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Abstract

In security protocols, message exchange between the intruder and honest participants induces a form
of state explosion which makes protocol models infinite. We propose a general method for automatic
analysis of security protocols based on the notiofrarhe essentially a rewrite system plus a set of
distinguished terms calledessage$-rames are intended to model generic crypto-systems. Based on
frames, we introduce a process language akin to Abadi and Fournet's applied pi. For this language,
we define a symbolic operational semantics that relies on unification and provides finite and effective
protocol models. Next, we give a method to carry out trace analysis directly on the symbolic model.
We spell out aegularity condition on the underlying frame, which guarantees completeness of our
method for the considered class of properties, including secrecy and various forms of authentication.
We show how to instantiate our method to some of the most common crypto-systems, including
shared- and public-key encryption, hashing and Diffie—Hellman key exchange.
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1. Introduction

Many of the methods employed in security protocol analysis are based conceptually on
a model dating back to Dolev and Y§b8], where a (hostile) intruder has total control
over the communication network. In particular, it is assumed that the intruder can learn,
hide or replace any message in transit on the network. It can also synthesize new messages
starting from learned messages and using arbitrary combinations of operations like nonce
creation, pairing, encryption and decryption. The intruder cannot guess secret keys or forge
messages it cannot synthesize. Thus, sending a message on the network means handing it to
the intruder, while receiving a message from the network means accepting any message the
intruder can synthesize at a given moment. Due to the latter point, any Dolev—Yao model
is in principle infinite.

Traditional finite-state model checking has been employed in security protocol analysis
(e.0.,[26,32,36,39]), under two simplifying assumptions: (a) there is a bound on the number
of protocol runs, and (b) at any moment, there is a bound on the number of possible messages
the intruder can synthesize and send to honest participants. Discarding either of these two
assumptions leads to infinite models. Also, these bounds have to be chosen carefully: due
to the combinatorics of message generation, the size of the model tends to explode as the
number of principals and data values increases.

In general, it is known that discarding assumption (a) leads to undecidability of protocol
analysis, unless severe syntactic restrictions are imposed on the analysed protocols (see
e.g. [4,15,19,20,23,34]). In particular, in the presence of pairing and encryption, an even
weak form of iteration (the ability to create arbitrarily many protocol instances) allows for
encoding of 2-counter machines, which in turn implies undecidability of e.g. secrecy, based
on information transfer from one protocol instance to anothiénd copying [35]. Wanting
to preserve decidabilitgnd an expressive term language, one is left with little choice but
keeping assumption (a), hence ruling iteration out.

In the last few years, symbolic approaches have been proposed that make infinite-state
analysis possible and lead to discard assumption (b) [4,8,15,30]. These approaches focus on
specific crypto-systems (typically, shared- or public-key encryption), and the corresponding
completeness proofs are rather ad hoc. The present paper introduces a general framework
for symbolic protocol analysis. It can be viewed as an attempt at presenting in a uniform
manner methods based on unification (e.g. [8,4]), while extracting a common factor out
of the related proof techniques. When instantiated to specific crypto-primitives, under a
condition of regularity that we illustrate below, the framework yields complete verification
methods. In those case studies that we have actually experimented [9], the method is also
quite effective in practice.

More in detail, we start by introducing a notion fsthme essentially a term rewriting
system plus a set of distinguished terms calteebsaged/Ve consider a generic signature
2 that may include constructors and destructors for various cryptographic operations. The
meaning of2-terms is provided by an evaluation relatiprihat maps terms to messages.

On top of the evaluation relation, we introduce a deduction relatidhat describes how

the environment can synthesize new messages from known ones. On top of a generic frame,
we introduce a process language akin to Abadi and Fournet's applied pi [1], that can be
used to describe protocols. Protocol properties are formalised as correspondence assertions
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between I/O events, actions of the form “every execution of actiommust be preceded
by some execution of actigff’.

In agreement with the Dolev—Yao approach, the “concrete” operational semantics of
the process calculus is infinitary, because each input action gives rise to infinitely many
transitions. This problem is overcome by introducing a symbolic operational semantics. In
the latter, as aresult of areceive operation, input variables are not instantiated, rather they are
constrainedas the computation proceeds. Constraints are generated by symbolic evaluation
of terms representing crypto-operations, and take the form of most general unifiers (mgu’s)
between terms of the signature. As an example, evaluation of shared-key decryption of
using keyn, written dec, ({), generates a mgt for the equatiol = {x},, for a freshx.

The result of the decryption is therefore representeties Mgu’s are propagated through
whole process terms as soon as they are generated. The resulting transition system is finitely
branching, hence it yields finite models when protocols with a finite number of participants
are considered.

Next, we give a method to carry out trace analysis directly on the symbolic model,
and provide aegularity condition on the given frame, under which the method is proven
sound and complete with respect to the concrete semantics. In other words, for regular
frames every attack detected in the symbolic model corresponds to some attack in the
concrete one, and vice-versa. Thus, our method makes no approximation with respect to
the infinitary, concrete model. For instance, type-dependent flaws (sel@@)g.which
usually escape finite-state analysis, with our approach naturally emerge when present. The
regularity condition roughly amounts to requiring that the set of messages deducible from
any trace of the protocol can Bgntacticallybuilt out of a finite basis of messages, and that
the induced finite-basis operation commutes with substitution.

We show how to instantiate the general framework to some of the most common crypto-
systems, providing frames for shared- and public-key encryption, digital signature, hashing
and Diffie—Hellman exponentiation. The proof of regularity is covered in detail for the
public-key frame only. We also highlight the relevance of the regularity condition by pro-
viding an example of a meaningful non-regular frame. This also illustrates the limits of our
approach.

Our method is quite efficient in practice, because in the symbolic model there is no state-
explosion induced by message exchange: every input action gives rise exactly to one sym-
bolic transition. We have developed a prototype tool, STA (Symbolic Trace
Analyzer), based on this method [41]. Experimentation with STA has given very encour-
aging results [9].

Related workEarly work on symbolic analysis is due to Huima. In [24], the execution of
a protocol generates a set of equational constraints. Only an informal description is provided
of the kind of equational rewriting needed to solve these constraints. Approaches based on
symbolic analysis were also exploited in [8,3,21], all of which focus on shared-key encryp-
tion. The work [8] introduces a shared-key only version of our symbolic method. In [3],
unlike our approach, symbolic execution and consistency check are not kept separate, and
this may have a relevant impact on the size of the computed symbolic model. Another point
worth noting is that, in [3], a brute-force method is needed to resolve variables in key posi-
tion: such variables have to be instantiated to every possible name used by the participants;
this fact may lead to state explosion, too. In [21], a procedure is provided to analyse the
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knowledge of the environment, based on a symbolic semantics af@}. tbhe approach
applies to protocols with arbitrary messages as keys, but, like ours, it is proven complete
only for atomic keys. Also, the method suffers from the same problem as [3] concerning
brute-force instantiation. The paper [4] extends the symbolic reachability analysis of [3] to
hash functions and public key cryptography and establishes some complexity results.

Developments of the symbolic approach not specifically relying on unification are pre-
sented in [15,30]. The decision technique in [15] is based on a reduction to a set constraint
problem which is in turn reduced to an automata-theoretic problem. Completeness is proven
by assuming rather severe restrictions on protocol syntax. The technique in [30] focuses on
reachability properties and is based on constraint solving; the approach makes use of the
strand space formalism [42] to specify protocol processes. The symbolic reduction and the
knowledge analysis are separated and the latter is performed by a procedure for constraint
solving procedure.

Some recent papers [7,16,33,34] focus on protocols with unbounded instances and un-
bounded message size, and give verification algorithms that terminate under certain as-
sumptions, like tagging. Other recent work addresses the symbolic analysis problem in the
presence of low-level cryptographic operations and, in particular, modular exponentiation
[31,13,40]. Blanchet’s model [6] abstracts away from operations like inverse, root extrac-
tion and random number generation. The resulting method may give rise to false attacks
and may not terminate. Pereira and Quisquater first [31] proposed a technique for analysing
group Diffie—Hellman protocols in the presence of an attacker with restricted capabilities
(e.g. no symmetric encryption), though not facing the issue of decidability. Chevalier et al.
[13] demonstrated that the protocol analysis problem is decidable and NP-complete in the
presence of modular exponentiation. Shmatikov [40] proved that the above problem in the
presence of Abelian group operator and exponentiation is decidable for a finite number of
protocol sessions. Also related to these approaches is protocol analysis in the presence of
the xor operation, which has been recently proven to be decidable by Chevalier et al. [12]
and, independently, by Comon-Lundh and Shmatikov [17].

SummaryIn Section 2 we introduce the notion of frame at the basis of our method. In
Section 3 we present the process language, its concrete and symbolic semantics, and we
study the relationship between the two semantics. In Section 4 we describe the verifica-
tion method based on the symbolic semantics. Throughout Sections 2—4 we use public-key
cryptography as a running example. An extended system featuring shared-key, public-
key, digital signature and hashing is considered in Section 5; this section also contains
an example of non-regular frame. In Section 6 we illustrate an application to a low-
level primitive, modular exponentiation, hence, the Diffie—Hellman key exchange. Sec-
tion 7 illustrates STA on the classic Needham-Schroeder protocol. In Section 8 we draw
some conclusions. Detailed proofs of a few technical results are confined to Appendices
A,BandC.

2. A general framework

In this section, we present the main ingredients of our framework. We introduce the
concept offrame that is, a structure consisting of a signature, a set of (legal) messages
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and an evaluation relation. Then, we define the notions of process, trace, configuration and
security property.

2.1. Frames

We consider two countable disjoint setsaimesn, n, ... € N andvariablesx, v, ... €
V. The set\ is in turn partitioned into a countable setlotal namesa, b, ... € LN
and a countable set @nvironmental names, b, ... € EN: these two sets represent
infinite supplies of fresh quantities (keys, nonces, ...), that can be used by processes and
environment, respectively. The s8tU V is ranged over by lettets, v, ... . The fact that
LN andéN are disjoint guarantees that nonces and keys generated by honest participants
cannot be guessed in advance by the environment (of course, local names might be learned
and then used by the environment), and vice-versa.

Given a finite signature of function symbolsf, g, ..., each coming with its arity
(constants have arity 0), we denotefyythe algebra of terms (@xpressionson N UVU X,
given by the grammar:

Lnou= u | fO,

wheref is a tuple of terms of the expected lengthteskm contexC[-] is a term with a hole
that can be filled with any terr thus yielding a tern€[{].

Definition 1 (Frame). A frameF is a triple &, M, ), where:
e X is asignature;

e M C Esisasetofmessages?, N, .. ;

e | C &y x &y is anevaluation relation

In the sequel, we writé | 7 for ({,n) € | and say that evaluates toj. In typical
frame instances the relatignwill be both a function and a congruence with respect to the
operations inX, but we need not to assume these facts in the general framework. In fact,
as we shall see in Secti@) a non-deterministic evaluation relation can be used to model a
commutative operation.

Next, we define a deduction relatiort ), which specifies how the environment can
generate new messages starting from an initial set of mesSa@es definition of deduction
relation is not given by a set of deductive rules. Rather, we make use of thé$etwhich
consists of all the expressions inductively built by applying functions wf elements of
and of EN. We denote byP;(X) the set of finite subsets 6&f.

Definition 2 (Deduction relatiof. For 7 = (X, M, ]) a frame andS < M, the set
H () is inductively defined by the following clauses:

HE(S) = SUEN o
HEH(S) = Hp() U{FO: [ eX S HES))
Hy(S) = U HE(S).

i>0
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Table 1
Fpi, a frame for public key encryption

sanatre X = (O, 07, [lo. () mO) (=12, decs()

MessaGEs M, N = u | u™ | u™ | {M},+ | (M,N)

PRy mll) G (=12
(De0)  dec® ([Lh,+) ~ {
(el

(CTX) _—
Cl~Cl]

EVALUATION {in & {~"n

Thededuction relationtx < P;(M) x M is defined by

StrM 8 3LeHp(S): L M.

A messagéV is deduciblefrom S if S+ M.
When no confusion arises, we simply writkgS) for H (S) and - for .

Example 1(Public-key encryption A frame 7, = (2, M, |) for public-key cryptog-
raphy is defined in Tablé. The functions o are: generation of publio§™) and pri-
vate (-)7) keys, encryption with a public key[{}}(,), decryption using a private key
(dec?l)((-)), pairing (-, -)) and selection;(-)). Public and private keys are represented
by ut and u~, respectively. Names and variables can be used to build compound
messages via public-key encryption and pairing. In particufad],+ represents
the message obtained by encryptibgunderm™. Primitives for pairing and public key
encryption of messages can be arbitrarily nested. Non-atomic keys are forbidden in mes-
sages: this restriction is crucial in our method, as we will show in Example 7.
The definition of evaluation relation makes use of an auxiliary relationthat mod-
els the mechanisms of public key encryption under the perfect cryptography assumption
(see e.g. [18]).

As an example of deduction, §f = { {{a, b)}x+, k~ } thenS | a, sincel = 7rl(dec,':k —
({{a, b)Tx+)) € H(S) and{ | a. Note that, whateve§, the set of messages deducible from
S is infinite.
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Table 2
Syntax for agents

AGENTS A A, B == 0 (null)
| ax).A (input)
| 3. A (output)
| lety={inA (evaluation)
| E=mnA (matching)
| A|B (parallel composition)

The occurrences of variablggandy are bound.

2.2. Processes

2.2.1. Syntax

As a base language, we consider a variant of the applied pi-calfjlysarametrised
by an arbitrary frameF (for readability, we omit explicit reference 16 in the notation).

The syntax ofagent expressionsvhose set we namd, is reported in Table 2. A single
construct let) for expression evaluation replaces the ad hoc constructs found in the spi-
calculus for encryption, decryption and other cryptographic operations. The main difference
from applied pi is that, here, we consider a gedf input and outputabels ranged over

by a, b, ..., which must not be regarded as channels—according to the Dolev—Yao model,
we assume just one public network—but, rather, as ‘tags’ attached to process actions for
ease of reference. We do not consider the pi-calculus restriction operator: it could be easily
accommodated, but it has no semantic relevance, in the absence of iteration.

Given the presence of binders for variables, notionsed variablesv(A) C V, and
alpha-equivalencarise as expected. We shall identify alpha-equivalent agent expressions.
For any({ andx, [{x] denotes the operation of substituting the free occurrencesgf.

An agent expressioA is said to beclosedor aprocessf v (A) = @ ; the set of processes
‘P is ranged over by, Q, . ... Local names and environmental names occurring are
denoted by I8A) and erfA), respectively. A procesB is initial if en(P) = .

Example 2(The Needham—-Schroeder protgcdlVe consider the classical Needham—
Schroeder protocol as described, e.g[26]. The protocol involves two honest partici-
pants,A and B, which want to authenticate with one anothéris the initiator, B the
responder:

(1) A— B :{nA,idslip+ (NAfresh nonce),

(2) B— A : {nA,nBJ; s+ (nBfresh nonce),

(3) A— B : {[nB]}kB+.

We formalise below a ‘one-shot’ configuration of this protodé§ where two distinct
instances ofA are willing to talk toB and to a malicious insidér a participant whose role

is played by the attacker. An instanceB®fs willing to respond tA (this example will be
analysed in Section). A disclose action is supposed to have provided the environment with
its initial knowledge (identities and public keys of participants, plus the insider’s private key
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information). To simplify the notation, we use a few self-explaining notational shorthands,
like c({y, nlxy). P for

c(x). let x’:deczl_( (x)inlet y=m1(x"inlet y=mo(x")in [y’ = n]P,
for freshx, x/, y'.

A = al({nA, idylip+). a2({nA, xnBlya+). a3({xnBlip+).0

|| a'1({n’A, idalis+). a2 A, xnIla+). 2’ 3{xnlT+).0
B é bl({[ynA,idA]}kB+).5({[yl’lA,nB]}kA+>.b3({[l’lB]}kB+).O
NS = (disclose(kl, kAT, kBt, id,, idg, id:), (A || B)).

2.2.2. Operational semantics

The semantics of the calculus is given in terms of a transition relatien, which we
will sometimes refer to as ‘concrete’ (as opposed to the ‘symbolic’ one we shall introduce
later on). We model the state of the system as a @airP), wheres records the current
environment’'s knowledge (i.e., the sequence of messages the environment has “seen” on
the network up to a given moment) afds a process term. Aactionis a term of the form
a(M) (input action) ora(M) (outputaction), fora a label andM a message. The set of
actionsAct is ranged over by, f3, ..., while the setAcr* of strings of actions is ranged
over bys, s/, ... . String concatenation is writter . We denote by a¢k) and msgs) the
set of actions and messages, respectively, appearingArstring s is closedif v(s) = ¢
andinitial if en(s) = ¢ . In what follows, we shall often writes*~ M’ for msg(s) - M and
‘M € s’ for M € ms(s).

Below we defineraces i.e. sequences of actions that may result from the interaction
between a process and its environment. In traces, each message received by a process
(input message) must be synthesizable from the knowledge the environment has previously
acquired. Irconfigurationsthe environment’s knowledge is explicitly recorded as a trace.

Definition 3 (Traces and configuratiofs A traceis a closed string € Act* such that for
eachsq, sp anda(M), if s = s1-a(M)-so thens1 - M.

A configuration written as(s, P), is a pair consisting of a traceand a proces®.
A configuration idnitial if en(s, P) = @ . Configurations are ranged over 8yC’, ... .

The concrete transition relation on configurations is defined by the rules in Bable
Each action taken by a process is recorded in the configuration’s first component. Rule
(INP) makes the transition relation infinitely-branching, dsranges over the infinite set
{M : s+M, M closed. Inrule (QuT), { is evaluated before the action takes place. By rule
(LET), the evaluation of replaces any occurrence ofin P. Note that, while we require
that evaluation of terms sent on the network yields closed messages, for the purpose of
internal computation (rules @71) and (MaTcH)) we do allow evaluation to arbitrary terms.

No handshake communication is provided: all messages go through the environment (rule
(PAR)). By C —"C’ we mean thaf reduces ta’ in n execution steps.
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Table 3

Rules for the transition relation- )
(INP) (s, a(x). Py — (s-a(M), P[M)x]) s+M, M closed
(Our) (s, a(0). P) — (s-a(M), P) (| M, M closed
(LET) (s, lety=CinP) — (s, P["/y]) { ) n,nclosed

(Matcn) (s, [{=nlP) — (s, P) iénle

(s, Py— (s, P')

(PAR)
(s, P1O)—(s', P Q)

plussymmetric version of (k).

2.3. Properties

We express security properties of a protocol in terms of the traces generated by the pro-
tocol. In particular, we focus on correspondence assertions of the kind ‘for every generated
trace, whenever actiofi occurs in the trace, then actienmust have occurred at some
previous point in the trace’. Given a configuratign P) and a trace’, we say thats, P)
generates’, written (s, P) N\ s/, if (s, P) —* (s/, P’) for someP’.

We letp range over ground substitutions, i.e. substitutions that map variables to closed
messages, and denote mythe result of applying to an arbitrary term.

Definition 4 (Satisfaction relation Let « andf; be actions and be a trace. We say that
o occurs prior tof in s if whenevers = s/-f-s” thena € act(s’). For v(a) < v(f5), we
write sFo <= 8, and say satisfiesy <= f, if for each ground substitutiomit holds thatxp
occurs prior tgsp in s. We say that a configuratiahsatisfiest <= 5, and writeCFa <= f5,

if all traces generated hy satisfya < .

Assertionsx <= f§ can express interesting secrecy and authentication properties. As an
example, in the final step of many protocols, a principabends a message of the fofm},
to arespondeB, where{N }; is obtained by encrypting some authentication informaon
under a newly established shared-ke@ur scheme permits expressing tea¢rymessage
encrypted withk that is accepted b® during the execution of the protocol indeed originates
from A, i.e. thatB is really talking toA, and thai is authentic. If we denote biynal 4 and
finalp the labels attached té’s and B’s final action, respectively, then the above property
might be formalised as an assertiomal 4 ({x};) < finalg {({x}x), for x a variable.

Example 3(Needham-Schroeder Protocol—C@nConsider the protocol configuration
NS defined in Example.The property that, at step 3, should only accept authentic
messages, i.e. messages truly originating frons expressed by the following assertion:

AuthAtoB 2 33([zhip+) < b3{zhes),
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with z fresh inNS This means that any message receivedst step 3and having the
form { N1+, for someN, must have been previously sent hyat step 3. As we shall see
in Section?, propertyAuthAtoBis not satisfied bjNS

In practice, all forms of authentication in Lowe’s hierarchy [27] are captured by this
scheme, except for the most demanding one requiring a one-to-one bijection betsveen
and f’s. However, our scheme can be easily adjusted to include this stronger form, by
requiring that eaclf is preceded bgxactlyone occurrence of.

Another property that can be set within our frameworsdsrecyn the style of [5]. In this
case, it is convenient to fix a conventional ‘absurd’ actiothat is nowhere used in agent
expressions. Thus, the formula< o means that action should never take place. Now,
the fact that a protocol, saf, does not leak a sensible datum, gagan be expressed also
by saying that the adversary will never be capable of synthesizimbis can be formalised
by extending the protocol to include a ‘guardian’ that at any time picks up one message
from the network,P || g(x). 0, and then requiring that this guardian will never receiye
thatis,(e, P | g(x).0)FL <= g(d). Note that in our framework it is also possible to verify
a more general form of secrecy, in which a datdicannot be leaked until a certain event,
represented by a certain actiement occurs. This property can be specified by replacing
the absurd action above with tegentaction:event<« g(d).

3. Symbolic semantics

The symbolic semantics we present in this section is based on the notion of symbolic
frame. The latter is essentially a frame equipped with an additional symbolic evaluation
relation, which is in agreement with its concrete counterpart.

A substitutionf) in a frameF is a finite partial map fronV to the set of messagest
of frameF such that)(x) # x, for each variable.. Let us denote bpubst the set of all
substitutions in a given frame. For any objedt.e. variable, message, process, tracg,
we denote by# the result of simultaneously replacing each v(r) Ndom(6) by 6(x). For
0 a substitution, we denote by dg@fh) and codf), the domain and the co-domain @fBy
0v, we denotd restricted toV, i.e.{(x, 0(x)) | x € V}. A substitution0 is aunifier of ¢,
andr, if 110 = 0. We denote by mgi, 12) a chosemost general unifiefmgu) ofz; and
t2, that is, a unifief) of 11 andz, such that any other unifier is a composition of substitution
0 with somed, written 00'.1 Also, for 11, 1], t2, t; terms, mgur, = ¢}, t» = t}) stands for
(O mgu(r20, 130)), wheref) = mgu(ry, 17), if such mgu’s exist.

We introduce below the symbolic evaluation relatipn which extends the evaluation
relation to open terms. Intuitively, |y n means that evaluates tg under any possible
instance of). We require thaf |4 1 beimage-finitei.e., for eacl, the sef{(0, )| { ¢ 1}
is finite up to renaming of variables. The main advantage of the symbolic relation over the

1we assume the standard notion of composition of substitution§2&}: for 01 = ['1/y1, ..., k/yi] and

02 = [14x1, ... nfyn), 0102 = (11021, ... w021 U {[ti/x;] € 02 | x; ¢ dom(0p)} \ Id, where Id is the
identity relation on variables.
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Table 4
Symbolic Evaluation Relation|() for ]—';k

(DEcg) dec?(y) Ss x10 0 = mguy = (U {(=x3)
Prig) O ~s xi0 (=12 0=mgu(, (v, x2)
Enxcg) 0 ~os 100D+ 0=t
(sl
(Crxg)

crg s corey

e, 0 0
SymBoLIC EVALUATION  ( |gn iff ( wls vf}s nand0=01---0,

Variablesx1 andxy are fresh.

concrete one|() is that infinitely many pairs{( ) such that | » can be represented by
means of a single judgemefi | ¢ 1q, for somely, 0, ng.

Definition 5 (Symbolic framg A symbolic frames a pair 7* = (F, |;), where F =
(X, M, ])isaframe,and, C Ex x Subst x &y is animage-finitsymbolic evaluation
relation (we write { |4 n for ({, 0, ) €l) such that, for any expressidnand ground
substitutionp with v({) € dom(p), the following hold:
(@) If {p | n, then there exist, 0, pg such that |y &, p = (990)|dom(p> andn = &pg.
Furthermorey € M implies¢ € M.
(b) If { Lo Eandp = Opg, for somepg, thenlp | Epg.

Note thatin the above definitiohmay in general both contain variableg@ind introduce
fresh variables.

Example 4 (Public-Key Encryption—Cont. ]—";k is defined agF, |), where|; is the
reflexive and transitive closure of the relatior§), as given in Tabld.

Proposition 1. ]-“;k is a symbolic frame.
Proof. See AppendixC.1. O

We now come to symbolic counterparts of traces and configurations. Condition (b) in
the definition below states that only the environment can introduce variables into symbolic

traces.

Definition 6 (Symbolic traces and configuratignsA symbolic tracds a strings € Act*
such that: (a) e@) = ¢, and (b) for eachsy, s2, « andx, if s = s1 - o - 52 and
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x € v(a) — v(s1) theno is an input action. Symbolic traces are ranged overhy/, ... .
A symbolic configuratiopwritten (g, A)g, is a pair composed by a symbolic trac@and
an agen®, such thated) = ¥ and (A) C v(o).

Note that, due to Condition (b) in the Definiti@n for instancea(x™) - a({A]},+) is not
a symbolic trace, whila({a],+) - a(xT) is.

Once a symbolic frame* is fixed, configurations can be equipped with a symbolic
transition relation,— , as defined by the rules in Table 5 (for the sake of readability
we omit any explicit reference t&*). There, a function new) is assumed such that, for
any givenV Cg, V, new(V) is a variable not inV. We also make use of the following
notation: forY = {y1,..., v}, by Y = newmV) we mean thatyy = newmV), yo» =

newVu{yi},..., vy, = nemVU{y1, ..., yo—1}). Moreover(C —9>S C’ standsfo€ —

C’, wheref)is the substitution applied t in the reduction step, i.€lg, A)g —9>S (o', A')g
meansis, A); —4 (d¢/, A’')gande’ = a0 - o or ¢’ = a0, for some action.

Note that, differently from the concrete semantics, input variable;atrastantiated
immediately (rule (INPS). Rather, constraints on these variables are computed and prop-
agated as soon as needed. This may occur due to rulE%OO(LETS) and (MATCHS).

In the following example, after the first step, variablgets instantiated to nanteby a
(MATCH,)-reduction:

(e, a(0).[x =bIP)g —>5 (alx), [x =bIP)g —>5 (a(b), P[okl)s.

Whenevers, A)g — (o', A"), for someA’, we say thato, A)g symbolically gener-
ateso’, and write(s, A)g \g ¢’. Due to the image-finiteness ¢}, the relation— g is
finitely branching, hence each configuration generates a finite number of symbolic traces.
For example, consider the proceBs= a(y). |etx:decl':lf (y)ina(x).0. By the rules in
Table4, the initial configuratiorie, P)y generates the following symbolic traces:

g, a(y), a{{zl+) (forsome frestr), a({z]};+)-a(z).

Itisimportant to stress that many symbolic traces are in fact ‘inconsistent’, that is, sequences
of actions that cannot be instantiated to any concrete trace. For instance, the symbolic trace
a({zlx+) - a(z) above is not relevant for the analysis, because the environment cannot
generate the valug™ in {z];+ (i.e. &k™, henceg¥{z]};+). The problem of detecting
these inconsistent traces, that might give rise to ‘false positives’ when checking protocol
properties, will be faced in the next section. The notion of consistency is formally defined
below.

Definition 7. Given a symbolic trace and a ground substitutign we say thap satisfies
g if opisatrace. Ifitis the case, we also say thatis asolutionof . A symbolic tracer
is consistentf there exist solutions of.

The task of checking consistency of symbolic traces is a crucial point of the verifica-
tion method presented in the next section. Theotdnelow establishes a correspondence
between the concrete and the symbolic transition relations.
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Table 5
Rules for symbolic transition relation<g )

(INpg) (o, a(x). A)g —>g (0-alx), A)g
©Ourg) (0. 3((). A)g —>g (00-3(M), Ab)g (g M
(Letg) (0, letx=(inA)g —>g (00, AO[SK])g (o€

(Matcig) (o, [{=1n1A)g —>g (00, Ab)g { Loy €10 101 Loy Ean
03 = mgu(10, &o),
0 = 010,03

Prre) (0, A)g —g (o', A')g
AR
S

(0. Al B)g —g (a'. A'| B')g

plussymmetric version of (Rg). In the above rules it is assumed that, for
the set of free variables in the source configuration:

(i) x = new(V);

(i) v(O)\ V =newV);

(i) in rule (Parg), B' = BO where(a, A)g —>g (o, A)g;

(iv) msg(o)0 € M.

Theorem 1(Concrete vs. symbolic semanjicsetF* be a symbolic frame be an initial
configuration ands be a trace ofF. ThenC s if and only if there existg such that
C N\ o ands is a solution ofs.

Proof. See AppendiA. [

4. A verification method

We first defineregular framesi.e., frames for which it is possible to determine a finite
basisfunction for the synthesis of messages. Then we introduedirementprocedure
that can be used to check consistency of symbolic traces. Finally, we present a verification
method based on refinement that applies to regular frames.

4.1. Regular frames

Itis convenient to extend the syntax of messages with a new class of variables. Informally,
these variables will be used as place-holders for generic messages known to the environ-
ment. Formally, we consider a new 32bf markedvariables, in bijection with’ via a map-
ping-; thus, variables, y, z, ... have marked counterpais y, Z, ... . Marked messages
(resp., traces) are messages (resp., traces) that may also contain marked variables. Also, for
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S € M, the setH(S) in Definition 2 is extended to include marked variables, that is, we
re-defineH%.(S) as follows:

HI(S) 2 SUEN U,

The deduction relationS(- M) remains formally unchanged. Note that in cdssndM do

not contain marked variables, the new definition coincides with Definid®ince marked
variables are intended to carry messages known to the environment, the satisfaction relation
is extended below to marked symbolic trace according to this intuition. Fot amg any
traceo, we denote by\x the longest prefix of not containingg.

Definition 8 (Consistency Let ¢ be a marked symbolic trace apdbe a ground substi-
tution. We say thap satisfieso if gp is a trace and, for each € v(o), it holds that
(a\X)p F p(X). In this case, we say thap is asolutionof ¢, and thats is consistent.

The terminology introduced above agrees with Definiflowhens does not contain
marked variables. We give now the definition of solved form, that lifts the concept of trace
to the non-ground case (note that this definition is formally the same as the definition of
trace, Definition 3).

Definition 9 (Solved formg Letos be a marked symbolic trace. We sais in solved form
(sf)if for every o1, a(M) andoy S.t.d = g1-a(M)-a2 it holds thats1 - M.

Next, we define regular frames, which enjoy a ‘finite-basis’ property. Basically, this
property states the existence, for anin solved form, of a finite set of ‘building blocks’,
out of which all messages deducible frentan be syntactically built: this requirement is
stated by Condition 1, below. Condition 2 requires that basis functions and substitutions
commute with each other. In fact, this would be the exact meanirgaf) = b(a)p,
but for our purposes inclusiog suffices. Define the set of messages deducible fsom

asD(o) £ {M | o M}. The additional ‘sanity’ conditions(9(a)) < V(o) andb(s) <
D(o) \ (EN UYV) are also desirable to rule out weird or redundant bases (in fact, they are
sufficient to guarantee correctness of our method, as we shall see in Sgction

Definition 10 (Regular frames A symbolic frameF* is regular if there exists &asis
functionb : Act™ — P;(M) such that for each solved formof 7*, v(b(s)) < v(o)
andb(s) € D(a) \ (EN U V) and for allp satisfyingo:

(1) gpt M ifandonlyif M € H(b(ap));

(2) b(ap) < b(a)p.

For eachy, b(o) is said abasisof o.

Example 5(Public-key encryption—Cont. Let us consider the frame for public key en-
cryption introduced in Examplé. A basis function fot7), selects, for a givew in sf, a

set consisting of plain variables, local names, keys, and encrypted messages that cannot
decomposed out of smaller messages deducible érdmthe following, byM = (u)* we

meanM =uorM =ut orM =u".
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Definition 11 (Functionbpk).

bpk(o) = (M| (cFM)and(M = (u)*, forsomeu € LN'UYV, oraAN, u :
M = {N],+ anda¥(N,u™)) }.

Note thatbpk(s) may in general contain encrypted open terms, e.g.sfos c(x) -
c({xDx+), bpk(o) = {{X]x+}. In practice, for a givem in sf, the sebpk(a) can be effectively
computed by an iterative procedure, which repeatedly applies destrud&n%(() and
7; (+)) to messages im, until some fixed pointis reached. This procedure always terminates.

The frame?-‘;k defined in the above example isregular, as stated by the following theorem,
whose proof is reported in Appendx2.

Theorem 2. ]-“;k is a regular frame with basis functidopy.
We shall exhibit an example of symbolic but non-regular frame in Seétion
4.2. Refinement

In the refinement procedure, each input message in a symbolic trace is tentatively unified
to some message that can be synthesized from a basis for past messages. By iterating this
step, one can check whether a given symbolic trace can eventually be instantiated to a trace
in the concrete model. In particular, given any symbolic tra@ee can compute the set of
the ‘most general instances’ afsatisfying the solved form property, denoted®# o).

Definition 12 (Refinement an8F(c¢)). We letrefinementwritten >, be the least binary
relation over marked symbolic traces of a regular frame given by the two rules below. In
(ReF), ¢’ is the longest prefix of that is in solved form and = ¢’-a(M)-¢”, for some

¢d”. AssumeN, N’ ¢ VU .

M =C[N] N’ eb() 0=mguNn,N’
(ReF1) ,
o > ablp

x € V(M)
(Rerg) —
o > o[%k]
wheref # ¢, Og = {4k | x € v(o) and|(eD)\x| < |o\x]| }.
For any symbolic trace, we letSF(o) = {d'|c =* ¢ andd’ isinsf}.

Rule (ReF1) implements the basic step of refinement: a subt®rof M gets unified, via
0, to an element ob(¢’). By rule (RER,) a variable can get marked: it will be treated as
a known constant in subsequent steps of refinement. Note that iBrg){&ep a marked
variablex may possibly be‘unmarked’ back to the plain variabl@ his is achieved via the
renamingfo, and happens precisely when applicatio) @auses the first occurrenceof
to move backward in the trace.
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Example 6. Consideiw=c{{al;+,d) -c{{bls+, e) -c{xJx+, d), and lete’=c({{al+, d) -
c({bli+, e). It holds that

bpk(c”) = {{al+, d, {bhi+, e}

Two possible refinements of via the first rule, are > o[¢x] ande > a[bk]; the refined
traces are in sf. The remaining refinementd$é ¢ > o[*/x]. Note thats[%/x] is not in sf,
sinced’ ¥ ({X ¢+, d) (in particular,a’ ¥ {£],+). HenceSK(o) = {a[%x], a[b/k]}.

Proposition 2. Leto be a symbolic trace. The®F(o) is finite.

Proof. The thesis follows from two facts: (&} is a finitely branching relation, and (b)
infinite sequences of refinement steps cannot arise. As to the latter point, first note that each
(Rer)-step eliminates at least one variable: this stems from the definition of mgu, and from
the fact that yN, N') € v(o). Hence any sequence of refinement steps can contain only
finitely many (ReFy)-steps and, after the last of them, rulee(®) can only be applied a

finite number of times. [J

We now prove that the solutions of a symbolic tracean be completely characterised
in terms of the solutions of the symbolic tracesSR(¢). The proof of this fact is based
on Lemmal below, which basically states that any consistent symbolic trace that is not in
solved form can be further refined.

Lemma 1 (Progression lemma Let 7* be a regular frame and be a marked symbolic
trace. Suppose that there exists sgmwehich satisfies. Then eithew is in sf or there are
¢’ andp’ such thats >~ ¢’, 6p = ¢'p’, andp’ satisfiess’.

Proof. See AppendiB. [

Theorem 3. LetF* be a regular frames be a symbolic traceands be a trace inF*. Then
s is a solution ofs if and only ifs is a solution of some’ € SF(0).

Proof. Suppose = ¢’p is a solution ofs’. Then, obviously is a solution ofr, ase’ = o0,

for somef (note that by definitiow does not contain marked variables). On the converse,
suppose = ap is a solution ofs. By repeated application of the previous lemma, we find
that there i’ in solved form an@’ s.t. thate ~* ¢, s = gp = ¢’p’ andp’ satisfieso’.
Hence, by definitionsis a solution ofs’. [

Note that each solved formmhas a non-empty set of solutions: a trivial solution is obtained
by mapping each variable efto any name i€ V. This fact and the above theorem imply
that a symbolic trace is consistent if and only iSF(¢) # ¢ . It follows that computing
SK(o) gives an effective method to decide consistency.of
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Table 6
The verification method

M(C, o <)
computeMode = {a | C \g d};
foreach ¢ € Mod¢ do
foreach actiony in ¢ do
if 30=mguf,y) and
3¢’ € SKo0) where ¢’ = ¢00" and
200’ does not occur prior t300’ in ¢’
then return (No, ¢’);

O N UAWNPRE

return (Yes);

4.3. The verification method

The methodM (C, « <= f§) described in Tablé can be used to verify fFo < f or
not. If the property is not satisfied, the method computes a trace violating the property,
that is, an attack o. The method always terminates, because the symbolic transition
relation — ¢ is finitely branching, hence the 9dbd ¢ of symbolic traces generated 8ys
finite.

The functioning of the method is best explained by considering the specifie.cask,
i.e. verification ofCEL <= f5. This means verifying that in theoncretesemantics, no
instance of actiorp is ever executed starting frof. By the correspondence between
symbolic and concrete semantics (Theorem 1), this amounts to checking that for each
¢ symbolically generated bg, no solution of¢ contains an instance ¢f The method
proceeds as follows. First, it checks whether there is a éngfuy and 3, for every actiory
of ¢ € Mod¢. If, for everya, such & does not exist, or it exists batl is not consistent (this
means that the cheéks’ € SF(a0) at step 5 fails), then the property holds true, otherwise
it does not, and the traee violating the property is reported.

We shall see a step-by-step illustration of our method at work on a specific example in
Section 6.

Remark 1. In practice, rather than generating the whole set of symbolic traces at once
(step 1) and then checking the property, it is convenient to work ‘on-the-fly’ and comparing
every last symbolic action taken by the configuration against actigrof the property

o <= f3; the refinement procedu&(-) is invoked only wherf andy are unifiable. This is,

in fact, the way our symbolic trace analyser STA works. The complexity of the method in
the worst case is expected to be exponential, since the analysis problem is easily seen to be
NP-hard (see e.g38]).

The correctness and completeness of the method inthe general case is stated by Theorem 4
below.

Theorem 4(Correctness and completengsket ¢ be a regular frameC be an initial
configuration ofF* anda and f be actions ofF* such thatv(o) C v(f3).
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(1) f M(C, a < ) returns(No, ¢) thenC I o <= f. In particular, for any injective
ground substitutiom : v(¢') — EN, it holds thatC \, (¢’p) and(a’p) It o < p.

(2 If C ¥ o <« pthenM(C,a <« ) returns (No, ¢’) and for any injective ground
substitutionp : v(¢') — EN,C \{ (¢/p) and(d’p) i o <= B.

Proof. (1) According to the method, there exist a tracean actiony € ¢, a unifier =
mgu(y, f), andd’ such thats’ = 600" € SF(a0),C \s o, and

BOO" occurs ing’ butx00’ does not occur prior t300 in ¢’ (1)

Givenp as in the hypotheses,é d'p is a solution ofe and, by applying Corollary, it
follows thatC \ s. Also, by (1) and by the injectivity gb on v(¢’), «00'p may not occur
prior to 00’ p in's, otherwisex00 pp~* = «00" would occur prior toB00' pp~—t = 00 in
¢’, contrary to (1). Hence i o <= f3.

(2) Suppos€ N\, s ands # o <= f3. By definition, there existg; such thatp,; does
not occur prior tofpq in s. Leti be the position of the leftmost occurrencefyf; in s.
By C \{ s and by Corollary 1, it follows that there existssuch tha \ o ands is a
solution ofg, i.e.s = ap,, for somep,. Since \(«) and \§) are universally quantified, we

can assume(w, /) Nv(g) = ¥ and so donp;) Ndom(p,) = @. Letpg 2 p1 U p,andy be
theith element ob. It follows thatypy = fpg. Thus, we can considér= mgu(f, 7). By
definition, pg is an instance of, i.e. py = 0p(,, for somep,. Hences = alpy, is a solution
of ¢0. By Theorem 3, there exists asf= ¢00' € SF(c0) such that is a solution ofs’,

! A

i.e.s = d’pg, for somepy. Necessarily
«00' does not occur prior tedd in ¢, (2)

because otherwisﬁ)@’pg = ap4 would occur prior tO/HH’pg = fp, in s, contradicting
the hypotheses. Therefore, we have found, 0, ands’ such thatM (C, « < f) returns
(No, ¢’). Finally, givenp as in the hypotheses/p is a solution ofs. Thus,C \, (¢'p) by

the fact that g ¢ and by Corollaryl. Also, (¢'p) i o <> faspod’p (= y00' p) occurs
in ¢’p at positioni, but 06 p does not occur i’ p prior to positioni, by (2) and by the
injectivity of p. [

Note that assertion (1) (correctness) of the above theorem only depends on the properties
of the setSF(¢) of (a) being finite, and (b) containing only instancescofThese two
properties depends entirely on the sanity conditions of the definition of basis function.
Thus, it makes sense to weaken Definition 10 as follows:

Definition 13. A symbolic frame isveakly regularif for each solved fornw it holds that
v(b(e)) C v(o) andb(o) € D(o) \ (EN UV).

This allows us to state a useful and more general form of correctness:
Theorem 5. Let 7* be a weakly regular frame be an initial configuration ofF* and

o and f§ be actions ofF* such thatv(z) < v(f). Then assertiorfl) stated in Theorer
holds true
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5. ‘Black-box’ cryptographic primitives

We consider extending the symbolic frame for public key cryptografyto deal with
some of the most common cryptographic operations.

The set is enriched by means of appropriate operators for shared-key encryptipn
and decryptiomecf_k)(-), digital signingf{-}]., and verifyingdec‘(jj(-) and hashingd(-). The
syntax of messages is extended via the following additional clauses:

M,N ::= as in Tablel
| (M} | (MY, | H .

The symbolic and concrete evaluations are given in terms of an auxiliary relatjon
defined as expected. In particular, hashing has no rules, digital signature rules are just the
same as for public key, but the rolesof andu~ are swapped. For shared key, the concrete
and symbolic rules are as follows:

deczk({ﬁ}ﬂ) ~ decrsvk(C) S5 10 where = mgu( = k).

Pursuing the idea of selecting ‘building blocks’ out of deducible messages, a basis func-
tion for this frame can be defined by extending the basis function of the public key frame
with all messages of the forfs},, (resp[{M}],,-, H(M)) suchthat Fu (respo ¥ (M, u~),
o¥FM).

The example below shows that the restriction to atomic keys is crucial to ensure the
regularity condition.

Example 7 (A non-regular framg Consider the frame defined above, but modified so as
to allow messages with non-atomic keys in shared-key encryption, thus:

M,N = |[{M}y.

This frame is symbolic, but not regular. To see the latter, assume by contradiction there is
a basis functioio(-) for this frame and consider the symbolic trace

o =13a(b)-a(x)-a({blr) - al{c}iey)

which is in solved form. Take = [b/4]. Clearly p satisfiess, andop I-c. However,c ¢
H(b(op)), which violates Condition 1 in the definition of basis function. To see this, note
that by definitiont, ¢ ¢ b(a), hencec ¢ b(o)p, hence, by Condition 2; ¢ b(ap). From

this it easily follows by induction that ¢ H(b(ap)).

6. Diffie—Hellman key exchange

In this section we instantiate our framework to the analysis of protocols based on a
‘low-level’ operation, modular exponentiation. First, we briefly recall one such protocol,
the Diffie—Hellman key exchange, then we introduce a frame for shared-key and modular
exponentiation, within which this protocol can be analysed.
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The Diffie—Hellman protocol is intended for exchange of a secret key over an insecure
medium, without prior sharing of any secret. The protocol has two public parameters: alarge
prime p and a generatar for the multiplicative groupZ; = {1,..., p — 1}. AssumingA
and B want to establish a shared secret key, they proceed as follows. A igeherates a
random private value, € Z* and B generates a random private valug € Z;. Next, A
and B exchange their public valuesxp (x, y) denotesc” mod p):

1. A— B :exp (o, ny),

2. B— A:exp(a,np).

Finally, A computes the key ak = exp (exp («,np),na) = exp(a,ng x ng), andB
computes the key a§ = exp (exp (o, m4), np) = exp (o, ng x ng). Now A andB share

the valuek, andA can use it to, say, encrypt a secret datiand send it taB:

3. A— B : {d}k.

The protocol’s security depends on the difficulty of the discrete logarithm problem: it is
computationally unfeasible to computéf only x andexp (x, y) are known. The protocol

is believed to be secure in the absence of ‘active’ attackers, but a well-known attack exists
in the presence of active intruders.

Definition 14 (FrameFpn). A frame for exponentiation and shared-key cryptography
FpH = (2, M, |) is defined in Tablg.

Besides shared-key encrypti¢f}, and decryptiordec;k(é) (with n used as a key), the
other symbols ok represent arithmetic operations modulo a fixed and public prime number,
which is kept implicit. In particular, we have exponentiatiexp ({, #), root extraction
root (¢, ), a constant that represents a public generator, two symbols for multiplicative
unit (unit, 1), two symbols for productmult({, #) and its resultf x #, three symbols,
inv(0), inv' () andC‘l, for the multiplicative inverse operation. The aim of using multiple
symbols for each of the above operations is to ensure termination of the symbolic relation, as
explained later on. All the underlying operations are computationally feasiBlenessage
is either a product of up tbvalues, for a fixed constahtor a key or a message encrypted
under a key. A key can be either an atomic object, or an exponential withsbasd a
product exponentekp («, F)).

Evaluation () is the reflexive and transitive closure of an auxiliary relatisn There,
we usel; x {, x --- x {, as a shorthand faf; x ({5, x --- x {,), while (i1, ..., i,) IS
any permutation ofl, ..., n). The relation~ is terminating, but not confluent. In fact,
the non-determinism of- is intended to model the commutativity and the associativity of
the product operation, as reflected in the ruleu(). Also, note rule (®oT): in modular
arithmetic, taking théth root amounts to raising ot modp — 1.

The choice of the above message formats and rules corresponds to imposing the following
restrictions on the attacker and on the honest participants:

(1) there is a fixed upper bounlj 6n the number of factors;

2 An abstraction we make is that a unique operation is used to model both invergeanddnverse mog — 1
(the latter operation arises only inside exponents). Also, we are ignoring that, in modular arithmetic tmed
inverse ofk modulon is defined only if gcdk, n) = 1 (see e.g[29]).
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Table 7
FpH, a frame for modular exponentiation

SIGNATURE T = {a, unit, 1, {}¢), decf§(), exp (), root(,-),
S, mult(, ), inv(), inv'(), ()71
FACTORS fuo=u | u1
PrODUCTS Fu=1] f1x-- X fr
KeEys K,H :=f | exp(«, F)

MESSAGES M, N =:=F | K | {M}g

(DEC) decs({C}y)~{

(MULT) MUICE X -+ % Gy Cppn X oo x E) ol X o x Gy 1<k <n<lI
(INV) INV(q X -+ X {)~inv' (§g) x -+ x inv/ () n<lI
(INvy) iV (CHwE (nvg) iV (O~T (INvg) iV () x {~>unit

(UNIT7) unit x {~(  (UNiTp)  unit~1

(Exp) exp (exp (¢, ), O)~exp (&, mult(y, )

(Root) root (exp (&, 1), O)~exp (&, mult(y, inv({)))

(sl

(Crx) — EvaLuaTION (| iff {~*p
Cl{~CI{]

(2) product and inverse operations cannot be applied to exponentials and to encrypted
terms;

(3) exponentiation starts from the bageand exponents can only be product terms.
More accurately, starting from a term obeying the above conditions, an attacker is capable of
‘deducing’ all—thougmot necessarily onl-AC variants of the message represented by the
term. Thus, if one such variant, in a computation, leads to an attack, it will be considered
by the operational model. Restriction (1) might be relaxed at the cost of introducing a
set of mult; operations, one for eadh>0, but for simplicity here we stick to the above
model.

The example below illustrates typical usage of the evaluation and of the deduction
relations.

Example 8. Consider a se§ = { n4,exp(a,np) }. Then,Stexp(a,ns x ng) and
Stexp(a,np x ny). A further example involves root extraction. Consider a set
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S = { {mlexp @kxn> €Xp (o, k x h), h, I'}. Then,SFm since there exist§ € H(S),
{ = decs*({m}exp (xkx1): With i = exp (root (exp (o k x k), h), 1), s.t.L | m.

The symbolic evaluation relatiof of Fpy is presented in Tabl8: it is defined as the

reflexive and transitive closure of the relatie%s. We can now explain the adoption of
multiple symbols in the case of produchilt and x), inverse i, inv’ and ()~1), and
unit (unit and1). If we used just one symbol for, say, product, the rewrite ruleih) in
Table 8 would be non-terminating, e.g.:

/!

0 i
X Xy g (Xig X oo X xg,) g ((jg X oo X yj,) Xooe e X XG,) ~og e

similarly, for inverse and unit operations. On the contrary, the use of multiple symbols and
the form of the rules ensure termination of the evaluation relation.

Example 9. ConsiderP = a(k).a(x). let z=root (x, k)in P’. After an output action and

an input action, the symbolic evaluationrabt (x, k) produces a global substitutidgh=

[exp (¢, x1)/x] (x1 fresh), to be applied to the whole configuration, and a local substitution
0’ = [exp (x.x1 x k1], to be applied taP’0. I.e.

(&, P)g —>3 (a0, P'00')s with g =3a(k)-a(x).

In analogy to the public- and shared-key cases, we can define a basis function for
Fpn by considering all ‘non-decomposable’ messages deducible from a givea have
two more cases to consider here, non-decomposable products (i.e., products with no de-
ducible sub-products), and exponentials with non-decomposable exponent. Let us write
G C F if G and F are products, and the set of factors @fis strictly included
in F’s.

Definition 15 (A basis function fotFpy). For each symbolic trace

bpH(o)= {M | (c+M)and( M € LN U{o, 1} UV
or(M = Fando¥G, VG C F)
or(M =exp(«, F)ande¥G, VG C F))
or (M = {M}g andeg¥K) ) }.

We strongly conjecture thafpny equipped with the above basis function is a regular
frame, but the details remain to be worked out. On the other hand, it is easy to check that
this basis function turngpy into a weakly regular frame (Definitioh3). Thus we can
appeal to Theorem 5 to make attacks found with the symbolic method correspond to attacks
on the concrete model.

We now analyse the Diffie—Hellman Protocol. The procEsdefined below is a de-
scription of the Diffie—Hellman protocol presented in the introduction. For simplicity,
we just describe a one-session version of the protocol, using again a few obvious
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Table 8
Symbolic evaluation relation|) for Fpy

(Dicg) decs () ~s x1 0 0 = mgu( = {x1}xp. 7 = x2)

) 1<k<n<lI,
(MuLtg) mult({y, {o) ~s (xjy x -+ x x;,) 0 0 =mgu(ly = x1 x -+ x x,
{2 = Xp41 X -+ X xn)

l1<n<lI,

P N R
(INvlg) inv({) ~s (inV'(x;) x xinv'(x;,)) 0 { 0= MUl = x1 X - X xn)

(Inv2g) V() ~s x1 0 0 =mgul, x17Y)

(INv3g) IV ~3s 1 (Invdg) inv/(O) x  ~Ys unit 0= mguC, 1)
(UNitlg) unit x { ~3g ¢ (UNIT2g)  unit ~5g 1

(Explg) exp(x, () ~§s exp (o, mult(xq, 0)) 0 = [8XP (o, x1)/x]

(Exp2g) exp (exp (&, 1), ) ~4s exp (&, mult(y, )
(RooT1) root (x, ) ~4s root (x, )0 0 = [€XP (o, X1)x]

(RooT2,) oot (exp (£, 7). {) ~4s exp (&, mult(y, inv({)))

P
{~s

(Crxg) -
CI{1 ~s COILN

. 0 0
SymBoLIC EvALUATION  ( |g 1 iff (:v-»ls coondgy oand 0=01---0,

Variablesxy, ..., x, are fresh.

notational shorthands.

A = al(exp (a,n4)).a2(x). let z=exp (x, n4)ina3({{d},).0,

B = bl(y).b2(exp («, np)). let w=exp (y, ng)in b3(r). let /'=dec,, (1)in 0,

1>

P =2 A|B.

The Diffie—Hellman protocol is subject to secrecy attacks from active adversaries. In
terms of our model, discovering an attack of this type to the protocol amounts to finding a
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ground trace such thapy = (¢, P || g(d)) \{ s ands FSecretd) = 1 <« g(d). And,
indeed, such am exists and it is as follows:

al(exp (o, n4)) - a2(exp (o ny)) - a3({d}exp @un, xns)) - &(d).

wheren; is any environmental name.

Intuitively, the above trace corresponds to an attack in which the environment intercepts
exp («, n4), generates a namg and handlegxp («, n;) to A, who believes the message
is from B. ThenA computesk = exp (o, n; x n4) and erroneously concludéss a shared
key known byA and B. Finally, A sends over the network the secret dawi@ncrypted
underk, sod is revealed to the environment, that can compuasexp (exp («, n4), ny).

We show how the above attack is detected by the verification method. First, consider the
following symbolic execution starting frofpn:

Con —5 —s (aT(exp(xna)) - 22(0), let e=exp (x.n)ina3((d):).01 B 18().0))
0 — —
s (aTexp (.na) - a2(x0 (4 ). (B{(dlexp ua/n )01 B0 1800-0)) )
—y <ﬁ(exp(a¢, na)) - a2(exp (2 x)) - a3({d)exp (ux'xn y))- (300 I g(t).O))S
—g (@1(exp (4, na)) - 32(eXp (3 x')) - a3 ({ddexp sr'xny)) - 811) BOO)s

£ (g, Blp)s.

In step €), rule (LET,) is applied, withexp (x,n4) lg, exp(a, x" x na) and g =
[exp (. x")jx], for a fixed freshx’.
Now, we show step by step how the attack is detected by the verification method:

1. The symbolic modeVlod¢ is computed (in practice, symbolic traces would be gener-
ated ‘on-the-fly’).

2. The symbolic trace defined above is considered.

3,4. Actiony = g(z) is found such thag unifies with§ = g(d), via 0 = [4].

5. The seSF(c0) = {d¢'} is computed, where’ = ¢00', and’ = [¥'i']. As stated by
Theorem3, ¢’ is a consistent trace. Note, in particular, that if wedet= ¢” - g(d),
thens” I-d. Indeed, there exists= dec:({d},) € H(a"), withn = exp (a, ' x na),
¢ = exp (exp (x, na), ), and{~s~sdecy ({d}y)~sd.

6. Action L does not appear i, hence,

7. (No, ¢’)isreturned.

Note that, as indicated by Theorésnthe concrete tracecorresponding to the attack
can be recovered from( by mappingt’ ton,.

7. An implementation: STA

Symbolic Trace Analyzer (STA) [41] is a prototype tool, written in ML, that implements
some of the verification techniques described in the previous sections. Currently, STA
supports shared-key, public-key cryptography and hashing, while modular exponentiation
has not yet been integrated in the tool.
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We now illustrate the use of STA on the Needham—Schroeder protocol introduced in
Example2, and check the authentication propektythAtoBdescribed in 3. When required
to check whetheNSsatisfiesAuthAtoB STA finds a trace oRSthat violates the property.
The trace is reported below:

disclose(kI, kAT, kBT, id 4,id p,id ;) -a'1({n'A,id Aly+),
bl{{n"A.id alip+) - D2({n'A, nBlga+) - a'2({n"A, nBlga+),
a'3({nBly+)-b3({nBlip+).

This trace corresponds to the attack discovered by Lowe, that can be informally explained
as follows. A runs two parallel sessions, one seemingly wittand the other seemingly

with B. In fact, bothA and B are talking to the adversary, who intercepts all messages.
This allows the adversary to re-use the nonté (issued byA in its interaction withl)

when impersonating the role dftalking to B. Then, the adversary can indugeo decrypt
messagdin’ A, nBl 4+, thus getting: B (actionsa’2 anda’3).

This attack was found after examining 26 symbolic configurations, which took a fraction
of a second on a PC with a Pentium Ill processor and a 64 M RAM. After repairing the
flaw as suggested by Lowe, that is by inserting explicit identities inside each encrypted
message, STA finds no additional attack. The exploration reached all the 60 configurations
that constitute the complete symbolic state-space of the protocol, and this took again a
fraction of a second. We also tried a configuration with two initiatets §) and two
respondersk, C), where each initiator can non-deterministically choose to engage in a run
with eitherB, C or I. STA found no attacks on this version either. The state-space consisting
of 24,655 symbolic configurations was completely explored in less than one minute. It is
worthwhile to notice that memory occupation is not a concern in STA, because a depth-first
strategy is adopted when exploring the symbolic model on the fly.

8. Conclusions

We have proposed a framework for the analysis of security protocols and provided some
sufficient conditions under which verification can be effectively performed via a sym-
bolic method. In contrast to finite-state model checking, our method can analyse the whole
infinite state space generated by a bounded number of participants. Compared to other
symbolic techniques, we offer a simple and general methodology together with a regu-
larity condition, which can be instantiated to complete verification methods for specific
crypto-systems. Our method is efficient in practice, because the symbolic model is com-
pact, and the refinement procedure at its heart is only invoked on demand and on single
symbolic traces. Note that general claims on efficiency should be taken with some care,
given that the protocol analysis problem is NP-hard even under very mild hypotheses (see

e.g.[38)).

Appendix A. Concrete vs. symbolic semantics

We prove Theorem 1 that establishes a correspondence between the concrete and the
symbolic transition systems. The proof is based on the lemma below.
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Lemma A.1. Let 7* be a symbolic frameC be a symbolic configuration an@p be a
configuration. Then

(1) Cp —> €' implies that there existy, 0 and po such thatp = (0pg) gomp): € —s C1
andC’ = C1pq.

2 ¢ —0>S C1 and p = 0pg, for somep, such thatCypg is a configurationimply that
Cp — C1po.

Proof. (1) By induction on the rules of the transition relatier> . The cases (P) and
(PAR) are trivial.
(OuT) (op, a(lp). Ap) — (ap-a(M), Ap), and(p | M. By def. of symbolic frame,

{ 4o N, p=(0p0) dom» aNdM=N po. Then (o, (). A)g —0>S (60-3(N), Al)g
and also(g0-a(N), AO)spo = (op-a(M), Ap). Note that above we have ex-
ploited that W A) € dom(p) and (o) < dom(p).

(LET) (op, let y=Cpin Ap) — (ap, Ap[/y]),with{p | n.Bydef. of symbolic frame,

g \L() fv P = (0p0)|dom(p) and’7 = 5:00 Then,(O’let y = gln A)S —0)S<O_0’
AO[¢/y])s where(al, AO[SH])gpo = (ap, Apll).

(MATCH) (op, [{p =nplAp) —> (ap, Ap), wherelp | & np | &. By definition of
symbolic frame,(p | ¢ implies{ |y, &1, wherep = (leo/)ldom(p) and
& = &ipg’, for somepg. Also np = nbipy’ (v(n) < dom(p)) and, thus,
no1 lg, &2, wherepy' = (szo//)ldom(pb) andé&,p” = &, for somepy”. Since
& = &py = &10200" = Eapp, then q02 and &, are unifiable. Let)s =

mgu(é102, &), i.e.pg” = O3pqg for somepg. We letd 2 010203. Then,p = 0p

and(c, [{ = nlA) —> (o0, Af),, where(l, A po = (cp, Ap).
(2) The proof is by induction on—g . It is similar to the previous case and then
it is omitted.

Corollary A.1 (Theoreml). LetF* be a symbolic frame be an initial configuration and
s be atrace ofF. ThenC “\{ s if and only if there exists such thatC \ o andsis a
solution ofa.

Proof. The proof easily follows by a routine induction on the numbef execution steps,
using LemmaA.1. In particular, for the ‘if’ direction, we exploit part (2) and note that
Cp =C, sinceC is ground. O

Appendix B. Proof of Lemma 1

The proof of Lemma 1 relies on Lemma B.1 below. The latter essentially states that any
input message that violates the ‘sf-ness’ of a consistent symbolic trace can be decomposed
so to satisfy the premises of either of the refinement rules.
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Lemma B.1(Context lemmp LetF* be aregular frame ane be a marked symbolic trace
in sf. If p satisfiess - a(M) anda 7 M, then either

(@ AC[-], Nst.N ¢b(oc)UVUV, M =C[N],andNp € b(a)p or

(b) 3x e v(M) s.t.apt p(x).

Proof. Sincep satisfiess - a(M), thengp+ Mp andVx € v(M), apt p(X). SinceF is
regular,Mp € H(b(ap)). The proof is by induction on the least indesuch thatM p €
H (b(ap)).

(i =0) Mp € b(ap). Depending on the form d¥l, there are three cases:

e M = x or M = a. These cases cannot arise, as they would impiy/.

e M = x. Then, (b) holds.

e M ¢ VUV. M ¢ b(o) as, otherwise, it would follow - M. SinceF is regularb(ap) C

b(o)p, thus, there existd’ € b(o) such thatMp = N’p. Then, we define&C 2 [-1,

N2 wm. Np € b(o)p, asN’ e b(e) andNp = N'p; thus, (a) holds.

(i >0) M= f(M"),whereM’p < H'~L(cp). Note that, for somés;’ € M’, 6t/ M,’, as
otherwises - M, by definition of (). By induction hypothesis, either (aa) there
existC’ andN’ s.t.N’ ¢ b(e)UVUY, M;" = C'[N'],andN’p € b(a)p or (bb) there
existsx € v(M;") suchthatp I p(x). Obviously (bb) implies (b). If (aa) holds, then
we chooseV £ N’ andC[-] £ f(#}, C'[-], M}), whereM' = (M}, M, i),
thus (a) holds true. [J

Lemma B.2(Lemma ). Let F7* be a regular frame and be a marked symbolic trace in
F*. Suppose that satisfiesr. Then eithew is in sf or there ares” andp’ such that > ¢/,
op = d'p/, andp’ satisfiess’.

Proof. Suppose that is notin sf and leto1 be the longest prefix af which is in sf. This
means that = g1 - a(M) - o2, for someM s.t.o1 7M. Sincep satisfiess, we must have
a1p F Mp. By LemmaB.1, either (a) there exigi[-], N, N’ such thatvV ¢ b(g1) UV UV,
M = C[N], N’ € b(s1) andN’p = Np, or (b) there exists € v(M) such that1p F p(x).

If (a) is the case, there exisis= mgu(N, N’) andp is an instance of as a substitution.
By rule (REFR), ¢ > o = c0[¥}3], for an appropriate renamir{g/s]. Furthermorep =
0[351p’, for some ground substitutigsi. Also note that, thanks to the renamipg], for
eachx € v(¢’), ¢’\x is not longer thaw\ x, and this guarantees thalt satisfiess’. Thus
we have founds’ andp’ as required by the statement of the lemma.

If (b) holds, then we can apply €R,), defines’ = o[¥/x] andp’ = [¥/#]p, and the thesis
will follow. O

Appendix C. Proofs on]—‘;k
C.1. 7, is a Symbolic Frame
Notation By { MO»V n we mean thaf ~gs n, with (v(0) \ v({)) € V, and by({ wofi/ n that

Cﬁﬁvl 3'1%, with V. = | V;, for somen > 0 andf = 6 - - - 6,. Moreover, byd \ V
1
we meard \ (V x Ex).
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Lemma C.1. Suppose~ and~~g are definedrespectivelyas in Tablesl and4. Then
(1) If {p~-n thenVX D domip), 357, ppandV : X NV = @, such that! =% 1,
p = (0py) \ V andn’pg = n. Furthermore € M impliesn’ € M.

(2) If ¢ ~§S n andp = 0pq, for somep,, thenp~~*1pq.

Proof. (1) Byinduction orip~~#.We only consider the most interesting case of decryption.
(DEC) Let(p = dec;’/lf (Ind,-). Then,( = dec?,lf(C/), with {'p = {,+ andl"p =y~
Let V = {x1, xo} be such that’ N X = @. Then, there existd’ = mgu{ =
{[xl]}x;, {" =xy)andp = (0'py) \ V, for somepy. By definition ofv-g, { vgw
X0 2y, with np = x160py = (0'p)y = 5. Now lety = M e M. Then

N py = M implies py = [)7+ﬁ]p0 (whereXx  are the variables which occur in key

position in#x”) for somepy, andy” 33}; n'o’ 2 M e M, with ¢’ 2 X1

Finally, { MHJ‘{/ y', with 0 29y andn’po =1"0"pg=n"py=1ne€ M.
(2) By structural induction on the ruless.

(Excy) 100 ~Ys 1C0B,+. with 0 = [¥*/x]. We prove thaf{p],p~* [0} + poin O steps.
Indeed, {01+ pg = {{0T o o = 1LpDpc)-

(Prsg) 7 (0) ~%s x:0,]with 0 = mgu(l, (x1, x2)). By definition ofd, 7; ({p) = m;({0pg) =
i ({(x10pg, x20p0)) andm; ({(x10pq, x20p9))~>x;0pg, by applying rules of~.

(Decy) decl’/’/k(é) MQS x10, with 6 = mgu({ = {[xl]}x2+,z// = x, ). By definition of 0,
k k k . .
decl‘/’/p(lp) = decl?/opo(wpo) = deczgepo({[xlepol}ﬁ@po)' Finally, by applying
k
rules of~-, deczz_opo({[xlﬁpo]}x;(,po)wxlﬁpo.

(Crx,) By induction hypothesis;p~~*{'py and, by rules of~, Cp[{p]~~*Cp[{ po], i.€.
(CILDp~*(COIL D py. O

Proposition C.1. (a) If {p~>*n thenVX 2 dom(p),3V : X NV = ¢ such that, ~0f§/ n,
with p = (0pg) \ V andy’pg = n. Furthermore 7 € M impliesy’ € M.

(b)If ¢ 3»*5 nandp = 0pg, for somepg, then{p~~*np,.

Proof. (a) By induction on the number of steps of relation~, such that/ p~~"#. The
casen = Ois trivial. Suppose > 0 and{p~+""1é~-y. By induction hypothesis, i{’}/ g,
with V'NX =0, p = (0'pp \ V' and&'py = £ By & = & py~n and by LemmeC.1
(applied toX U V') it follows thaté’ < 1, with V0 (X U V') = 8, ply = (0 pg) \ V"
andn’pg = 1. Now, letd = 0’0" andV = Vv’ U V”. Then,( fi’;, nwWthvnNnx =9
andp = (0'pp) \ V' = (0 (0" pp) \ V"D \ V' = ((0'0"p) \ V') \ V' = (Opg) \ V.,
exploiting the fact that ¢0) < (X U V). Furthermore, ify € M, theny’ € M, by
Lemma C.1.
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(b) By induction on the number of steps of relation~g, i.e. such that “ils {1 N(izs
. f@s n, with p = 0102 - -- 0, pg, for somep,. The casen = 0 is trivial. Suppose

0, . . .
¢ “’%Ls {1 3;25 ~0$“S Lo e n. By induction hypothesisip | {,pq, for somepq such
thatp = 01--- 0,po. By applying LemmaC.1 to(, py, it follows that{p~*{, po~np,
for somep,. O

Corollary C.1 (Proposition1). 7, is a symbolic frame

Proof. It trivially follows by PropositionC.1 with X 2 dom(p). O

C.2. 7, is aregular frame

We now prove tha.ﬂ—';k is a regular frame. Propositions C.2 and C.3 below statedfizat
satisfies, respectively, Conditions 1 and 2 in the definition of regular frame (Definition 10).
In particular, note that Proposition C.2 generalises Condition 1 in Definition 10, since
below can be either a trace or a solved form.

Proposition C.2. Let ¢ be a sf or a trace in7-';k. Suppose/(M) < V. Then o+ M iff
M € H(bpk(0)).

Proof. Supposer + M. By induction on the structure o

o M € EN.Then,M € HO(bpk(0)).

M = (2)*. Then,M € H(bpk(a)).

M = (m)*. Then,(m)* € H1(bpk()), by definition.

M = (My, M3). By induction hypothesisi, M> € H(bpk(s)) and, consequently,

M € H(bpk(0)).

o M = {M'},+. If 6 (M, ut), M € bpk(o), by definition. Otherwise, by induction

hypothesisy™, M’ € H(bpk(0)) and, thus{M'}},+ = M € H(bpk(0)).

On the other hand, suppog¢ € 7 (bpk(s)). By induction on the least such thatM e

H/ (bpk(0)). R

(j =0) There are two cases. M € V U EN, trivially o+ M. ElseM € bpk(o) and it
follows by definition that - M.

(j > 0) SupposeM = {M'],+ (the caseM = (M1, M) is analogous), withM’, u™ ¢
H/_l(bpk(a)). Then, the thesis follows by induction hypothesisihandu™.

O

The proof of PropositiorC.3 relies on the lemmata below. Lemma C.2 says that the
deducibility relation on messagest M, is preserved by ground substitutiopsunder
suitable conditions. Lemma C.3 generalises Proposition C.2 to arbitraryfelrerama C.4
is a sort of ‘converse’ of Lemma C.2 (i.e., froap+{p it is deduced that  {, under
appropriate conditions).
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Lemma C.2. Leto be in sf ando be a substitution that satisfies If o - M, then
(1) v(M) C V.
(2) apFMp.

Proof. Let gg be the shortest prefix of such thatog - M. The proof is by induction on
|ool. The caseag| = 0 is obvious. Iflag] > 0, we proceed by induction on the least index
J such that there existse H/(ao), withn |, M.

(j = 0) Necessarilyy = M. Thecasé/ € VUEN is obvious. IfM € agthenMp € agp
and thusrop F Mp, i.e. (2). We now prove (1). Itis not the case thais an input
message, i.eap = g1 - a{M) - g2, as it would implyg1 + M (by definition of
sf), in contradiction to the hypothesis @R. Then necessarily/ is an output
message, i.esg = o1 - a(M) - g2. By definition of symbolic trace, it follows
that M) NV < v(g1) N V. By induction hypothesis oay, v(g1) NV = ¢
(otherwise, (1) would be violated fer) and, thus, yM) C V.

(j > 0) Suppose = dec?zk(cl) with {4 | {M1},+ and{, | u~. By induction hypothesis,

V{MD,+,u") C v, which implies (1) forM. Also, by induction hypothesis,
oop F{Mpl+py andaop k- (u™)p. It follows thataop - Mp. The other cases

(n="C0n =00 = ({1, (), n = m(0) are similar). O

Remark C.1. (1) Itis straightforward to prove the analogue of Lem@2(1) for traces,
i.e.: Lets be atrace and/ a message such that M, then M) C V.
(2) Letg be a sf. Then ) < V. This fact trivially follows by Lemma C.2(1).

Let us now generalise the definition of deduction relatioto arbitrary terms, by letting
gk{ifandonlyifdn e H(o) : | (.

Lemma C.3. Leto be in sf in}‘;k. Then o+ ifand only if{ € H(bpk(0)).

Proof. The ‘if’ part of the lemma is proved by an easy induction on the lgasich that
(e Hi(bpk(a)). Conversely, supposg| (, for somey € H (o). The proof is by induction
on the leasy such that; € H/ (o).
(j = 0) Then, eithen =,§ = M € o for someM, and the result follows from Lemnf@a.1,
or{,n € EN UV, and the result is trivial.
(j > 0) We distinguish the outermost operator ipf The only non-trivial case ig =
decsr(nz),wherenz J {[C]}gur andy, | (. Byinductionorj, {[C]}C/+ € H(bpk(0)).
The are two cases:
1. {{By+ € HO®bpk(e)). Then, it must bef(},+ = {MT,+ € bpk(o), hencel = M,
for someM. Again, the thesis follows from Lemn.1.
2. By € H' (bpk(0)) with i > 0, hencel € H(bpk(a)), which is the thesis for this
case. [J

Lemma C.4. Leto be in sf p satisfyc andA = {m,m™, m~ |m € N}. If aptn, withy
ground then there existg, with v(y) < v(o) such thate + y and yp = 5. Moreover if
n € Atheny =n.
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Proof. Let gg be the shortest prefix of such thatsop +-#. The proof is by induction on

lag|. If |ag] = 0O, we takey 2 n. And, indeedgg - ¢ since () € EN. If |ag| > 0, we

proceed by induction on the least indgsuch that there existse H/ (aop), with { | 1.

(j =0) Itmustbey = { = M € 6ogUEN.Thecase € ENisobvious. IfM € agp, there
existsy = N € ag such thatvp = M and obviously yN) C v(a). Furthermore,
it is not the case thaV = (£)*, as this would imply(ap \ $)pF p(X)* = M,
with oo \ X shorter thano, contradicting the minimality o&o. Also, it is not
the case thalV = (x)*, as (ag) < V, by RemarkC.1(2). It follows that if
M = (m)* € AthenN = M, sinceNp = M.

(j > 0) There are different cases, depending on the outermost operatorHgre we
consider the only non-trivial case, i.&.= dec?f(g“z), where{, | {[’7]}w and

{1 |} ¥~. By induction hypothesis (internal or external) it follows that there are
%1 andy, such that:

() ook z1 = {xby, with v({lxhy) S v(oo) and{zb,p = {n},+, for somey, ¥’
(note that we can assume w.l.0.9. that¢ v, by considering the shortest prefig
of oo s.t.agpt {nly+)-

(i) ook yp, With v(ys) € V(gg) andy,p = . Moreover, ify~ € A theny, =y~

By LemmacC.3 it follows that{[x]}l/,/ € H(bpk(o0)), hence there are two cases:

Q) Mu/ € bpk(oo). In this case{yl, = {NDh+, for someN, k. (Note that it cannot
arise that)’ = 2T, a™, by definition ofbyi(-), ory’ = x* since Wy') < v(so) <
Y by RemarkC.1 (2).) Hencey = k, from (i).

By (ii) it follows that o = k~. By aoF {{y]x+ andagt k™ it follows thataot y,
where by (i)yp = 1, and () < v(go). Moreover, ify € A then obviouslyy =
(in particular, it is not the case that= x, by the minimality ofag).

(2) {xby+ € H'(bpk(00)), 1 > 0. Thus,z, ' € H(bpk(a0)). By LemmaC.3, a0+ 1
and by (i)xp = n and (y) < v(ag). Finally,n € A impliesy = 5, by the same
reasoning as in (1) (from (i)).

Prqpqsition C.3. Let ¢ be in sf inF),. Then bpk(ap) < bpk(o)p, for any p that
satisfiess.

Proof. SupposeV € bpk(ap). Note that, by Remark.1(1) and by definition dbpk(-), M
is necessarily ground. We have to prove that there eXistsbyk(o) suchthatvp = M. Let
oo be the shortest prefix efsuch thatop - M. Clearly,M e bpk(aop) too. We distinguish
the two possible cases, depending on the structuné.of

e M = (k)*. Thenog + (k)* by LemmaC.4 and obviously + (k)*. In this case, we take

N £ (b)* e bp(o).

o M = {M'ly+, with ap¥(M’,m™). By LemmacC.4 there existg such thateg -y,
v(y) < v(og) andyp = M. By the hypotheses ong, ¥ # x and so it must be
x = {1y, for somey’, . Now, by Lemma C.3, it follows that € H/ (bpk(00)), for
somej > 0. But it holds that ¥(y/, ), otherwise by Lemma C.2 it would follow that
opt{(yp,yp) = (M’ k), contradicting the hypothesis thét € byk(ap). Therefore
it must bej = 0, hencgy = N € bpk(o) andNp =M. [
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Theorem C.1(Theoren®). f;k is a regular frame.

Proof. The two conditions of regularity follow, respectively, from Proposition2
(note that, by Remark C.1(1), i#p is a trace andsp+ M then M) < V) and
Proposition C.3. [J
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