Processes as formal power series:
a coinductive approach to denotational semantics

Michele Boreale
Dipartimento di Sistemi e Informatica, Universita di Firenze
Viale Morgagni 65, 50134 Firenze, Italia.
boreale@dsi.unifi.it

Fabio Gadducci
Dipartimento di Informatica, Universita di Pisa
via Buonarroti 2, 56125 Pisa, Italia.
gadducci@di.unipi.it

May 3, 2006

Abstract

We characterize must testing equivalenceca®in terms of the unique
homomorphism from the Moore automaton ©$p processes to the final
Moore automaton of partial formal power series over a certain semiring.
The final automaton is then turned into Gsralgebra: operators and
fixpoints are defined, respectively, \bahavioural differential equatiorend
simulation relations. This structure is then shown to be preserved by the final
homomorphism. As a result, we obtain a fully abstract compositional model
of cspphrased in purely set-theoretical terms.

Keywords: process calculi, bisimulation, testing equivalence, coinduction,
formal power series.

1 Introduction

The present paper elaborates on two themes. On one hand, we try to reconcile two
well-known proposals for process semantics, bisimulation and testing equivalence.
On the other hand, we explore a simplified — in particular, purely set-theoretic —
treatment of denotational semantics in process calculi. The trait d’union between
these two themes is represented by the concéptofal power seriesver a semi-

ring.
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Testing equivalence [9, 10] and bisimilarity [17] are two classical proposals
for process calculi semantics. They offer different tradeoffs between mathemati-
cal tractability and accuracy of process description. Bisimilarity comes equipped
with a nice coinductive proof technique. However, it lacks a natural denotational
model, and is often blamed of being over-discriminating. Testing equivalence of-
fers perhaps a more faithful picture of reality, with e.g. a proper distinction between
termination and divergence, and comes equipped with a fully abstract denotational
model. Unfortunately, it lacks tractable proof techniques.

In this paper, we make an attempt at reconciling testing and bisimulation, while
keeping the benefits of both. The key to reconciliation is given by the concept
of formal power series over a semiring, and the related finality and coinduction
principle, as presented in work by Rutten [21, 22].

A formal power series is a function from the set of words over an alphabet
to a semiringX. The set of such functions, denotét{A), can be given a Moore
automaton structure, with inputs Aand outputs inX. This particular automaton
is final, in the sense that there is a unique homomorphism from every automaton
on X to X (A). It enjoys moreover @oinduction principle by which the unique
homomorphism maps two bisimilar states into the same formal power series.

In this paper, we consider a simple process calculus and introduce a semiring
for testing, 7. Next, we turn the process calculus into an automatatover the
semiring%T and show that bisimulation over this automaton coincides with (must)
testing equivalence. Hence, the unique homomorphism fAoto X7 (A) yields
a fully abstract semantics for testing equivalence. Finally, we define a set of oper-
ators on%s (A) and show that the final homorphism does preserve these operators,
meaning that the resulting model is a truly compositional one. Recursion is mod-
elled via least fixpoints. One nontrivial point of this construction is the treatment of
divergence — the possibility for a process of getting engaged in an infinite sequence
of internal actions — that is not easily dealt with via bisimulation. In fact, we found
it convenient to introducpartial formal power series, and to modify the notions of
bisimulation and homomorphism accordingly.

Concerning the other theme of the paper, simplifying denotational semantics of
processes, the benefits of the above methodology can be summarized as follows:

e Simplicity of the semantic domain. In particular, we dispense with continous
(order-theoretic, topological,...) structures and functions. Existence of least
fixpoints relies solely on the automaton structure of formal power series.

e Abstract definitions of operators. On the semantic domain, we can specify
behavioural differential equation®DE’s, [21]) whose unique solutions de-
fine the wanted operators. This benefit shows up clearly upon comparison of
BDE’s with the somewhat intricate definitions often found in a standard, say
cpo-based, denotational setting (see e.g. [10]).

e Coinductive reasoning. Proofs by coinduction, which amount to exhibiting



appropriate (bi)simulation relations, are used to show existence of least fix-
points, full abstraction and compositionality of the semantics.

We have chosenspfor a concrete illustration of our construction, mainly for
ease of presentation. The straightforward extensiorsct®and to trace equiva-
lence are also outlined. We hope that the concepts we present here might be relevant
for other process calculi. More generally, we have deliberately confined ourselves
to a set-theoretic setting, much in the spirit of [21, 22]. However, we expect that a
more abstract presentation of our results would not require much effort.

The rest of the paper is organized as follows. In Section 2, we introduce Hoare’s
csP[11] and testing equivalence. In Section 3, building on [21], we introduce par-
tial formal power series and the related coinduction and finality principles. In Sec-
tion 4 we introduce the semiring for testikg, and thecspautomaton4ut, and
show that the resulting final homomorphism is fully abstract for testing equiva-
lence. In Section 5 we present a fewe’s definingcsrklike operators on the final
automaton, we define least fixpoints to model recursion and we prove that the final
homomorphism is indeed compositional with respect to these constructions. Sec-
tion 6 discusses the relationship between our model and the claas@itance
treesmodel for testing equivalence. Section 7 outlines two extensions of the pre-
ceding construction. Section 8 discusses directions for further research and related
work. The proof of a technical lemma has been confined to Appendix A.

2 cspPand testing semantics

We introduce a process calculus, essentially Hoarsis[11], and recall the defi-
nition of testing equivalence [9, 10].

2.1 Syntax and operational semantics

We assume a countable setw$ible actions denoted byA and ranged over by
a,b,...; aninvisible actiont ¢ A, with the setAU {t} andl ¢ (A) (the finite subsets
of A) ranged over bytandL, respectively. A seX of agent variablesranged over
by x,y, ... is also assumed. Open terms are built according to the following syntax

P:=x|nil [LP|P®P|P+P|Pla | P|.P|rec.P.

A term is closedif each occurrence of a variableis in the scope of aecy. op-
erator. The set of closed terms, pmocessesis denoted byP and ranged over by
PQR,....

The constanhil represents the terminated process. The action ppefixcan
perform an atomic actiop and then evolve t®. The operators describes non-
deterministianternal choice:P & Q may evolve via an invisible action either o
or to Q. Summation+ denotes non-deterministexternalchoice:P + Q behaves
either asP or asQ, the choice being triggered by the environment via synchro-
nization at a visible action. In the parallel compositir,. Q, processe$® and
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Q must evolve synchronously with respect to each acti@nL, while they may
evolve independently from each other with respect to actjogd.. The process
P[a] behaves likd®, except that any execution of the visible act@is turned into

the invisiblet, hence hidden from environment. The intended meanimgafrsion

rec.P is the behaviour defined by the equatioa P.

The operational semantics @f is described by dabelled transition system
(LTs) defined in the standasb sstyle by the set of rules of Table 1 (where, for the
sake of brevity, the symmetric rules for parallel composition and for the two choice
operators are not shown).

We recall below a result on thers of P that will be useful later on. Let us
denote the composition of two binary relati® and R, by RiR,. For anys €
(AU{1})*, S= W --Hn, define the relation—— as the composition of relations
Mo We will often abbreviatédQ: P —>» QasP —>-.

Lemma 2.1. The labelled transition system @fis finitely branching, that is, for
each P, the sef(p, P') | P - P'} is finite. Furthermore, for each P andss(4 U
{1})*, also the se{p | P =5} is finite.

act: ——— rec: c plus: ——————
WP —P rec.P — P[ec-P/x] P®Q—P
PP p_Lp
sumy: ————— sum : -
P+Q—F P+Q— P +Q
PP p_H p
hide,: ————  hidg,: ——— p+#a
Pal Pl Pa-Pa
PP Q-LQ p_t p
par acL pa ZL

: Mo H
PILQ-5P | Q PILQ-=P[LQ

Table 1:sosrules for?P.

2.2 Testing semantics

The idea underlyingestingsemantics is that two processes should be considered
equivalent whenever they pass the same tests proposed by an external observer
(see [9, 10]). An “external observer” is any process running in parallel with the
given two, while “passing a test” means reaching a state where the observer can
fire a “success” action. Within the testing approach, one distinguishes between a
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mayand amustapproach, depending on whether one requires that proposed tests
may or must be passed by the observed processes. Informally, the may semantics
is meant to preserve safety properties of processes, while the must semantics is
meant to preserve liveness ones. The must variant, which will be considered in
the sequel, is by far more challenging, mainly because it takes into account both
the branching structure of processes and the notiotivafrgence For technical
convenience, we shall rely on an alternative, observer-independent characterization
of this equivalence, given below. This definition is easily proved to coincide with
the original one (see e.qg. [8, 10]).

Definition 2.2 (basic relations)Let P be a process, and let w range over We
define the following relations and sets

° :>d:ef(L>)*;

a_def a .
—==—=forany ac A;

def a;
L EE 2 foranyw=a; -, € A%

def

1(P)='{a] 3Q: P= Q};

aPw) E(1(P) | PP

Furthermore, we define the following predicates

e P |l (read as Pconvergekiff there is no infinite sequence oftransitions

P - s ... starting from P (otherwise B holds);

e Pl w(read as Fconverges ow) iff for each prefix wof w, whenever Pg>
P’ then P | (otherwise P} w holds).

Finally, let F,G Csin P5(A) be two finite families of finite sets, and |gF denote
UxepX. Then

e F <G iff JF =G and for each Xe F there is Ye G such that YC X,
and vice-versa.

The set4(P,w) is also known as thacceptance set of P after. W one thinks
of an “acceptance state” as a set of possible next actions a process is willing to
perform, then4(P,w) represents the set of all possible acceptance stateafbér
performingw. Then the definition below requires that two equivalent processes
exhibit equivalent sets of acceptance states after performing the same (convergent)
W's.

We first need a technical lemma, standard from the theory of testing equiva-
lence (see e.g. [10]).

Lemma 2.3. Let P be a process, and @A*. If P || w, then the sets1(P,w) and
{P'| P =% P'} are finite.
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Figure 1: The process@&="a.b.nil +a.c.nil (left) andQ £'a. (b.nil & c.nil) (right).

Definition 2.4 (must testing equivalence [9, 10])het P, Q be processes. We say
that they argmust) testing equivalenand write P~ Q, if for each we A*

@ PywiffQJ w,and

(b) Py wimplies4(P,w) < 4(Q,w).
Example 2.5. Let us consider the processesd:%f’ a.b.nil + a.c.nil and Qd:Ef
a.(b.nil @ c.nil): the fragments of the transition system associated to the processes
are depicted in Figure 1.
Clearly, P ~ Q. Note also that P and Q are nbtsimilarin the sense of [17].

We record some useful facts abatit in the proposition below (see [9, 10] for
a proof in the case afcs). A context G:] is an open term where a single process
variablex may occur freeC[P] denotes the term obtained fradf] by replacingx
with a closed ternf.

Proposition 2.6 (properties of ~ ). Let P, Q be processes. If P~ Q then
C[P] ~ C|[Q] holds for each context[d. Moreover,+ and @ are associative and
commutative with respect te .

3 Coinduction on partial formal power series

This section presents a few definitions and results on formal power series, Moore
automata and the related coinduction principle. They are directly inspired by [21].
However, Rutten’s treatment is extended in order to take into acquaniglly
definedformal power series.

3.1 Moore automata, homomorphisms and bisimulations

We first recall some notation on partial functions, before introdupartjal power
series. LefX,Y be sets. We denote b the extension o¥ with a new element
1, and we model gartial function fromX to Y as a total functiorf : X — Y,
writing f(x) 1 if f(x) = L, andf(x) | otherwise. A functionf : X1 x .- x X[ —
Y, is strict if f yields 1. whenever one of its argument is. For any function
fiXIx o x XM=Y, weletf, : X] x---x X" =Y, denote thestrict extension



of f, defined as expected. For any relati®fi X x Y, we denote byr, the relation
RU{(L,L)}.

Definition 3.1 (partial Moore automaton)Let A, K be sets. &partial) Moore au-
tomatonwith inputs in A and outputs in K is a paffS, (os,ds)) consisting of a
set S ofstatesand of a pair of functions: awutput functionos: S— K, and a
transition functionds : Sx A — S, such that if g(s) T, thends(s,a) 1 for each
acA.

Note that, in coalgebraic terms, a partial Moore automaton with inputsimd
outputs inK is just a coalgebra of the set-valued fun®er { L} +Kr x (A—S))
(see e.g. [15]). In words, each statéhe output function yields a (possibly unde-
fined) observationg(s) € K, while for each statewith a defined observation and
for each input symbad, the transition functios yields the (possibly undefined)
stateds(s,a) reached frons after the consumption @ In the rest of the paper, we
shall often slightly abuse notation by denoting the set of states of an auto®aton
by Sitself.

For the sake of readability, and unless otherwise indicated, in the rest of the
section we le§, T be automata with inputs in sAtand outputs in seK.

Definition 3.2 (homomorphism) A homomorphismbetween S and T is a func-
tion f : S— T preserving output and transition functions, i.e., such thgso=
or(f(s)) and f. (ds(s,a)) = o1 (f(s),a) for each s S and ac A.

Hence, definendness is not only preserved, but also reflected by homomor-
phims (much in the spirit of closed homomorphims for partial algebras).

Definition 3.3 (bisimulation) A bisimulationis a relation RC Sx T preserving
output and transition functions, i.e., such thatsft) € R then g(s) = or(t) and
(ds(s,a),07(t,a)) € R, for each ac A.

Let S be an automaton, and letsse S: s and Sare bisimilar (denoted by
s~ d) if there exists a bisimulation R between S and itself, such that R contains
(s,9).

It is immediate to show that the relatienon Sis itself a bisimulation. More-
over, since the diagonal relation is a bisimulation, and that bisimulations are closed
under union, ther- is also an equivalence relation 8n

3.2 Formal power series, finality and coinduction

We define partial formal power series as functions with a prefix-closed domain.
More formally, we have the following definition:

Definition 3.4 (partial formal power series)Let A, K be sets. Avartial formal
power seriegalso partialFpg on K and A is a functiow : A* — K, such that for
all words we A*, if o(w) T thena(wa) 1 for each ac A. The set of all partiaFPss

on K and A is denoted by (A).



Leto be arpsin K(A), and let ac A. The ainput derivative ofo, written o,,
is the partialFpsdefined byo,(w) = a(aw) for all words we A*.

More generally, the winput derivativeof o is defined by, (W) = a(ww), for
all words W € A*.

Leto € K(A), and letw € A*: the coefficientof w with respect ta is the value
o(w); o(g) is called theconstantcoefficient of the series. Moreover, a seres
total if o(w) | for eachw € A*. Of special interest is thersQ yielding L for all
words (modelling the everywhere undefined series).

Depending on the sét, coefficients bear different interpretations. For exam-
ple, if A= {X} andK is the set of real numbers, then a tatalrepresents a power
series in the usual sense (interpreting the wérd- X, the elemenk replicatedn
times, asx"). If Ais any set, ani is the set of boolean values (i.e., true and false),
a totalFpsrepresents a subsetAf, hence, a language ovar There is no obvious
interpretation for non tota#PsSs in these cases. As we shall see, partiality is well
suited to represent divergence in processes.

Now, let us fix set#\ andK. We recall below how to turn the set BPSs into
an automaton that is final in the class of automataAcaandK, and additionally
satisfies a coinduction principle, in the sense that over this automaton bisimilarity
coincides with the identity relation. We also take partiality into account.

Definition 3.5 (the automaton of partigPss). Let M (K(A)) be the partial Moore
automaton with inputs in A and outputs 4 given by the paifK(A), (04s,047)),

where the output and transition functions are defined Qy(®@) = o(e) and

04r(0,8) = 04 for all 0 € K(A) and ac A..

The proof of the following proposition is straightforward and goes along the
same lines of the corresponding result of [21].

Proposition 3.6(finality and coinduction) The automatori (K(A)) satisfies the
coinduction principlefor all serieso,0’ € X (A), if 6 ~ 0’ theno =¢'.

MoreoverM (K (A)) is final: for any automaton S with inputs in A and outputs
in X there exists a unique homomorphism3 — % (A), additionally satisfying
s~ s inSiffl(s) =1(9).

We will show in Section 5 that this final automaton can be equipped with an
algebraic structure that is well-suited for defining a denotational interpretation of
processes. The crucial point is that operators on the final automaton can be spec-
ified in a uniform and simple fashion as (unigque) solutiondetiavioural differ-
ential equationgBDE’s). The presentation of this construction is deferred after the
next section, where a suitable semiring for interpreting process will be introduced.

4 A semiring for testing equivalence

The main result of this section is that, for an appropriate choice of thK,shie
set ofcspprocesses can be turned into a partial Moore automatorkosedA, in
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such a way that testing equivalence on the original transition system corresponds
to bisimulation on this automaton. This will yield a fully abstract semantics for
testing equivalence, in terms of the uniqgue homomorphism from this automaton
into the final automaton of partialPss. We will takeK to be the carrier of a suit-
ablesemiring K. The basic intuition is to use the semiring’s operation to interpret
the two fundamental forms of nondeterminism: sum will be used for interpreting
internal non-determinism, while product will be used for interpreting external non-
determinism.

4.1 The semiring Xy

We give the general notion of semiring first.

Definition 4.1 (semirings) A (commutative, unitary) semiring is a five-tuple
K= (K, ®g,®x,0%,1%) for a set K, elementS, 1k € K, and binary operators
Dx,®x 1 Kx K — K making the triplesK, ® «,04) and (K, @ «, 1) commuta-
tive monoids additionally satisfying

e XQx (YBx2) = (XRgY) D (X®«2) forall x,y,z€ K;
o Og ®g Xx=0g forall x € K.

In the sequel, we shall drop the subscrigt when denoting semiring opera-
tions and constants if no confusion arises akbgut

For automata with outputs on the carrier of a semirkigelevant are thepss
0, yielding 0 for all words, and, with constant 1 and 0 elsewhere. We introduce
now a concept used in characterizations of testing equivaleatgration[9, 10].
The rationale behind saturation, as stated in the lemma below, is turning the relation
= on families of sets into plain equality.

Definition 4.2 (saturated sets [9, 10]LetV be a set and F a finite family of finite
subsets of V, i.e. Efin 01 (V). We say that F isaturatedf for all X € F, whenever
there exists Y suchthatXY C |JF, thenYe F.

Thesaturatiorof F, writtenS(F), is the smallest saturated family of subsets of
V that contains F. The set of all saturated families on V is denote#l (%).

Lemma 4.3. LetV be a set and 6 Cin 0+ (V). Then, F< G iff S(F) = $5(G).

We can now turn the saturated families on the set of ac#oim$éo a semiring,
as follows. The proof of the following proposition is straightforward and omitted
(see also the next subsection, where a more general situation is tackled).

Proposition 4.4(the semiringkT). The five-tuplexy d:ef<5f(A), D, Q% ,0,{0})

is a semiring, for

e Fay GES(FUG),



o Fog GE S(IXUY|XEFRYcG)).

Example 4.5. Let us consider

F={{a},{abc}} and G={{a},{ab} {ac}}.

It holds that F< G andS(F) = $(G) = {{a}, {a,b}, {a,c}{a,b,c} }. Let H=
{{b,c}}, which is saturated. Thes(F) &4 H = S(F) UH and S(F) @4 H =
{{a,b,c} }.

Another operator orkT we shall rely upon is the element-wise set difference,
that is, given a set C A and a familyF Csin, 0 ¢ (A), the familyF =Y is defined as
{X\Y | X € F}. Note that~ +Y is saturated i¥ is.

4.2 A detour to tropical semirings

The semiring construction given above is an instance of a general construction,
whereJ ¢ (A) can be replaced by a generic idempotent commutative monoid. In
this subsection, we take a brief detour to illustrate this construction. The rest of
the paper does not depend on this subsection; however, the presentation may help
to convince the reader that alternative instantiations or generalizations of the pre-
sented approach are possible.

We will be mainly concerned wittropical semirings [19], that is, commutative
and unary semirings where the plus operation is idempgiebk = Xx).

Proposition 4.6 (power semiring) Let (M,-,1) be a commutative monoid. Then,
the five-tuplgd ¢ (M), ®m, ®m, 0, {1}) is a tropical semiring, for

e FoMG=FUG;
° F®MG={X-Y’X€F,Y€G}.

The powerset construction is quite standard in formal languages theory, and
it can be further refined if theoperator is idempotent. In this case, exploiting a
general notion of saturation, one can give a semiring construction where the multi-
plication operation is idempotent. This is essential in process semantics, as the the
nondeterminism operators we intend to model are in turn idempotent, and is in fact
the "meta-reason” for introducing the notion of saturation. We take the necessary
steps below.

Lemma 4.7(ordered monoid)Let (M, -, 1) be an idempotent commutative monoid.
Then, the relatior<, defined as K G iff F -G = G, is a sup semi-lattice, with
as bottom andub{F,G} =F - G.

We say that a finite sdt Cyin M is finitely generatedf the set{Y e M | Y <
lubF} is finite. Note that the least upper bound always exists for finite sets, since
< is a sup semi-lattice.
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Definition 4.8 (saturation) Let (M,-,1) be an idempotent commutative monoid.
Then, a finitely generated set&i, M is saturatedf

e lubF € F;
e VW XcF:WeM: X<Y<LIubF=YeF.

Let F Ciin M be a finitely generated set. Tlsaturationof F, written S(F),
is the smallest saturated set that contains F. The set of all saturated sets of M is
denoted byF (M).

Note that for a finitely generated detCyn M its saturation$(F) is also finite
and finitely generated.

Proposition 4.9 (saturated semiring)Let (M, -, 1) be an idempotent commutative
monoid. Then, the five-tupleF (M), &}, @y, 0,{1}) is a tropical semiring, with
idempotenty,, for

e Fay G=S(FamG);
e FaYG=S(FeuG).

Note that in generaky is not idempotent, whiley, is so, since for any satu-
rated seF the condition lull- € F implies thatF is closed under the composition
operator- of the monoid.

In order to prove Proposition 4.9, it is enough the following result, holding for
setsinfd ={X eF |AY e F\{X}:Y <X}.

Lemma 4.10.Let(M, -, 1) be an idempotent commutative monoid, and I& Eji,
M be finitely generated sets. TherbF = lubG andinfsF = infsG iff S(F) =
S(G).

Explicitly, the condition inf$ = infsG boils down to requiring thatX € F :
Y € G:Y < X, and viceversa. Note th&t is the saturated semiring associated
to the idempotent commutative mondid (A), U, 0).

4.3 Consistent formal power series

In order to underline the relevance of the semiring, let us denot&dp) the set

of all partial FPss with coefficients in the carrier ofz. Our aim is to individu-

ate a subset (in fact, a sub-automatonf@fA) that may act as an interpretation
domain forcsp processes. To this purpose, we shall introdceesistentseries.

The intuition is that, when considered as a state of the final automaton, a consistent
series encodes a state of a finitely branching. EachFpso is decorated with a
(saturated) acceptance sgip) = o(€). In a consistend;, this output characterizes

the next-step behaviour of the representesl
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Let us introduce some terminology. For any sedesve want to regard those
derivativeso, leading to a state with a 0 output value as being “null”. So, let us
define thesupport of g, written supfo), as the set of action& | 0, # 0}.

The definition below requires that in all convergent states reachabledraih
and only the actions in the support occur in its output (this condition implies that
at convergent states the support is finite). Note thatrth&0 is not, by definition,
consistent: its behaviour does not representiasy(it might be rather viewed as a
form of deadlock).

Definition 4.11(consistent partigPss). A partial FPSo is consistenif o £ 0and,
for any we A* with o(w) | andoy # 0, it holds thatoy(€) # 0 and supdow) =
U(ow(g)). The set of consisterpss is denoted byk (A).

Example 4.12. The seriess = 1 is consistent, as well as the series defined by
o(e) ={{a}}, 0a=1landoy = 0for any w¢ {€,a}. In the latter case, note that if
we seto, = 0 the series would not be consistent, as we would Isapg(o) = 0 #

U(o(e)) = {a}.

Remark 4.13(sub-automaton of consisteriss). Leto be a consistertpPs and

let we A*. By the conditions imposed dfy(¢) = 0, theno,, = 0. Hence, whenever
o(w) = ow(€) = 0 we haveo,y = 0for any w € A*. From this fact it easily follows
that the setk (A) U{0} is closed under derivatives, in other words it forms a sub-
automaton ofx7 (A).

An alternative characterisation of this sub-automaton could be obtained along
the following lines. First, note the existence of an endofungtarn the cate-
gory Set mapping a set A to the set of saturated families of finite subsets of
A. Then, a consistent power series could be seen as a coalgebra of the functor
(05,A(8g)) : S— (S(A) x (A— S, )), by requiring for all s€ S with a(s) | that
dom(A(3s)(s)) = Jos(s). Hence, the sub-automatakif (A) U {0} could be char-
acterized as the final coalgebra of that functor satisfying the consistency require-
ment. We do not further elaborate on this remark, since it does not fall in the focus
of our paper.

As an easy consequence of the the above definition and considerations, we
record the following fact for future use.

Lemma 4.14. For ¢ a consistenepsand a< A, one and only one of the following
three cases holds: (i) there exists n such that= 0 for each k> n; (ii) there exists
n such thatox = Q for each k> n; (iii) for each n> 0, o # 0, Q.

4.4 A Moore automaton for testing

The next step is turning the set of proces®dato an automaton with inputs i
and outputs in (the carrier off7. In view of dealing with the interpretation of open
terms, we find it convenient to consider a larger set tffaincluding constants
symbols for all consistersPss.
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Definition 4.15(extended:sP. LetP® be the set of all closed terms built frans P
operators (Section 2) plus a set of distinct constantsne for eacto € Xf(A).

Clearly, 7 C P©. In order to extend the transition system Bfto P¢, we
introduce some additional notation. LBt= {Py,P,,...,Py} Ciin P°. If D #£ 0,
we let @p.p P denote the procedd & P @ --- @ Py € P, with the summands
R arranged in some fixed order. For aby we let Zp.pP denote the process
P+ P+ .-+ Py € P, with the proviso that iD = 0 then this term denotes the
processiil. The transition system defined in Table 1 is extende#®wia a set of
ccsstyle recursive definitions. Specifically, we fix a set of equations, one for each
constant ¢ P¢, as follows

o def eaLeo(s) 2acL8.0a if o(e) |
= rec,.T.X if o(e) 1

and we add the following operational rule

c®p p L p

const: —

o P

Note that the above definition is well-given, sineg) # 0, andoj, is consis-
tent for eacta € supfo) = J(o(€)). The extended transition system is still finitely
branching, since consisterrss have finite support: in particular Lemma 2.1 car-
ries over toP€. Also note that testing equivalence @ conservatively extends
testing equivalence oft and it is easily proven to be still a congruence: Proposi-
tion 2.6 carries over tec.

We build now a Moore automaton out @F. We first note that Lemma 2.3
carries overpP®, hence, that for an? € P° and anyw € A* such thatP || w, the
sets4(P,w) and{P'| P == P’} are finite. In the definition below, we use a new
constanO as a “sink” state of the automaton. From now onward, we stipulate that
@Dis0if D=0.

Definition 4.16 (P€ as a Moore automatonYhe Moore automatosut is the pair
(P*U{0},(0,0)), whered and o are defined as follows. LetaA. First, let 0) =0
andd(0,a) = 0; then, for P# 0
def S(A(Pe)) ifP
oF) = { 1 it P 4
e [ ®{QP=Q} ifPla
oPa) = { 1 ifP1a.

In the sequel, we shall ugg be a shorthand fod(P,a), for anyP in 4ut and
a € A. More generallyR,, will denote thew-derivative ofP in Zut. Our next task is
to show that bisimilarity on this automaton precisely captures testing equivalence.

13



Proposition 4.17 (testing vs. bisimulation)Let BQ € P€. Then, P~ Q if and
only if P~ Q in 4ut.

PROOF. The proof rests upon the following equivalences, whose verification is
straightforward. For ang such thaf; ¢ {0, L} and anyw € A*

1. Plawiff P w
2. P awimplies 4(P,aw) < A4(Pa,w).

We only show thaP ~ Q impliesP ~ Q in Aut, as the other direction is easier.

Hence, it suffices to prove that? def U{(0,0)} is a bisimulation omut.

Let P andQ be such thaP ~ Q. According to the definition of bisimulation, it
will suffice to show that (ap(P) = o(Q) and that (b, :% Q,, foreachac A. The
proof is trivial if P 1}, so let us assume thBt|.. Fact (a) is a direct consequence of
the definitions ob(-) and of Lemma 4.3. Concerning (b), it trivially follows from
the definition of~0 if P4} a or if P, = O (in the latter case, it must necessarily be
Qa =0, and vice-versa, i.ea ¢ | (P) = 1(Q)). So let us assume th&, Q, # 0
and thatP |} a, henceP,, Q4 # L. Let us suppose thd&, |} w for somew. We
have to show that (i, |} w and that (i) (Pa,w) < 4(Qa,w). But (i) and (i) are
consequences & ~ Q and of facts (1) and (2), respectively, stated above.O

Let I+ be the unique homomorphismut — M (%3 (A)) induced by finality
(Proposition 3.6) and Idt]] denote its restriction t@®.

Corollary 4.18 (full abstraction) The mapping[-]| : P® — %F(A) is fully abstract
for testing equivalence oft®, i.e., P ~ Q if and only if[P]| = [Q].

PROOF First, note thatqut O € and thatly (?®) C XF(A) (the latter a con-
sequence of the definition of homomorphism). Next, the coinduction principle
(Proposition 3.6) and Proposition 4.17 ensure fhjais fully abstract for testing
equivalence, hence the thesis. O

5 A compositionality theorem

The next step is to show that the final automaldi Xy (A)) can be equipped with

an algebraic structure which is well suited to interpret processes. We also show how
to define least fixpoints to interpret recursion. Next, we prove that the mafjjing
defined in the previous section preserves this structure. In other wefgselds a
compositional denotational semantics.

5.1 Algebraic operators

A behavioural differential equatioB0E) specifies a seriesby means of an initial
condition (the value of(¢)) and a condition on its input derivatives (thesSs 0a,
for eacha € A). We can state this as a general definition, as follows.

14



Definition 5.1 (behavioural differential equations)A behavioural differential
equationis a given by an initial conditiow(¢) = k (k€ X) and by a set of equa-
tions on input derivatives of the foray = f(a,0,,0), one for each & A.

For example, the conditions(¢) = 1 ando, = o (for eacha) define aBDE
whose unique solution is thepsthat associates 1 to every wordAd. In general,
the coinduction principle on the final automat®f( 7 (A)) allows us to show the
existence and uniqueness of the solution Bb&. In particular,BDE’s can be used
as a means to defining operators&n(A) in an elegant and uniform fashion.

Table 2 displays th@DE’s defining a set of operators aif(A), clearly in-
spired by thecspoperators. In fact, by abuse of notation, we shall use symbols
drawn fromcsp syntax to denote some of these operators. The equations in Ta-
ble 2 deserve some explanation, but let us introduce the relevant notation first. For
a finite seD = {01,...,0n} Of FPSS, let @ D denoteo; & - - - & op, With the sum-
mands arranged in some fixed order, and stipulatingd@Bis 0 if D = 0.

First, note the form of the derivative for tlieoperator, intended for modelling
of external nondeterminism, which is reminiscent of thesplaw a.P+a.Q ~
a.(P®Q). Inthe equation for the hiding operatbf(o), the totally undefined series
Q models divergence, which may arise either because there is a finite sequence of
b actions leading to a divergent state, or becausdas an infinite sequence bf
actions. As noted in Lemma 4.14, either of these two cases arises precisely when
there is no sequence b leading to0. Note that all the involved sumgl ) are
finite under the side condition that,; = O, given thatoy,,, = 0 for eachw € A*.
Finally, the constant coefficient of the parallel compositioh. p is the product of
0 andp’s constants, but synchronized actionsI()nthat are not in the support of
both are subtracted away from the result.

Theorem 5.2(operators ork (A) via BDE'S). On % (A), there exist unique unary

operators[b] and b (for each be A) and unique binary operators, ®, ||, (for

each LCrin A), satisfying thesDE's of Table 2, for allo,p € %F(A) and ac A.
Moreover,® and® are associative and commutative.

PrROOF Consider the unique homomorphidin: 4ut — %3 (A). We define the

operators inky (A) we are after as followsb.(o) d:efIT(b.g), oDp d:efIT(geBE),

o®p E'lr(c+p). [b](0) ' It (alb]) and finallyo [|. p £l (g || p) (note that
symbols on the left-hand side denote operatorsrss while symbols on the right-

hand side denote syntactic operators of the calculus). It is an easy consequence of
the homomorphism properties laf thatl+ (Aut) C %7 (A) U {0} and that the only

state of4ut mapped td is 0: thus the above operators are well-defined.

Also note that the additional properties®@fand® on FPSs are a direct con-
sequence of associativity and commutativity of the operatoasd+ on P€ with
respect to~ (for associativity, also the law ~ It (0) is needed, which is in turn
a consequence of fact (1) stated below and of the coinduction principle).

To prove that the given operators satisfy 8®e’s in Table 2, one first shows
that the equations hold idut when replacing each with g, each operator oRPSs
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with  (b.(0))(e) = {{b}}

o ifa=Db
0 otherwise

(0&p)a = 0CaDpa with  (o@p)(e) = ofe) Dk p(e)
(O®p)la = 0Ca®pa with (o@p)(e) = o(e) @« p(e)

0 ifa=banddj:0, =0
(bl(0))a = { Di>0,0,,200l(0pa) ifa7#band3j:op =0

Q otherwise

with - (bf(0))e) = { Piz00?) {0} L0 1 =0
B Oa |lL Pa ifaelL

(@lpla = { (Ga |TL P)® (0|l pa) otherwise

with (o [[L p)(g) = (o(e) ®x p(e)) + (L \ (supHo) Nsupip)))

NB: @, ®x and-- denote thestrict extensions of the semiring operations%f.
By convention, in therHS's of the equations we assume tlles 0 = 04 0 = o;
and thato||_p = 0if eitherc or p is 0.

Table 2: Behavioural differential equations G (A).
with the corresponding syntactic operator and equality on series with bisimilarity.
Then it will be a consequence of the coinduction principle that the equations hold
onFpPss as well. The proof that the equations hold4nt is based on the following,

easily shown facts about consistemss. Below, we assume,p € %F(A) U {0}
and stipulate that for eash € A*, 0 A=, 0, w and.4(0,w) = 0.

(1) It(@) = o B o & o0 =0Q
(2 ow ~ o, (4 ol = o = Agg)

Moreover, assuming | w, also the facts below hold.
(5) g:W> ~ (QW %* Q) (6) Oy ~ @{P|QZW>P}
(7) Algw) = A(0y¢€)

Below, using the facts listed above, we cover in detailgbe for the hiding oper-
ator.
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Let us consider the case when there exjstsO such that,; = 0, as the other
case is more easily dealt with. First, note toét] ||. Indeed, by thesosrules for
hiding, a[b] 1 iff either there existssuch that, ~ Q, or o has an infinite sequence
of == actions; in the first case, one would have by (2) and (3) abovesthat Q,
hence, by the properties of consistentss, it could not existj with o, = 0 (see
Lemma 4.14); in the second case, one would have from (5) above that@itHzr
for somek, henceo|b] 1, or thatox »¢ O for all k, hence by (1) and (2)x # O for
all k, contradicting agaia,; = 0.

The next step is to show separately that

) o) = (@xio0s(E)={b},  and

(i) (a[b))la ~ iz00,,-0(0a)b] forazb

(the casea = b is more easily dealt with). Concerning (i), by definitiofo[b]) =
S(L), whereL = 4(g[b],€). Now, we have:

L = (Usofl (P)\gé P})+{b} (by the sos rules for hiding)
= (UisoA4(g,b')) =+ {b} (by def. of4(-,-))
= (Uiso A(0y,€)) +~{b} (by (7) above; note thady, |}
= (Uizo 0v(€)) + {b} (by (4) above)

from which (i) follows by definition of on the semiringky. Concerning (i), if
o[b] 1} a, then clearly the two sides of the equation are both bisimil&.t®hus let
us assumelb| | a. Then we have

(alb)a ~ @Diz00, 0{Plblla22 P}  (bythe sos rules for hiding)

~ (@i 40{Plo 22 PH[b] (by the lawd®; (Qj[b]) ~ (&, Qj)[b)
~ (Biso, 04,70 Opia)[b] (by (6) above; note thad,; | a)
~  Di>0.0,,0 Ibiald) (by the laweb (Qj[b]) ~ (B Qj)[b])

which proves (ii) for this case.

Now, from (i) and the homomorphism property of, the equality for
([b](0))(e) immediately follows. Let us consider now the equality {fh](0))a.
Using the already remarked fact that- |1 (p), for each consisterg, and the fact

that ~, hence~ is a congruence ove®®, we have the following equalities

([bl(0))a = (Ir(ab]))a (by definition of[b](-))
= Ir(a[bla) (by homomorphism off (-))
= 'T(@izo.,gbiaaég 0ialb]) (by (ii) above and coinduction)
= 'T(@izo,gbiaaég It (oyialb])) (byp~It (9), congr. and coind.)
= ®iz00,,20!7(Gyalb]) (by definition of® overFpss)
= Dizo0.0,,40 IT(0yalb]) (by (2) above and coinduction)
Di>o, 04,40 [b](Opia) (by definition of[b](-)).
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Concerning uniqueness, suppose that there are operatasssnb’.(-), &', @’
and so on satisfying the giveBDE’s. It is easy to prove, by exhibiting a suitable
bisimulation relation, tha.(o) ~b'.,c@p~o&'p,o||Lp~ 0o p, and so on,
for eacho, p. Hence, by the coinduction principle (Proposition 3.6), it follows that
b.=b, |||=|lL, ® = ® and so on. O

5.2 The denotational mapping

In order to model recursion, we have to prove the existence of fixpoirkg {&).
First, consider the partial ordering & (A) given by inclusion, i.e., definer C 1

iff for eachw € A*, o(w) | implieso(w) = t(w). We useC as a criterion to select
minimal solutions to recursive equations 6 (A). In order to do so, we need
a coinductive notion okimulation The latter can be given in general terms as
follows.

Definition 5.3 (simulation) Let S an automaton with inputs in A and outputsin
Asimulationon S is a relation RZ Sx S preserving output and transition functions
whenever defined.e., such that ifs,t) € R then g(s) | implies a(s) = os(t), and
0s(s,a) | implies(ds(s,a),0s(t,a)) € R for each ac A.

Let < denote the greatest simulation relation o®ett is a preorder ors and
the coinduction principle carries over to simulation. More precisely, we have the
following principle, which is valid for any semiring(, and whose proof mimics
that for bisimulation, as stated in Proposition 3.6.

Proposition 5.4 (coinduction principle for simulation)Let S be a partial Moore
automaton with inputs in A and outputs . The unique homomorphism | from S
to the final automaton ok (A) (see Proposition 3.6) transformsinto C, that is,
s=<tinSiffl(s) C I(t) in X(A).

Giving semantics to recursive terms is usually accomplished by taking open
terms into account via environments. Although this would be technically possible
in our case, we prefer to take advantage of the extended syni&&kafd dispense
with environments. Informally, we want to internalize environments by regarding
[P]e, whereE is the environments mappingd & component-wise, aP[3/1]].

In the sequel, we writé[x| to denote an operP® term where only variable
x may occur free, and writ®[Q] for P[Q/x], for any Q. The proposition below
proves the existence of least fixpoints4g (A), for mappings that correspond to
denotations of open procesdex|. The key technical point is represented by the
following lemma, proven in Appendix A. Important ingredients of its proof are a
simulation up to~ technique in the vein of [23], and the use of ordinary strong
bisimulation [17] for bounding sequences®fransitions, when proving conver-
gence of processes.

Lemma 5.5. Let P{x] be an open term and Q a process#f. In 4ut, we have that
if Q ~ P[Q] then regq.P < Q.
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Proposition 5.6 (fixpoints). Let P[x] be an open?® term, and let F: Xf(A) —
KT (A) be the function defined as(&) = [[P[a]] for eacho € %F(A). Then F has
a least (with respect ta ) fixpointop, and it holds thatg = [[rec.P]).

PROOF Let og def [reck.P]. It is easy to see that is a fixpoint. Indeed, first note

thatop ~ rec,.P (a consequence of the equaljy]] = o, holding for eaclo — see
proof of Theorem 5.2 — and of the full abstraction[[df). Using this fact, and that
Plrec.P] ~ rec,.P (immediate from thesosrule forrec), that testing equivalence is

a congruence and that the coinduction principle holds for bisimulation, one obtains
F (00) = [Plog]] = [Plrec.P]] = [rec.P] = oo.

The difficult part is showing thatrg is theleastfixpoint. First, given any fix-
pointo of F, sincef[o] = 0 = F (o) = [[P[o]]], we have by the coinduction principle
for bisimulation tha ~ P[g]. Hence by Lemma 5.Eec,.P < g, and by the coin-

duction principle for simulation (Proposition 5.4) the thesis follows. O

We denote by figF) the least fixpoint of any : X7 (A) — %F(A), whenever
this fixpoint exists.

Example 5.7. Let us consider the open terni¥P= a.(x[a]). The least fixpoint of
the corresponding mapping akif (A) is the[[-]-image of the process re®, that is
a.(Q). There are also non-minimal fixpoints for this mapping, like e.g. (the image
of) the process @ a.b.nil. Indeed, it is easy to check that ggé < Q.

Theorem 5.8(compositionality) The mapping[-] : ¢ — %F(A) is a morphism
with respect to the operators aspsyntax and the operators akif (A) defined in
Table 2. In particular, the equalities in Table 3 hold.

[e]=c  [ni=1 [aP]=a([P])  [t.P]=[PI
PeQl=[Ple[Ql  [P+Q]=[Pl][Q]
[Plajll = [&([P]) [Pl QI =[Pl [Q [recc.P] = fix(Ac.[PIF/AX]])

Table 3: The denotational equalities.

PROOF The first equation has already been remarked (see proof of Theorem 5.2).
The equation foll is just an instance of the first one. The last equation follows from
Proposition 5.6. The remaining equations are easy consequences of the coinduction
principle and of the definition of the operators (as seen in proof of Theorem 5.2).
Here we show only one case, the parallel oper#torthe others being the same
modulo renaming of the involved operator. From the already notedPfactr (P)

for eachP, and congruence, it followB ||L Q ~ It (P) ||L IT(Q). By coinduction
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then: [P ||L Q] = [I+(P) || I+ (Q)]] = I+ (P) || I+ (Q) (by definition of||_ on FPSs,
see proof of Theorem 5.2). But the latter is the sam@Pgg|, [Q].

O

Example 5.9. Let us consider the processes-R.b.nil+a.c.nil and Q= a.(b.nil®
c.nil), and their denotations itky (A). Dropping a few parentheses, we hgi{R§ =
abl®ac.land[Q] =a.(bl®c.1). Note now that the following principle can
be proven by coinduction: & € X7 (A) theno = (0(€)) © ®acsupgo) @ 0a (Where
(k) denotes thepswith constant k and elsewhere). By applying this principle,
and using thesDE’s for @ and ®, it is immediate to check thdP] = ({{a}}) ®
a(blecl)=[Q].

6 Discussion: acceptance trees arebss

The classical fully abstract denotational model of must testing is described in [10]
in terms ofacceptance tree@T’s).

There is a close analogy between's andFpss. Essentially, a finiteaT is a
deterministic tree with arcs labelled by actions, and nodes labelled by elements of
K7, with some further consistency and convergence requirements. Indeed, it is easy
to see that a finiteaT can always be obtained as the unfolding of a suitable consis-
tentFPs In [10], the set of finitext’s partially ordered by a relation that reflects the
must preorderon processes is turned into an algebraio by ideal completion.

The resulting domain is then used to interpret the operators of a process calculus. In
particular, continuity arguments are used to prove existence of least fixpoints when
assigning meaning to recursive terms. Within our approach, one need not to deal
with continuity arguments explicitly, as the existence of a denotational mapping is
guaranteed by the automaton structuremss.

The analogy between the algebraic tree model of [10] and our coalgebraic
model is not a coincidence: after Barr [3], it is known that final coalgebras can
often be characterized as Cauchy completions of the corresponding initial alge-
bras. We can make the analogy betweess and trees more specific follow-
ing [2]. A Moore automaton can be considered as a coalgebra of the functor
S— {L}+ %7 x (A— S|), which is w-continuous. The initial algebra for this
functor is the set of finite, non-empty trees, with leaves labelled_byodes la-
belled by elements okt and arcs labelled by elements A1 Accordingly, the
corresponding final coalgebra is the set of all infinite trees, equipped with the par-
tial order induced by the operation of replacing subtrees witeaves. This partial
order reflects the simulation preorder we have used in our definition of the fixpoint
operator; oveFpPss, the two coincide.

So far for the analogies. Now, it is worth to notice that the simulation preorder
we consider here is strictly finer than the must preorder of [10], despite the fact
that in both cases the kernel coincides with the testing equivatentethe must
preorder, one also takes advantage of a preorder on acceptance sets whose kernel is
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the relation=. For example, in the must preorder one has#hat® b.nil is smaller
thana.nil, which is not true in the simulation preorder. We further elaborate on this
point in the concluding section.

7 Extensions

We outline two extensions of the results presented in the previous sections. We
shall consider another well-known calculus and an alternative semantics.

7.1 The Calculus of Communicating Systems

The syntax of Milnerccs (actually, of its tau-less variant, see [10]) is obtained
from csPs by replacing the operatot§ and[a] with parallel composition and
restriction\a, respectively. Moreover, an involution A— Ais assumed on visible
actions, i.e., a bijection such that it does not coincide with identityaandg; this
function extends té\* as expected. The new operational rules are

p_t p PP Q2Q P—“>P’,u7éa,a
par: — " o= com:. T res: m
PIQ — P'|Q PIQ — P|Q P\a— P'\a

(symmetric rule forpar not shown). The definition of must testing and of thiet
automaton remain formally unchanged. Concerrgng'’s, the equations fof|.
and[a] are substituted with the following

0 if be {a,a} ando # Q
(0a)\b if b¢ {aa} ando#Q
Q otherwise

with  ((0)\b)(e) = oe) + {b}

((0)\b)a =

o

D010 (OwalPw) © (Ow|Pwa)  Otherwise

with  (a|p)(e) = o(e) @« p(E) -
It is a matter of a routine check to verify that our results on full abstraction for
cspcarry over to this calculus.
7.2 Trace semantics

Two csPprocesse® andQ areconvergent-trace equivaleniritten P ~¢; Q, if
for eachw € A*

e P wiff QJ w, and
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o P=iff Q=

This semantics corresponds to language equivalence on convergent traces. We ob-

tain a fully abstract model for this semantics by taking the semijf(ag‘jZEf{O, 1},

i.e., the boolean semiring.
The definition of Moore automaton for convergent trace equivalence is given
by changing the clause fax-) in Definition 4.16 as follows: let(0) = 0, and for

P#0
def 1 ifPy
ofF) = {L it P

Concerning th@DE's for csp, we need only to change the initial conditions of the
equations fob. and||_ by setting(b.(0))(€) = 1 and(ol|Lp)(€) = o(g) R« P(€);

the other equations listed in Table 2 remain unchanged. We note that results on
coalgebraic characterization of trace semantics are well-known (see the concluding
section).

8 Conclusions and related work

The paper proposes a coinductive denotational semantics for testing equivalence,
building on Rutten’s work on the coalgebraic presentation of formal power series.
Although results in this vein are known for trace semantics (see below), we are not
aware of previous work concerning branching-time semantics, like must testing.
More generally, we are not aware of other coalgebraic presentations giving a full
account of a nontrivial process calculus, including those aspects related to invisible
actions and divergence.

We believe that our characterization of the testing modelrrds suggests
a methodology — whose core lies in the definition of operatorsswa’s and in
the choice of an appropriate semiring — for different equivalences and/or process
calculi. Some extensions have been outlined in the paper. It would be interesting to
see how smoothly the present approach carries over to name passing-calculi, like
the Tecalculus [18]: we plan to make this the subject of a further study. Dually,
it would be interesting to see if any sensible semantics or language extensions are
suggested by a domain ebss itself, for appropriate choices of the semiring. As
an example, with our semiringT, the presence of the seriesuggests inclusion
of adeadlockoperator in the language.

The relationship between the algebraicmodel of [10] and our model also de-
serves further consideration. In particular, one wonders precisely how that model
can be cast into the present coalgebraic setting. As hinted in Section A7 the
model can be obtained by ideal completion of a partial order that reflects the must
preorder on processes. With reference to Definition 5.3, the must preorder can be
phrased on Moore automata ov&f by changing the requirement on outputs into
“0s(s) | impliesog(t) C og(s)”. It is a matter of further consideration if the corre-
spondence between the order imposed on trees (heneesshby simulation and
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the order imposed by the algebra/coalgebra duality (in the sense of Adamek [2])
can be extended. We also note that the must preorder induces an order on the func-
tor of the Moore automaton, as defined in [12], in principle making it amenable to
the analysis proposed there on the algebesio structure of final coalgebras.

As a further line of research, one would like to consider if the coalgebraic logic
machinery [15] gives rise to interesting modal logics for processes when instanti-
ated to the present setting.

Concerning related work, most related to ours appears to be a paper by Cleave-
land and Hennessy [5]. They present a bisimulation-like characterization of test-
ing equivalence, but do not work a denotational model out of that. The work
of Wolter [25] shares some similarities with our proposal; the considered model
is the class of partial nondeterministic automata corresponding to the functor
S— P(P(A)) x (A— T¢(S),). Differently from our presentation usingpEe’s,
the denotational mapping is obtained by resorting to explicit constructions on au-
tomata (with some syntactic limitations). The proposed model fails to achieve full
abstraction, due to certain features connected to both nondeterminism (lack of sat-
uration) and internal actions (hiding).

Concerning coalgebraic characterizations of other process semantics, we are
aware of a few works on trace semantics, a thread initiated by Power and Turi
in [20], and more recently considered also in [13, 16]. Our work is similar in spirit
to theirs. However, differently from these contributions, we exploit the concrete,
set-theoretic setting afpss, partly motivated by our dealing with must testing,
which is more challenging than trace equivalence. The first application of the fi-
nality principle to concurrency can be found in Aczel’'s book on non well-founded
sets [1]. In fact, this work can be considered as the root of most of the present day
interest in coalgebraic methods in semantics.

More generally, the search of coinductive characterization for those equiva-
lences belonging to the so-called van Glabbeek spectrum, as started in [7], appears
to be a promising area of research.

Loosely related to ours, a strong thread of research has focused on the exten-
sion and generalization of finality results for so-calkedlgebras broadly search-
ing whenever the format of the inference rules defining the operational semantics
of a calculus ensures that the corresponding final coalgebra semantics preserves
the operators of the calculus. The reader is referred to e.g. [6, 24] and, as far as
deterministic automata and the semiring monad are concerned, to [14].
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A Proof of Lemma 5.5

The main result of the section is Proposition A.6, from which the wanted lemma
follows as a corollary. For its proof, we need a few additional definitions and tech-
nical results. In what follows, unless otherwise stated, we const@grocesses
and contexts. We also consider a new labgl AU {t}, which will serve as a fresh
visible action, for use in the definition below; we abbreviateil asa. We recall

the (somehow standard) definitions of guarded context and convergekstes.

Definition A.1. Let C[:] be a context, P be a process ang-10. We say that:

e C[]is k-guardedf whenever (] %, with se (AU {1})*, then|s| > k;
e P converges withirk steps written Pk, if whenever PT—I> theni<k;

e P converges along within k stepga € A), written Pl a, if whenever B
theni+j+1<k.

Note thatP | if and only if P |}k for somek, by virtue of the finite-branching-
ness of thaTs (Lemma 2.1) and of Kénig’'s Lemma. A similar remark applies to
the other pair of predicateB,| a andP |}x a. The next two lemmas establish some
basic properties of guarded contexts. In particular, Lemma A.3 asserts roughly that,
whenC[-| is "sufficiently guarded", then whatevEris plugged intaC[-|, P plays
no role in the next-step behaviour©fP).

Lemma A.2. Let C[.] be k-guarded and supposéRt — R, with se (AU {1})*

and |s| < k. Then there is a context'd such that R= C'[P] and, for each Q,
S

Cl[Q —CQ].

PROOF. An easy induction orjs| proves the stronger statement additionally re-
quiring thatC'[-] be (k— |s|)-guarded. The base case- pLis in turn a transition

induction onC[P] - R. O
Lemma A.3. Let C-] be k+ 1-guarded. Then
1. there is Fe &7 such that for each P with €] |}k, o(C[P]) = F;

2. let a€ A there is C[] such that for each P with €] |k &, (C[P])a ~ C'[P]
(possibly, ¢[-] = 0).

PROOF. Both assertions are easy consequences of Lemma A.2. As an example, we
check 2. Consider the set of contexts

¢ & (G| 3s€ (AU{T})", I8 < k such thabQ: CQ] - GQ}.

The set¢ is finite, by the finite-branching-ness of thes. Take anyP such that
C[P] Ik aand suppos€[P] == P/, i.e.C[P] = P’ for somes= t'at™. By C[P] |\«
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a, it must bejs| < k. Hence, by Lemma A.®’ = C"[P], for someC"|-]; moreover
C"[-] must be in¢, again by Lemma A.2 and by definition &f On the other hand,
for anyG[-] € € it holds C[P] == G[P], again by definition. So we have shown

that{P'|C[P] =% P’} = {G[P]|Gi[] € ¢}. Then, take&C'[] &' @ 1ceCil]. O

The next definition introduces another ingredient for the proof, a useful up-to
technique. The only difference from the definition of simulation is that the con-
dition on the derivatives(8s(s,a),0s(t,a)) € R" is replaced here by the weaker
"(ds(s,a),0s(t,a)) e~ R~" (recall that we denote composition of binary relations
by juxtaposition).

Definition A.4 (simulation up to bisimulation)Let S an automaton with inputs in
A and outputs inX. A simulation up to bisimulatioon S is a relation RE Sx S
such that if(s;t) € R then (a) g(s) | implies a(s) = os(t), and (b)ds(s,a) |
implies(ds(s,a),ds(t,a)) € ~ R~, for each ac A.

The following lemma establishes correctness of the above up-to technique.

Lemma A.5. If R is a simulation up to bisimulation on S thentRK.

PrRoOF Show that the relatioR def _ R ~ is a simulation or§, which is imme-
diate by transitivity of~. SinceR C Rthe thesis follows. O

We need two more ingredients for the proof, that is unfoldings of terms and
strong bisimulation. Given a conte®]] andk > 0, the k" unfolding of F]
is the context defined by induction daas follows: PO[] £'[] (the empty
context), P&+ [.] L' p|p®[]). In other wordsP®[] is the k-guarded context
T.P[t.P[---T.P[-]---]], with k nested’s.

Let ~¢p denote ordinargtrong bisimulatiorf17] over processes. It is immedi-
ate to check, using the fact thagtc,.P ~¢, T.P[rec.P] and the congruence proper-
ties of strong bisimulation, that for ea&hrec,.P ~sp P®[recy.P]. Note that~sp
is (strictly) finer than~ (hence thanv and <). Finally note that, by definition,
P - andP ~g, Q imply Q —, for anys e (AU {1})*; thus, in particularqsp
preserves all the convergence predicates considered here.

Proposition A.6. Let C[:] and Hx] be contexts, and Q a process.fut, we have
that if Q ~ P[Q] then Qrecy.P] < C[Q].

PROOF: Fix a generic open terR[x] and fix a generi® such thaQ ~ P[Q]. We
show that the relation

RE' r(Clrec..P], C[Q]) |C[] is a context}

(where we allowC]-] to possibly be) is a simulation up to bisimulation, thus prov-
ing the thesis. Thus, take a gendd] (different from the trivial0), and suppose
o(C[rec.P]) |, i.e.Clrec,.P] |.
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We first check requirement (a) of simulation, thata&C[rec,.P]) = o(C[Q)).
To see this, we first prove th&@Q] |} as well. By contradiction, assun@Q| 1
and takeh such thatCirec,.P| | (as already noted, thie must exist). Since
C[Q] ~ C[P"*V[Q]] (by repeating the unfoldin@ ~ P[Q] ~ 1.P[Q] and by con-
gruence),C[PMY[Q]] # as well, hence there is a sequencetdfansitions of

lengthh+ 1, sayC[P"D[qQ]] Ll SinceC[P("V)[]] is h+ 1-guarded, by Lemma
A.2 we haveC[PMDrec,.P|] 7 as well; butC[PM" Y [rec,.P]] ~sp C[recy.P]

(by congruence and repeated unfolding), hence we would Gaes,.P] ﬁ

which contradictsC[rec.P] {n. This proves thalC[Q] ||, henceC[Q] |}y for
someh’. Takek = max{h,h’}. Note thatC[rec,.P] ~sp C[P*+Y[rec,.P]] |k and
C[Q] ~sb C[P*D[Q]] I}k. SinceC[Pk+D[]] is k+ 1-guarded, by Lemma A.3(1)
we obtain thato(C[P**V[rec,.P]]) = o(C[P**V[Q]]). But this implies (a), be-
causeC[rec,.P] ~ C[P*+D[rec,.P]] andC[Q] ~ C[P*D[Q]].

We now assume for a genercthatClrec.Pl, |, i.e. thatClrec,.P] | a, and
check requirement (b) of simulation up to, that@ec,.P]a ~ R~ C[Q]a. In the
first place, note tha[Q] |} aas well: the argument mimics that given above to show
thatC[Q] |}, so we are not going to repeat it. Now, tdksuch that botiC[rec,.P] |k
a andC[Q] Ik a. Again, note thatC[rec.P] ~s, C[P**V[rec,.P]] |}k a and that
C[Q] ~sb C[P**V[Q]] Ik a. SinceC[P*+V[] is k+ 1-guarded, by Lemma A.3(2)

we obtain that there is a conte®t[-] such thatC[P*"[rec,.P])a ~ C'[recy.P] def

A and (C[P<+D[Q]])a ~ C'[Q] £'B. Clearly (A, B) € R by definition. Now, from
C[recy.P] ~ C[Pk+1[rec,.P]] andC[Q] ~ C[P*+V[Q]] we get(C[recy.P])a ~ Aand
(C[Q])a ~ B, respectively. In the end, we have obtaingdfrec,.P])a ~ AR B~

(C[Q])a, that is (b). O
To obtain Lemma 5.5, takg[-] = ||, the empty context, in the previous propo-
sition.
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