since R <R=⊆R <S=, we have
that the same holds for R, hence, again for the same lemma, (R after s) accepts

M
B,

the wanted claim.

Theorem 4.8 (Soundness and completeness for readiness semantics). P nR Q if and
only if P � R Q.

Proof. For proving soundness it is suPcient to check validity of law (R), which is
immediate. Let us examine completeness. From [5], we know that there are sum-forms
S and R such that P =M S and Q =M R. Now, applying repeatedly law ‘:�[ ]P = (‘:�[ ]P)
⊕ 0, we can get out of S and R two ready sum-forms S ′ and R′ such that S =R S ′ and
R=R R′. By soundness S ′ nR R′, hence, by Proposition 4:3, S ′ nM R′. From complete-
ness for must, we get that S ′ �M R′. This allows us to infer the wanted
P � R Q.

Finally, note that M∪{R} also gives a complete axiomatization for �R .

5. Conclusions

We have axiomatized safe-testing, a variant of must testing that imposes stronger
requirements for considering computations as successful. We have proven that safe-
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testing is 6ner than Olderog’s readiness semantics and coincides with a 6ne tuning of
the latter. We have also exhibited an axiomatization of readiness semantics.

The results presented in the paper for TCCS can be easily extended to CCS and
similar calculi. They can also be extended to process algebras with value-passing, such
as the TCCS version considered in [6]. A value-passing process can in general perform
an in6nite number of actions, thus it is not sort-6nite; for instance, process c?x:0, that
inputs a value along channel c and terminates, has an in6nite number of derivations

c?x:0 c?v→ 0, one for each element v of an in6nite set of values. However, all of our
results can be generalized, because they rely on 6niteness of the set of communication
channels that processes can use, not on sort-6niteness.
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