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Abstract

We characterize must testing equivalence onCSP in terms of the unique
homomorphism from the Moore automaton ofCSP processes to the final
Moore automaton of partial formal power series over a certain semiring.
The final automaton is then turned into aCSP-algebra: operators and
fixpoints are defined, respectively, viabehavioural differential equationsand
simulation relations. This structure is then shown to be preserved by the final
homomorphism. As a result, we obtain a fully abstract compositional model
of CSPphrased in purely set-theoretical terms.

Keywords: process calculi, bisimulation, testing equivalence, coinduction,
formal power series.

1 Introduction

The present paper elaborates on two themes. On one hand, we try to reconcile two
well-known proposals for process semantics, bisimulation and testing equivalence.
On the other hand, we explore a simplified – in particular, purely set-theoretic –
treatment of denotational semantics in process calculi. The trait d’union between
these two themes is represented by the concept offormal power seriesover a semi-
ring.
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Testing equivalence [9, 10] and bisimilarity [17] are two classical proposals
for process calculi semantics. They offer different tradeoffs between mathemati-
cal tractability and accuracy of process description. Bisimilarity comes equipped
with a nice coinductive proof technique. However, it lacks a natural denotational
model, and is often blamed of being over-discriminating. Testing equivalence of-
fers perhaps a more faithful picture of reality, with e.g. a proper distinction between
termination and divergence, and comes equipped with a fully abstract denotational
model. Unfortunately, it lacks tractable proof techniques.

In this paper, we make an attempt at reconciling testing and bisimulation, while
keeping the benefits of both. The key to reconciliation is given by the concept
of formal power series over a semiring, and the related finality and coinduction
principle, as presented in work by Rutten [21, 22].

A formal power series is a function from the set of words over an alphabetA
to a semiringK . The set of such functions, denotedK 〈A〉, can be given a Moore
automaton structure, with inputs inA and outputs inK . This particular automaton
is final, in the sense that there is a unique homomorphism from every automaton
on K to K 〈A〉. It enjoys moreover acoinduction principle, by which the unique
homomorphism maps two bisimilar states into the same formal power series.

In this paper, we consider a simple process calculus and introduce a semiring
for testing,KT . Next, we turn the process calculus into an automatonAut over the
semiringKT and show that bisimulation over this automaton coincides with (must)
testing equivalence. Hence, the unique homomorphism fromAut to KT〈A〉 yields
a fully abstract semantics for testing equivalence. Finally, we define a set of oper-
ators onKT〈A〉 and show that the final homorphism does preserve these operators,
meaning that the resulting model is a truly compositional one. Recursion is mod-
elled via least fixpoints. One nontrivial point of this construction is the treatment of
divergence – the possibility for a process of getting engaged in an infinite sequence
of internal actions – that is not easily dealt with via bisimulation. In fact, we found
it convenient to introducepartial formal power series, and to modify the notions of
bisimulation and homomorphism accordingly.

Concerning the other theme of the paper, simplifying denotational semantics of
processes, the benefits of the above methodology can be summarized as follows:

• Simplicity of the semantic domain. In particular, we dispense with continous
(order-theoretic, topological,...) structures and functions. Existence of least
fixpoints relies solely on the automaton structure of formal power series.

• Abstract definitions of operators. On the semantic domain, we can specify
behavioural differential equations(BDE’s, [21]) whose unique solutions de-
fine the wanted operators. This benefit shows up clearly upon comparison of
BDE’s with the somewhat intricate definitions often found in a standard, say
CPO-based, denotational setting (see e.g. [10]).

• Coinductive reasoning. Proofs by coinduction, which amount to exhibiting
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appropriate (bi)simulation relations, are used to show existence of least fix-
points, full abstraction and compositionality of the semantics.

We have chosenCSPfor a concrete illustration of our construction, mainly for
ease of presentation. The straightforward extensions toCCS and to trace equiva-
lence are also outlined. We hope that the concepts we present here might be relevant
for other process calculi. More generally, we have deliberately confined ourselves
to a set-theoretic setting, much in the spirit of [21, 22]. However, we expect that a
more abstract presentation of our results would not require much effort.

The rest of the paper is organized as follows. In Section 2, we introduce Hoare’s
CSP[11] and testing equivalence. In Section 3, building on [21], we introduce par-
tial formal power series and the related coinduction and finality principles. In Sec-
tion 4 we introduce the semiring for testingKT , and theCSPautomatonAut, and
show that the resulting final homomorphism is fully abstract for testing equiva-
lence. In Section 5 we present a fewBDE’s definingCSP-like operators on the final
automaton, we define least fixpoints to model recursion and we prove that the final
homomorphism is indeed compositional with respect to these constructions. Sec-
tion 6 discusses the relationship between our model and the classicalacceptance
treesmodel for testing equivalence. Section 7 outlines two extensions of the pre-
ceding construction. Section 8 discusses directions for further research and related
work. The proof of a technical lemma has been confined to Appendix A.

2 CSPand testing semantics

We introduce a process calculus, essentially Hoare’sCSP[11], and recall the defi-
nition of testing equivalence [9, 10].

2.1 Syntax and operational semantics

We assume a countable set ofvisible actions, denoted byA and ranged over by
a,b, . . .; aninvisible actionτ 6∈ A, with the setA∪{τ} and℘f (A) (the finite subsets
of A) ranged over byµ andL, respectively. A setX of agent variables, ranged over
by x,y, . . . is also assumed. Open terms are built according to the following syntax

P ::= x | nil | µ.P | P⊕P | P+P | P[a] | P ‖L P | recx.P.

A term is closedif each occurrence of a variablex is in the scope of arecx. op-
erator. The set of closed terms, orprocesses, is denoted byP and ranged over by
P,Q,R, . . . .

The constantnil represents the terminated process. The action prefixµ.P can
perform an atomic actionµ and then evolve toP. The operator⊕ describes non-
deterministicinternal choice:P⊕Q may evolve via an invisible action either toP
or to Q. Summation+ denotes non-deterministicexternalchoice:P+ Q behaves
either asP or asQ, the choice being triggered by the environment via synchro-
nization at a visible action. In the parallel compositionP ‖L Q, processesP and
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Q must evolve synchronously with respect to each actiona ∈ L, while they may
evolve independently from each other with respect to actionsµ 6∈ L. The process
P[a] behaves likeP, except that any execution of the visible actiona is turned into
the invisibleτ, hence hidden from environment. The intended meaning ofrecursion
recx.P is the behaviour defined by the equationx = P.

The operational semantics ofP is described by alabelled transition system
(LTS) defined in the standardSOSstyle by the set of rules of Table 1 (where, for the
sake of brevity, the symmetric rules for parallel composition and for the two choice
operators are not shown).

We recall below a result on theLTS of P that will be useful later on. Let us
denote the composition of two binary relationR1 and R2 by R1R2. For anys∈
(A ∪ {τ})∗, s = µ1 · · ·µn, define the relation

s−→ as the composition of relations
µ1−→ ·· · µn−→. We will often abbreviate∃Q : P

s−→Q asP
s−→.

Lemma 2.1. The labelled transition system ofP is finitely branching, that is, for
each P, the set{(µ,P′) | P µ−→ P′} is finite. Furthermore, for each P and s∈ (A ∪
{τ})∗, also the set{µ | P sµ−→} is finite.

act :
−

µ.P
µ−→ P

rec :
−

recx.P
τ−→ P[recx.P/x]

plus:
−

P⊕Q
τ−→ P

suma :
P

a−→ P′

P+Q
a−→ P′

sumτ :
P

τ−→ P′

P+Q
τ−→ P′+Q

hidea :
P

a−→ P′

P[a] τ−→ P′[a]
hideµ :

P
µ−→ P′

P[a]
µ−→ P′[a]

µ 6= a

parL :
P

a−→ P′, Q
a−→Q′

P ‖L Q
a−→ P′ ‖L Q′

a∈ L parµ :
P

µ−→ P′

P ‖L Q
µ−→ P′ ‖L Q

µ 6∈ L

Table 1:SOSrules forP .

2.2 Testing semantics

The idea underlyingtestingsemantics is that two processes should be considered
equivalent whenever they pass the same tests proposed by an external observer
(see [9, 10]). An “external observer” is any process running in parallel with the
given two, while “passing a test” means reaching a state where the observer can
fire a “success” action. Within the testing approach, one distinguishes between a
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mayand amustapproach, depending on whether one requires that proposed tests
may or must be passed by the observed processes. Informally, the may semantics
is meant to preserve safety properties of processes, while the must semantics is
meant to preserve liveness ones. The must variant, which will be considered in
the sequel, is by far more challenging, mainly because it takes into account both
the branching structure of processes and the notion ofdivergence. For technical
convenience, we shall rely on an alternative, observer-independent characterization
of this equivalence, given below. This definition is easily proved to coincide with
the original one (see e.g. [8, 10]).

Definition 2.2 (basic relations). Let P be a process, and let w range over A∗. We
define the following relations and sets

• ⇒def= ( τ−→)∗;

• a=⇒def=⇒ a−→⇒ for any a∈ A;

• w=⇒def= a1=⇒ . . .
an=⇒ for any w= a1 · · ·an ∈ A∗;

• I(P) def= {a | ∃Q : P
a=⇒Q};

• A(P,w) def= {I(P′) | P
w=⇒ P′}.

Furthermore, we define the following predicates

• P ⇓ (read as Pconverges) iff there is no infinite sequence ofτ-transitions
P

τ−→ τ−→ ·· · starting from P (otherwise P⇑ holds);

• P⇓w (read as Pconverges onw) iff for each prefix w′ of w, whenever P
w′=⇒

P′ then P′ ⇓ (otherwise P⇑ w holds).

Finally, let F,G⊆fin P f (A) be two finite families of finite sets, and let
S

F denote
∪X∈FX. Then

• F � G iff
S

F =
S

G and for each X∈ F there is Y∈ G such that Y⊆ X,
and vice-versa.

The setA(P,w) is also known as theacceptance set of P after w. If one thinks
of an “acceptance state” as a set of possible next actions a process is willing to
perform, thenA(P,w) represents the set of all possible acceptance states ofP after
performingw. Then the definition below requires that two equivalent processes
exhibit equivalent sets of acceptance states after performing the same (convergent)
w’s.

We first need a technical lemma, standard from the theory of testing equiva-
lence (see e.g. [10]).

Lemma 2.3. Let P be a process, and w∈ A∗. If P ⇓ w, then the setsA(P,w) and
{P′ | P w=⇒ P′} are finite.
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Figure 1: The processesP
def= a.b.nil+a.c.nil (left) andQ

def= a.(b.nil⊕c.nil) (right).

Definition 2.4 (must testing equivalence [9, 10]). Let P, Q be processes. We say
that they are(must) testing equivalent, and write P' Q, if for each w∈ A∗

(a) P⇓ w iff Q⇓ w, and

(b) P⇓ w impliesA(P,w)� A(Q,w).

Example 2.5. Let us consider the processes P
def= a.b.nil + a.c.nil and Q

def=
a.(b.nil⊕c.nil): the fragments of the transition system associated to the processes
are depicted in Figure 1.

Clearly, P ' Q. Note also that P and Q are notbisimilar in the sense of [17].

We record some useful facts about' in the proposition below (see [9, 10] for
a proof in the case ofCCS). A context C[·] is an open term where a single process
variablex may occur free;C[P] denotes the term obtained fromC[·] by replacingx
with a closed termP.

Proposition 2.6 (properties of ' ). Let P, Q be processes. If P' Q then
C[P] ' C[Q] holds for each context C[·]. Moreover,+ and⊕ are associative and
commutative with respect to' .

3 Coinduction on partial formal power series

This section presents a few definitions and results on formal power series, Moore
automata and the related coinduction principle. They are directly inspired by [21].
However, Rutten’s treatment is extended in order to take into accountpartially
definedformal power series.

3.1 Moore automata, homomorphisms and bisimulations

We first recall some notation on partial functions, before introducingpartial power
series. LetX,Y be sets. We denote byY⊥ the extension ofY with a new element
⊥, and we model apartial function fromX to Y as a total functionf : X → Y⊥,
writing f (x) ↑ if f (x) = ⊥, and f (x) ↓ otherwise. A functionf : X1

⊥×·· ·×Xn
⊥ →

Y⊥ is strict if f yields⊥ whenever one of its argument is⊥. For any function
f : X1×·· ·×Xn →Y⊥, we let f⊥ : X1

⊥×·· ·×Xn
⊥→Y⊥ denote thestrict extension
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of f , defined as expected. For any relationR⊆X×Y, we denote byR⊥ the relation
R∪{〈⊥,⊥〉}.

Definition 3.1 (partial Moore automaton). Let A, K be sets. A(partial) Moore au-
tomatonwith inputs in A and outputs in K is a pair〈S,(oS,δS)〉 consisting of a
set S ofstates, and of a pair of functions: anoutput functionoS : S→ K⊥ and a
transition functionδS : S×A→ S⊥, such that if oS(s) ↑, thenδS(s,a) ↑ for each
a∈ A.

Note that, in coalgebraic terms, a partial Moore automaton with inputs inA and
outputs inK is just a coalgebra of the set-valued functorS 7→ {⊥}+KT×(A→S⊥)
(see e.g. [15]). In words, each states the output function yields a (possibly unde-
fined) observationoS(s)∈K⊥, while for each stateswith a defined observation and
for each input symbola, the transition functionδS yields the (possibly undefined)
stateδS(s,a) reached fromsafter the consumption ofa. In the rest of the paper, we
shall often slightly abuse notation by denoting the set of states of an automatonS
by S itself.

For the sake of readability, and unless otherwise indicated, in the rest of the
section we letS, T be automata with inputs in setA and outputs in setK.

Definition 3.2 (homomorphism). A homomorphismbetween S and T is a func-
tion f : S→ T preserving output and transition functions, i.e., such that oS(s) =
oT( f (s)) and f⊥(δS(s,a)) = δT( f (s),a) for each s∈ S and a∈ A.

Hence, definendness is not only preserved, but also reflected by homomor-
phims (much in the spirit of closed homomorphims for partial algebras).

Definition 3.3 (bisimulation). A bisimulationis a relation R⊆ S×T preserving
output and transition functions, i.e., such that if〈s, t〉 ∈ R then oS(s) = oT(t) and
〈δS(s,a),δT(t,a)〉 ∈ R⊥ for each a∈ A.

Let S be an automaton, and let s,s′ ∈ S: s and s′ are bisimilar (denoted by
s∼ s′) if there exists a bisimulation R between S and itself, such that R contains
〈s,s′〉.

It is immediate to show that the relation∼ on S is itself a bisimulation. More-
over, since the diagonal relation is a bisimulation, and that bisimulations are closed
under union, then∼ is also an equivalence relation onS.

3.2 Formal power series, finality and coinduction

We define partial formal power series as functions with a prefix-closed domain.
More formally, we have the following definition:

Definition 3.4 (partial formal power series). Let A, K be sets. Apartial formal
power series(also partialFPS) on K and A is a functionσ : A∗→ K⊥, such that for
all words w∈A∗, if σ(w) ↑ thenσ(wa) ↑ for each a∈A. The set of all partialFPS’s
on K and A is denoted by K〈A〉.
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Let σ be aFPS in K〈A〉, and let a∈ A. The a-input derivative ofσ, writtenσa,
is the partialFPSdefined byσa(w) = σ(aw) for all words w∈ A∗.

More generally, the w-input derivativeof σ is defined byσw(w′) = σ(ww′), for
all words w′ ∈ A∗.

Let σ ∈ K〈A〉, and letw∈ A∗: thecoefficientof w with respect toσ is the value
σ(w); σ(ε) is called theconstantcoefficient of the series. Moreover, a seriesσ is
total if σ(w) ↓ for eachw∈ A∗. Of special interest is theFPSΩ yielding⊥ for all
words (modelling the everywhere undefined series).

Depending on the setK, coefficients bear different interpretations. For exam-
ple, if A= {X} andK is the set of real numbers, then a totalFPSrepresents a power
series in the usual sense (interpreting the wordX · · ·X, the elementX replicatedn
times, asXn). If A is any set, andK is the set of boolean values (i.e., true and false),
a totalFPSrepresents a subset ofA∗, hence, a language overA. There is no obvious
interpretation for non totalFPS’s in these cases. As we shall see, partiality is well
suited to represent divergence in processes.

Now, let us fix setsA andK. We recall below how to turn the set ofFPS’s into
an automaton that is final in the class of automata onA andK, and additionally
satisfies a coinduction principle, in the sense that over this automaton bisimilarity
coincides with the identity relation. We also take partiality into account.

Definition 3.5 (the automaton of partialFPS’s). LetM 〈K〈A〉〉 be the partial Moore
automaton with inputs in A and outputs inK given by the pair〈K〈A〉,(oM ,δM )〉,
where the output and transition functions are defined by oM (σ) = σ(ε) and
δM (σ,a) = σa for all σ ∈ K〈A〉 and a∈ A .

The proof of the following proposition is straightforward and goes along the
same lines of the corresponding result of [21].

Proposition 3.6(finality and coinduction). The automatonM 〈K〈A〉〉 satisfies the
coinduction principle: for all seriesσ,σ′ ∈K 〈A〉, if σ∼ σ′ thenσ = σ′.

Moreover,M 〈K 〈A〉〉 is final: for any automaton S with inputs in A and outputs
in K there exists a unique homomorphism l: S→ K 〈A〉, additionally satisfying
s∼ s′ in S iff l(s) = l(s′).

We will show in Section 5 that this final automaton can be equipped with an
algebraic structure that is well-suited for defining a denotational interpretation of
processes. The crucial point is that operators on the final automaton can be spec-
ified in a uniform and simple fashion as (unique) solutions ofbehavioural differ-
ential equations(BDE’s). The presentation of this construction is deferred after the
next section, where a suitable semiring for interpreting process will be introduced.

4 A semiring for testing equivalence

The main result of this section is that, for an appropriate choice of the setK, the
set ofCSPprocesses can be turned into a partial Moore automaton overK andA, in
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such a way that testing equivalence on the original transition system corresponds
to bisimulation on this automaton. This will yield a fully abstract semantics for
testing equivalence, in terms of the unique homomorphism from this automaton
into the final automaton of partialFPS’s. We will takeK to be the carrier of a suit-
ablesemiringK . The basic intuition is to use the semiring’s operation to interpret
the two fundamental forms of nondeterminism: sum will be used for interpreting
internal non-determinism, while product will be used for interpreting external non-
determinism.

4.1 The semiringKT

We give the general notion of semiring first.

Definition 4.1 (semirings). A (commutative, unitary) semiring is a five-tuple
K = 〈K,⊕K ,⊗K ,0K ,1K 〉 for a set K, elements0K ,1K ∈ K, and binary operators
⊕K ,⊗K : K×K → K making the triples〈K,⊕K ,0K 〉 and〈K,⊗K ,1K 〉 commuta-
tive monoids additionally satisfying

• x⊗K (y⊕K z) = (x⊗K y)⊕ (x⊗K z) for all x,y,z∈ K;

• 0K ⊗K x = 0K for all x ∈ K.

In the sequel, we shall drop the subscript _K when denoting semiring opera-
tions and constants if no confusion arises aboutK .

For automata with outputs on the carrier of a semiringK , relevant are theFPS’s
0, yielding 0 for all words, and1, with constant 1 and 0 elsewhere. We introduce
now a concept used in characterizations of testing equivalence,saturation[9, 10].
The rationale behind saturation, as stated in the lemma below, is turning the relation
� on families of sets into plain equality.

Definition 4.2 (saturated sets [9, 10]). Let V be a set and F a finite family of finite
subsets of V , i.e. F⊆fin ℘f (V). We say that F issaturatedif for all X ∈ F, whenever
there exists Y such that X⊆Y ⊆

S
F, then Y∈ F.

Thesaturationof F, writtenS(F), is the smallest saturated family of subsets of
V that contains F. The set of all saturated families on V is denoted byF (V).

Lemma 4.3. Let V be a set and F,G⊆fin ℘f (V). Then, F�G iff S(F) = S(G).

We can now turn the saturated families on the set of actionsA into a semiring,
as follows. The proof of the following proposition is straightforward and omitted
(see also the next subsection, where a more general situation is tackled).

Proposition 4.4(the semiringKT). The five-tupleKT
def= 〈F (A),⊕KT ,⊗KT , /0,{ /0}〉

is a semiring, for

• F⊕KT G
def= S(F ∪G);
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• F⊗KT G
def= S({X∪Y | X ∈ F,Y ∈G}).

Example 4.5. Let us consider

F = {{a}, {a,b,c}} and G= {{a}, {a,b}, {a,c}} .

It holds that F� G andS(F) = S(G) = {{a}, {a,b}, {a,c}{a,b,c}}. Let H =
{{b,c}}, which is saturated. ThenS(F)⊕KT H = S(F)∪H and S(F)⊗KT H =
{{a,b,c}}.

Another operator onKT we shall rely upon is the element-wise set difference,
that is, given a setY⊆ A and a familyF ⊆fin ℘f (A), the familyF÷Y is defined as
{X\Y | X ∈ F}. Note thatF÷Y is saturated ifY is.

4.2 A detour to tropical semirings

The semiring construction given above is an instance of a general construction,
where℘f (A) can be replaced by a generic idempotent commutative monoid. In
this subsection, we take a brief detour to illustrate this construction. The rest of
the paper does not depend on this subsection; however, the presentation may help
to convince the reader that alternative instantiations or generalizations of the pre-
sented approach are possible.

We will be mainly concerned withtropical semirings [19], that is, commutative
and unary semirings where the plus operation is idempotent(x⊕x = x).

Proposition 4.6 (power semiring). Let 〈M, ·,1〉 be a commutative monoid. Then,
the five-tuple〈℘f (M),⊕M,⊗M, /0,{1}〉 is a tropical semiring, for

• F⊕M G = F ∪G;

• F⊗M G = {X ·Y | X ∈ F,Y ∈G}.

The powerset construction is quite standard in formal languages theory, and
it can be further refined if the· operator is idempotent. In this case, exploiting a
general notion of saturation, one can give a semiring construction where the multi-
plication operation is idempotent. This is essential in process semantics, as the the
nondeterminism operators we intend to model are in turn idempotent, and is in fact
the "meta-reason" for introducing the notion of saturation. We take the necessary
steps below.

Lemma 4.7(ordered monoid). Let〈M, ·,1〉 be an idempotent commutative monoid.
Then, the relation≤, defined as F≤ G iff F ·G = G, is a sup semi-lattice, with1
as bottom andlub{F,G}= F ·G.

We say that a finite setF ⊆fin M is finitely generatedif the set{Y ∈ M | Y ≤
lubF} is finite. Note that the least upper bound always exists for finite sets, since
≤ is a sup semi-lattice.
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Definition 4.8 (saturation). Let 〈M, ·,1〉 be an idempotent commutative monoid.
Then, a finitely generated set F⊆fin M is saturatedif

• lubF ∈ F;

• ∀X ∈ F : ∀Y ∈M : X ≤Y ≤ lubF ⇒Y ∈ F.

Let F ⊆fin M be a finitely generated set. Thesaturationof F, written S(F),
is the smallest saturated set that contains F. The set of all saturated sets of M is
denoted byF (M).

Note that for a finitely generated setF ⊆fin M its saturationS(F) is also finite
and finitely generated.

Proposition 4.9(saturated semiring). Let 〈M, ·,1〉 be an idempotent commutative
monoid. Then, the five-tuple〈F (M),⊕s

M,⊗s
M, /0,{1}〉 is a tropical semiring, with

idempotent⊗s
M, for

• F⊕s
M G = S(F⊕M G);

• F⊗s
M G = S(F⊗M G).

Note that in general⊗M is not idempotent, while⊗s
M is so, since for any satu-

rated setF the condition lubF ∈ F implies thatF is closed under the composition
operator· of the monoid.

In order to prove Proposition 4.9, it is enough the following result, holding for
sets infsF = {X ∈ F |6 ∃Y ∈ F \{X} : Y ≤ X}.

Lemma 4.10.Let〈M, ·,1〉 be an idempotent commutative monoid, and let F,G⊆fin

M be finitely generated sets. ThenlubF = lubG and infsF = infsG iff S(F) =
S(G).

Explicitly, the condition infsF = infsG boils down to requiring that∀X ∈ F :
∃Y ∈ G : Y ≤ X, and viceversa. Note thatKT is the saturated semiring associated
to the idempotent commutative monoid〈℘f (A),∪, /0〉.

4.3 Consistent formal power series

In order to underline the relevance of the semiring, let us denote byKT〈A〉 the set
of all partial FPS’s with coefficients in the carrier ofKT . Our aim is to individu-
ate a subset (in fact, a sub-automaton) ofKT〈A〉 that may act as an interpretation
domain forCSP processes. To this purpose, we shall introduceconsistentseries.
The intuition is that, when considered as a state of the final automaton, a consistent
series encodes a state of a finitely branchingLTS. EachFPSσ is decorated with a
(saturated) acceptance set,o(σ) = σ(ε). In a consistentσ, this output characterizes
the next-step behaviour of the representedLTS.
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Let us introduce some terminology. For any seriesσ, we want to regard those
derivativesσa leading to a state with a 0 output value as being “null”. So, let us
define thesupport ofσ, written supp(σ), as the set of actions{a | σa 6= 0}.

The definition below requires that in all convergent states reachable fromσ, all
and only the actions in the support occur in its output (this condition implies that
at convergent states the support is finite). Note that theFPS0 is not, by definition,
consistent: its behaviour does not represent anyLTS (it might be rather viewed as a
form of deadlock).

Definition 4.11(consistent partialFPS’s). A partial FPSσ isconsistentif σ 6= 0and,
for any w∈ A∗ with σ(w) ↓ andσw 6= 0, it holds thatσw(ε) 6= /0 andsupp(σw) =
S

(σw(ε)). The set of consistentFPS’s is denoted byK c
T 〈A〉.

Example 4.12. The seriesσ = 1 is consistent, as well as the series defined by
σ(ε) = {{a}}, σa = 1 andσw = 0 for any w6∈ {ε,a}. In the latter case, note that if
we setσa = 0 the series would not be consistent, as we would havesupp(σ) = /0 6=
S

(σ(ε)) = {a}.

Remark 4.13(sub-automaton of consistentFPS’s). Let σ be a consistentFPS, and
let w∈ A∗. By the conditions imposed, ifσw(ε) = /0, thenσw = 0. Hence, whenever
σ(w) = σw(ε) = /0 we haveσww′ = 0 for any w′ ∈A∗. From this fact it easily follows
that the setK c

T 〈A〉∪{0} is closed under derivatives, in other words it forms a sub-
automaton ofKT〈A〉.

An alternative characterisation of this sub-automaton could be obtained along
the following lines. First, note the existence of an endofunctorS on the cate-
gory Set, mapping a set A to the set of saturated families of finite subsets of
A. Then, a consistent power series could be seen as a coalgebra of the functor
〈oS,λ(δS)〉 : S→ (S(A)× (A→ S⊥))⊥ by requiring for all s∈ S with oS(s) ↓ that
dom(λ(δS)(s)) =

S
oS(s). Hence, the sub-automatonK c

T 〈A〉∪{0} could be char-
acterized as the final coalgebra of that functor satisfying the consistency require-
ment. We do not further elaborate on this remark, since it does not fall in the focus
of our paper.

As an easy consequence of the the above definition and considerations, we
record the following fact for future use.

Lemma 4.14. For σ a consistentFPSand a∈ A, one and only one of the following
three cases holds: (i) there exists n such thatσak = 0 for each k≥ n; (ii) there exists
n such thatσak = Ω for each k≥ n; (iii) for each n≥ 0, σan 6= 0, Ω.

4.4 A Moore automaton for testing

The next step is turning the set of processesP into an automaton with inputs inA
and outputs in (the carrier of)KT . In view of dealing with the interpretation of open
terms, we find it convenient to consider a larger set thanP , including constants
symbols for all consistentFPS’s.

12



Definition 4.15(extendedCSP). LetP e be the set of all closed terms built fromCSP

operators (Section 2) plus a set of distinct constantsσ, one for eachσ ∈K c
T 〈A〉.

Clearly, P ⊆ P e. In order to extend the transition system ofP to P e, we
introduce some additional notation. LetD = {P1,P2, . . . ,Pn} ⊆fin P e. If D 6= /0,
we let

L
P∈D P denote the processP1⊕P2⊕ ·· · ⊕Pn ∈ P e, with the summands

Pi arranged in some fixed order. For anyD, we let ΣP∈DP denote the process
P1 + P2 + · · ·+ Pn ∈ P e, with the proviso that ifD = /0 then this term denotes the
processnil. The transition system defined in Table 1 is extended toP e via a set of
CCS-style recursive definitions. Specifically, we fix a set of equations, one for each
constantσ ∈ P e, as follows

σ def=
{ L

L∈σ(ε) Σa∈La.σa if σ(ε) ↓
recx.τ.x if σ(ε) ↑

and we add the following operational rule

const:
σ def= P, P

µ−→ P′

σ µ−→ P′
.

Note that the above definition is well-given, sinceσ(ε) 6= /0, andσa is consis-
tent for eacha∈ supp(σ) =

S
(σ(ε)). The extended transition system is still finitely

branching, since consistentFPS’s have finite support: in particular Lemma 2.1 car-
ries over toP e. Also note that testing equivalence onP e conservatively extends
testing equivalence onP and it is easily proven to be still a congruence: Proposi-
tion 2.6 carries over toP e.

We build now a Moore automaton out ofP e. We first note that Lemma 2.3
carries overP e, hence, that for anyP ∈ P e and anyw ∈ A∗ such thatP ⇓ w, the
setsA(P,w) and{P′| P

w=⇒ P′} are finite. In the definition below, we use a new
constant0 as a “sink” state of the automaton. From now onward, we stipulate that
L

D is 0 if D = /0.

Definition 4.16(P e as a Moore automaton). The Moore automatonAut is the pair
〈P e∪{0},(o,δ)〉, whereδ and o are defined as follows. Let a∈A. First, let o(0) = /0
andδ(0,a) = 0; then, for P6= 0

o(P) def=
{

S(A(P,ε)) if P ⇓
⊥ if P ⇑

δ(P,a) def=
{ L

{Q|P a=⇒ Q} if P ⇓ a
⊥ if P ⇑ a .

In the sequel, we shall usePa be a shorthand forδ(P,a), for anyP in Aut and
a∈A. More generally,Pw will denote thew-derivative ofP in Aut. Our next task is
to show that bisimilarity on this automaton precisely captures testing equivalence.
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Proposition 4.17(testing vs. bisimulation). Let P,Q ∈ P e. Then, P' Q if and
only if P∼Q in Aut.

PROOF: The proof rests upon the following equivalences, whose verification is
straightforward. For anya such thatPa 6∈ {0,⊥} and anyw∈ A∗

1. P⇓ aw iff Pa ⇓ w

2. P⇓ aw impliesA(P,aw)� A(Pa,w).

We only show thatP ' Q impliesP∼ Q in Aut, as the other direction is easier.

Hence, it suffices to prove that'0 def= ' ∪{〈0,0〉} is a bisimulation onAut.
Let P andQ be such thatP ' Q. According to the definition of bisimulation, it

will suffice to show that (a)o(P) = o(Q) and that (b)Pa'0
⊥ Qa, for eacha∈A. The

proof is trivial if P⇑, so let us assume thatP⇓. Fact (a) is a direct consequence of
the definitions ofo(·) and of Lemma 4.3. Concerning (b), it trivially follows from
the definition of'0 if P ⇑ a or if Pa = 0 (in the latter case, it must necessarily be
Qa = 0, and vice-versa, i.e.a /∈ I(P) = I(Q)). So let us assume thatPa, Qa 6= 0
and thatP ⇓ a, hencePa, Qa 6= ⊥. Let us suppose thatPa ⇓ w for somew. We
have to show that (i)Qa ⇓ w and that (ii)A(Pa,w)� A(Qa,w). But (i) and (ii) are
consequences ofP ' Q and of facts (1) and (2), respectively, stated above.2

Let lT be the unique homomorphismAut → M 〈KT〈A〉〉 induced by finality
(Proposition 3.6) and let[[·]] denote its restriction toP e.

Corollary 4.18 (full abstraction). The mapping[[·]] : P e→K c
T 〈A〉 is fully abstract

for testing equivalence onP e, i.e., P' Q if and only if[[P]] = [[Q]].

PROOF: First, note thatAut ⊇ P e and thatlT(P e) ⊆ K c
T 〈A〉 (the latter a con-

sequence of the definition of homomorphism). Next, the coinduction principle
(Proposition 3.6) and Proposition 4.17 ensure that[[·]] is fully abstract for testing
equivalence, hence the thesis. 2

5 A compositionality theorem

The next step is to show that the final automatonM 〈KT〈A〉〉 can be equipped with
an algebraic structure which is well suited to interpret processes. We also show how
to define least fixpoints to interpret recursion. Next, we prove that the mapping[[·]]
defined in the previous section preserves this structure. In other words,[[·]] yields a
compositional denotational semantics.

5.1 Algebraic operators

A behavioural differential equation (BDE) specifies a seriesσ by means of an initial
condition (the value ofσ(ε)) and a condition on its input derivatives (theFPS’s σa,
for eacha∈ A). We can state this as a general definition, as follows.
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Definition 5.1 (behavioural differential equations). A behavioural differential
equationis a given by an initial conditionσ(ε) = k (k∈ K ) and by a set of equa-
tions on input derivatives of the formσa = f (a,σa,σ), one for each a∈ A.

For example, the conditionsσ(ε) = 1 andσa = σ (for eacha) define aBDE

whose unique solution is theFPSthat associates 1 to every word inA∗. In general,
the coinduction principle on the final automatonM 〈KT〈A〉〉 allows us to show the
existence and uniqueness of the solution of aBDE. In particular,BDE’s can be used
as a means to defining operators onKT〈A〉 in an elegant and uniform fashion.

Table 2 displays theBDE’s defining a set of operators onK c
T 〈A〉, clearly in-

spired by theCSP operators. In fact, by abuse of notation, we shall use symbols
drawn fromCSP syntax to denote some of these operators. The equations in Ta-
ble 2 deserve some explanation, but let us introduce the relevant notation first. For
a finite setD = {σ1, . . . ,σn} of FPS’s, let

L
D denoteσ1⊕·· ·⊕σn, with the sum-

mands arranged in some fixed order, and stipulating that
L

D is 0 if D = /0.
First, note the form of the derivative for the⊗ operator, intended for modelling

of external nondeterminism+, which is reminiscent of theCSP law a.P+ a.Q '
a.(P⊕Q). In the equation for the hiding operator[b](σ), the totally undefined series
Ω models divergence, which may arise either because there is a finite sequence of
b actions leadingσ to a divergent state, or becauseσ has an infinite sequence ofb
actions. As noted in Lemma 4.14, either of these two cases arises precisely when
there is no sequence ofb’s leading to0. Note that all the involved sums (

L
...) are

finite under the side condition thatσb j = 0, given thatσb j w = 0 for eachw∈ A∗.
Finally, the constant coefficient of the parallel compositionσ ‖L ρ is the product of
σ andρ’s constants, but synchronized actions (inL) that are not in the support of
both are subtracted away from the result.

Theorem 5.2(operators onK c
T 〈A〉 via BDE’s). OnK c

T 〈A〉, there exist unique unary
operators[b] and b. (for each b∈ A) and unique binary operators⊕, ⊗, ‖L (for
each L⊆fin A), satisfying theBDE’s of Table 2, for allσ,ρ ∈K c

T 〈A〉 and a∈ A.
Moreover,⊕ and⊗ are associative and commutative.

PROOF: Consider the unique homomorphismlT : Aut → KT〈A〉. We define the

operators inK c
T 〈A〉 we are after as follows:b.(σ) def= lT(b.σ), σ⊕ρ def= lT(σ⊕ρ),

σ⊗ ρ def= lT(σ + ρ), [b](σ) def= lT(σ[b]) and finallyσ ‖L ρ def= lT(σ ‖L ρ) (note that
symbols on the left-hand side denote operators onFPS’s while symbols on the right-
hand side denote syntactic operators of the calculus). It is an easy consequence of
the homomorphism properties oflT that lT(Aut)⊆ K c

T 〈A〉∪{0} and that the only
state ofAut mapped to0 is 0: thus the above operators are well-defined.

Also note that the additional properties of⊕ and⊗ on FPS’s are a direct con-
sequence of associativity and commutativity of the operators⊕ and+ on P e with
respect to' (for associativity, also the lawσ ∼ lT(σ) is needed, which is in turn
a consequence of fact (1) stated below and of the coinduction principle).

To prove that the given operators satisfy theBDE’s in Table 2, one first shows
that the equations hold inAut when replacing eachσ with σ, each operator onFPS’s
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(b.(σ))a =
{

σ if a = b
0 otherwise

with (b.(σ))(ε) = {{b}}

(σ⊕ρ)a = σa⊕ρa with (σ⊕ρ)(ε) = σ(ε)⊕K ρ(ε)
(σ⊗ρ)a = σa⊕ρa with (σ⊗ρ)(ε) = σ(ε)⊗K ρ(ε)

([b](σ))a =


0 if a = b and∃ j : σb j = 0
L

i≥0,σbi a 6=0[b](σbia) if a 6= b and∃ j : σb j = 0
Ω otherwise

with ([b](σ))(ε) =
{ L

K , i≥0 σ(bi)÷{b} if ∃ j : σb j = 0
⊥ otherwise

(σ ‖L ρ)a =
{

σa ‖L ρa if a∈ L
(σa ‖L ρ)⊕ (σ ‖L ρa) otherwise

with (σ ‖L ρ)(ε) = (σ(ε)⊗K ρ(ε))÷ (L\ (supp(σ)∩supp(ρ)))

NB: ⊕K , ⊗K and÷ denote thestrict extensions of the semiring operations ofKT .
By convention, in theRHS’s of the equations we assume thatσ⊕0 = 0⊕σ = σ;
and thatσ||Lρ = 0 if either σ or ρ is 0.

Table 2: Behavioural differential equations onK c
T 〈A〉.

with the corresponding syntactic operator and equality on series with bisimilarity.
Then it will be a consequence of the coinduction principle that the equations hold
onFPS’s as well. The proof that the equations hold inAut is based on the following,
easily shown facts about consistentFPS’s. Below, we assumeσ,ρ ∈ K c

T 〈A〉∪ {0}
and stipulate that for eachw∈ A∗, 0 6 w=⇒, 0⇓ w andA(0,w) = /0.

(1) lT(σ) = σ (3) σ ⇑ ⇔ σ = Ω
(2) σw ∼ σw (4) σ ⇓ ⇒ σ(ε) = A(σ,ε)

Moreover, assumingσ ⇓ w, also the facts below hold.

(5) σ w=⇒ ⇔ (σw 6∼ 0) (6) σw ∼
L
{P|σ w=⇒ P}

(7) A(σ,w) = A(σw,ε)

Below, using the facts listed above, we cover in detail theBDE for the hiding oper-
ator.
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Let us consider the case when there existsj ≥ 0 such thatσb j = 0, as the other
case is more easily dealt with. First, note thatσ[b] ⇓. Indeed, by theSOSrules for
hiding,σ[b]⇑ iff either there existsi such thatσbi ∼Ω, orσ has an infinite sequence

of
b=⇒ actions; in the first case, one would have by (2) and (3) above thatσbi = Ω,

hence, by the properties of consistentFPS’s, it could not existj with σb j = 0 (see
Lemma 4.14); in the second case, one would have from (5) above that eitherσ ⇑ bk

for somek, henceσ[b] ⇑, or thatσbk 6∼ 0 for all k, hence by (1) and (2)σbk 6= 0 for
all k, contradicting againσb j = 0.

The next step is to show separately that

(i) o(σ[b]) =
(L

K ,i≥0 σbi (ε)
)
÷{b}, and

(ii) (σ[b])a ∼
L

i≥0,σbi a 6=0(σbia)[b] for a 6= b

(the casea = b is more easily dealt with). Concerning (i), by definitiono(σ[b]) =
S(L), whereL = A(σ[b],ε). Now, we have:

L = (
S

i≥0{I(P)|σ bi

=⇒ P})÷{b} (by the sos rules for hiding)
= (

S
i≥0 A(σ,bi))÷{b} (by def. ofA(·, ·))

= (
S

i≥0 A(σbi ,ε))÷{b} (by (7) above; note thatσbi ⇓)
= (

S
i≥0 σbi (ε))÷{b} (by (4) above)

from which (i) follows by definition of⊕ on the semiringKT . Concerning (ii), if
σ[b] ⇑ a, then clearly the two sides of the equation are both bisimilar toΩ. Thus let
us assumeσ[b] ⇓ a. Then we have

(σ[b])a ∼
L

i≥0,σbi a 6=0{P[b]|σ bia=⇒ P} (by the sos rules for hiding)

∼ (
L

i≥0,σbi a 6=0{P|σ
bia=⇒ P})[b] (by the law

L
j(Q j [b])∼ (

L
j Q j)[b])

∼ (
L

i≥0,σbi a 6=0 σbia)[b] (by (6) above; note thatσbi ⇓ a)
∼

L
i≥0,σbi a 6=0 σbia[b] (by the law

L
j(Q j [b])∼ (

L
j Q j)[b])

which proves (ii) for this case.
Now, from (i) and the homomorphism property oflT , the equality for

([b](σ))(ε) immediately follows. Let us consider now the equality for([b](σ))a.
Using the already remarked fact thatρ ∼ lT(ρ), for each consistentρ, and the fact

that ' , hence∼ is a congruence overP e, we have the following equalities

([b](σ))a = (lT(σ[b]))a (by definition of[b](·))
= lT(σ[b]a) (by homomorphism oflT(·))
= lT(

L
i≥0,σbi a 6=0 σbia[b]) (by (ii) above and coinduction)

= lT(
L

i≥0,σbi a 6=0 lT(σbia[b])) (by ρ∼ lT(ρ), congr. and coind.)

=
L

i≥0,σbi a 6=0 lT(σbia[b]) (by definition of⊕ overFPS’s)
=
L

i≥0,σbi a 6=0 lT(σbia[b]) (by (2) above and coinduction)
=
L

i≥0,σbi a 6=0 [b](σbia) (by definition of[b](·)).
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Concerning uniqueness, suppose that there are operators onFPS’s b′.(·), ⊕′, ⊗′

and so on satisfying the givenBDE’s. It is easy to prove, by exhibiting a suitable
bisimulation relation, thatb.(σ)∼ b′., σ⊗ρ ∼ σ⊗′ ρ, σ ‖L ρ ∼ σ ‖′L ρ, and so on,
for eachσ,ρ. Hence, by the coinduction principle (Proposition 3.6), it follows that
b′. = b., ‖′L=‖L,⊗′ =⊗ and so on. 2

5.2 The denotational mapping

In order to model recursion, we have to prove the existence of fixpoints inK c
T 〈A〉.

First, consider the partial ordering onK c
T 〈A〉 given by inclusion, i.e., define:σ ⊆ τ

iff for eachw∈ A∗, σ(w) ↓ impliesσ(w) = τ(w). We use⊆ as a criterion to select
minimal solutions to recursive equations onK c

T 〈A〉. In order to do so, we need
a coinductive notion ofsimulation. The latter can be given in general terms as
follows.

Definition 5.3 (simulation). Let S an automaton with inputs in A and outputs inK .
A simulationon S is a relation R⊆S×S preserving output and transition functions
whenever defined, i.e., such that if〈s, t〉 ∈R then oS(s) ↓ implies oS(s) = oS(t), and
δS(s,a) ↓ implies〈δS(s,a),δS(t,a)〉 ∈ R for each a∈ A.

Let � denote the greatest simulation relation overS: it is a preorder onSand
the coinduction principle carries over to simulation. More precisely, we have the
following principle, which is valid for any semiringK , and whose proof mimics
that for bisimulation, as stated in Proposition 3.6.

Proposition 5.4 (coinduction principle for simulation). Let S be a partial Moore
automaton with inputs in A and outputs inK . The unique homomorphism l from S
to the final automaton onK 〈A〉 (see Proposition 3.6) transforms� into ⊆ , that is,
s� t in S iff l(s) ⊆ l(t) in K 〈A〉.

Giving semantics to recursive terms is usually accomplished by taking open
terms into account via environments. Although this would be technically possible
in our case, we prefer to take advantage of the extended syntax ofP e and dispense
with environments. Informally, we want to internalize environments by regarding
[[P]]E, whereE is the environments mapping ˜x to σ̃ component-wise, as[[P[σ̃/x̃]]].

In the sequel, we writeP[x] to denote an openP e term where only variable
x may occur free, and writeP[Q] for P[Q/x], for any Q. The proposition below
proves the existence of least fixpoints inK c

T 〈A〉, for mappings that correspond to
denotations of open processesP[x]. The key technical point is represented by the
following lemma, proven in Appendix A. Important ingredients of its proof are a
simulation up to∼ technique in the vein of [23], and the use of ordinary strong
bisimulation [17] for bounding sequences ofτ-transitions, when proving conver-
gence of processes.

Lemma 5.5. Let P[x] be an open term and Q a process inP e. In Aut, we have that
if Q∼ P[Q] then recx.P�Q.
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Proposition 5.6 (fixpoints). Let P[x] be an openP e term, and let F: K c
T 〈A〉 →

K c
T 〈A〉 be the function defined as F(σ) = [[P[σ]]] for eachσ ∈ K c

T 〈A〉. Then F has
a least (with respect to⊆ ) fixpointσ0, and it holds thatσ0 = [[recx.P]].

PROOF: Let σ0
def= [[recx.P]]. It is easy to see thatσ0 is a fixpoint. Indeed, first note

thatσ0 ∼ recx.P (a consequence of the equality[[σ]] = σ, holding for eachσ – see
proof of Theorem 5.2 – and of the full abstraction of[[·]]). Using this fact, and that
P[recx.P]∼ recx.P (immediate from theSOSrule forrec), that testing equivalence is
a congruence and that the coinduction principle holds for bisimulation, one obtains
F(σ0) = [[P[σ0]]] = [[P[recx.P]]] = [[recx.P]] = σ0.

The difficult part is showing thatσ0 is the leastfixpoint. First, given any fix-
pointσ of F , since[[σ]] = σ = F(σ) = [[P[σ]]], we have by the coinduction principle
for bisimulation thatσ ∼ P[σ]. Hence by Lemma 5.5recx.P� σ, and by the coin-
duction principle for simulation (Proposition 5.4) the thesis follows. 2

We denote by fix(F) the least fixpoint of anyF : K c
T 〈A〉 → K c

T 〈A〉, whenever
this fixpoint exists.

Example 5.7. Let us consider the open term P[x] = a.(x[a]). The least fixpoint of
the corresponding mapping onK c

T 〈A〉 is the[[·]]-image of the process recx.P, that is
a.(Ω). There are also non-minimal fixpoints for this mapping, like e.g. (the image
of) the process Q= a.b.nil. Indeed, it is easy to check that recx.P�Q.

Theorem 5.8(compositionality). The mapping[[·]] : P e → K c
T 〈A〉 is a morphism

with respect to the operators ofCSPsyntax and the operators onK c
T 〈A〉 defined in

Table 2. In particular, the equalities in Table 3 hold.

[[σ]] = σ [[nil]] = 1 [[a.P]] = a.([[P]]) [[τ.P]] = [[P]]

[[P⊕Q]] = [[P]]⊕ [[Q]] [[P+Q]] = [[P]]⊗ [[Q]]

[[P[a]]] = [a]([[P]]) [[P ‖L Q]] = [[P]] ‖L [[Q]] [[recx.P]] = fix(λσ.[[P[σ/x]]])

Table 3: The denotational equalities.

PROOF: The first equation has already been remarked (see proof of Theorem 5.2).
The equation for1 is just an instance of the first one. The last equation follows from
Proposition 5.6. The remaining equations are easy consequences of the coinduction
principle and of the definition of the operators (as seen in proof of Theorem 5.2).
Here we show only one case, the parallel operator‖L, the others being the same
modulo renaming of the involved operator. From the already noted factP∼ lT(P)
for eachP, and congruence, it followsP ‖L Q∼ lT(P) ‖L lT(Q). By coinduction
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then:[[P ‖L Q]] = [[lT(P) ‖L lT(Q)]] = lT(P) ‖L lT(Q) (by definition of‖L on FPS’s,
see proof of Theorem 5.2). But the latter is the same as[[P]] ‖L [[Q]].

2

Example 5.9.Let us consider the processes P= a.b.nil+a.c.nil and Q= a.(b.nil⊕
c.nil), and their denotations inK c

T 〈A〉. Dropping a few parentheses, we have[[P]] =
a.b.1⊗a.c.1 and [[Q]] = a.(b.1⊕ c.1). Note now that the following principle can
be proven by coinduction: ifσ ∈ K c

T 〈A〉 thenσ = 〈σ(ε)〉⊕
N

a∈supp(σ) a.σa (where
〈k〉 denotes theFPSwith constant k and0 elsewhere). By applying this principle,
and using theBDE’s for ⊕ and⊗, it is immediate to check that[[P]] = 〈{{a}}〉⊕
a.(b.1⊕c.1) = [[Q]].

6 Discussion: acceptance trees andFPS’s

The classical fully abstract denotational model of must testing is described in [10]
in terms ofacceptance trees(AT ’s).

There is a close analogy betweenAT ’s andFPS’s. Essentially, a finiteAT is a
deterministic tree with arcs labelled by actions, and nodes labelled by elements of
KT , with some further consistency and convergence requirements. Indeed, it is easy
to see that a finiteAT can always be obtained as the unfolding of a suitable consis-
tentFPS. In [10], the set of finiteAT ’s partially ordered by a relation that reflects the
must preorderon processes is turned into an algebraicCPO by ideal completion.
The resulting domain is then used to interpret the operators of a process calculus. In
particular, continuity arguments are used to prove existence of least fixpoints when
assigning meaning to recursive terms. Within our approach, one need not to deal
with continuity arguments explicitly, as the existence of a denotational mapping is
guaranteed by the automaton structure ofFPS’s.

The analogy between the algebraic tree model of [10] and our coalgebraic
model is not a coincidence: after Barr [3], it is known that final coalgebras can
often be characterized as Cauchy completions of the corresponding initial alge-
bras. We can make the analogy betweenFPS’s and trees more specific follow-
ing [2]. A Moore automaton can be considered as a coalgebra of the functor
S 7→ {⊥}+ KT × (A→ S⊥), which is ω-continuous. The initial algebra for this
functor is the set of finite, non-empty trees, with leaves labelled by⊥, nodes la-
belled by elements ofKT and arcs labelled by elements inA. Accordingly, the
corresponding final coalgebra is the set of all infinite trees, equipped with the par-
tial order induced by the operation of replacing subtrees with⊥-leaves. This partial
order reflects the simulation preorder we have used in our definition of the fixpoint
operator; overFPS’s, the two coincide.

So far for the analogies. Now, it is worth to notice that the simulation preorder
we consider here is strictly finer than the must preorder of [10], despite the fact
that in both cases the kernel coincides with the testing equivalence'. In the must
preorder, one also takes advantage of a preorder on acceptance sets whose kernel is
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the relation�. For example, in the must preorder one has thata.nil⊕b.nil is smaller
thana.nil, which is not true in the simulation preorder. We further elaborate on this
point in the concluding section.

7 Extensions

We outline two extensions of the results presented in the previous sections. We
shall consider another well-known calculus and an alternative semantics.

7.1 The Calculus of Communicating Systems

The syntax of Milner’CCS (actually, of its tau-less variant, see [10]) is obtained
from CSP’s by replacing the operators||L and [a] with parallel composition| and
restriction\a, respectively. Moreover, an involution· : A→A is assumed on visible
actions, i.e., a bijection such that it does not coincide with identity anda = a; this
function extends toA∗ as expected. The new operational rules are

par :
P

µ−→ P′

P|Q µ−→ P′|Q
com:

P
a−→ P′, Q

a−→Q′

P|Q τ−→ P′|Q′
res:

P
µ−→ P′, µ 6= a, a

P\a µ−→ P′\a

(symmetric rule forpar not shown). The definition of must testing and of theAut
automaton remain formally unchanged. ConcerningBDE’s, the equations for||L
and[a] are substituted with the following

((σ)\b)a =


0 if b∈ {a,a} andσ 6= Ω
(σa)\b if b /∈ {a,a} andσ 6= Ω
Ω otherwise

with ((σ)\b)(ε) = σ(ε)÷{b}

(σ|ρ)a =
{

Ω if ∀k≥ 0∃w : |w|= k andσw, ρw 6= 0
L

w:σw,ρw 6=0 (σwa|ρw)⊕ (σw|ρwa) otherwise

with (σ|ρ)(ε) = σ(ε)⊗K ρ(ε) .

It is a matter of a routine check to verify that our results on full abstraction for
CSPcarry over to this calculus.

7.2 Trace semantics

Two CSPprocessesP andQ areconvergent-trace equivalent, written P'ctr Q, if
for eachw∈ A∗

• P⇓ w iff Q⇓ w, and
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• P
w=⇒ iff Q

w=⇒.

This semantics corresponds to language equivalence on convergent traces. We ob-

tain a fully abstract model for this semantics by taking the semiringKctr
def= {0,1},

i.e., the boolean semiring.
The definition of Moore automaton for convergent trace equivalence is given

by changing the clause foro(·) in Definition 4.16 as follows: leto(0) = 0, and for
P 6= 0

o(P) def=
{

1 if P⇓
⊥ if P⇑ .

Concerning theBDE’s for CSP, we need only to change the initial conditions of the
equations forb. and||L by setting(b.(σ))(ε) = 1 and(σ||Lρ)(ε) = σ(ε)⊗K ρ(ε);
the other equations listed in Table 2 remain unchanged. We note that results on
coalgebraic characterization of trace semantics are well-known (see the concluding
section).

8 Conclusions and related work

The paper proposes a coinductive denotational semantics for testing equivalence,
building on Rutten’s work on the coalgebraic presentation of formal power series.
Although results in this vein are known for trace semantics (see below), we are not
aware of previous work concerning branching-time semantics, like must testing.
More generally, we are not aware of other coalgebraic presentations giving a full
account of a nontrivial process calculus, including those aspects related to invisible
actions and divergence.

We believe that our characterization of the testing model viaFPS’s suggests
a methodology – whose core lies in the definition of operators viaBDE’s and in
the choice of an appropriate semiring – for different equivalences and/or process
calculi. Some extensions have been outlined in the paper. It would be interesting to
see how smoothly the present approach carries over to name passing-calculi, like
the π-calculus [18]: we plan to make this the subject of a further study. Dually,
it would be interesting to see if any sensible semantics or language extensions are
suggested by a domain ofFPS’s itself, for appropriate choices of the semiring. As
an example, with our semiringKT , the presence of the series0 suggests inclusion
of adeadlockoperator in the language.

The relationship between the algebraicAT model of [10] and our model also de-
serves further consideration. In particular, one wonders precisely how that model
can be cast into the present coalgebraic setting. As hinted in Section 6, theAT

model can be obtained by ideal completion of a partial order that reflects the must
preorder on processes. With reference to Definition 5.3, the must preorder can be
phrased on Moore automata overKT by changing the requirement on outputs into
“oS(s) ↓ impliesoS(t)⊆ oS(s)”. It is a matter of further consideration if the corre-
spondence between the order imposed on trees (hence, onFPS’s) by simulation and
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the order imposed by the algebra/coalgebra duality (in the sense of Adámek [2])
can be extended. We also note that the must preorder induces an order on the func-
tor of the Moore automaton, as defined in [12], in principle making it amenable to
the analysis proposed there on the algebraicCPOstructure of final coalgebras.

As a further line of research, one would like to consider if the coalgebraic logic
machinery [15] gives rise to interesting modal logics for processes when instanti-
ated to the present setting.

Concerning related work, most related to ours appears to be a paper by Cleave-
land and Hennessy [5]. They present a bisimulation-like characterization of test-
ing equivalence, but do not work a denotational model out of that. The work
of Wolter [25] shares some similarities with our proposal; the considered model
is the class of partial nondeterministic automata corresponding to the functor
S 7→ P (P (A))× (A →℘f (S)⊥). Differently from our presentation usingBDE’s,
the denotational mapping is obtained by resorting to explicit constructions on au-
tomata (with some syntactic limitations). The proposed model fails to achieve full
abstraction, due to certain features connected to both nondeterminism (lack of sat-
uration) and internal actions (hiding).

Concerning coalgebraic characterizations of other process semantics, we are
aware of a few works on trace semantics, a thread initiated by Power and Turi
in [20], and more recently considered also in [13, 16]. Our work is similar in spirit
to theirs. However, differently from these contributions, we exploit the concrete,
set-theoretic setting ofFPS’s, partly motivated by our dealing with must testing,
which is more challenging than trace equivalence. The first application of the fi-
nality principle to concurrency can be found in Aczel’s book on non well-founded
sets [1]. In fact, this work can be considered as the root of most of the present day
interest in coalgebraic methods in semantics.

More generally, the search of coinductive characterization for those equiva-
lences belonging to the so-called van Glabbeek spectrum, as started in [7], appears
to be a promising area of research.

Loosely related to ours, a strong thread of research has focused on the exten-
sion and generalization of finality results for so-calledbialgebras, broadly search-
ing whenever the format of the inference rules defining the operational semantics
of a calculus ensures that the corresponding final coalgebra semantics preserves
the operators of the calculus. The reader is referred to e.g. [6, 24] and, as far as
deterministic automata and the semiring monad are concerned, to [14].
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A Proof of Lemma 5.5

The main result of the section is Proposition A.6, from which the wanted lemma
follows as a corollary. For its proof, we need a few additional definitions and tech-
nical results. In what follows, unless otherwise stated, we considerP e processes
and contexts. We also consider a new labelα /∈ A∪{τ}, which will serve as a fresh
visible action, for use in the definition below; we abbreviateα.nil asα. We recall
the (somehow standard) definitions of guarded context and convergence ink steps.

Definition A.1. Let C[·] be a context, P be a process and k≥ 0. We say that:

• C[·] is k-guardedif whenever C[α] sα−→, with s∈ (A∪{τ})∗, then|s| ≥ k;

• P converges withink steps, written P⇓k, if whenever P
τi

−→ then i≤ k;

• P converges alonga within k steps(a∈A), written P⇓k a, if whenever P
τiaτ j

−→
then i+ j +1≤ k.

Note thatP⇓ if and only if P⇓k for somek, by virtue of the finite-branching-
ness of theLTS (Lemma 2.1) and of König’s Lemma. A similar remark applies to
the other pair of predicates,P⇓ a andP⇓k a. The next two lemmas establish some
basic properties of guarded contexts. In particular, Lemma A.3 asserts roughly that,
whenC[·] is "sufficiently guarded", then whateverP is plugged intoC[·], P plays
no role in the next-step behaviour ofC[P].

Lemma A.2. Let C[·] be k-guarded and suppose C[P] s−→ R, with s∈ (A∪{τ})∗
and |s| ≤ k. Then there is a context C′[·] such that R= C′[P] and, for each Q,
C[Q] s−→C′[Q].

PROOF: An easy induction on|s| proves the stronger statement additionally re-
quiring thatC′[·] be (k− |s|)-guarded. The base cases= µ is in turn a transition
induction onC[P]

µ−→ R. 2

Lemma A.3. Let C[·] be k+1-guarded. Then

1. there is F∈KT such that for each P with C[P] ⇓k, o(C[P]) = F;

2. let a∈ A; there is C′[·] such that for each P with C[P] ⇓k a, (C[P])a ∼C′[P]
(possibly, C′[·] = 0).

PROOF: Both assertions are easy consequences of Lemma A.2. As an example, we
check 2. Consider the set of contexts

C
def= {Ci [·] |∃s∈ (A∪{τ})∗, |s| ≤ k such that∀Q : C[Q] s−→Ci [Q]} .

The setC is finite, by the finite-branching-ness of theLTS. Take anyP such that
C[P] ⇓k a and supposeC[P] a=⇒P′, i.e.C[P] s−→P′ for somes= τl aτm. By C[P] ⇓k
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a, it must be|s| ≤ k. Hence, by Lemma A.2,P′ = C′′[P], for someC′′[·]; moreover
C′′[·] must be inC, again by Lemma A.2 and by definition ofC. On the other hand,
for anyCi [·] ∈ C it holdsC[P] a=⇒ Ci [P], again by definition. So we have shown

that{P′|C[P] a=⇒ P′}= {Ci [P] |Ci [·] ∈ C}. Then, takeC′[·] def=
L

Ci [·]∈CCi [·]. 2

The next definition introduces another ingredient for the proof, a useful up-to
technique. The only difference from the definition of simulation is that the con-
dition on the derivatives "〈δS(s,a),δS(t,a)〉 ∈ R" is replaced here by the weaker
"〈δS(s,a),δS(t,a)〉 ∈∼R∼" (recall that we denote composition of binary relations
by juxtaposition).

Definition A.4 (simulation up to bisimulation). Let S an automaton with inputs in
A and outputs inK . A simulation up to bisimulationon S is a relation R⊆ S×S
such that if〈s, t〉 ∈ R then (a) oS(s) ↓ implies oS(s) = oS(t), and (b) δS(s,a) ↓
implies〈δS(s,a),δS(t,a)〉 ∈ ∼ R∼, for each a∈ A.

The following lemma establishes correctness of the above up-to technique.

Lemma A.5. If R is a simulation up to bisimulation on S then R⊆�.

PROOF: Show that the relationR
def= ∼ R ∼ is a simulation onS, which is imme-

diate by transitivity of∼. SinceR⊆ R the thesis follows. 2

We need two more ingredients for the proof, that is unfoldings of terms and
strong bisimulation. Given a contextP[·] and k ≥ 0, the kth unfolding of P[·]
is the context defined by induction onk as follows: P(0)[·] def= [·] (the empty

context),P(k+1)[·] def= τ.P[P(k)[·]]. In other words,P(k)[·] is thek-guarded context
τ.P[τ.P[· · ·τ.P[·] · · · ]], with k nestedτ’s.

Let∼sb denote ordinarystrong bisimulation[17] over processes. It is immedi-
ate to check, using the fact thatrecx.P∼sb τ.P[recx.P] and the congruence proper-
ties of strong bisimulation, that for eachk, recx.P∼sb P(k)[recx.P]. Note that∼sb

is (strictly) finer than' (hence than∼ and�). Finally note that, by definition,
P

s−→ andP∼sb Q imply Q
s−→, for anys∈ (A∪{τ})∗; thus, in particular,∼sb

preserves all the convergence predicates considered here.

Proposition A.6. Let C[·] and P[x] be contexts, and Q a process. InAut, we have
that if Q∼ P[Q] then C[recx.P]�C[Q].

PROOF: Fix a generic open termP[x] and fix a genericQ such thatQ∼ P[Q]. We
show that the relation

R
def= {〈C[recx.P], C[Q]〉 |C[·] is a context}

(where we allowC[·] to possibly be0) is a simulation up to bisimulation, thus prov-
ing the thesis. Thus, take a genericC[·] (different from the trivial0), and suppose
o(C[recx.P]) ↓, i.e.C[recx.P] ⇓.
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We first check requirement (a) of simulation, that is,o(C[recx.P]) = o(C[Q]).
To see this, we first prove thatC[Q] ⇓ as well. By contradiction, assumeC[Q] ⇑
and takeh such thatC[recx.P] ⇓h (as already noted, thish must exist). Since
C[Q] ∼C[P(h+1)[Q]] (by repeating the unfoldingQ∼ P[Q] ∼ τ.P[Q] and by con-
gruence),C[P(h+1)[Q]] ⇑ as well, hence there is a sequence ofτ-transitions of

lengthh+1, sayC[P(h+1)[Q]] τh+1

−→. SinceC[P(h+1)[·]] is h+1-guarded, by Lemma

A.2 we haveC[P(h+1)[recx.P]] τh+1

−→ as well; butC[P(h+1)[recx.P]] ∼sb C[recx.P]

(by congruence and repeated unfolding), hence we would haveC[recx.P] τh+1

−→,
which contradictsC[recx.P] ⇓h. This proves thatC[Q] ⇓, henceC[Q] ⇓h′ for
someh′. Takek = max{h,h′}. Note thatC[recx.P] ∼sb C[P(k+1)[recx.P]] ⇓k and
C[Q] ∼sb C[P(k+1)[Q]] ⇓k. SinceC[P(k+1)[·]] is k+ 1-guarded, by Lemma A.3(1)
we obtain that:o(C[P(k+1)[recx.P]]) = o(C[P(k+1)[Q]]). But this implies (a), be-
causeC[recx.P]∼C[P(k+1)[recx.P]] andC[Q]∼C[P(k+1)[Q]].

We now assume for a generica thatC[recx.P]a ↓, i.e. thatC[recx.P] ⇓ a, and
check requirement (b) of simulation up to, that is,C[recx.P]a ∼ R∼C[Q]a. In the
first place, note thatC[Q]⇓ aas well: the argument mimics that given above to show
thatC[Q]⇓, so we are not going to repeat it. Now, takek such that bothC[recx.P]⇓k

a andC[Q] ⇓k a. Again, note thatC[recx.P] ∼sb C[P(k+1)[recx.P]] ⇓k a and that
C[Q] ∼sb C[P(k+1)[Q]] ⇓k a. SinceC[P(k+1)[·] is k+ 1-guarded, by Lemma A.3(2)

we obtain that there is a contextC′[·] such that(C[Pk+1[recx.P])a ∼C′[recx.P] def=
A and(C[P(k+1)[Q]])a ∼C′[Q] def= B. Clearly 〈A,B〉 ∈ R by definition. Now, from
C[recx.P]∼C[P(k+1)[recx.P]] andC[Q]∼C[P(k+1)[Q]] we get(C[recx.P])a∼A and
(C[Q])a ∼ B, respectively. In the end, we have obtained:(C[recx.P])a ∼ AR B∼
(C[Q])a, that is (b). 2

To obtain Lemma 5.5, takeC[·] = [·], the empty context, in the previous propo-
sition.
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