
ELSEVIER Theoretical Computer Science 198 (1998) 359-176

Theoretical
Computer Science

Some congruence properties for z-calculus bisimilarities

Michele Boreale a,*, Davide Sangiorgi b

a Universitri di Roma La Sapienza, Dip. Scienze dell’lnformazione, via Salaria 113, I-00198 Roma, Italy
bINRIA 2004, Route des Lucioles, B.P. 93, 06902 Sophia Antipolis Cedex, France

Received April 1996; revised April 1997

Communicated by J.W. de Bakker

Abstract

Both for interleaving and for non-interleaving semantics, several variants of a x-calculus bisim-
ilarity can be given which differ on the requirements imposed on name instantiations. Examples
are the late, early, open and ground variants. The ground variant is the simplest because it places
no requirements on name instantiations. With the exception of open bisimilarities, none of the
bisimilarity considered in the literature is a congruence relation on the full n-calculus language.

We show that in the case of (certain forms of) causul bisimulation the late, early, open
and ground variants coincide and are congruence relations in the sublanguage of the n-calculus
without matching. We also show that to obtain the same results in the case of the interleaving
bisimilarity, in addition to forbidding matching it is necessary to constrain the output prefix.
@ 1998 Published by Elsevier Science B.V. All rights reserved

Keywords: n-calculus; Bisimulation; Congruence; Causality

1. Motivations

One of the most studied and important issues in process algebra is to individuate

behavioural equivalences which be pragmatically satisfactory (i.e., the identifications

made on processes be sensible) and mathematically tractable (i.e., above all, process

equivalences be easy to verify). For the latter point, an important property of the

behavioural equivalence is congruence, which allows us the replacement of “equal”

terms in any context.

In CCS-like process algebras, bisimulation has achieved wide consensus and popu-

larity as a mathematical tool for defining behavioural equivalences. The simplest form

of bisimulation is that of the interleaving approach. It requires that if P and Q are

bisimilar, then

P -% P’ implies Q L Q’ for some Q’ bisimilar to P’ (*I

* Corresponding author. E-mail: michele@dsi.uniromal it

0304-3975/98/$19.00 @ 1998 Published by Elsevier Science B.V. All rights reserved
PZZ so304-3975(97)00125-4

160 hf. Boreale, D. Sangiorgil Theoretical Computer Science 198 (1998) 159-176

and vice versa, on the possible transitions by Q. In a CCS transition P L P’, action

p can be thought as the offer from P of a synchronisation with an external process.

In this paper, we deal with bisimulation-based equivalences for the TC-caZculus [9].

Intense research over the past six years has made the rc-calculus the paradigmatic

example of process algebra for mobile systems. Formally, rt-calculus represents a de-

velopment of CCS in which communication of names is allowed. Input and output

prefixes take the form a(b). P and Z(b). P, respectively; the former process waits for a

tuple of names C to be sent along a and then behaves like P{$‘x}), whereas the latter

process is willing to send names b along a and then continues like P. Definition (*) is

the same in x-calculus and in CCS, up to the different syntax of actions and the fact

that, in the rt-calculus, identity of actions is taken modulo alpha conversion.

The noticeable feature of (*) is that it requires 110 name instantiation. We call ground

bisimulution a bisimulation with this property. Due to its simplicity, the definition itself

of ground bisimulation provides us with a relatively efficient tool for checking process

bisimilarities.

Unfortunately, in the rr-calculus, ground bisimulation is not a congruence relation.

The failure is inevitable in the presence of the matching operator, written [a = b] and

used to test for equalities between two names a and b. For instance, if a and b are

different, then processes

P kf [a = b]&(b). 0, Q%?-O

are the same since they exhibit no behaviour, but can be distinguished in the context

C[.] ‘!Zf (c(a). [.])lc(b) since C[P] has a derivative which can perform an output action
_ the interaction between input c(a) and output F(b) sets the matching in P to true -

which C[Q] has not.

However, processes P and Q can be distinguished under the instantiation {b/a},

which removes the difference between names a and b. Indeed, the natural way of

modifying ground bisimulation, so to get closer to a congruence relation, is to take

name instantiation into account. But then, at least two serious drawbacks emerge:

(1) Checking bisimilarities can become expensive, for name instantiation can cause

a state explosion problem in the verification.

(2) Different variants of bisimilarity are possible, in correspondence with different ways

of using name instantiation. Examples are the lute, eady and open variants [9, 141.

It can be perhaps questioned whether (2) should be considered a drawback, but it is

at least a source of confusion in applications. Further, the late and early variants still
fail to be congruence relations, because they are not preserved by input prefix.

The above discussion suggests that it is important to isolate subcalculi of the

n-calculus with a non-trivial expressiveness and forms of ground bisimulation for them

which be congruence relations. For then, all mentioned forms of bisimulation coincide,

and we can exploit the simplicity of ground bisimulation for proving interesting process

bisimilarities. The research conducted has evidenced that, as far as expressiveness is

concerned, the operators of matching, sum and the full output prefixes play a secondary

M. Boreale, D. Sangiorgil Theoretical Computer Science 198 (1998) 159-176 161

role w.r.t. the other operators (restriction, parallel composition, replication and input

prefix) [6,5, lo]. Restricted forms of output prefix, in which the continuation is null

(asynchronous output) [6] or where all names emitted are private (bound output) [15],

have been proposed. We are therefore interested in congruence properties for forms of

ground bisimulation on subcalculi which have some syntactic limitations on matching,

sum or output prefix.

We are only aware of two congruence results for ground bisimulation: (interleaving)

ground bisimulation has been proved to be a congruence relation;

(1) in the subcalculus without matching and with only asynchronous outputs [4, 131;

(2) in 7~1, a subcalculus of the rt-calculus without matching and with only bound outputs

[151.
Both results are obtained by restraining the output construct. They do not show, how-

ever, the necessity of these limitations. For instance, one might hope to achieve the

same results by forbidding summation but retaining the full output prefix. This paper

contains two main contributions:

(1)

(2)

We show that if the rt-calculus language includes the full output prefix and has

a non-trivial expressiveness (i.e., it includes constructs for parallelism, replication

and restriction) then ground bisimulation is not a congruence relation, neither in

the strong nor in the weak case.

We show that the full output prefix is tolerated if ground bisimulation is strength-

ened so to reveal certain causal dependencies among actions, namely those which

originate from the nesting of prefixes and which are propagated through inter-

actions [7,3]. Both strong and weak forms of ground causal bisimulation are

congruence relations in the absence of matching.

The two points are developed in Sections 3 and 4. In Section 2 the rr-calculus and

some basic notions on interleaving semantics are presented.

2. Background

2.1. The n-calculus

The countable set JV of names is ranged over by a, b, . , . ,x, y, Processes are

ranged over by P, Q and R. The rr-calculus syntax we shall work with is built from

the operators of guarded summation, restriction, parallel composition and replication

P :=ccci.p) 1 VUP 1 P,lP, 1 !P,
iEI

a :=a($) 1 a(b) (7.

The prefixes a(b) and a(b) are called, respectively, input and output prefix; in the input

prefix a(b), the components of b are pairwise distinct. In summations, the index-set Z

is finite; for ziga ai. Pi the symbol 0 is also used, while binary summation xiEI,,Zl pl

162 M. Boreale. D. Sangiorgil Theoretical Computer Science 198 (1998) 159-l 76

is often written as P, + 9. We will write a. P and 5. P when no name is carried

by a. We abbreviate a.0 as c(and vavbP as (vu, b)P.

W.r.t. the syntax in [9] we have omitted the matching construct, for the reasons ex-

plained in the introduction, and we only admitted guarded summation since, by contrast

with full summation, it preserves bisimilarity even in the weak case, i.e., when silent

actions are partially ignored in the bisimilarity clauses. We have chosen to present our

work in the polyadic rr-calculus (where tuples of names can be passed in communica-

tions), as opposed to the monadic calculus (where exactly one name can be passed)

because it makes some of the technical material simpler (for instance, the counterex-

amples of Section 3 become harder to read, when coded up in the monadic calculus).

Input prefix a(b) and restriction vu act as binders for names b and a, respectively.

Free names, bound names of a process P, written fn(P) and bn(P), respectively, arise

as expected; the names of P, written n(P) are fn(P)Ubn(P). Substitutions, ranged over

by ~.,ir’... are functions from N to N; for any expression E, we write Ea for the

expression obtained from applying cr to E. Composition of two substitutions (T and cr’

is written (TO’. We assume the following decreasing order of precedence when writing

process expressions: substitution, prefix, replication, restriction, parallel composition,

binary summation.

The transition rules for the rc-calculus operators are given in Table 1. Actions,

ranged over by p, can be of three forms: r (interaction), a(b) (input), or &‘a(;)

(output). _Funct@s bn(.), fn(.) and n(.) are extended to actions as expected, once we

set bn(a(b))=b and bn(vgZ(b))=2.

Throughout the paper, we work up to m-conversion on names - that is, we implicitly

take an underlying representation of names based on de Bruijn indices [2] - so as to

avoid tedious side conditions in transition rules and bisimulation clauses. Therefore, for

instance, in a process bound names are assumed different from each other and from

the free names, and cl-equivalent processes are assumed to have the same transitions.

All our notations are extended to tuples componentwise.

Following Milner [8], we only admit well-sortedprocesses, i.e., processes which obey

a predefined sorting discipline in their manipulation of names. The sorting prevents

Table 1

Interleaving operational semantics for B

SUIU: xi,, C?, Pi 2 Pj, j E 1 Rep :
PI !PAP’

!PLP’

M. Boreale, D. Sangiorgil Theoretical Computer Science 198 (1998) 159-I 76 163

arity mismatching in communications, like in iz(b, c). P 1 a(x). Q. Moreover, substitu-

tions must map names onto names of the same sort. We do not present the sorting

system because it is not essential to understand the contents of this paper.

We call

l B the above set of rt-calculus processes;

l Pa the subset of 9 in which an output prefix has no continuation, i.e., outputs are

of the form Z(b).O; we call this form of prefixing asynchronous output.

l 9- the subset of 9 without summation.

2.2. Bisimulations

A few forms of (interleaving) bisimilarity have been proposed for the n-calculus,

notably the late, early and open bisimilarities [9, 141. We only recall the definition of

early bisimilarity.

Definition 2.1 (Strong early bisimilarity). A symmetric relation WC B x P is a

strong early bisimulation if P 92 Q implies

(1) whenever P a(6) P’ for all names Z there exists Q’ s.t. Q a(b! Q’ and P’{y/z} 92

Q’{T z} ;
(2) whenever P --f+ P’ and ,U is not an input action, there exists Q’ s.t. Q A Q’ and

P’ 92 Q’.

Two processes P and Q are strongly early bisimilar, written P we Q, if P 6% Q for some

strong early bisimulation W.

Late bisimilarity, written -la, inverts the order of the existential and universal

quantifiers in the input clause, thus;

6
If P-P’, then there exists Q’s.t. Q o(b! Q’and for all C, P’{$} %? Q’{qz},.

Late bisimilarity is strictly included in early bisimilarity. Open bisimilarity is a stronger

equality than the late and early ones. In open bisimilarity, substitutions are used in a

global fashion, requiring that the bisimilarity relation itself be closed under substitu-

tions. Moreover, the mechanism of distinction is used to record the fact that a restricted

name cannot be identified with other names. In the language 9, open bisimulation is a

congruence relation, whereas late and early bisimulation are not because they are not

preserved by input prefix [9].

The simplest form of bisimulation is the one where no name instantiation at all

appears, apart from a-conversion. We call it ground bisimulation.

Definition 2.2 (Strong ground bisimilarity). A symmetric relation 9 C B x 9 is a

strong ground bisimulation if P9 Q and P L P’ imply that there exists Q’ s.t.

Q A Q’ and P’ 9 Q’. Two processes P and Q are strongly ground bisimilar, written

P -Jo Q, if PA! Q for some strong bisimulation B?.

164 h4. Boreale, D. Sangiorgil Theoretical Computer Science 198 (1998) 159-l 76

The weak versions of the bisimulations, where one ignores silent steps in matching

transitions, are obtained in the standard way. Let + be the reflexive and transitive

;
closureof L,let&be+ L +,andletP+QbeP&Q,ifp#r,andP+

Q, if p = r. Then, weak ground bisimilarity is defined by replacing in Definition 2.2

; the transition Q & Q’ with Q * Q’. Similarly, one defines weak, open bisimulation.

In the definitions of weak, late and early bisimulation the input clause is a little different

because the name instantiation must occur immediately after the input is performed.

The input clause for weak early bisimulation is

If P a(b! P’, then for all C there exists Q’st. Q + a(b! Q’ and,

for some Q”, Q’{$‘x} =+ Q” and P’{qi;> 6%’ Q”.

The input clause for weak late bisimulation is

If P a(b! PI, then there exists Q’s.t. Q + n(b) Q’ and for all C

there is Q”s.t. Q’{qx} + Q” and P’{qz} 3 Q”.

We use the symbols us, qa, x, and M, for the weak versions of ground, late, early

and open bisimulation, respectively.

It was proved, independently in [4, 131, developing an earlier result by Honda [5],

that in absence of matching and of continuation underneath the output prefix, ground

bisimulation is a congruence. ’ A key lemma for proving the congruence of ground

bisimulation is its closure under substitutions.

Lemma 2.3. Relations wg and zg are preserved by name instantiations in the lan-

guage pa.

Theorem 2.4. wg and cg are congruence relations in the language

Corollary 2.5.

(1) Relations wg, -la, we, N,, coincide in the language pa;

(2) Relations z~, q,, M, , x, coincide in the language Ya.

Proof. For (1), the inclusions -O C -la C: -e C -s follow directly from the defini-

tions. Using the fact that -s is closed under substitutions one can prove -s C wO.

Assertion (2) is proved similarly. Cl

’ The language in [131 does not have summation; it is straightforward to accommodate guarded summations

in the proof.

M. Boreale, D. Sangiorgil Theoretical Computer Science 198 (1998) 159-176 165

3. Non-congruence results

We show that in Theorem 2.4 and Corollary 2.5 the limitation to asynchronous

outputs is important. The results fail if the language includes, in addition to full output

prefix, at least the operators of parallelism, replication, restriction and input prefix. In

the counterexamples below, syntactically different letters stand for different names.

It was known [9] that ground bisimulation is not preserved by name substitutions in

presence of the matching construct (see introductory section), or in the language 9,

with both full output prefix and summation, as the following counterexample shows.

Counterexample 3.1 (From [9, language ,!?I). Let PdzfT 1 y and QdAfZ. y+ y.2. Then

P -s Q, but P(xly> 7Ls Q(x/v]> since P(x/y} can terminate without performing visible

actions.

The same pair of processes show that neither zs is preserved by substitutions

in ;Y.

The problem is more interesting in the language S+, where summation is forbidden.

Indeed, Counterexample 3.1 is based on the expansion law, which makes no sense

without summation. We show that even in Y- ground bisimulation is not preserved

by name substitutions, neither in the strong nor in the weak case. First, some simple

laws.

Lemma 3.2.
(1) vb(Z(d).b.P\x(e).b.Q) wlaZ(d).x(e).z.vb(P(Q) +x(e).Z(d).z.vb(P / Q), $ e$

fn(Z(d).b.P), b$! {z,d,x,ej_andz#x.

(2) !vd(P+Q)-qa !vdPI !vdQ.

(3) a.z.Pq,cr.P.

Proof. (1) is a simple form of the expansion law; (2) is taken from [12]; (3) is one

of the ordinary r-laws. 0

Counterexample 3.3 (Language Y’-, strong case). The following counterexample

shows that ~a is not preserved by name substitutions in Y’-. Take

P d”f !Z.x.r.yI !x.Z.r.y, Q d&f !vb(z.blx.b.y).

Using the law (1) in Lemma 3.2 and some garbage collection of restrictions, we get

vb(z.b(x.b.y)-qaZ.x.cy+x.Z.~.y.

Therefore, since -ia is preserved by replication and is contained in us, and using

law (2) of Lemma 3.2, we obtain

Q -a !(Z.x.r.y+x.Z.r.y)

-s !Z.x.r.y(!x.Z.z.y=P.

166 kf. Boreale. D. Sangiorgil Theoretical Computer Science 198 (1998) 159-176

However, P(‘lx} 7Lg QP/x>, since Q(z/x} can perform a move at y after two steps,

whereas P(“/x} only after three steps.

Counterexample 3.4 (Language .!Y-, weak case). The following counterexample

shows that us is not preserved by name substitutions in 9-. We write Z(h). R as

abbreviation for (vh)Si(h) . R.
Take

P fEf ! vd(~(d).x(e).~(h).h(d).&(e))) ! vd(x(e).Z(d).Z(h).Z(d).E(e)),

Q ‘!Ef !(vd,b)(F(d).blx(e).b.Z(h).h(d).~(e)).

Proceeding as in the previous example and, in addition, using law (3) of Lemma 3.2,

we obtain

Q Ng !vd(Z(d).x(e).z. Z(h).L(d).7l(e) +x(e).T(d).z.Z(h).Il(d).h(e))

Mg !vd(Z(d).x(e).Z(h).h(d).Z(e) +x(e).~(d).E(h).Z(d).h(e))

wg !vd(Z(d).x(e).~(h).h(d).h(e)))!vd(x(e).~(d).~(h).h(d).h(e))=P,

which proves P zg Q. But P(Z/X} and Q~/x} are not in the relation zg. Consider the

sequence of actions from Q~/x}

Q(Z/x} +vb,d)(b(b. Zf(h).%(d).h(d).) (Qp/x}

-I-tvd (a(h).h(d).h(d).) I Q{=/x}

There are two consecutive actions at h which carry the same name. This behaviour is

not possible for P(~/x} since, in any subcomponent Z(h).x(d).h(e) of P(z/x} name

e cannot be instantiated with name d. Therefore, P(Z/X} cannot match the above se-

quence of transitions from Q(Z/x} and hence, P(z/x} gg Q(Z/x}.

4. Causal bisimulations

To obtain a form of ground bisimulation which is a congruence relation on the

language 8, we have to abandon interleaving bisimilarity and move to non-interleaving
bisimilarities, more precisely to those which take causality into account.

Causal dependencies induced by action prefix (e.g. the fact that in a./I the execution

of j3 is enabled by the execution of a) and propagated through communications are

not revealed by the interleaving transition system. In order to take such dependencies

into account, we adopt a form of operational semantics with explicit causes, following

Kiehn’s approach for CCS [7], adapted to the n-calculus in [l].

For the extra causal information, we use an auxiliary set X of causes. In the enriched

system, visible transitions are of the form A 2 A’. The visible action p is associated

M. Boreale, D. Sangiorgil Theorefical Computer Science 198 (1998) 159-176 167

with a unique cause k E SC. The set of actions from which p is causally related (its

set of causes) is revealed by means of the set K Cfi, X of their associated causes. If a

successive action $ is caused by p, then p’ will have k (i.e., the cause associated with

p) in its set of causes. In the terms syntax, the explicit use of causes is accompanied

by the introduction of a causal prefix K :: A, which says that the set of causes of any

action of the process A must contain K.

By contrast, silent actions are not observable and do not exhibit causes. How-

ever, causes do play an important role in the communication rule, for the causes of

two interacting actions must be appropriately merged. Consider the sequence of

transitions

&(a. b. c. 0 1 d. 5.0) -$~b({k~}::b.c.O~d.%O)
I I

-f+b({k,}::b.c.O~{kZ)::i;.O)
, 2

Lvb({k,,k2} :: c.01{kl,k2}::O)

Ia$l vb({kl,k2}::(k~}::OI{k~,k2}::o). 1 33

They show that the actions at a and d have no cause; and that the action at c is

causally dependent on a and d. The latter makes sense: c could fire only because both

a and d fired. Note that in the r-transition, the sets of causes {kl} and (k2) of the

consumed actions are merged.

X is the infinite set of causes; k and h range over causes; K and H over finite

subsets of Xx. The sets X of causes and JV” of names are disjoint. The language of

causal processes, written PC and ranged over by A, B,. . . , is given by the following

grammar:

A:=P (K::A 1 AIA I vaA,

where P is a standard P-process, as defined in Section 2. The above syntax does

not allow the presence of causes underneath dynamic operators (prefixes, sums and

replications), because we are only interested in derivatives of standard processes, for

which these cases may never arise.

The rule for operational semantics of 9$ are reported in Table 2. A cause substitution

[k -+ K] denotes the substitution _of the cause k with the set K; e.g., ({kl, k2) :: a(g).O)

[kl -+{k3,kd}] is {k3,kb,kz}::a(b).O. U . man of causes is often denoted by a comma;

e.g. KU {k} is denoted by (K, k). We abbreviate {k} :: A as k :: A. Causal prefix K :: A

has the same precedence as ordinary prefix. We say that a cause k is fresh for a causal

process A if k does not appear in A.

We are now set to introduce causal bisimilarity [3,7, 11. As we did in Section 2, we

only present the early and ground variants. Late and open variants are defined in the

expected way. Our main results will be that both in the strong and in the weak cases, in

the language 9 all variants of causal bisimilarity are congruence relations and coincide

with each other. The counterexamples of Section 3 do not work anymore because causal

168 M. Boreale, D. SangiorgilTheoretical Computer Science I98 (1998) 159-176

Table 2

Transition rules for visible and silent actions of causal processes

SIDX xi,, ai.Pi 5 k :: P,, j E I

A AA’

Cau:
Kk

K’::A 2 K’::A’
KUK’,k

A AA’

Res:
K,k

vcA & vcA’
, c@Wc)

K,k

PI !PLP’

Rep:
Kk

!PLP’
K.k

Al LA;

Par:
Kk

AI IAz AA; I&

A (Y&i&j
--* A’

Open :
K,k

vc A @Q(b) A, ’
c#a,cEb-b’

Kk

T-par:
A1 AA; ALA’

AI IAl AA; IAz
T-res:

vcA i, vcA’

a(c)
A; A2 - A;

Corn:
K1.k K2.k

Al IA2 itvb’(A’I[k”*K2] lA;{x/;}[k-+K,])
k@x(Al,Az)

ALA’
T-cau: T-rep:

Al !ALA’

K::AI,K::A’ !AAA’

bisimulation allows us to detect that certain output and input actions are produced by

prefixes that are sequentially ordered and hence, no matter what substitutions are applied

to the processes, the prefixes can never combine into a communication. For instance,

the processes Q dsf X. y in Counterexample 3.1 has transitions

Q -& {h} :: Y k {h,k2) ::o.

The occurrence of kl in the second transition shows a dependency with the first tran-

sition. By contrast, the only transitions from process P d&f X 1 y with labels X and y

are

P 2 {k,}::Oly
1 I

2 {k,}::O~{k2}::0.
, 2

The causality information shows that these two transitions of P are independent.

a consequence, processes P and Q are nol causally bisimilar.

We only report the proofs for the weak case, which is more difficult. As usual,

“weak causal arrow” A 2 A’ stands for A + k + A’.

As

the

M. Boreale, D. Sangiorgil Theoretical Computer Science I98 (1998) 159-176 169

Definition 4.1 (Weak early causal bisimilarity). A binary symmetric relation W over

causal processes is an early causal bisimulation if, whenever A 6% B, then

a whenever A -&A’ then B =S B’, for some B’ s.t. A’.G%B’, and

l whenever A 2 A’, with k fresh for A and B:

(1) if /J = a(b) then for all C there exists B’ s.t. B + 2 B’ and, for some B”,

B’{$‘g} + B” and A’{qx} 9 B”;

(2) if p is not an input action then there exists B’ s.t. B 5 B’ and A’ W B’.

A and B are early causal bisimilar, written A ME B, if A L%! B for an early causal

bisimulation 9.

Definition 4.2 (Weak ground causal bisimilarity). A binary symmetric relation 9

over causal processes is a ground causal bisimulation if, whenever A W B, then

l whenever A A A’ then there exists B’ s.t. B + B’ and A' WB', and

l whenever A A A’, with k fresh for A and B, then there exists B’ s.t. B =$ B’ and

’ A’ 3 B’.

A and B are ground causal bisimilar, written A wi B, if A 6%’ B for an ground causal

bisimulation B .

4. I. Auxiliary lemmas

In this section we establish a few results on operational semantics and ground causal

bisimulation, which are used in Section 4.2 to prove the main results. In some of our

proofs, it will be convenient to use a causal structural congruence relation. It is the

natural extension to causal processes of Milner’s structural congruence for standard pro-

cesses [8]. More precisely, we let causal structural congruence be the least congruence

over causal processes generated by the following axioms:

(1) AIB-AIB, Al(B/C)-(AIB)\C, AIO=A;

(2) vaOz0, vavbArvbvaA;

(3) (vaA)IBEva(A)B), if a not free in B;

(4) !P=PI!P;

(5) @:::%A, K,::K2::A-K,UK2::A;

(6) K::(A11A2)=:(K::A1)I(K::AZ), K::v?A=vZK::A.

Lemma 4.3. E is a strong ground causal bisimulation and is preserved by substitu-
tions.

In the sequel, we will freely apply Lemma 4.3 without recalling it. We use A =S ZE A’
to mean that there is a A” s.t. A + A” and A” E A’. The next lemma, stating that both

relations + and =i are preserved by cause substitution, is proved in [l] (see Lemmas

4.6(3) and 4.10; the latter proves it for ME , but the proof for z; is the same and

consists in defining a simple bisimulation relation).

170 AL Boreale, D. Sangiorgil Theoretical Computer Science 198 (1998) 159-176

Lemma 4.4. Let A, B be causal processes and let p be a cause substitution.
(1) A+A’ implies Ap+A’p;

(2) A M: B implies Ap M: Bp.

When a transition A k A’, with k fresh, takes place, inside A’ name k acts as

a “pointer” to the location which originates the action. Lemma 4.5 reveals the structural

relationship between source and target terms of such a transition. In the assertion of

this lemma, P represents the location where the action comes from, and B represent

“the rest of the process”.

Lemma 4.5 (Structural lemma). Let A be a causal process and suppose that A 2 A’

with k fresh for A. Then there are C, b’, ct, P, Q and B with k fresh for B s. t. :
(a) A E (vC,b’)(K :: (Q + a.P) 1 B) and, if p is an input action then c1= p and 2 = 0;

tf p is an output action, then p = v2 is(b) and CI = a(b), for some a and b.
(b) A’ = vZ((K, k) :: P 1 B).

Proof. A simple transition induction on A 2 A’. 0

Lemma 4.6 relates the transitions of A to those of Aa, for any process A and substi-

tution o. Part 4 of the lemma shows that each r-move from Aa either corresponds to

a r-move from A or it can be decomposed into two independent complementary tran-

sitions from A. The independence is given by the fact that the cause name associated

to the first transition (kl) does not occur in the set of causes of the second one (&).

In the assertion of the lemma, recall that, by our convention on bound names, we can

assume that substitutions do not touch bound names of terms and actions.

Lemma 4.6 (Correspondence between Ao and A). Let o be a substitution and A be
a causal process.
(1) A 2 A’ (resp. A LA’) implies Aa 2 A’a (resp. Aa 5 A’o).

(2) A 5 A’ (resp. A + A’) implies Ao $$ A’a (resp. Aa + A’a).

(3) Aa --% A’ implies A A A”, with $a = p and A”o =A’.
K,k K,k

(4) Aa 4 A’ implies either
(a) there exists Al s. t. A L Al with Ala =A’, or

(b) there exist two transitions A acbo! Al
kl,kl

“~~’ AZ with kl and k2 fresh for

A and Al, respectively, kl # K2, aa = co and A’ 3 vb’ (A2pcr{g7&}), where

pdzf [kl --+K2,k2-+K,].

Proof. Items 1, 3 and 4 are proven by straightforward transition induction. Item 2 is

a consequence of item 1. 0

M. Boreale, D. Sangiorgil Theoretical Computer Science 198 (1998) 159-I 76 111

Our next task is to prove a kind of “converse” of part (4.b) of the previous lemma

for weak transitions, whereby two independent transitions, possibly interleaved with

some silent transitions, are composed. This will be done in Lemma 4.8. In its proof,

we shall use Lemma 4.7, asserting that, given a sequence of silent transitions from

K :: B 1 A, process A can be decomposed into two subprocesses, one actually interacting

with B (the process called Al below), the other evolving on its own (the process

called A2).

Lemma 4.7. Let A and B be causal processes and suppose that K :: B 1 A + C. Then

for some Z, Al, AZ, a, B’, A{ and Ai we have

(a) A z vZ(Al IA2);

(b) K::BjA1+ 3 (vd)K::(B’IA;);

(c) A2 =+ = A;;

(d) C EE (vd,Z)(K :: (B’ /A;) 1 A;).

Proof. It must be that K :: B 1 A -% C, for some m 2 0. The proof goes by induction

on m. The case m = 0 is trivial, thus suppose m > 0. Therefore, we have K :: B 1 A L E

2 C, for some E. We analyse the first r-step, then the remaining m - 1 steps, and

finally we explain that the concatenation of these steps give the required decomposition.

We distinguish the possible ways in which the transition K :: B 1 A -&E may arise.

The cases when it arises from K :: B alone or from A alone are easily dealt with by

exploiting the induction hypothesis. We treat in detail only the case when the transition

arises as an interaction between K :: B and A. Applying the Structural Lemma 4.5

to the interacting transitions, we can individuate the subcomponents of K :: B and A,

respectively, FI and F2, from which these transitions arise. Formally, it must be

K::B=K::v&(F, ID,), (1)

A=vd2(F21D2), (2)

Er(v&d2)(K::(F#ID,))D2), (3)

where

K::F, IF25 -K::(F,‘IF;). (4)

Define now B* ‘2 K :: (_Fi LFi ID,) and A* ‘ef D2. Since E ‘2 C, from (3) we deduce

that it must be C E (vdl,dz)C*, where

Tm-I

K::B*jA*--,C*. (5)

Applying the induction hypothesis to (5), we obtain

A*=ve?;:(Ai* IA2*),

(K::B*)IAl*+=v&zK::(B:, IA;,),

(6)

(7)

172 M. Boreale, D. SangiorgilTheoretical Computer Science I98 (1998) 159-176

AZ* + =A;,, (8)

c*-&T*,qK::(B:, IA;,.IA;,.. (9)

We now define the following expressions:

A, dAfF2 1 A,*, A; EfA;,, -def e = d2e>

A2 def A2*, A; def A;,,
-def - -
d =d*d,

B’defB:,.

With these definitions, it is simple to prove assertions (a)-(d) of the lemma. As an

example, we verify (b).

K::BIAI EE v&(K::Fl IF2 lK::D, [Al*) ((l), definition of Al and

rules for -)

2 G v~(K::(F,‘/~~(~l)l~,*) ((4) and rules for -)

= vs(K::B* IAl*) (definition of B*)

=+ E (v&&)K :: (B:: 1 A’,,) (assertion (7))

E vdK::(B’IA;) (definitions of B’, A’,

and d). 0

We are now ready to prove the “converse” of item 4 of Lemma 4.6.

Lemma 4.8. Let B be a causal process, and suppose that B z% B” (vi? B’, with

&, & kl fresh for B, k2 fresh for B” and kl 9?‘K2. Then B + G 6 (B/pa), with
o={b/&} and p=[kl-+Kz, k2-+Kl].

Proof. Transitions B $$ B” “:3! B’ can be decomposed thus

Applying the Structural Lemma 4.5 to transition BI z? B2, we infer that there are

S,P,A,LI! such that

B1 =vd(K1::(S+a(&,).P)IA), (10)

B2 -vd((K1,kl)::PIA). (11)

Applying Lemma 4.7 to transition B2 + B3, due to the form of B2, we infer that there

are ~,AI,A~,~‘,P’,A{ such that

A = @(A1 (A2), (12)

M. Boreale, D. Sangiorgil Theoretical Computer Science 198 (1998) 159-176 173

(K,k,)::P)A,=Evd’(K,kl)::(P’IA’,), (13)

A2 =+ = A;, (14)

B3+&7’,3((K1,kl)::(P’IA;)IA;). (15)

Let us consider now transition B3 “~~’ B4: since kt +! K2, from (15) we deduce that

this transition originates from A;. Formally, we have

BqzvYf?((K1,kl)::(P’IA~)IA~), where {fi}={d,d’,Z} - {b’} (16)

and

Vf,E(b)
A; - A;

&,kz
where {A} = {b’} - {d,d’,Z}.

We now prove that B1 =+ 3 I%’ (B’po), as follows:

B1 E (vd,Z)(K1 :: (S + a(bo).P) I Al I A2)

=+ E (vd,Z)(K1 :: (S + a(&,).P) I A;) Al)

-I-t EE (v&Z, fz)((K,, K2) :: P{$‘i;o} I A;[,%;! ̂ n3 Kl] I AI)

= (vb’,f,)(((K1,k,)::(P’IA’,)IA~)o)p

E &‘((vfi ((KI,~,):: (P’I A;) IA;))a)p

E vb’(B4a)p

=+ = vb’ (B’o)p

(definitions of fi

and a)

(by (16))

(by B4 =+ B’

and Lemmas 4.6.2

s vi? (B’po) and 4.4).

(17)

(by (10) and (12))

(by (14))

(by (17) and rule

corn)

(by def. of u

and P)

(by (13) and

Lemmas 4.6.2

and 4.4)

(since {d,d’,Z,x}

= @A)

Putting together B + B1 and B1 + E &’ (B’pa) we get the thesis. 0

A simple proof technique for bisimilarity:

174 hf. Boreale, D. Sangiorgil Theoretical Computer Science 198 (1998) 1.59-176

Definition 4.9. A symmetric binary relation .!% over causal processes is a ground

causal bisimulation up to - and restriction if, whenever A WB and A 2 A’ (resp.

A 5 A’) with k fresh for A and B, there exist b, Al, B’ and B1 s.t.

B $$ B’(resp. B =S B’) and A’ 3 &Al and B’ E &Bl and Al 92 B,.

Lemma 4.10. If W is a ground causal bisimulation up to E and restriction then
9c z;.

4.2. The congruence results

Theorem 4.11 (z; is preserved by substitutions). Let A, B be causal processes and
a be a substitution. Then A ML B implies Aa z$ Ba.

Proof. We show that

9? = {(Aa, Ba) / a is a substitution and A M: B}

is a ground causal bisimulation up to = and restriction. We have to check that whenever

AaRBa and Aa 2 A’ (resp. Aa AA’), with k fresh, then we can find A”, a’, B”

and g s.t.

Ba 3 B’(resp. Ba + B’) and B’ = & (B”a’) and A’ E vb’ (A”a’) and

A” z; B”. (18)

We only deal with the case when Aa A A’. The case Aa 2 A’ can be dealt with using

Lemma 4.6(l-3). Thus, suppose Aa AA’. According to Lemma 4.6.4, the two sub-

cases (a) and (b) may arise. We consider the latter, which is more difficult. Therefore,

a’%)
wehaveA -At

Kl,kl
(V’L:(b) AZ, with a’a = a”0 = a and A’ E ~2 (Azpa’) and P d&f [kt ~

K2, k2 -+ Kl] and a’ dAf a{~~/&}. Since A zc g B, there are BI and B2 s.t. the diagram

below commutes

a’(h)

A Kl,k; A1

(“?7~(b)
A2

K2.b

B ;+ B,
$jF(i$ B

2
I, I K,,h

From these transitions of B and Lemma 4.6(2) we infer

M. Boreale. D. Sangiorgil Theoretical Computer Science 198 (1998) 159-l 76 175

Since ki $! K2, we can apply Lemma 4.8 and infer

We prove that (A’, B’) belongs to 93, up to the restriction “6, by exhibiting A”

and B” such that (18) is fulfilled. Now, from A2 M: B2 and Lemma 4.4.2, it follows

that A” def Azp M” g Bzp def B”. Therefore, by definition of 3, we have A”o’ 9 B”o’. But

A’ I vb’ (A”a’) and B’ E vb’ (B”d), thus (18) holds. 0

As easy corollaries of the above theorem, we get:

Corollary 4.12. =Cg is a congruence relation in the language 9.

Proof. One shows that zi is preserved by each operator of the language 9, by exhibit-

ing appropriate bisimulations. For input prefix and parallel composition, one exploits

the fact that M: is preserved by name substitutions. 0

Corollary 4.13. Ground, late, early and open forms of weak causal bisimilarity coin-

cide in the language .6?J’.

Proof. As an example, we consider the proof that zi and WE coincide. The inclu-

sion + 2 $ follows by definition (the requirements in the definition of CZ; are also

in the definition of z$). For the converse, one shows that M: is a causal bisimulation;

to satisfy the input clause of Definition 4.1 one uses the fact that M: is closed under

substitutions. 0

For strong causal bisimulation, the same results of the weak case hold. The proof

schema is similar but the proofs are simpler (for instance, Lemma 4.8 is not needed).

Corollary 4.14. (1) Strong ground causal bisimilarity is a congruence relation in the

language 9;

(2) ground, late, early and open forms of strong causal bisimilarity coincide in the

language 9.

The forms of causal bisimilarities considered in this paper explicitly reveal the causal

dependencies induced by the nesting of prefixes and propagated through communica-

tion, and called subject dependencies in [l]. There exists another form of causal

dependency in the rt-calculus, induced by the binding mechanism on names. As an ex-

ample, in vb(Z(b) 1 b(x)) the execution of the output at a opens the scope of the

restriction vb, thus enabling the execution of b(x), which was previously blocked.

In [l], this form of causality is called object causality. By contrast with subject depen-

dencies, object dependencies are directly revealed in the standard interleaving transition

systems. Various ways of combining subject and object dependencies are possible, and

lead to different causal relations on processes (see [1 l] for a survey). Our choice of

176 M. Boreale, D. Sangiorgil Theoretical Computer Science 198 (1998) 159-l 76

handling subject dependencies in isolation is due to two main reasons: First, the def-

initions of the bisimulations are simpler. Secondly, subject dependencies are essential

for the congruence results studied in this paper. We think that the same results hold

for other causal equivalences which take subject dependencies into account.

Acknowledgements

The detailed comments of the two anonymous referees allowed us to improve the

technical presentation and correct a number of typos.

References

[1] M. Boreale, D. Sangiorgi, A fully abstract semantics for causality in the rr-calculus. Technical Report

ECS-LFCS-94-297, LFCS, Dept. of Comp. Sci., Edinburgh Univ., 1994, to appear in Acta Inform.

An extract appeared in Proc. STACS’95, Lecture Notes in Computer Science, vol. 900, Springer, Berlin.

[2] N.G. de Bruijn, Lambda-calculus notation with nameless dummies: a tool for automatic formula
manipulation with application to the Church-Rosser theorem, Indag. Math. 34 (5) (1972) 381-392.

[3] P. Degano, P. Darondeau, Causal trees, in: 15th ICALP, Lecture Notes in Computer Science, vol. 372,

Springer, Berlin, 1989, pp. 234-248.

[4] M. Hansen, H. Hiittel, J. Kleist, Bisimulations for asynchronous mobile processes, in: Proc. Tbilisi

Symp. on Language, Logic, and Computation, 1996, also available as BRIGS Report No. EP-95-HHK,

Aalborg University, Denmark, 1996.

[5] K. Honda, Two bisimilarities for the v-calculus, Tech. Report 92-002, Keio University, 1992.

[6] K. Honda, M. Tokoro, On asynchronous communication semantics, in: M. Tokoro, 0. Nierstrasz,

P. Wegner, A. Yonezawa (Eds.), ECOOP’91 Workshop on Object Based Concurrent Programming,

Geneva, Switzerland, 1991, Lecture Notes in Computer Science, vol. 612, Springer, Bertin, 1992,

pp. 21-51.

[7] A. Kiehn, Comparing locality and causality based equivalences, Acta Inform. 3 1 (1994) 697-718.

Revision of Local and Global Causes, Report TUM-19132, 1991.

[8] R. Milner, The polyadic r-calculus: a tutorial, Tech. Report ECS-LFCS-91-180, LFCS, Dept. of Comp.

Sci., Edinburgh Univ., October 1991. Also in: F.L. Bauer, W. Brauer, H. Schwichtenberg (Eds.), Logic

and Algebra of Specification, Springer, Berlin, 1993.

[9] R. Milner, J. Parrow, D. Walker, A calculus of mobile processes, (Parts I and II), Inform. Comput.

100 (1992) l-77.

[lo] B.C. Pierce, D. Remy, D.N. Turner, A typed higher-order programming language based on the pi-

calculus, in: Workshop on Type Theory and its Application to Computer Systems, Kyoto University,
1993.

[111 C. Priami, Enhanced operational semantics for concurrency, Ph.D. Thesis, Department of Computer

Science, Universith di Pisa, 1995.

[12] D. Sangiorgi, On the bisimulation proof method, Technical Report ECS-LFCS-94-299, LFCS, Dept. of

Comp. Sci., Edinburgh Univ., 1994.
[131 D. Sangiorgi, Lazy functions and mobile processes, Technical Report RR-2515, INRIA-Sophia Antipolis,

1995, Festschrift volume in honor of Robin Milner’s 60th birthday, to appear, Cambridge Press,

Cambridge.

[141 D. Sangiorgi, A theory of bisimulation for the n-calculus, Acta Informatica, 33 (1996) 69-97. Extended

Abstract in Proc. CONCUR’93, Lecture Notes in Computer Science, vol. 715, Springer, Berlin.

[151 D. Sangiorgi, ~1: A symmetric calculus based on internal mobility, in: P. Mosses, et al. (Ed.), Proc.

TAPSOFT’95, Lecture Notes in Computer Science, vol. 915, pp. 172-186, Springer, Berlin, 1995. Full

version in Theoret. Comput. Sci. 167 (2) (1996) 235-274.

