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Abstract

A system guarantees responsive usage of a charihalcommunication along is guaranteed
to eventually take place. Responsiveness is importanin&tance, to ensure that any request to
a service be eventually replied. We propose two distince tgpstems, each of which statically
guarantees responsive usage of names in well-typed pHoalprocesses. In the first system, we
achieve responsiveness by combining techniques for deadd livelock avoidance wittinearity
andreceptivenessThe latter is a guarantee that a name is ready to receiveoasasoit is created.
These conditions imply relevant limitations on the nestifigctions and on multiple use of names in
processes. In the second system, we relax these requitesteas to permit certain forms of nested
inputs and multiple outputs. We demonstrate the expreggiver of the two systems by showing
that primitive recursive functions — in the case of the figgttem — and Cook and Misra’s service
orchestration languagerc — in the case of the second system — can be encoded into \pelty
processes.

Keywords: pi-calculus, type systems, responsiveness, recepsegelieearity.

1 Introduction

A system guarantees responsive usage of a channel n#naecommunication along is guaranteed

to eventually take place. That is, under a suitable assomputf fairness, all computations from the
initial state contain at least one reduction witlas subject. We christen this propergsponsiveness
as we are patrticularly interested in the case whdsgea return channel passed to a service or function.
As an example, a network of processgemay contain a servicea{x,r).P invocable inrRpC style: the
caller sends ah an argumenk and a return channél Ss responsive usage afimplies that every
request at will be eventually replied. This may be a critical propentydomains of applications such
as service-oriented computing.

Our goal is to devise typing disciplines that statically iguriee responsiveness of significant classes
of processes. In the past decade, several type systemfpi-tialculus have been proposed to analyze
properties that share some similarities with responssgnsuch as linearity [10], uniform receptive-
ness [13], lock freedom [6, 7] and termination [5]; they vaidl examined throughout the paper. However
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none of the above mentioned properties alone is sufficierty@n necessary, to ensure the property we
are after, as we discuss below (further discussion is fonrnikd concluding section).

The first system we propose builds around Sangiorgi's syfternmiform receptiveness [13]. How-
ever, we discard uniformity and introduce additional coaists, as explained below. As expected, most
difficulties in achieving responsiveness originate frospansive names being passed around. If an in-
tended receiver of a responsive namsaya(x).P, is not available “on time”r might never be delivered,
hence used. In this respect, receptiveness is useful, fedaean be used to ensure that inputa@mnd
onr are available as soon as these names are created.

Even when delivery of is ensured, however, one should take caretrtlvétl be processed properly.
Indeed, the recipient might just “forget” abaytlike in (va, r)(a(x).0|a(r)); orr might be passed from
one recipient to another, its use as a subject being delagedinitely, like in

(va, b, r)(ta(x).b(x) | b(y).afy) |a(r)). (1)

The first situation can be avoided by imposing that in theivece(x).P, namex occurs at least once
in the bodyP. In fact, as we shall discuss in the paper, it is necessabatharesponsive name be used
linearly, that is, it appears exactly once in input and once in outpndefinite delays like (1) can be
avoided by using a stratification of names itdgels like in the type system for termination of Deng and
Sangiorgi [5]. We will rule out divergent computations tliatolve responsive names infinitely often,
but we’ll do allow divergence in general.

Finally, even when a responsive name is eventually in placa subject of an output action, one
has to make sure that such action becomes eventually deailabother words, one must avoid cyclic
waiting like in

F(X).3(x) [ s(y).T(y)- )

This will be achieved by building a graph of the dependenai@sng responsive names and then check-
ing for its acyclicity.

In the first system, receptiveness and linearity imposeaeldimitations on the syntax of well-typed
processes: nested free inputs are forbidden, as well aplawdttputs on the same responsive name. On
the other hand, the type system is expressive enough toeeaalsic programming style; in particular,
we show that the usuaprsencoding of primitive recursive functions gives rise to Mgped processes.

In the second system we propose, the constraints on reepptig and linearity are relaxed so as to
allow certain forms of nested inputs and multiple outputslaRation of linearity and receptiveness raises
new issues, though. As an example, responsiveness mibtitiéaio “shortage” of inputs or outputs, like
in the following example, where a reduction ois followed by one ors, while a communication oh
cannot occurr(, sandt responsive):

T(S)[F{t)|r (X)X|slt -5 F(O)]t.

These issues must be dealt with by carefully “balancinguta@nd outputs in typing contexts and in
processes. The resulting system is flexible enough to leretiestration patterns of Cook and Misra’s
ORC language [4] be encoded into well-typed processes. Due atharcrude use of levels, however,
only certain forms of (tail-)recursion are encodable. Ictfaeither the first system is subsumed by the
second one, nor vice versa.

The rest of the paper is organized as follows. Syntax andatipeal semantics of the calculus
are presented in Section 2, and responsiveness is formefilyed. Section 3 introduces the first type
system, after an informal discussion on the requiremenmtsef&ponsiveness. The main results, subject
reduction and type soundness, are presented in Sectioaré;\e also give a bound, depending on the



size of a process, on the number of reductions necessarsel@fpiven responsive name is used. Simple
extensions of the first system (summatioh; t hen- el se and recursion on data values) are presented
in Section 5, where the encoding of primitive recursive fiows is also discussed. The second system
and its properties are discussed in Section 6 and 7. Sewenalptes illustrating the extent and limits of
the system are discussed in Section 8. Encodingraf into pi-calculus is discussed in Section 9. The
concluding Section 10 contains some indications for furtherk and a detailed discussion of related
work. For the sake of readability, the most technical prdwfge been confined to separate Appendices
(A-H).

2 Syntax and operational semantics

In this section we describe the syntax (processes and tgpddhe operational semantics of the calculus.
On top of the operational semantics, we define the resparesgeproperty we are after.

2.1 Syntax

We focus on an asynchronous variant of the pi-calculus [ld@out nondeterministic summations.
Asynchrony is a natural assumption in a distributed envirent and simplifies the technical treatment.
Nondeterministic summation amd- t hen- el se can be accommodated, but they would raise some no-
tational burden in the proofs that we prefer to avoid at thags: we defer its treatment to a later stage
(see Subsection 5.1).

A countable set of name¥X, ranged over by, b,....xy, ..., is presupposed. The sBtof processes
P,Q,... is defined as the set of terms generated by the following gr@mm

P:= 0 Inaction
| a(b) Output
|a(x).P x¢ in(P)  Input prefix
|la(x).P x¢in(P) Replication
|PIQ Parallel composition
| (vb)P Restriction

In a non blocking output actioga(b), namea is said to occur iroutput subject positioandb in
output object positionin an input prefixa(x).P, and in a replicated input prefia(x).P, namea is said
to occur ininput subject positioandx in input object position We denote by i(P) the set of names
occurring free in input subject position . The conditionx ¢ in(P), for input and replicated input,
means that hames can be passed around with the output dgpably. This assumption simplifies
reasoning on types and does not significantly affect theesgpreness of the language (see e.g. [3, 11]).
As usual, parallel compositior|Q, represents the concurrent executionPodnd Q and restriction,
(vb)P, creates a fresh nanteewith initial scope P. Notions of free and bound names ((fpand bri-)),
and alpha-equivalence-() arise as expected. We assume the set of naghsspartitioned into a family
of countablesorts $S,5’,.... A fixed sorting a la Milner [12] is presupposed: that is, aopt $ has an
associated object sast, and a name of sotf can only carry names of saf!. Alpha-equivalence is
assumed to be sort-respecting: this means a bound name edphberenamed only to a fresh name in
the same sort. We only consider processes that are wedlgsiorthis system.



Notationally, we shall often abbreviatéx).0 asa(x), and(vay) ... (vay)P as(vay,...,a,)P or (vd)P,
whered'= ay,...,a,. In a few examples, the object part of an action may be omittadt relevant for
the discussion; e.ga(x).P may be shortened intaP.

2.2 Sorts and types

We assume a surjective mapping from the set of sorts to thef sgies7 defined below. We writa: T
if abelongs to a sotf with associated type.

A channel typeT"X conveys three pieces of information: a type of carried dbj&ca usageu,
that can beesponsivep) or w-receptive(w), and an integetevel k> 0. If a: TUX andu = p (resp.
u = w) we say thatiis responsivéresp.w-receptivg. Informally, responsive names are guaranteed to be
eventually used as subject in a communication, widdeceptive names are guaranteed to be constantly
ready to receive. Levels are used to bound the number of timesponsive name can be passed around,
so to avoid infinite delay in their use as subject. We alsoidens typel of inert names that cannot be
used as subject of a communication — they just serve as tokdrespassed around. Finally, a types
introduced to collect those names that cannot be used awsale discuss below, is useful to formulate
the subject reduction property while keeping the standapsdaiional semantics.

Definition 1 (types). The setI of typescontains the constant and the set of terms generated by the
grammar below. We use S, ... to range overT .

Tu= 1 | T ui=[pK | [wk (k=0

Note that even ifL € 7, the grammar above rules out compound types containineg.g. LP¥ is
not a type. For the sake of simplicity, recursive types aréterh In particular we do not allow channels
to carry names belonging to their own sort.

2.3 Operational semantics

The semantics of processes is given by a labelled transtistem in the early style, whose rules are
presented in Table 1. Aaction pcan be of the following forms: free outp@(b), bound outputa(b),
input a(b), or internal mover(a,b). We definen(a(b)) = n(a(b)) = n(a(b)) = n(t(a,b)) = {a,b}. A
substitutiono is a finite partial map from names to names; for any t&rwe write Po for the result of

applyingo to P, with the usual renaming conventions to avoid captures.

. . b
The rules are standard, butmransmonsM we keep track of the free or bound— namesa

andb that are used as subject and object, respectively, of a comoation. This extra information will

be useful on several occasions. In rukeép), a bound responsive subjegtis renamed to a fresh
namec of type | — a sort of “casting” ofa to type_L. Informally, this casting is hecessary because in a
well-typed process, due to the linearity constraint oneasfve names, nanmgemust vanish after being
used as subject. Rul®Es) deals with the remaining cases of restriction. Note thatpé and sorting
information are ignored, one gets back the standard opardtsemantics of pi-calculus.

Convention In the paperjprocesses are identified modulo alpha-equivalenEermally, this means
that we work with alpha-equivalence classes of terms, rati@n with individual terms. A few caveats
apply to this convention. For each alpha-equivalence dRissve choose a representative term in a
canonical form, written cai®), having all bound names pairwise distinct and disjoint fribv@ set of
free names. All (syntax-directed) functions or relatioakirig [P] as an argument are defined in terms



() ax).P 22 plbyg (ReP) 1a(x).P 221a(x).PP[oX
a H pr _
(oum) ab) 2 0 (Pary) PP Pé”@;(g(@ =0
(vo)p 22, pr P|Q 122 (vb)(P|Q)
(comy) Pibl P Qa‘@Q’ (RESP) p 120 b aresponsive c: L cfresh
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(va)P LA (va)P

Symmetric rules not shown.

Table 1: Rules for the labeled transition system

of can(P). In particular: (a) bf{P]) is formally defined as the set of bound names of the terniRjan
that is bricanP)); (b) the operational semantics given in Table 1, which dagsnmention a rule for
alpha-equivalence, is formally defined over plain terms,aver equivalence classes. The semantics of
equivalence classes is then given in terms of the sematritiheiorepresentatives. Formally, this is done
via the rule below, which we assume implicitly:

can(P) 5 Q
P % [Q)

For the sake of simplicity, in the rest of the paper we shaitenP] simply asP, and omit making
explicit reference to cgi®) when no ambiguity arises. So, for example, we writ¢ninstead of
bn([P]). Given any collection of terms, reductions etc. we shaluassthat all bound names occurring
in this collection are pairwise distinct and disjoint froredé names.

. . b . .

Notation We shall often refer to a transitioR T—<a—l> P, sometimes abbreviated &L P/, as a
. b .

reduction P BL P’ meansP M P’ for some free or bound nante For a strings=a; ---a, € A,

P P meansp B2 ... 12 P, while P L% b meansP 5% L P We use such abbreviations as

P Q to mean that there exisB such thaP ﬁL P,

We can now introduce the responsiveness property we ane attemotivate the definition below,

think of a fair computation as a sequence of communicationsrg/for no namex a transmonLL is

weakly (i.e. up to some reductions) enabled infinitely oftgthout ever taking place. Assuming a fair

scheduling of transitions in this sense, responsivenessajuaranteed if, in all states reachable without

doing ﬂ a communication onis weakly enabled.



Definition 2 (responsiveness)Let P be a process andefn(P). We say that Rjuarantees responsive-

ness of if whenever P P (s€ A*) and r does not occur in s thert Bl

3 The type systent-1

The type system consists of judgments of the férnd -1 P, wherel” andA are sets of names.

3.1 Overview of the system

Informally, names il are those used bl in input, while inA are those used bl in output actions.
There are several constraints on the usage of these nanfestayame inlC must occuimmediately(at
top level) in input subject position, exactly once if it ispensive and replicated if it i®-receptive. A
responsive hame it must occur irP exactly once either in subject or in object output positalthough
not necessarily at top level, that is, occurrences in owptibns underneath prefixes are allowed. There
are no constraints on the use in output actionsyaéceptive hames: they may be used an unbounded
number of times, including zero. Linearity (“exactly onaesage) on responsive hames is useful to avoid
dealing with “dangling” responsive names, that might aaier a communication, like irr fesponsive,
object parts ignored):

(vr)(r.O[F[r) = (vr)(0[OF).
If the process on theHs above were declared well-typed, this transition would atelthe subject re-
duction property, as the process on Hies above cannot be well-typed.

Linearity and receptiveness alone are not sufficient toantae a responsive usage of names. As
discussed in the Introduction, we have also to avoid de&didtoations involving responsive names,
like (2). This is achieved by building graph of dependenciemmong responsive names Bf(defined
in the sequel) and checking for its acyclicity. We have atsawoid those situations described in the
Introduction by which a responsive name is indefinitely tpjpong’-ed among a group of replicated
processes, like in (1). To this purpose, levels in types mtreduced and the typing rules decree that
sending a responsive nhame to a replicated receiver of kewely only trigger output of level less than
k. This is similar to the use of levels in [5] to ensure termimrat In our case, we just avoid divergent
computations that involve responsive names infinitelyrofte

There is one more condition necessary for responsiverfestdst the sets of input and output names
must be “balanced”, so as to ban situations like an output nit input counterpart. This constraint,
however, is most easily formulated “on top” of well-typedss, and will be discussed later on.

3.2 Preliminary definitions

Formulation of the actual typing rules requires a few préaismy definitions.Structural equivalencés
necessary in order to correctly formulate the absence dicoyaiting on responsive names. We define
structural equivalences as the least equivalence relation over processes sagsflya axioms below
and closed under restriction and parallel composition. usgpoint out a couple of differences from the
standard notion [12]. First, there is no rule for replicat{dP = P|!P), as its right-hand side would not
be well-typed. Consider e.g. the procea&).R, with a w-receptive name; the procea&).R|!a(x).R

is not well-typed because-receptive names cannot be used as subjects of non-repliegtuts. For

a similar reason, in the rulewya)0 = 0 we requirea: L ora:I. Indeed, the type system requires that
restrictedw-receptive or responsive names be used in input subjedigost least once.



(va)(vb)P = (vb)(va)P (va)(P|Q) = (va)P|Q if a¢ fn(Q)
PIQ=QIP PoO=P
(PIQIR=P|(QIR) (va)0=0 ifa: Lora:l

Let us call a procesB primeif P is of the form eithe&(b), or a(x).P’ or 'a(x).P’. A processP is in
normal formif P is of the form(vd)(P|--- |P,) (n > 0), where even is prime andd C fn(Py, ..., Pp).

In a dependency graph, defined below, nodes are respongivesrend there is an arc froaito b
exactly when an output action that involvaslepends on an input action dn Although the following
definition does not mention processes, one should thinkeop#irs(I';, A;) mentioned below as typing
contexts — limited to responsive names — for priie in Py |- - - |P,.

Definition 3 (dependency graph).Let{(I"i,4;) : i =1,...,n} be a set of context pairs. Tldependency

Example 1. Consider the sets of namés = {a}, Ay = {b,c,d}, Mo = {f}, A, ={a}, '3 ={c} and
Az = {f}. By applying the typing rules introduced in the next sectihrese contexts can be used for
deriving well-typedness of the proceagb|c|d) | f.a|c.f. The graph D@, 4)i—123 depicted below
is cyclic.

We will have more to say on both structural equivalence ametdéency graphs in Remark 1 at the
end of the section. Like in [5], we will use a function(&3, defined below, that collects all — either free
or bound — names iR that occur as subject of attiveoutput action, that is, an output not underneath
a replication (1).

050)=0 oy!a(b).P)=0 oga(b).P) =ogP)
oga(b)) = {a} og((va)P) = os(P) o(P|Q) = o(P)Uos(Q)

Finally, some notation for contexts and types. For any namee set leya) =k if a: TIuK for
someT and u, otherwise we leave l¢a) undefined. Given a set of nam¥s defineVP 2 {x e
V| xis responsivg and V©® 2 {x € V| xis wreceptive}. ForV andW sets of names, we define

VoW 2v \WP. If ANA" =0, we abbreviatdh UA" asA,A" and ifa ¢ A, we abbreviatéh U {a} as
A, a; similarly forI.

3.3 The typing rules

The type system is displayed in Table 2. Recall that eachhsmrian associated type. Linear usage of
responsive names is ensured by rules (TINand (T-QuT), by the disjointness conditions in (TAR)

and by forbidding responsive names to occur free undermeglitation (T-ReP). Absence of cyclic
waiting involving responsive names is checked in @RPand in (T-INP) (a ¢ A). Note the use of levels

in rule (T-ReP): communication involving a replicated input subjecind a responsive object can only

7



trigger outputs of level less than I@). This condition is meant to avoid those never-ending “ping-
pongs” of responsive names mentioned above. Finally, rHRES) ensures that bound responsive
names are used both in input and in output anteceptive hames are used at least as input subjects.
Rule (T-Res-_L) prevents from using a hame of tygeand (T-Res-1) deals with inert names. We say
that a procesP is well-typedif there arel” andA such thaf"; A 1 P holds.

. AP —0 . abeA a:1V b:T APo{abl=0
(T NIL) m (T OUT) O;AFl ﬁ<b>
. P=Q A Q s a:TP¥ b:T a¢n 0AbHP
(T STR) r,A I_l P (T |NP) a;Al—l a(b)P
(T-RES-1) a:l ARP (T-RES-1) a:l hAamP (T-RES) a:TV raparF,P

;AR (va)P ;AR (va)P Ak (va)P

(T-REP) a:T®" b:T AP=0 0;Ab-1P (bresponsive impliesce ogP): lev(c) < k)
a;A Fila(b).P

P=Py|---|Py (n>1) Vi: Risprimeandl;;A F1 R

ViZj: rPnr?=0andanal =0  DG(P,AP)i-1,. nis acyclic
(T-PAR) :

..........

Bound names in processes are assumed to be different fremdraes and from names in contexts.

Table 2: Typing rules of 1

Remark 1. (1) Avoiding deadlock on responsive names might be achidwedsing levels in rule
(T-INP), in the same fashion as in rule (TER), rather than using graphs. In fact, this would rule out
cyclic waiting such as the one in (2) in the Introduction. Walkpursue this approach in the system of
Section 6, where there is no way of defining a meaningful matiodependency graph. However, in the
present system this way of dealing with cyclic waiting wolblunnecessarily restrictive, in particular it
would ban as ill-typed the usual encoding of recursive flomstinto processes (see also Section 8).

(2) We note that, despite the presence of a rule for structgpaivalence, the type system may be
viewed as essentially syntax driven, in the following sei@igenP in normal form,P = (vd)(Py|- - |Py),
and ignoring structural equalities that just rearrangectioe the P's, there is at most one rule one can
apply withP in the conclusion. This is made formal below.

We define a normal derivation df;A 1 P to be one where rule (T4R) is applied only where
strictly necessary:

Definition 4 (normal derivation). A normal derivatiorof I'; A -1 R is a derivation where at each appli-
cation of rule(T-STR) (Table 2) the process P in the conclusismotin normal-form, while the process
Q in the premisés in normal form.

For each well typed processthere exists a normal derivation (the proof is reported ipéyix A).

Lemma 1. Supposd ;Atl; P, then there exists a normal derivationlgfA -1 P.



Example 2. Consider the process
A - -
P = c|a(c)|a(x).(vb) (bx| (b)) | f(y).y

with ¢,x : [Pkl = T a: TlPkal byl — 5 f:slPkl for anyke, ka, ks andks, and context =
A={a,c, f}. Pis aparallel composition of well-typed prime processes résulting dependency graph
is acyclic and rule (T-RrR) can be applied for deducing;A -1 P. As we will see in the next section
(Theorem 2) responsivenessait guaranteed.

Example 3. As expected, there exist processes that guarantee reggoess, but which are discarded
by our type system. Consider e.g.

P = a(c)|'a(x).a(})[a(x).(X[x)

Assumec is responsive. Proce$xis not well typed, because chanreels used in input as a subject
of both a replicated input — hence it cannot be responsiveRER) — and of a simple input — hence it
cannot baw-receptive, (T-NP). However,P guarantees responsivenessafccording to Definition 2.

Indeed, along every computation not involviaga reduction ort is weakly enabled at any stage (which

guarantees that reductit}[ﬁ» will take place under a fair scheduling assumption).

4 Subject reduction and type soundness for system;

Subject reduction states that well-typedness is presdghredgh reductions, and it is our first step to-
wards proving type soundness. Proofs omitted here aretegpior Appendix B, C and D.
Theorem 1 (subject reduction). Supposé ;A3 P and Pl p. Thenl o {a};Ao{a} 1 P.

Our task is proving that any “balanced” well-typed procesargntees responsiveness (Definition 2)
for all responsive names it contains. In the following déiim we formally identify balanced processes.

Definition 5 (balanced processes)A process P igl";A)-balancedf ;A1 P, TP = AP andA® C .
It is balancedfitis (I';A)-balanced for som€& andA.

We need two main ingredients for the proof. The first one igwgitey the following proposition,
stating that if the dependency graph of a prodess acyclic, thenP always offers at least one output
action involving a responsive name.

Proposition 1. Suppose that;A; P, withl', A and P satisfying the conditions in the premise of rule
(T-PAaR) andlP = AP £ 0. Then for some ¢ {1,...,n} we have P=a(b) with either a or b responsive.

Following Deng and Sangiorgi’s approach, we define a measiupeocesses that is decreased by
reductions involving responsive names. We borrow fromtg]definition ofweightof P, written wt(P).
In particular, wtP) is defined only ifP is well-typed and is a vectowy, W1, ..., Wo), wherek > 0 is
the highest level of names in @), andw; is the number of occurrences in output subject position of
names of level in P. A formal definition is given below. It is woth to notice thatwt(a(b)) it can never
be the case that is of typel nor L, because otherwis®b) would not be well-typed. Here0” is an
abbreviation for the vectofl,0,...,0) with k components “0” following “1”. The vector with just one
component that equals “0” is denotedhySum “+” between two vectors is performed component-wise
if they are of the same length; if not, the shorter one is fipsidded” by inserting on the left as many 0’s
as needed.



wt(0) =0 wt(la(b).P) =0 wt(a(b)) = 0k iflev(a) =k
wt(a(b).P) = wt(P) wt((va)P) = wt(P) wt(P|Q) = wt(P) + wt(Q)

The set of all vectors can be ordered lexicographically.ufsag two vectors are of equal length (if
not, the shorter vector is padded with 0's on the left), werdefiv, ..., wo) < (W, ..., wp) if there is
iin0,...,ksuch thatv; = wj for all k> j > i andw; <w;. This order is total and well-founded, that
is, there are no infinite descending chains of vectors. Thé preposition states that the weight of a
process is decreased by reductions involving a responaiveenand leads us to Theorem 2, which is the
main result of the section.

Lemma 2. For each P such that; A, P there exists R in normal form such that=FR.

i b o .
Proposition 2. Supposé ;A7 P and pab, P, with either a or b responsive. Thevt(P') < wt(P).
Theorem 2 (type soundness)Let P be(I";A)-balanced and £ AP. Then P guarantees responsiveness
of r.

5 .
PRoOOE AssumeP Q R, for anyR, andr ¢ s. We have to show thd [:rL Let P’ be a process with a

minimal wt(-) satisfyingR L b for somes” such thar ¢ s': this P must exist by well-foundedness
of <. Lets=¢-5s". By subject reduction we have thBt is (I'’;A")-balanced, witH”" =T © s and
AN =AOs

Consider now a normal form of proceBs (Lemma 2):P' = N 2 (vd)N’ with N’ = Py|---|P, for
somePy,--- , P, prime. By rule (T-SR), we getl';A+; N. Therefore, we deduce that it muste- 1,
asr occurs in both input and output and, by rule (NP), an outpuf cannot occur under an input on

By Lemma 1, there exists a normal derivation[6fA’ 1 N. In this derivation,[’;A’ -1 N is
deduced from™,d; A", d Pi|---|P, by repeated applications of (TER) and (T-Res-1), and rule
(T-PAR) must have been applied to infBf,d;A’",d -y N. Hence it must be(I”,d) = Ui_; [, and
(&,d) =Ui_1_ oA, andli; A F1 B, wheredf (resp.TP) are pairwise disjoint and DGP, AP )iy nis

“““

acyclic. Moreover, from balancing &f andA and definition of> we deduce the balancing bf,d and
A',d, hence(&y',d)” = (I",d). By Proposition 1 there is asuch thalP; = a(b) with a or b responsive.
By (T-OuT) andl”’,d;&',d 1 N’ we havea € A, d. By (&/,d)” C (I,d)® and receptiveness of respon-
sive andw-receptive names ((ThP) and (T-Rep)), there is & such thaf = (!)a(x).P;. This implies

NRGLA N”, by (com), henceN @b, HenceN =P @b, pr = M as well and, since eitheror b

is responsive, by Proposition 2 we get®t) < wt(P’). This impliesa=r, asP’ was assumed to be the
process with minimal weight satisfying ISR P/, for somes’ such that ¢ s”. Hence we have proved
thatRQ. O
Next, we establish an upper bound on the number of steps thahaays sufficient for a given
responsive name to be used as subject. This upper bound gavebeas a function of the syntactic size
of P, written |P|, and of name levels iR. A similar result was given in [5] for terminating processes

Here, since we deal with processes that in general may ruoirtate, the upper bound must be given
relatively to a notion oschedulingof transitions, that is introduced below.

Definition 6 (responsive scheduling) A responsive scheduling a finite or infinite sequence of reduc-

: b b : -
tions P= P, bt Py Heet2) . \where the bound names{ifia,bi)|i > 1} are all distinct from the free
names in P and for eacht O, either g or by is responsive.
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The size of a proced®, written | P|, is defined as

0/=0  Ja(x).P|=1+|P|  [(vo)P[=]P]
lab)|=1  [ta(x).P[=1+|P| [PIRI=[P[+[R].
Note that structural equivalence preserves the size of@epso

We denote by CP) the multiset of all output actions d? that are active, that is, not underneath a
replication. @QP) is formally defined as follows

0(0)

0 O(a(b).P)=O(F)  O(alb)) = {alb)}
O('a(b).P)

=0
=0 O((va)P) = O(P) O(PIR) = O(P)wO(R) .
We indicate by ®(P) the multiset containing all output actions ir{®) involving a responsive name.

Theorem 3. Let P be(I"; A)-balanced and e AP and let k be the maximal level of names appearing in
active responsive output actions of ®(P). In all responsive schedulings, the number of reductions
preceding a reduction on r is upper-bounded|Bj2.

The proof relies on Theorem 2 (type soundness), which esghet a communication onmust
take place. The maximal number of communications that caogole the reduction anis estimated by
considering that each reduction can increase the numbautpfis — that is, of potential reductions —
in the continuation, but this increase is limited by theiatisize of the process (see Appendix D for a
detailed proof).

5 Extensions of systenfr1

In this section we introduce two simple extensions of ouetgpstem.

5.1 Summation and if-then-else
We introduce guarded summation arfd t hen- el se and extend the original definitions and results to
the new constructs.

Summation. Inthe process syntax, plain input prefix is replaced by geuglimmation
Pu=-|Ya)PR
| ; | |

which, as expected, has the following transition rule:

(sum) je.lb .
Zaa(xi).P. 20, by

A summation is well-typed if all its branches can be typedarrahe and the same context:

Viel: T;AF1a(6).R I >1

(T-Sum) MAF, Zaa(xi).P.

11



This rule implies that, = a; for eachi, j € | and that all responsive namesAf are used in output
in each branch. The results introduced in Section 4 stildl ol the extended calculus, modulo a few
notational changes described below. First, processegdbtm ;| a(x).P, are prime. Concerning the
functions defined on processes, we have

|Yicrai(xi).R[=maxalai(x).R| 0T a).R)=Uic 05ax).R)
O(Yiciai(%)-R)=Wic O@(%).R) Wt(Yic ai(x).R)=Jic wt(ai(x).R) .

All proofs are obvious generalization (with summationslaejmg inputs) of those reported in Appen-
dices B and C, hence omitted.

If-then-else. The syntax of processes is extended as follows:
P:=-.. |if GthenPelseP.

We leave the syntax of guard® unspecified, but assume guards can be formed using preslicate
names (e.g.(a=b)). We assume an evaluation function that maps each gBaaltrue or false
G~ trueor G~ false

The operationl semantics of thé- t hen- el se construct is as usual:

G~ true G~ false
g (IF-F) 5
if GthenPelseQ— P if GthenPelseQ —Q

(IF-T)

There are no new structural rules. A+t hen- el se is well-typed if both branches are well-typed:

MAFLP TMAFQ
MAF,if GthenPelseQ '

(T-1F)

The results presented in Section 4 can be extended to thelumlenriched with f -t hen- el se
(see Appendix E; for the sake of simplicity, we omit the exien of Theorem 3, which would require
additional technicalities to take into accountransitions originated byig-1) and (F-F)).

Example 4. A web portal, available aportal, allows users to subscribe to a given service, subject
to an assessment of their reliability. Any client contagtihe portal must supply its personal data,
d. The portal passes the personal data to a sub-service,atdacatassesswho actually performs
the assessment. The result of the assessment can be éitji@rdr “low” reliability. After receiving
this piece of information from the assessment service, thapproduces a security tokénwhich is
internally associated with the client’s reliability andrgenal data, and then pasgesnto the client in
response. At a later time, the client contactsudiscribe the subscription service providing it the token
t. The subscription service usefo retrieve the client’s reliability (and private inforniat) and grants
or denies subscription according to the following policubscription requests originating from clients
with “high” reliability are always accepted, while those from cliewith “low” reliability may be either
accepted or rejected, depending on other circumstanceshate left out of the model.

An abstract description of this system is given@sé P|A|S|C where (internal nondeterministic
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sums(“oK’) @ 5(“noK’) is an abbreviation fofva)(a|a.s(“ok’) + a.5(“nok’))):

P portal(d,r).(vs) (assesgj,s> |S(X).(Vt) (if x=“OK’
then (T{t) |t(v).v{“high",d))
else (F(t) |t(v).\7<“IoW’,d>)))
AZ lasses@l, s).(5(“oK’) @ 5(“nokK’))
SZ 1subscribét, ). (w) (E(v) |v(w,d).if w= “high’
then g(“doné)
else (G(“deny) @ g(“don€)))
CZ (vdata)(vr) (mmataw |1 (t).(va) (Subscribet, g \q(x).C’)) .

It is worth noticing that the tokehcan be viewed as a temporary service that is delegatgubtial to
pass the client’s personal information directly to thébscribeservice.

Sysis balanced under the assumption thaf’ is balanced,r,t,q ¢ fn(C’), lev(portal) >
lev(assesglev(r),lev(v), lev(assess> lev(s) and lesubscribg > lev(t),lev(q), while data “high”,
“low”, “ oK', “doné, “deny, d, wandx are of sort inert. Therefore, a communicationgps guaranteed
to take place and the client is ensured to receive a replg guibscription request.

Note that, formally, we are not allowed to talk about resjparsess ofy, which is bound irSys To

get around this small difficulty, assurge 2 dondC” and consideSysdoneg in place ofSys with done
responsive: then Theorem 2 ensures that a communicatidiomes guaranteed, which in turn implies
that a communication og must eventually take place.

5.2 Recursion on well-founded data values

The system presented in Section 3 bans as ill-typed prac@spbementing recursive functions. As an
example, consider the traditional implementation of thed@al function, the procesB below. For the
purpose of illustration, let us consider a polyadic versibthe calculus enriched with natural numbers,
variables Q,m,...) and predicates/functions on them as expected.

P 21f(nr).if n=0 thenT(1) else (vr')(T(n— 1,r') [r'(m).r(msn)). 3)

It would be natural to seé asw-receptive and andr’ as responsive, but under these assumpti®ns
would not be well-typed: the recursive cdlin— 1,r’) violates the constraint on levels of output actions
under replication (rule (T-BP)). Nevertheless, it is natural to see the outpt— 1,r’), triggered by

a recursive call af, as “smaller” than the output(n,r) that has triggered it: at least, this is true if one
takes into account the ordering relation on natural numbérs means that the “weight” of the process
decreases after each recursive call, and since naturalerarabe well-founded, after some reductions
no further recursive call will be possible, and a commumicabnr must take place. This idea from [5]
is adapted here to our type system. For simplicity, we onlysater the domain of natural valusiat.
However, the results may be extended to any data type on vahiatl-founded ordering relation can be
defined. We define an ordering relatioa™between (possibly open) integer expressions and vagable
as follows: e < niif, for each evaluatiorp under whiche is defined,ep < p(n). E.g.,n—1 < n. In the
case of the monadic calculus, this relation is lifted to a&Ber than” relationa between output and
input actions as follows. Belowd, d’ denote either names or (open) expressions.
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Definition 7 (ordering on actions). We writet(d) <a(d’) if either lev(c) < lev(a) or lev(c) = lev(a)
andd=e<x=d.
The “<" relation is used in the typing rule below, that replacee ril-ReP).

a:T@K pb:T AP=0 0;AbH P
(b: Nat or bresponsive) impliesvc(d) € O(P) : t(d)<a(b)

(T-REP) aArqlab).P

In the polyadic case,<” compares first the subject and then the object parts of twiora lex-
icographically; this is a correct choice because the lajibic ordering is well-founded. (Actually,
this is not the only possibility, see e.g. [5].) More prebisé<” is generalized as follows. We write
T(dy, - -+ ,dg)<a(dy,--- ,dp) if either lev(c) < lev(a) or lev(c) = lev(a) and for somg, with 1 < j <Kk, it
holds thatdj = e < n=dj andd; = d/ for each 1<i < j. E.g. assuming that I¢) = lev(a), it holds that
t(n—1,m+1r)<a(n,ms), for each channel nanmreands. As an example of application of (T#?’),
it is easy to see that the procd3i (3) is well-typed if f : (Nat, Nat®?) @1 andr, r’ : NatlP0,

The proof of type soundness remains the same, modulo a clirafigection wt(-). Here, we need
a measure that records, for each output prefix, not only thet & the subject, but also the value of the
corresponding object. This can be achieved by considericgngound vectomwhich consists of two
parts: the weight and a multiset of natural values recortiiegobjects’ contribution to wt). We omit
the details of the formal definition, which can be found in [5]

Primitive Recursive Functions can be encoded into welktlyprocesses, with (TH#®) replaced by
(T-ReP). The schema of the encoding is an easy generalizatioredtten in (3) above for the factorial
function. We have the following result (the proof is repdrie Appendix F).

Proposition 3. For every k-ary primitive recursive function f there is a latgped process f)p such

that: for each(vy,..., V) in Nat® the process & (vb)({f)p[b{vy, ..., Vi) |r(n).0), with b w-receptive

and r: (Nat)P" (h > 0), is balanced. Moreover, (i, ..., v) = m if and only if G—* T,

6 Nested inputs, multiple outputs: the type system,

The type system presented in Section 3 puts rather sevatations on nesting of input actions and mul-
tiple use of channels. These limitations stem from the “irdiae receptiveness” and linearity conditions
imposed on responsive names. For instance, the followingding of internal choice(a) &1 (b), where

r is responsive and, b inert, is not well-typed

(ve)(e(@)fe(b) |e(x).r(x)). (4)

Limitations are also built-in in process syntax, as for eghareplicated outputs, that clearly violate
linearity, are not permitted. Replicated outputs might beful to encode environments holding con-
stants. As an example, in the process below an environméntone entrya is initialized with the first
input received at, and then repeatedly readafthese situations do arise in the encoding of high-level
languages into pi-calculus):

(va) (r(x).1a{x)la(y)-Pla(y).Qla(y)-R) - (®)

For another example, a process that receives two integersixed order from two return channels,
andr,, and then outputs the max aloggmay not be well-typed

r1(n).rz(m).if n > mthen S(n) else S(M). (6)
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In fact, the type syster; does not allow (free) input actions guarded by other inputs.

We present below a new type systémthat overcomes the limitations discussed above. In fact, we
will trade off flexibility for expressiveness in terms of entable functions, as only certain patterns of
(tail-)recursion will be well-typed in the new system.

6.1 Syntax and operational semantics

We extend the syntax of processes by introducing replicaiguut and the syntax of types by introducing
a new responsive usage of namgs, as follows:

P = -.-|lab)
u == -|[p",k.

A namea: TP" ¥ is called+-responsiveas it is meant to be used least onces subject of a communi-
cation. Therefore now we consider three different usagéfor names used oncg)," (for names used
at least once) ana (for names used an undefined number of times.) We point outdbponsive names
are not subsumed by +-responsive: in particular, as we shall the conditions on the type of carried
objects are more liberal for responsive names. Operatgsrabntics is enriched by adding the obvious
rule for replicated output:

1a() 2rab) .

6.2 Overview of the system

We give here an informal overview of the type system. Juddsnare of the fornT ;A 5, P where in
I andA each +-responsive nanseis annotated with @apability t, written a. A capabilityt can be
one of four kinds:n (null), s (simplg, m (multiple) andp (persistent. Informally, capabilities have the
following meaning (in the examples below, we ignore objeattd of some actions and assuimé a
(+-)responsive name):

¢ a" indicates that cannot be used at all. This capability has been introducediformly account
for +-responsive names that disappear after being usedpl

e & indicates that appears exactly once and not under a replication. ExamalBsb.a.P, a and
ba

¢ a"indicates thah appears at least once, even under replication, but nevabgtsof a replicated
action. Examplesa.P|a.Q, 'b.a.P and ba.

e a° indicates that only appears as subject of a replicated action. ExampkeP®, !a, b.!a and
Ib.!la.

Note that a namea may be given distinct capabilities in input)(and output 4). E.g. one may have,
again ignoring the object parts; A F»!a.P|aja, wherea? € ' anda™ € A. Next we illustrate and mo-
tivate the constraints on name usages realized by the typieg. They guarantee correct usage of
+-responsive names under the balancing conditions diedueghe next section. Roughly, these condi-
tions extend those in Definition 5 by ensuring that each imgtibn involving a +-responsive subject is
always matched by a corresponding output.
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(1) If @ €T thena occurs exactly once in input subject position. This cofistreelieves one from
checking that there are “enougl’available. Indeed, using more than once in input would
require ensuring that the number of inputs involving eacme@oes not exceed the number of
available outputs. E.g. the processafidb +-responsive names)

ajablalb® ablb 4 . @)
has to be discarded, becausis used twice in input and only once in output.

(2) If a” e T anda’ € Athen/ = p. If ais used more than once in input and at least once as output
subject, then deadlocks arising from not having enoughutatgtions of subjed, like in (7), are
avoided, because the output ais replicated as im|a.b|'a|b.

(3) If & eI anda carries (+-)responsive names, thes p — hencea must be used as subject of a
replicated input. This is to avoid deadlocks arising frondihg not enough input of subjeetthat
carry (+-)responsive names, like ia {t-responsiveb andd (+-)responsive names):

a(b)[a(d)|ax).x|bjd L adyd .

(4) Concerninga?, names with capability (persistent) are required to occexactly oncan subject
position (either in input or in output). This is necessargvoid deadlock situations due to shortage
of outputs like in b andc +-responsive)

lab|lac|alc|b 21ab|lac|b|c|b Llab|lat|c A

where a communication anwould never happen.

Moreover, we ban names persistent both in input and in outphis is a simplifying condition
that relieve us from dealing with divergent computation®ining +-responsive names, like ia (
+-responsive)

1alla.P.

To preserve both these conditions at run-time, we have algwlid

(i) replicated actions guarded by replicated inputs. This @/tid situations like

!a.!b\aﬂ!a.!b]!b

where therHS violates the requirement that—responsive names can appear exactly once
as subjects of replicated inputs;

(ii) persistent names passed around as objects.

(5) Names occurring under an (either simple or replicated)timpust be assigned smaller levels than
the input subject. The role of this condition is twofold, noWnder replicated inputs, it avoids
infinite delays, like in the first system. Under simple inpittserves to avoid cyclic waiting, like
in (a,b (+-)responsive):

abjba.

This was achieved by the use of dependency graphs in theyfitstns. As announced in Remark 1,
however, there appears to be no meaningful extension afidtiisn of graph in the present system.
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In particular, acyclicity of the graph might not be presen®y reductions. E.g. consider the
process

b(x).a{x) c(x).a(y).x{y)[c(b) .
Its graph is acyclic, but after a reduction othe process become

b(x).a(x) a(y).b(y)

and the corresponding dependency graph has a cycle ingaandb. As a by product of discard-
ing the dependency graph, we achieve a simplification ofythimg rule for parallel composition.
However, this rather crude use of levels to ban cyclic wgiii also the cause of the reduced
expressiveness in terms of typable functions.

Finally, we introduce a syntactic restriction. As +-respiga names used once or more than once
in output are treated in the same manner, we reserve capabibr inputs, and use onlyn andp for
outputs. This choice alleviates some technicalities irptloef of the subject reduction theorem.

6.3 The typing rules

In what follows, we denote by (&) the set of eitheboundor free names used in input subject position
in P. ContextsI” andA are sets of annotated names of the faiywheret is a capability. Each name
occurs at most once in a context. +-responsive names areéadthavith one of the four capabilities

s (only inT), m or p, while non-+-responsive hames are always annotated widtieaulll “—” capability;
when conveniend™ is abbreviated simply a& Union and intersection of two contexts, writtEpuU I »
andl; NIy, are defined only if the contexts agree on capabilities ofraom names, that is whenever
ai eTjfori=1,2thent; =t,. We writel'1,I > in place off {UT > if F1NI > =0, while 1, a" abbreviates
M1, {a}. For any context” and capabilityt, we definel™ 2 {aldl € ['}. The set of nameBP" 2 {a]
ais +-responsive and' € I for somet # n } andl?, I'® are defined similarly. The typing rules are
presented in Table 3. We briefly comment on the rules by reidening conditiong1 — 5) discussed in
the preceding subsection.

(1) is ensured in (T-PAR) by checking the disjointness 6f andl3 and in (T,.-INP), by requiring
a¢r;

(2) isensured in (T-PaR) by T™mNA™ =0

(3) is ensured in (T-INP) by checking that +-responsive names used as subject afaphicated inputs
cannot carry (+-)responsive objects;

(4) all rules for input ensure that received names cannot be asetbjects of replicated outputs (by
enforcing the capability of the received objects to be diifé fromp); moreover, (T.-REP) and
(T.-REP) ensure that inputs on persistent names cannot be guardegplisated inputs (by
checkingl? = 0). Rules for outputs check that persistent names cannot ¢segaaround. Fi-
nally, (T -PAR) ensures the linear usage of persistent names in both input@put subject (by
checking the disjointness @f,” andl,? and ofA;? andA,P) and bans the usage of names with
persistent capability in both input and output (by checkimgdisjointness of P andAP);

(5) is ensured in rules (I-INP), (T -ReP) and (T.-ReP’), where the level of the input prefixes are
compared against the level of each nested input and output.
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a:TlMwithu#w b:T VYceogP)Uis(P): lev(c) < k
=0 a-+-responsive implieb not (+-)responsive
FAb FoP t#np t'#n,p

(T+-InP) Fa.Aroab).pP
a:TK b:T AP=AP" =0 O;Ab' P tU#np
b (+-)responsive impliesc € ogP) Uis(P) : lev(c) < k
(T+-REP)

a ;Atolalb).P

a:TP K p:7 r‘=0fortc{p,ws,p} A'=0for¢ c{p,p}
AR P t#n,p VceogP)Uis(P): lev(c) <k

(T+-ReF) &P, AFlab).P
.U . p_apt _ /
(T.-OuT) a:T° b:T A 7% th t'#np t#np
0;A,a,b" Foalb)
AP a:TP" ¥ pb:T bnot(+)responsive A’ = A°" =0
(T+-0uT”) 0.A.8°,0 Flalb)
+ .U t. t/

0;AF,0 AR, (va)P

(T.-Res-1) a:L AP (T.-Res) 2 _TiAa P

A, (va)P AR (va)P
(T4+-WEAK-T) FaAl,P (T+-WEAK-A) FAa i ,P

Mr=riulfp A=A1UAy TiAF2PR (i=1,2)
rinri=0forte{p,s,p} A NAY =0for? e {p,p}
FPRAP=0 TMMNA™=0
;A P1|P2

(T+-PAR)

Table 3: Typing rules of»

Finally, linear usage of responsive names is ensured byytiag rules for replicated inputsAf =
P =0), by (T,-OuT) and (T,.-NiL) (I = AP = 0), by (T,.-PAR) (T:? NP = 0 andA;P NAP = 0),
by (T, -WEaAk-I') and (T, -WEAK-A) (only names annotated with capabilitycan be freely added to

typing contexts) and by (T-INP) (a ¢ I).

7 Subject reduction and type soundness for systeirp

Subject reduction carries over to the new system, modulaaional change. Fdr a typing context
andV a set of names let us denote By ™V the typing context obtained by removing frdimeachal
such that € V. Let us denote by i) the set of names occurring free in output positiofPin

18




Theorem 4 (subject reduction for systemt5). I';A+, P and pla p imply I'"; A" 5 P, with 7 =

rot ({a}\in(P))andA"=Ao" ({a} \on(P)).

What follow are the analogs of Propositions 1 and 2 for systen(their proofs can be found in
Appendix G). We consider the extension of wtto the systent-,, written wt" (), defined as follows.

wtt(0) =0  wt(!a(b)) =0  wt(la(b).P) = 0
wt* (a(b)) = Ojey(a) wtt(P|R) = wt™ (P) + wt"(R)
wtt((va)P) = wt™(P) wtt(a(b).P) = wt* (P) + Ojey(a)

Note the different clause for inpai(b).P, where the level o contributes to the weight of the whole
process. This is necessary for guaranteeing thag-ywiecreases through reductions involving replicated
outputs.

Proposition 4. I';A+, P and P12 b with either a or b (+-)responsive, impliest (P') < wt™ (P).

The balancing requirements are now more stringent. Thewdecthose for responsive ano
receptive names necessary in the first system (conditionldwpe Concerning +-responsive names,
“perfect balancing” between input and output is requirely éor those names that carry (+-)responsive
names (condition 2). Moreover, the same requirements abgbyto restricted +-responsive names (con-
dition 3).

Given a set of name¢ let us defineV™ = {ac V|a: T andT is of the form(S¥)W"N with u e
{p,p"} }. Define {"(P) (resp. g (P)) as the set of restricted +-responsive nameB gtcurring in an
input (resp. output) action iR, even underneath a replication. We have the following dedmiand
results. Proofs omitted here are reported in Appendix G.

Definition 8 (strongly balanced processes)A process P igI; A)-strongly balancedif ';A+, P and
the following conditions hold:

1. FrP=APandA® C I'®;
2. TP CAP’ and(Ap*)T C (rp*)T;
3.1/ (P) S 13 (P) and (5 (P)" < (rf (P))".
Proposition 5. Suppose P i§l";A)-strongly balanced witihP U [P £ 0. Then P@l with either a or
b (+-)responsive.

The proof of the theorem below is non-trivial, as strong bailag is preserved through reductions only
up to certain transformations on processes. The lemma hdtifies such transformations.

Lemma 3. Suppose P i§l"; A)-strongly balanced and B2 b/ with P non strongly balanced. Assume
;A F, P, with', A" as given by Theorem 4. Then for som&Rb andd:
L ae (MP AN ) U (P)\ 15 (P));

2. P= (vd)(la(x).R|a(b) |[R) and a¢ fn(R,b,R);
3. P = (vd)('a(x).R|RPA] |R) and a¢ fn(R[B/x],R);
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4. P’ = (vd)(R[b/]|R) is strongly balanced.

Theorem 5 (type soundness for systern,). Suppose P i$l"; A)-strongly balanced and € AP U re.
Then P guarantees responsiveness of r.

PROOF. Suppose thaP H, P/, with P’ having a minimal weight among processes reachable ffom
with r ¢ s (this P must exist by well-foundedness &f). Lets=a; - - - a,, and consider the sequence of

reductions leading t&”:

p:poﬂplﬂﬂpnzp’ (8)

By I'; A+, P and subject reduction we have thatA;i -, B fori =0,...,n, wherel'g =TI andAg = A and

Mi=r_10"({a}\in(R))andd =A_107 ({a}\on(R)) fori > 0. We prove thaP’ I by induction
on the numbek of non-strongly balanced processes in the sequence oftredsi¢8), that is

k=[{i|0<i<nandP is not(l,A)-strongly balanced|.
k=0: ThenP' is strongly balanced. Singec (A" U ") (asr ¢ s), by Proposition 5P’ Hab), P,
with eithera or b (+-)responsive, and, by Proposition 4,#®”) < wt* (P’). Hencea=r, because

P’ was assumed to have minimal weight among the processesl#adtomP without usingr as
subject.

k> 0: LetP; (j > 0) be the leftmost non-strongly balanced process in theesegu(8). Consider the

reductionPj_ ﬂ P;j. Proces®;_1 is strongly balanced whilg; is not, thus, by Lemma 3 (1, 2),
aj € (NP \ AP ) U (P) \r5(P)) andPj_1 = (vd)('a;(X).R|3j(c)| S), with a; ¢ fn(R.c,S).
Again by Lemma 3 (3)P; = (vd)(!a;(x).R|R[¢/X|S) with a; ¢ fn(R[%x],S). MoreoverP’ =
(vd")(1a;(x).R|P”) with a; ¢ fn(P"). Suppose for simplicity; free inPj, that isa e (T;°"\
A;®"). Now, the proces®] = (vd)(R[S/x]|S), obtained by erasing the term;[x).R from Pj, is

strongly balanced (Lemma 3 (4)), and,ag fn(R[%x],S), it holdsP; gl B P, =P”, with

P’ = (VEI’) P”. This sequence has k — 1 unbalanced processes, and mored®/%has minimal
weight among the processes reachable ijmvithout usingr as subject, because WP") =
wtt (P') (by definition of wt (-) we have wt ((vd')(!a;(x).R|P”)) = wt*((vd’)P")). Then, by

induction hypothesisp”’ [:rL which impliesP’ [:rL

8 Examples

Let us now examine a few examples. We begin by consideringegses (4)-(6), then a couple of
examples useful to compare our system to type systems thaamgee lock freedom, and a recursive
function. Finally, we show a more concrete example (a Weki&ex.

Basic examples. In what follows, unless otherwise stated, we assumexhaare of sort inert, that

a, b, c are +-responsive and thas are responsive. Conditions on levels are ignored when abvio
Process (4) at the beginning of Section 6 is well-typed witif capability multiple () in output

and simple €) in input; it is strongly balanced if put in parallel with ap@opriate context of the form
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r(x).P. Process (5) is well-typed withof capability persistentp] in output and simples] in input (also,

P must be assumed strongly balanced, and not containing émséstent inputs or names of level greater
thana’s); it is strongly balanced if put in parallel withx). Process (6) is well-typed assumingand

ro of capability simple in input and, m natural number variables (the obvious extension of theegyst
with i f -t hen- el se and naturals is here assumed); again, it is strongly badaifigeut in parallel with
an appropriate context.

The next two examples involve non-linear usages of +-resigemames arising from replication and
reference passing. We mention these examples also beteyseitl help us to compare our system to
existing type systems that enforce lock freedom, a progetéted to responsiveness (see the concluding
section). The first example involves only replication, abjearts play no role:

labl|alb. 9)

The above process is strongly balanced under the assuntipéitahas capability persistent in input and
multiple in output, and has capability simple in input and multiple in output; al8te level ofb must
be less tham’s. In the next example, an agent “looks up” a directarty get the address of a servibe
and then calls this service:

la(z).z(b) | (vr)(@&(r)|r(w).w)|b. (10)

This process is strongly balanced under the assumption #hist persistent in input and multiple in
output; b is simple in input and multiple in output; also, it must be(lev< lev(r) < lev(a) (the variant
where the inpub is replaced byb is also strongly balanced; in this casés persistent in input.)

The type systerrr, can be extended to the polyadic version of the calculus veithrals and variables
exactly as seenin Section 5.2, i.e. by relying on #ifgélation over actions in rules (1-INP), (T, -REP)
and (T, -REF).

Moreover, as already seen foy, the results introduced in the previous section are stiithfar the
systemi-, extended with summation and -t hen- el se. The proofs reported in Appendix G require
some changes in the vein of those reported in Appendix E gharecomitted. Now, consider the process
implementing the factorial function in (3) and assun are (+-)responsive. It is easily seen that the
process in (3) is not well-typed in the present system: in, faecause of the recursive call &t it
cannot be lefr) < lev(r’). In general, the type system bans as ill-typed recursivis cdlthe form
g(h(g(i),i)), thus ruling out the usual encoding of primitive recursi@ertain forms of recursion, like
the tail-recursive version of factorial below, are howestdt well-typed

If(n,m,r).if n=0thenT(m) else f(n— 1, mxn,r).

A broker service. A broker service, available diroker, upon receiving from a client some travel
informationd and a reply channelfrom a client, contacts agenci@s andA, and waits for their offers.
Upon receiving a response from both agencies, the brokepas their offers and passes onto the
client a link to contact the agency that made the most adgantes one; a refusal message is passed to
the other agency. The client can now decide to either aceat#atine the offer. In the former case, the
selected agency replies to the client by sending the remsemaetails.

The scenario described above can be modeIeSyaé B|A1|A2|C, where (as usual, this is an
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abstract model where many details about internal comjpuigtire left out):

B2 Ibroker(d,r).(vs,t) (ﬂ(d@ |agk(d,t)|s(01,r1).t(02,r2).
if 01 < 0p thenT(0y,r1) | (VV)(F2(“declin€,v)|v(x))
else F(0p,12) | (W) (F1(“decling,v) |v(x)))
A2 lag (d,r).(vs, offer) (r(offer,s) | s(x,t).if x = “accept thenf(“details’) else f(“void"))
c2 (vdatar) (Wkeddata, r)y[r(o,y).(vs)((y(“accept,s)|s(x).C’") & (y(“decline’,s) ]s(x))))

Sysis strongly balanced under the assumption €fas (0;A)-strongly balanced, for somf such that
AP = 0; thatbrokerandag arew-receptive; tecling, “details’,“accept, “void”, offer,data x, z, 01, 05,0
andd are inert; the remaining names are (+-)responsive and tiewbrequirements on levels. There-
fore, a communication ogmis guaranteed to eventually take place: the client is gueeahto receive

a confirmation request from a travel agency. This examplehasipes the usefulness of nested (free)
inputs: without this feature, no broker could be defined, @aparison between two or more received
data would be impossible.

9 Encoding the Structured Orchestration Language

ORC[4] is a recently proposed language for Web Services orciitést that supports a structured model
of concurrent and distributed programming. This model mEsuthat basic services, performing basic
sequential computations and data manipulations, are imgiéed byprimitive sites, and provides con-
structs to orchestrate the concurrent invocation of siiexhieve a given goal. In this section we briefly
introduceorRc and then show that it can be encoded into pi-calculus. Resgmaress on the target terms
can be used to reason about responsiveness on the oxdgicderms.

9.1 oRcC: syntax and operational semantics

For the sake of simplicity, we consider a monadic versionhef talculus, and we suppose that inert
namesg,c,..., are the onlydata valueghat can be exchanged amoagc services. We also consider

a countable set ofariables xy,.... ORC terms, ranged ovef,q,..., are defined by the following
grammar:
p = X Variable
|c Value
f.g == 0 Inaction
|M(p) Site call
|E(p) Expression call
|1et(p) Publication
\ f>x>g Sequential composition
| flg Symmetric parallel composition

‘ gwhereXx:c f Asymmetric parallel composition
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(PuB) —— (SITE)
let(c) ) M(c) SN let(Fu(c))
A !
(par1) =T — f (PARZ)%
flg=f'lg flg f|g
FAF A £le £ ¢
(seql) A : (SEQ2) T
f>x>gsf >x>g f>x>g— (f'>x>0)]9[%
F A8 A£le £S5 ¢
(WH1) )\ . (WH2) T
gwhere x:€ f < gwhere x:c f’ gwherex:€ f — g[¢/X]
A L
(WH3) g9—9 (DEF) ()(277
gwhere x:€ f — ¢ wherex:c f E(p) = f[P/X
where in 61TE) Ry (c) is any function on data values.

Table 4:0Rrc operational semantics.

In the syntax,M is a primitive site name, p is a parameter (either a variabteor a namec) and

for every expression nante there exists a declaratida(x) 2 f, wherex is the formal parameter and
fv(f) C {x}. The primitives can be informally explained as follows. Eatosed expressiof publishes
(returns) a (finite or infinite) sequence of zero or more \&lud site callM(c) always publishes a
predefined valuéy, (c), whereFy(-) is the function associated with siM. An expression calE(c)

publishes the values returned B{f/x] if E(X) 2 f. The expressionet(c) publishes the value. In

f > x> g, the execution off is started, and every valuepublished byf triggers a new instance of
0[¢/x]; the sequence of values produced by all these instanaesiohing in parallel is published. In the
following, f >> g abbreviatesf > x > g whenx ¢ fv(g). In f|g a sequence obtained by interleaving
values produced by andg is published. Ingwherex:€ f the values produced by are published;
however, the execution of andg is started in parallel, and each subtermgothat depends ox is
blocked until f produces the first value, which causes to be replaced everywhere loy subsequent
values published by are discarded. The operational semantics is formally dgfimdable 4. Labels,

A, N, range over published values, writtan) &nd synchronizations, We write f i f D <'—c> that is
if f publishes the value possibly after some internal reductions.

9.2 Encoding

ORC terms are translated into pi-calculus by the functjefy, wheres is a chosen “result channel”,
defined as follows
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name | cy X S p r t E M

Type || alekd | letks] ekl | yletked | jlpT k| (g glp kYl Tkel | (g glp ke k]
I-Cap. m sorp s s p p p
O-Cap.| — p m m m m m m

with: ke > ks, Kp, ke, kv, ke > ks, kv >Kp, Kp>ks, K,k > ks, ky

Table 5: Typing assumptions.

[ret(x)]s = x(y)3(y) [1et(c)]s =3(c
[Ex)]s=x(y)-E(y.9) [E(c)]s=E(c,s)
[M(X)]s = x(y)-(vp) (M(y, p) | p(2) 5(2)) IM(©)]s = (vp)(M(c, p} | p(y) 5(y))
[flals= [fls|[9ls [f >x>gfls= (vt) ([F]e|'t(y)-(vx)(*%(y) | [9]s))

Encoding of a declaratiorkE(x) 2 fis given by E(x;s).[flss The encoding of the sité/ is
IM(x,5).5(Fv(c)). The encodings ofet(p), E(p) andM(p) for p = c correspond to outputting on
the result channed and invoking expressiok and siteM with parameterg ands, respectively. When

p = X, it is first necessary to retrieve the content of variabley reading on it) before proceeding by
either outputting, callindge or callingM. The encoding of the parallel composition of two terms corre
sponds to the parallel composition of both encodings. Theneing two cases are more interesting. In
[f > x> gJ|s the execution of f]|; is started and each published value is sent.oRor each of these
values a new copy dfg]s is started with a new “local variableX containing such a value. In the case
[gwherex:€ f]s, the executions of andg are started in parallel, and only the first value published by
is considered (thanks to the non-replicated input)oriNote that the first publication of does not stop
f’'s execution, which does not interfere with the executiog bécause the nanrés no longer available.

The encoded terms are well typed if the typing assumptiori@ible 5 can be enforced. Levels are
left unspecified, but some constraints on the values theyasamme are given on the bottom part of the
table.

The following result can be used for reasoning about respemsss ofoRC expressions. More
precisely, the theorem below ensures that each well-typeckps, encoding of abnrRc term — and site
and expression it needs —, always publish at least one veheproof is reported in Appendix H. In what
follows, given anorcterm f, D stands for the parallel composition of the encodings ofetlarations
and sites involved in the definition df andd = fn(Dy).

Theorem 6. Let f be a closedRrcterm and suppose Dis well typed. Under the typing assumptions

of Table 5,[f]s is well-typed and F= (vd)([f]s|Ds |!s(x).0), with s andd +-responsive, is strongly
balanced. Moreover, £5 if and only if Fﬂx

Note that, as already discussed in the previous sectione seaursive functions can be typed by
extending, by considering <" in place of “<”, as already seen for systefm in Section 5.2. Hence
some recursive expressions, more precisely the tail-se@iones, can be handled. Specifically, for each
encoding of expressiorE(x,s).[ f]s the level associated to channel nakés deduced by forcing the
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constraints identified in Table 5. E.g. Bf(X) 2 let(X)|E(x— 1), wherex is supposed to be an integer
value, then[E(x)] =!E(x,9).(3(x) |[E(x—1,s)) is well-typed under the assumption that(Ey > lev(s)
andsis +-responsive. For another exampleasic tail-recursive function, which can be encoded into a
well-typed term, conside¥IN defined in the following example.

Example 5. The following ORC expressions are taken from [4]. Consider two primitivessi@\N and
BBC that, when invoked with null argument, reply by publishingiace of news. Consider also a site
Mail(m,a), which receives a messageand an e-mail address and notifies (publishes an uninteresting
null value) after sendingnto a. The orc function below emails the firat pieces of news received
from eitherCNN or BBCto address, and publishes the current valueroéfter every sending and upon
termination:

MN(n,a) 2 ifn=0 then let(n)
else (Mail(t,a) >> let(n)) where t:c (CNNBBC)
|[MN(n—1,a) .

Consider the extension of the calculus with natural valuést, polyadic communication and an
i f-then-el se construct. Suppose the encodings of si@&€N, BBC and Mail are, respectively,
ICNN(x).(vn)x(n), 'BBC(x).(vn')x(n') and Mail(x,a,r).(a(x) |T), wheren andn’ represent pieces of
news. Suppose thats the result channel, the functidiN is encoded as follows:

[MN(n,a)]s 2 IMn(n,a,s).if n=0 then 5(n)

else ((vr) (mm |BBC(r) | (vt) (r(y).TE(y) | (vr')(t(x).Mail (x,a,r")
1r (%) .§<n>))) 'Mn(n— 1,a,s>>

[MN(n,a)]s is well-typed assumings, r,r’ andt +-responsive, lefMn) > lev(CNN), lev(Mn) >
lev(BBC) and leCNN),lev(BBC) > lev(r) > lev(t) > lev(Mail) > lev(r’) > lev(s).
Example 6. Not all orc terms are encodable into well-typed processes. Considdetmf = Inc(0),
where the expressiomc is recursively defined dsic(n) 2 Sucgn) > m > Inc(m) and Succis the suc-
cessor functiorBucgn) 2 n4 1. The ternF below is not well-typed.
F2 (vSucclnc)([f]ls|!s(x).0|D¢)
[f]s = Te(0.s)
Ds 2 ISucgn,s).s(n+ 1)
|!Inc(n,r).(vs)(Sucgn,s) | Is(m).(vw) ('w(m) |w(o).Inc(o,r)))

In  fact,  lInc(n,r).(vs)(Sucgn,s)|!s(m).(vw)(!W(m)|w(o).Inc(o,r))) is not well-typed
(notInc(o,r) < Inc(n,r)) and the premise of Theorem 6 are not satisfied.

10 Conclusions and related works

We have presented two type systems for statically enfon@sgonsive usage of names in pi-calculus.
The first system combines linearity, receptiveness anchigabs for deadlock and livelock avoidance.

25



In the second system, receptiveness and linearity areetlakthe price of stronger requirements on
levels and balancing: we lose some expressive power in tefimscodable recursive functions, but are
able to type interesting processes, such as translationr@ferms. Both systems are syntax driven, so
that type checking should be straightforward and efficieniplement. Extensions with type inference
and subtyping deserve further investigation, mainly duéogpresence of levels. Implementation of the
type checking algorithm and the study of its complexity afeas future work.

Beside the works, already discussed, on receptivenesafitBfermination [5], there are a few more
works related to ours and that are discussed below.

Closely related to our systet, are a series of papers by Berger, Honda and Yoshida on lipeari
based type systems. In [17], they introduce a type systehgtimantees termination and determinacy
of pi-calculus processes, i.8trong NormalizatioffSN). Our techniques of systeim are actually close
to theirs, as far as the linearity conditions and cycle-ct@in graphs are concerned (see also the type
system in [15]). However SN is stronger than responsivenagzarticular SN implies responsiveness
on all linear names under a balancing condition. In fact,sygem in [17] is stricter than our system
F1, e.g. it does not allow linear subjects to carry linear ofgjeand banso-names, hence any form of
nondeterminism and divergence, as these features wouldudby violate SN. Yoshida’s type system
in [16], in turn a refinement of the systems in [17] and [2], isant to ensure kinear Livenesproperty,
by which processes eventually prompt for a free output atvangthannel. This property is related
to responsiveness, the difference being that Linear Le®®es not imply synchronization, hence the
corresponding input might not become available. Two kintieaomes are considered in [16]: linear
(used exactly once) araffine (used at most once). Linear subjects carrying linear abjaict forbidden
and internal mobility is assumed — only restricted namesbegpassed around.

Closely related to our systei, are a series of papers by Kobayashi and collaborators. A type
system for linearity in the pi-calculus was first introdudedi10]. This system can be used to ensure that
any linear name in a process occurs exactly once in input aoe im output; however, it cannot ensure
that a linear name will be eventually used as a subject of alggnization. Kobayashi’s type systems
in [6, 7] can be used to guarantee that, under suitable fsrassumptions, certain actions are lock free,
i.e. are deemed to succeed in synchronization, if they becmrailable ([8] is a further refinement, but
the resulting system cannot be used to enforce responssgn€hannel types are defined in terms of
usagesroughly,ccslike expressions on the alphaljét O}, that define the order in which each channel
must be used in input)and in output ©). Eachl /O action is annotated with asbligationlevel, related
to when the action must become available, andability level, related to when the action must succeed
in synchronization if it becomes available. A level can beatral number or infinity, the latter used to
annotate actions that are not guaranteed to become aeddlatteed in synchronization. This scheme
is fairly general, allowing e.g. for typing of shared-mematructures such as locks and semaphores,
which are outside the scope of our systems. Concerning mes@mess, on the other hand, it appears
that our+-responsive types cannot in general be encoded into l@eddém types. More precisely, one
can exhibit processes well-typed in our system two and @unta-+-responsive names that cannot be
assigned a finite capability in Kobayashi’'s systems. Fomgta, both the process (9) and the “service-
lookup” (10) are well-typed (in fact, strongly balancedpur system two, under a typing context where
b is 4+-responsive. They are not in the systems of [6, 7], under oy tontext that assigns koa finite
capability: the reason is that in these systems a finitellifyanput on b is required to be balanced by
an instance of a finite-obligation outplit that cannot be statically determined in the given prog@sse
Another difference from [6, 7] is that these systems pamtlly on a form of dynamic analysis: the

Lin the latest version of Kobayashi's TyPiCal tool [9], reded after the publication of [1], these examples are handled
though.
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reliability condition on usages, which roughly plays the same role glay®ur systems by balancing,
is checked via a reduction to the reachability problem fdriféets. As previously noted, our systems
are entirely static.

Acknowledgments We wish to thank Davide Sangiorgi and Naoki Kobayashi fanatating discus-
sions on the topics of the paper.
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A Proof of Lemma 1l

In this section we prove that for each typing derivation-inthere exists a syntax driven one with the
same conclusion.

Lemma A.1. Supposé ;A P has been derived by a normal derivation. Then there exigisnBrmal
form such that R= P andl"; A1 R is obtained by a normal derivation.

PROOF. The proof proceeds by induction on the derivation of -, P and by distinguishing the last
typing rule applied.

(T-NIL), (T-OuT), (T-INP), (T-REP), (T-PAR): there is nothing to prove, the process is already in
normal form;

(T-REs-L1): supposeé® = (va)R, by the premise of the rule we getA 1 R. By applying the inductive
hypothesis tdR we get that there exists@ in normal form such tha@ = Randl" ;A4 Q has
been derived by a normal derivation. Given that it musakefn(R), we getQ = (va)R, hence the
result.

(T-RES): suppose® = (va)R, by the premise of the rule we geta;A,at; R. The proof proceeds by
applying the inductive hypothesis ®followed by an application of (T-RS) (note that in this
case it must ba € fn(R));

(T-REs-I): supposeP = (va)R. The proof proceeds as already seen either for EE)Ror for
(T-Res-_L), depending om € fn(R) or not;

(T-STR): byTl;At; P and the premise of the rule we det= Q andl"; A 41 Q. By definition of normal
derivation,I"; A 1 Q is derived by applying a normal derivation a@Qds in normal form.

O
Lemma A.2. If P = (vag)---(van)(Py| -+ |Pm) is in normal form and Q= P with Q in normal form
then there exist permutations i-- ,in and j1, -, jm such that Q= (vaj,)--- (vai,) (Pj, | -+ |Pj,,)-
PrROOF The proof is straightforward by induction on the derivatiaf Q = P. 0

Lemma A.3. Suppose P is in normal form amdA -, P has been derived by a normal derivation. Then
Q=P and Q in normal form imply that there is a normal derivatidimToA 1 Q.

PROOF. By Lemma A.2, we have

P = (vai)--(van)(Pi|--- [Pm)
Q = (vay)---(va,)(Pj |- |Pj,)-

Assume, for the sake of simplicity, that none of ts is of type | or|.
In the normal derivation of ;A -1 P, rule (T-ReS) has been applied in the lassteps, preceded by
an application of (T-RR):

(T-PAR)

Mag,--,an:Aag, - ,a0F1Py| - [Py
Ma, - ,8n-1:081, - ,an-11 (Van)(Pi| - |Pn)

(T-RES)
(T-RES)

T-RES) —
(TRES) Far,P
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By the premise of (T-RR) we get:I",ay, - ,ah = Ui i andA, aq, - - - ,an = Ui & andli; A -1 B for
eachi. Moreover, the disjointness constraints are satisfied badlépendency graph is acyclic. Note
also that;; Aj 1 B, is derived by a normal derivation aflis prime for each.

Therefore, rule (T-RR) can be applied for deducing,as,--- ,an;A,a1,--- a0 F1 Py, | -+ | P}, and
by n applications of (T-Rs), in order to bindg, ,- - - , &, in this order, we obtain a normal derivation of
AR Q. O

Lemma A.4 (Lemma 1). Supposd ;A 1 P, then there exists a normal derivationlgfA 4 P.

PrROOFE The proof proceeds by induction on the derivation oA 1 P. The most interesting case is
when rule (T-SR) is the last applied. By ;A1 P and the premise of the rule, we get= Q and
MAF Q.

By applying the inductive hypothesis @ a normal derivation of ; A+ Q exists.

Suppos€Q is not in normal form. By Lemma A.1, there Bin normal form such thaR= Q and
a normal derivation of ;A 1 R exists. By the transitivity o= andR = Q, we getR= P. The proof
proceeds by distinguishing two casesPlis not in normal form then rule (T-8R) can be applied with
premiseP = Randl;A +1 R for deducingl™; A -, P with a normal derivation. IP is in normal form,
Lemma A.3 can be applied to obtain a normal derivatiof;d -, P.

In caseQ is in normal form the proof proceeds similarly. O

B Proof of Theorem 1

As usual a preliminary result on substitutions is needed.

Proposition B.1 (substitution). Supposd ; A, x 1 P with x¢ in(P), x,b: T and b¢ I then
1. b¢ AimpliesT; A, b1 P[0/];
2. be Aand b is either arw-receptive or inert name imply; A 1 P[B/x].

PROOEF In both cases the proof proceeds by induction on the davivatf I; A, x 1 P.

1. Consider the last typing rule applied in the derivatiorhe Tnteresting case is (T1@), in the
other cases the proof proceeds by applying the inductivethggsis. In particular, concerning rule
(T-PAR), b ¢ ' UA in the premise ensures that acyclicity of the graph and idisjess ofAip, for
i=1,...,n, are preserved.

(T-OuT) by 0;A,x -1 P =a(c) and the premise of the rule, we get SY, ¢c: S and (A, x)° ©
{a,c} = 0. We distinguish the following cases:
ac#x (AbPo{act=0;
a=x x(c)[bx =b(c), T=s" and(A,b)? o {b,c} = 0;
c=x ax)[bx =a(b), T=Ssand(A,b)’o {a b} =0
in each case, by (T-Q@r), 0;A, b1 a(c)[P/x].
Note that it cannot be the case tlat ¢ = x because recursive types are not allowed.

2. The result follows by a straightforward induction on typirules. Recall that rule (TAR) does
not impose linearity on the usage @freceptive and inert names in output.
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The following lemma ensures that structural congruentgseses have the same behavior. Note that
the presence of (T-R) spares us from introducing a subject congruence propasiti

LemmaB.1. fP=Rand PX P thenRE R and P=R.

PrRoOF The proof is straightforward by induction on the derivataf P = R. O
The following proposition represents the analog of subjedtction for visible transitions.

Proposition B.2. Supposé ;A P.

1. Whenever P@l» P/, with a: TY and b: T then

() ifb¢ Athenl ©{a};Abt1 P';
(b) if b e Aand eitherT = s[®K or T = I thenl © {a};A 1 P';

2. Whenever B2, p/ thenl; Ao {a,b} -1 P;

3. Whenever Pa—@ P’ then

(@) either b: TY andT,b; (A,b)© {a,b} -1 P’
(b) orb:1 andrl; (A,b)o{a,b} 1 P.

PROOF

1. By induction on the derivation df;A -, P; the proof proceeds by distinguishing the last typing
rule applied:

(T-NIL), (T-OuT): it cannot be the case thatﬂ;

(T-STR): the proof proceeds by applying the induction hypothesismyioa B.1 and (T-$R);

(T-INP): In this caseP = a(x).Q and by well-formedness &, x ¢ in(Q). Moreover, byl ;A4
a(x).Q and the premise of the rule, we det {a}, a: TV, x: T and0; A, x -1 Q. By hypothesis
P=a(x).Q 20) Q[b/x =P andb: T, therefore

(a): if b ¢ A, by Proposition B.1 (1) (substitution), it follows thétA, b -1 Q[b/x];
(b): if b: T with eitherT = S[®K or T = 1 andb € A, by Proposition B.1 (2) (substitution),
it follows that®; A 1 Q[B/x];
(T-REP): the proof proceeds as already seen for the previous case;
a(b)

(T-RES): byTl;At; P=(vc)Q and the premises of the rule, we det;A,ct-1; Q. By P— P/

and RES), we geta,b # c andQ 20b), Q, with P = (vc)Q. By applying the inductive

hypothesis tdQ, we get eithed” © {a},c;A,b,c1 Q, if b¢ A, orT ©{a},c;A,ctH1 Q,
if b € A andb is either an inert ow-receptive name. Therefore, by (TER), we get either
ro{a};Ab+1P,ifb¢ A orlf ©{a};AF, P, if be Aandbis either an inert ow-receptive
name;

(T-REs-1), (T-REs-L): the proof proceeds as already seen for the previous case;
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(T-PAR): byl;AF1 Pand the premise of the rule, we g Py | - - | P, with B prime,lj; A -1 B
for eachi, I = ;i andA = (J; A. Moreover,I NI = AP N A =0, for eachi # j, and
DG(I?,AP)i_1.. nis acyclic.

[
P 2®, b means that there isjge {1,---,n} such thaP; — S — P

The induction hypothesis can be appliedRo eitherl"; © {a} Aj,b 1 Py, if b ¢ Aj, or
rjo{a};Aj 1 Pjif b e Ajandbis either an inert otx-receptive name.

Supposé ¢ A, henceb ¢ A; for eachi.

In this casd™j © {a};Aj,b1 ij holds. IfPJf is prime, rule (T-RR) can be applied for deduc-
ingr ©{a};A,bt1 P'. (Note that in this cask ¢ A guarantees that acyclicity of the graph
and disjointness oAp are preserved.) IP’ is not prime then an equivalent normal form
exists (Lemma 2)P| = (vd)(Q1]---|Qm) Wlth Qi prime for each. Suppose for simplicity
thed are zilllwrec?ptlve or responsive names. Byo {a};Aj, bt Pj and (T-Res), we get
ryo{a},d;Aj,b,d1 Q1| --|Qm. Hence, by (T-RR), eachQ; is well-typed, the dependency
graph is acyclic and the responsive part®gd$ input and output contexts are disjoint. There-
fore, I © {a},d;A,b,d 1 Py|-+- [Pj_1/Qu| -+ |QmIPj41|--- |Pn can be inferred (by applying
(T-PAR)) and, by (T-Res), [ o {a};A,bEy (vd)(Py -+ |Pj—1|Quaf -+ |Qm|Pj1a - [Pn) = P
therefore, by (T-3R), I © {a};A,bH1 P'.

Suppose now that € A and eitherb is an inert orw-receptive name. Ib € A; thenl” ©
{a};At1 P elsel © {a}; bl Pj. In both cases, the proof proceeds as already seen in the
previous case. Note that acyclicity of the graph and disj@iss ofAip is guaranteed because
b is either of type inert ow-receptive.

2. By induction on the derivation df;A 4 P, the proof proceeds by distinguishing the last typing
rule applied:

(T-NiL), (T-INP), (T-REP): it cannot be the case thatﬂ;

(T-OuT): by 0;A+ a(b) and the premise of (T-Qr) we get(A© {a,b})°? = 0. Moreover, by
(ouT), P=2a(b) 2o p and®;A© {a,b} F1 0= P’ by rule (T-NIL);

(T-STR): the proof proceeds by applying the induction hypothesismyioa B.1 and (T-$R);

(T-PAR): byl;Al4 Pand the premise of the rule, we g&& Py | - - - | P, with B prime,[i; A -1 R
for eachi, I = ;I andA = |U; Ai. Moreover,l'? n Fp ApﬂAp 0, for eachi # j, and
DG(I?,AP)i=1... nis acyclic.

P 2 P’ means that there | isjge {1,--- ,n} such thaP; =ab) — a0,
The induction hypothesis can be applied®o ;A © {a,b} -1 0. Note thatA? NAY = 0
fori # j implies thatA © {a,b} = Ui AU (4j © {a,b}). Therefore, rule (T-RR) can be
applied for deducing’ ;Ao {a,b} F1 Py|--- |Pj_1|Pj41|- - |[Phn =P

(T-RES): byl;AF1 P = (vc)Q and the premise of the rule, we defc; A, c 1 Q. By hypothesis
p 2 b By (RES), a,b # candQ 20, Q, with P = (vc)Q'. By applying the induction
hypothesis t®, we getl,c;A© {a,b},ct; Q and by (T-Res), ;Ao {a,b} -1 (ve)Q =

(T-REs-1), (T-RES-L): the proof proceeds as already seen for the previous case.

3. Byinduction on the derivation éf, A1 P, the proof proceeds by distinguishing the last typing rule
applied. The interesting cases are (EdRand (T-Res-1), in the other cases the proof proceeds
by applying the induction hypothesis as already seen fopteeious point.
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(T-RES): by P (vc)Q and the premise of the rule, we get TV andl",c;A,c-1 Q. If c#£Db

thenQ Q’ = (vc)Q and the induction hypothesis can be applied for deducing
Ir,b,c;(Ab,c)o {a, b} Fl Q Hence, by (T-RS), I',b; (A,b) ©{a,b} i1 (v¢)Q = P’. Sup-

pose nowb = c. In this caseQ 20, Q andP )

r,b;(A,b)o {a,b} 1 Q, hence the result;

(T-REs-1): in this case the proof proceeds similarly, recall that imarnes are not added to the
input context.

= Q. By the previous point, we get

Theorem B.1 (Theorem 1).Supposé ;A +; P and PP P, Thenr o{ah;Ao{a} 1 P.

PROOF. Consider the normal form ¢f (Lemma 2)P = (vd)(Py| - - ]Pn) N. By Lemma B.1N KRN
with N' = P

Consider a normal derivation ¢;A 1 N (Lemma 1) and suppose for simplicity that dnthere
are no channels of typé or I. Supposef is not empty, the last typing rule applied in the derivation
must be (T-Rs). Before (T-Res), rule (T-PR) must have been applied for derivifigd;A,d 1
Pi|---|P,. Hence, by its premise we get that there are suit@bla; such that;; A F1 B, for eachi,
Fd= U1 ali, A,d = Ui_g_ndy;, rpmrp ApﬂAp 0, for eachi, j € {1,...,n} andi # j, and
DG(F,p, P)i—1._nis acyclic.

Let us proceed by considering the reductior™ N’ = P'. Given that(vd)(Py|-- ]Pn) N, it must

be Py|-- |Pn G EachR is prime, hence it must b = a(b) andP; = (!)a(x).P; for someb and

i,j €{1,...,n}. ThereforeR 20— P andP; ), ij[b/x]. By Proposition B.2, it can be derived that

0; A ©{a,b} -1 0. Note also that eithds ¢ A; or b € Aj andb is anw-receptive or inert name. Indeed, if
b were responsive artale A}, given that; A -1 a(b), it would beb € 4;, henceAip ﬂA'j) = 0. Therefore,
again by Proposition B.2, it can be derived that {a};A] - PJ-’[b/x], with eitherAj = Aj, b, if b ¢ Aj,
or & = Aj, if b€ Aj andb is either arwo-receptive or an inert name.

It is easy to see that the premise of (A are still satisfied: the graph is acyclic because nested
inputs are not allowed hence no new arcs fiepan be added to the graph; andblfs responsw@ Y
andb ¢ (A © {a,b}). Hence(I",d) © {a}; (A,d) © {a} -1 Py|---|P/] -- |Pi[-- |Pa =

We distinguish the following two main cases.

e Suppose eithergoM;), or (PAR;), or (RES) is the last rule applied in the derivation Nfﬂ N’. In
this caseN’ = (vd)Rand from(,d) © {a}; (A,d) © {a} 1 Rand the typing rules for restriction,
we getl © {a};Ao {a} F1 (vd)R=N".

e SupposeRES-p) is the last applied in the derivation b2 N, In this caseN’ = (vd[¢/a))R[¢/al,
for somec: L. Given thata is responsive and € d we geta ¢ (I',d) © {a} anda ¢ (A,d) © {a}.
Hence, from(I",d) © {a};(A,d) © {a} -1 R and the typing rules for restriction, we getA 1
(vd"R, for d = d—a, anda ¢ fn(R). Hence, by (T-Rs-L1), [;A -1 (ve)(vd')R, for eachc: L.
Therefore, by (T-$R), ;A1 N'.

Finally, froml;A; N’ and (T-SR), we getl ;A P. O
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C Proof of Theorem 2

In this section we prove the intermediate results needeprforing Theorem 2 (type soundness).

Proposition C.1 (Proposition 1). Suppose thal;A -1 P, with ', A and P satisfying the conditions in
the premise of rul€T-PAR) andl'P = AP # 0. Then for some jid,...,n we have P=a(b) with either
a or b responsive.

PROOF. LetP =Py|--- |P,. For each, process, is prime,l'i;Ai -1 P, T’ mrp (I)andApmAp 0 for
i # j. Moreover,” = Ui_y_nTi, A=Ui_1 _nAi; and DGTP,AP)i_y  nis acycllc

127

The acyclicity of the graph implies that there is at least onelec with no outgoing arcs. By
definition of the graph anfi® = AP we have thaij € {1,...,n} s.t. c € A} andI'} = 0. Consider the
procesP;. By hypothesi®; is prime and j;Aj 1 P;.

By contradiction, assumg; is of the form k(b).R. By I'j;Aj F1!a(b).R and the premise of rule
(T-REP), We getA’j) = 0, but this is in contradiction with the hypothesis A®, thusP;j is not of the form
la(b).R.

Again by contradiction, assuni® is of the forma(b).P. By I'j;A; -1 a(b).P and the premise of rule
(T-INP), we getr’j) = {a}, but this is in contradiction with the hypothesﬂ$ = 0, thusP; is not of the
form a(b).P.

In conclusionP; prime implies thaP; = a(b) with eithera = c or b = ¢, thus at least one of the two
names is responsive. O

The lemma below ensures that substitutions presery.wt
Lemma C.1. Supposd ;A x 1 P and xb: T. Thenwt(P) = wt(P[P/x]).

PROOFE The proof is straightforward by induction on the definitiohwt(-) (note thatx,b : T implies
that leyx) = lev(b)). O

The following lemma ensures that the weight of a process isal gneasure when considering
responsive reductions, in fact it decreases after each cmcation involving responsive names. This
is a consequence of the constraints on levels in the prenfiseleo (T-REP) and of the linearity of
responsive names. The lemma below is a step forward thift.resu

Lemma C.2. Supposé ;A P, then:

1. ifael,a: TV and b: T then p2 p and, if either a or b is responsive, ther(P') < wt(P) +
Olev(a);
2. it P22 (or P 22, p) thenwt(P') < Wi(P) — Ojeya.

PROOE In both cases the proof proceeds by induction on the devivatf ;A -4 P.

1. Consider the last typing rule applied in the derivatith& most interesting cases are rules (B
and (T-RepP). The other cases can be easily proved by applying the iivdutypothesis.

(T-INP): SupposeP = a(x).R. By rule (IN), a(x).R 20), R[b/x and by the premise of (TnP),
X T. wt(a(X).R) + Ojey(a) = WE(R) + Ojey(a) > wt(R[P/x]) = wt(R), by Lemma C.1.
(T-ReP): SupposeP =!a(x).R. By a;At3!a(x)R and the premise of the rule, we get T and

Vce os(R) : lev(c) < lev(a). By rule (REP), !a(x).R ﬂ!a(x).R[R[b/x]. If bis w-receptive,

there is nothing to prove. Otherwise, frovit € oS(R) : lev(c) < lev(a) andx,b: T we
getvc € og(R[P/x]) : lev(c) < lev(a). Hence, wt!a(x).R) + Olev(a) = Olev(a) = wt(R[PA)) =
wt('a(x).RIR[EA));
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2. Consider the last typing rule applied in the derivatidw thost interesting cases are rules (T9Q
and (T-Res). The other cases can be easily proved by applying the iivéutypothesis.
(T-OuT): Suppose® =a(b). By (ouT), a(b) 20, 0 and w(0) = wt(a(b)) — Ojev(a);
(T-RES): SupposeP = (vd)R andd : T (the casesl : | andd: L are proved similarly.) By
the premise of (T-Rs) andlM;At; (vd)R we getl,d;A,d -1 R. We distinguish two cases
considering the transition rule applied:

(oPEN): by (Vvd)R 2, R and the premise of the rule, we g%& R and, by inductive
hypothesis, WiR') < Wt(R) — Ojey(a) = Wt((Vd)R) — Ojey(a);

(RES): by (vd)R a0, (vd)R and the premise of the rule, we g@tfaibl» R, ab#d and,

by inductive hypothesis, WR') < Wt(R) — Ojey(a). By definition of w{-), wt((vd)R') =
Wt(F\") = Wt(R) - oIev(a) = Wt((Vd)R) - 0Iev(a)-

Lemma C.3. P = R implieswt(P) = wt(R).

PrROOF The proof is straightforward by induction on the derivataf P = R. 0

Proposition C.2 (Proposition 2). Supposé ;A1 P and PM P’, with either a or b responsive. Then

wt(P') < wt(P).

PROOF. Consider the normal form d? (Lemma 2)P = (vd)(Py|---|Pp) 2\, By LemmaB.1N Hakb,

N’, with N’ = P/ )
Consider a normal derivation 6f A1 N (Lemma 1) and suppose for simplicity thatdrthere are

no channels of typel or I. The last typing rule applied in the derivation should beRES) — if dis

not empty. Before (T-RS), rule (T-FAR) must have been applied for denvuh‘gd Ad Py - |Pn

Hence, by its premise, we get that there are suitBhl&; such that"; A -1 P, for eachi = 1,.

b
Let us proceed by considering the reductmng N’ = P. It must beR = Py| -« |Pn ﬁ R.

EachR, is prime, hence it must b& = a(b) andP; = (!)a(x).Pj for someb andi, j € {1,...,n}. Suppose

for simplicity P; = a(x).P}. ThereforeR W o—p, P 20), Pi[bx], R = Py|---|P/|---|P/|---|P, and

N’ = (vd')R, with eitherd = d or d = d[&/c] for somec: L. Given thata or b is responsive, by

Lemma C.2 we get WP, [B/x]) < Wt(P}) + Ojey(a) @and WEPY) < wt(R) — O|ev( a)- Hence, W{R') = wt(Py) +
A WER) + -+ WEH(P) + -+ W (Ph) < Tiwi(R) = wt(R) and wiN’) < wt(N), by definition of wt:).

Finally, by Lemma C.3P = N andP’ = N, we get wtP’) < wt(P). O

D Proof of Theorem 3

In what follows we introduce some notations and prove sonadirpinary results useful for proving
Theorem 3. Note that proof of a similar statement is outlimefb]; our proof proceeds along the same
lines.

In the following, we write| OP(P) | and| O(P) | for the cardinality of ®(P) and QP), respectively.
Theheightof P, written h(P), is defined as the greatest size of a replicated terf B.g. H!a(x).P) =
1+|P|.

First of all, we prove that size, weight and height of a precasd the number of outputs it contains
are preserved by structural equivalence and substitutMoseover we prove that the number of outputs

34



in a process is upper bounded bjP|. Next, in Proposition D.1, we show that the number of output
actions inP and its size may increase only after a reduction where thesuls anw-receptive name,
but this increase is limited by(R).

LemmaD.1.

1. If P=Rthen|P|=|R], |O°(P)| = |OP(R)| andh(P) = h(R).

2. Letbe xb: T. wt(P) = wt(P[P/x]), | OP(P) | = |OP(P[B/X]) | andh(P) = h(P[P/]).
PROOFE The proof is straightforward by induction on the derivatiof P = R and by definition of - |,
wt(-), |OP(-)| and K-). O
LemmaD.2. If ;A1 P then|OP(P) | < |P].
PROOF By definition of | OP(P)|. 0

Proposition D.1. If ;A1 P then:

1. if either P22 P or P 22, P and either a or b is responsive the@°(P')| = |OP(P)| — 1,

2. iftp 22 P’, with a responsive, thefO°(P’) | = | OP(P) |;

3. it P22 P, with acx-receptive, thedOP(P') | < |0P(P) |+ h(P);

4. itp 2 P’, with a responsive, thefOP(P')| < |OP(P) | —1;

[a]

5. if P— P/, with aw-receptive carrying responsive names, thef(P’)| <|OP(P)|+h(P) — 1.

PrRoOOE In all cases the proof proceeds by induction on the dedwabf P X pand distinguishes the
last transition rule applied:

1. the interesting case i®(T); the other caseskAR;), (OPEN) and RES)) can be proved by apply-
ing the inductive hypothesis.
By (ouT), alb) 20, gwith aorb responsive, anfOP(a(b)) | —1=0=|OP(0) |;

2. the interesting case isN(); the other cases BAR;) and RES)) can be proved by applying the
inductive hypothesis.

By (IN), a(x).P 20, P[b/x]. By the premise of (THP), ;A a(x).P anda: TlPK, we getx: T.

OP(a(x).P) = OP(P), thus|OP(a(x).P)| = |OP(P)| and|OP(P)| = |OP(P[b/x])| by b,x: T and
LemmaD.1 (2);

3. the interesting case IREP); the other cases #AR1) and RES)) can be proved by applying the
inductive hypothesis.

By (ReP), a(x).P 22 1a(x).P|P[b/]. By the premise of (T-RF), [;A F1la(x).P anda: T@K, it

follows thatx: T.

OP(la(x).P) = 0, h(!a(x).P) = 1+ |P| and| OP('a(x).P|P[b/x]) | = | O°(P[b/K])|. By Lemma D.2,
|OP(P)| < |P|, hence byb,x : T, Lemma D.1 (2) and (ha(x).P) = 1+ |P|, |OP(P[PA])| <
h(a(x).P) and| OP(!a(x).P|P[b/x]) | < |OP(ta(x).P) | + h(!a(x).P);
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4. the interesting cases are rule®{;) and CLOSE); the other caseskAR;), (RES) and RESP))
can be proved by applying the inductive hypothesis.

(comi): by R\SMR/\S’, with a responsive nhame, and the premise of the rule, it follows that
R R ands2®. g, By ;A1 R|Sand rules (T-$R), (T-ReS), (T-Res-1) and (T-RR),
there are suitable contexts, A, andA,, such thaf ;A 1 RandlM ;Ao -1 S, Moreover,
by well-typedness and: TI*X we getb : T.

By (1,2) it follows that| O°(R)) | = |OP(R)| — 1 and|OP(S) | = |OP(9) |, thus| OP(R|S) | =
|0P(R)|+|0P(S)|=[OP(R)| -1+ |OP(§)| = |OP(RI§)| - 1;
(cLosk): this case is similar to the previous one;

5. the interesting cases are ruleo() and CLOSE); the other casesAR;) and RES)) can be
proved by applying the inductive hypothesis.

(comy): by R|Sii'—bl> R[S, with a w-receptive name, and the premise of the rule, it follows that

R—aibl R andS—aﬁJl S. Byl;AF; R[Sand rules (T-SR), (T-RES), (T-Res-1) and (T-RR),
there are suitable contexts,A,I> andA,, such thaf 1;A; -1 RandlMo; Ay 1 S, Moreover,
by well-typedness and: T*X it follows thatb : T.
By (1,3) it can be deduced thg®P(R') | = |OP(R) | — 1 and| OP(S) | < |OP(S) |+ h(S), thus
|OP(RS) |=|OP(R)|+|OP(S) | <[OP(R)[—1+|OP(S) |+h(§) < |OP(RIS) | +h(RI§) -1
(note that KR|S) > h(S) by definition);

(cLosk): this case is similar to the previous one.

O
The height of a process is preserved by transitions:
Lemma D.3. If P X P’ thenh(P') = h(P).
PrROOF The proof is straightforward by induction on the derivatiaf P L O

Each component of the weight vector of a proceggves the number of active outputs fhof the
corresponding level.

LemmaD.4. If ;A P andwt(P) = (wy, ..., Wp) then inOP(P) there are at most ywoutputs of level i
foriinQ,...,k.

PROOF The proof is straightforward by induction on the structafé. O

Theorem D.1 (Theorem 3).Let P be(I"; A)-balanced and £ AP and let k be the maximal level of names
appearing in active responsive output actions ofP(P). In all responsive schedulings, the number of
reductions preceding a reduction on r is upper-boundedrt 2.

PrROOF (outline) By Theorem 2 (type soundness) we get that wher@»@ P’ with se A" andr ¢ s
thenP’ [:rL

LetS=P, P P, --- be a maximal responsive scheduling not containing
as subject. The length & which is finite because each reduction step involving aaesipe name
decreases wt (Proposition 2), is an upper bounchfor

First, note that every proce$’ in Sis well typed by Theorem 1 (subject reduction). Moreover,
h(R) = h(P) for eachi=1,2,..., LemmaD.3.

T(a1,b1) T(ag,b2) 1(ag,bs)
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Suppose that WP) = (w,...,Wp). In general, any reduction of involving a subject of level
{1,...,k} can directly activate at mostR) < | P| reductions — that is, can add t®®) at most t{P) <
| P| outputs — of level at most- 1 (Proposition D.1, Lemma D.2, well typed-nesspénd (T, -ReFP’)).
Hence, each reduction of levietan directly or indirectly be causally involved in at mog} feductions
of S, where the function f is defined as

f(0)=1
f(i) =1+|P|+f(i—1) < 3P| = BLL

Note that fi) is monotone omby definition. By definition of ®(-), only output in @(P) can be involved
in a responsive reduction from Moreover, by Lemma D.4, there are at magtctive outputs of level
i in OP(P). Thus:

k
n< Z}Wi «f(i) hence, by monotonicity, (f) <f(k) % (Wo+ -- -+ W) .
i=

Now, f(k) < |F|’||::l andwy + - - - +wp < | P|, thus

N+ (Wt -+ +wo) < [P

E Proof of Theorem 1 and Theorem 2 in the extended calculus

In this section we prove that subject reduction and typetgafe guaranteed in the calculus extended
with i f-t hen-el se.

First of all some notations/definitions have to be extendedcach process of the form
if G then P else Q is considered prime. The auxiliary functions over processfined through the
paper are extended as follows.

|if G then P else Q|=1+max(|P|,|Q])
wt(if Gthen P else Q) =wt(P) +wt(Q)
O(if Gthen Pelse Q)=0O(P)yO(Q)
05(if Gthen Pelse Q)=09P)U09Q)
In the following we report the enunciates and proofs of theulte proved in Appendices A-C that
require major changes.
[a]

Theorem E.1 (Theorem 1).(i) Suppose ;A1 P and P— P'. Thenl © {a};Ao {a} -1 P". (ii)
Supposé Ak, P and PSP/, Thenr: A P.

PrRoOOF Paint (i) has been already proved at page 32. Concerningawepoint (i), the proof proceeds

by induction on the derivation d® iGN P'. The base case is when eith&F-() or (IF-F) is the last rule

applied. In the other cases the proof proceeds by applyminttuctive hypothesis.
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Suppose IE-F) is the last applied; henceif G then P, else P, iGN P. By Ak

if Gthen P; else P, and the premise of (TF), we getl"; A1 Py, hence the result.
The proof proceeds similarly ifig-T) is the last applied. a
Proposition 1 does not hold for the extended calculus becafishe possible presence top-level
i f-then-el se’s. Therefore, it is necessary to limit that resultstable processes (see Proposition E.1

below). A process is-stableif P 7[& The following holds.

Lemma E.1. For each process P there exists astable P such that P[:SL P.

Proposition E.1. Suppose thaf ;A1 P, with Pe-stable,I’, A and P satisfying the conditions in the
premise of rulgT-PAR) and"? = AP # 0. Then for some ¢ {1,...,n} we have P=a(b) with either a
or b responsive.

ProoOF. The proof coincides with that on page 33. Note that it camred®; = if G then R; else Ry
[e]
—.

because in this case it would Epﬂ, henceP O
Lemma E.2. Supposé ;A 1 P and P> P’ thenwt(P') < wt(P).
PrRoOOF Follows by definition of wt-); recall that wfif G then P else Q) = wt(P) +wt(Q). 0

Theorem E.2 (type soundness, Theorem 2).et P be(I"; A)-balanced, and £ AP. Then P guarantees
responsiveness of r.

PROOF. The proof proceeds as that on page 10, with one differelds:taken to be ae-stable process
with minimal wt reachable fronP without usingr as communication subject. The rest of the proof
proceeds unchanged, modulo relying on Proposition E.®rdktan on Proposition 1. a

F Proof of Proposition 3

In this section we prove that primitive recursive functiaas be encoded into well typed processes and
that the proposed encoding is correct. We will take advant#figsome special properties enjoyed by
type derivations for processes that encode primitive segirfunctions. To this purpose, we introduce
the notationl"; A -, P to mean thaf"; A+, P can be deduced with the following extra constraintuen
receptive names in the premise of (Af): I’NT{ = 0. (Of curse (TREP) is replaced by (T-RF') in
botht, andt,.) The following result obviously holds true:

LemmaF.1. Ay P impliesl ;A4 P.

The extra constraints of, are related to confluence, which is a crucial ingredient lier groof of
correctness of the encoding.

Proposition F.1. If I’ Al—l PP andp

p 20

by Hebn) b with a# a and b+ b for every i, then

. Moreover, if P 79, with r € A° then r+ g for each i.

PROOF. The result follows by observing thet 2. implies thatP = (vd) (a(b)|Q) for suitabled andQ,

anda+ a for eachi = 1,...,nimpliesQ "2, ... "™y andP' = (vd') (a(b)|Q)). Finally, r # &
follows from the linear usage of responsive names in wektlyprocesses. O
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tab) ap)

Proposition F.2. Supposel' Ay P. If P——= P and P——— P” then there is a F’ such that
p X&) o and pr X80 Moreover, if re TP N AP, P % and r+a,a then pr 29
PrROOFE Consider the normal form d®: P = (vd)(ﬂ,e{l R). First of all we prove the existence of

P"”. Suppose thaP 2 o andpP RGN P” and both mputs om,a are replicated. In both cases, by

the premise of rulesRgS), (PAR71), (COM31), (OUT) and REP), we have that:

o there arej,k € {1,...,n} s.t. P; =a(b), A ='a(x).P, andP’ = (Vd)(l_lle{l “““ iy R). where
Re = PP, [P/x] andR = R, for i #k;

e there ard, me {1,...,n} s.t. A = a(b'), Pp='a(x).P,, andP” = (VJ)(ﬂie{lw,n}\{u R), where
R, = Pn|P.[P'/x] andR = P, for i # m.

We distinguish two cases dependingaanda’:

a=a: by linearity of w-receptive names in inpuENIr¥ =0 fori #t andi,t =1,---,n), it follows
thatk =m. If j =1 we haveP’ = P”. Otherwise:

“““

thu SP/ Q/ WhereQ/ (Vd)(l_lie{lqu}\{“} Qi)’ with Qk = Pk|P|i[b/X] |P|2[b/ X] anin’ =
R fori #£Kk;

o« P = (vd~)(|‘|,6{L g R), whereR, = R|R[P')x] andR = P, for i # k; R = Pj, thus
P 122, " where@’ = (v &) (Mieqw...p 1. Q)» with Q¢ = P[P, [P/x] P[P/, andQf' =
fori #£Kk;

thatisQ =Q"' =P”.
a#a: thenj # 1| andk # m. Look at the structure d® andP”:

o P'=(vd)(Micqa.. n}\{,} R.) whereRy = P|P/[bA] andR, = P, for i # k. Note thatR, = P
andRy = Py, thusP’ 2227, Q’ with @ = (v d)(nie{l,...,n}\{j,l}Qi/)’ whereQ, = Pk|P|2[b/x],
Q= P|P4[P')X] andQ = P, for i # k,m;

o P’ = (vd)(Micqa... n}\{l} R), whereR, = Py/Py[t/x] andR =R, for i £ m. R, = P;j and

RL P, thusP” ~22 QN with Q" = (vd)(Micq.np\ g1y @), WhereQjp = Pr| P[P/,
= R|P.[PX] andQ! = P, for i # k,m;

thatis:Q =Q" =P".

Similar proofs in the other cases.

Finally, P — ", follows from r #+ a,a and Proposition F.1. O

Corollary F.1 (confluence). Supposd ;A -, P. If P5*P and P—-*P” then there is a P such that
P L* =P” and P’ * = P”. Moreover, if re TP NAP, Pr—<cl> and r is not used in the derivations from
P to P and P’ then P’ e,

PrROOF The result follows by Proposition F.2. O
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Proposition F.3 (Proposition 3). For every k-ary primitive recursive function f there is a latgped

process( ), such that: for each{vy, ..., v) in Nat® the process e (vb) ({f)p|b{va, ..., Vi, 1) |r(n).0),
with b w-receptive and r. (Nat)P! (h > 0), is balanced. Moreover, (f1,...,v) = m if and only if
G L« I,
PrROOEF First of all, we show how to represent a primitive recurdiuection f using a well-typed process
(f)p and that the proces3 is balanced.

A function f(f) is represented as a replicated procgss, like !b(fi,r).P, whereb receives a tuple
of first-order arguments and a namewhich is a responsive name used as return channel for gendin
results. We encode the primitive recursive functions ireadard way (see e.g. [5]):

zero: (n), 21b(m,r).F(0). If we supposé: (Nat, Natl*1)©2 we have thab; 0, (n)p; thus, considering
(Vb) ({(Mp[b(v, r)|r(m).0), with r : Nat®1, we have that;r, v (vb)((n)p[b(v,r)|r(m).0);

successor: (), 2!b(m,r).F(m+1). If we supposeb : (Nat,Nat®1)®2 we have that;0 -y (S)p;
thus if we consider the processb)((s)p|[b(v,r)|r(m).0) with r : Nat®Y we have thar;r,v i,

(Vb)({8)b[b{v,r)r(m).0);

identity: (Ui =!b(my, ..., M r).F(m). If we suppose : (Nat, Nat®1)®2 we have thab; 0 Fy (Ui)p;
thus if we consider the procesgsb)((ui)p|b(¥,r)|r(m).0) with r : Natl®¥ we have that;r,¥ I,
(Vb) ((Ui)p[b(V, 1) |r(m).0);

composition: Suppose thatg; )y, is defined for everg;, with by : (Nat, NatlP*i))[@*] for alliin 1,... 1,
and(f)q is defined forf with d : (Nat, NatlP* )@kl (f), and all(g;)y, are well typed by inductive
hypothesis andvd)((f)q|d(¥,r")|r'(m).0) and (Vi) ({gi)p |bi (%,ri)|ri(m).0) are balanced. We
define(h)y, as follows:

()b 2 10(7, ). (Wb, F1) ((G1)by | Ba (1) [F1(Me). (VD24 F2) ((G2)b, | B2 (M, F2) [r2(Ma). (vbg, F3)(..
[ -1 (Mm—1)-(VBim, m) ({Gm) by, | Brn{T, i) [ Fin(nim)- (V) (A (A, 1) [ (F)a)
).

If we considerb : (Nat, Natl®&])[@k] with k, > kg > k. andk, > ky >k, for i = 1,....n then,
by repeatedly applying rules (TER) and (T-RR), it is easy to see thdt;0 -, (h)p; thus, if
r: NatlP*!, we getr;r, 7, (vb)((h)p[B(¥,r)|r(m).0);

primitive recursion: Suppose that f)q is defined for f, with d : (Nat,NatlP))«@kl and (g)e for
g, with e : (Nat,NatlPk])l@kl: both (f)g and (g)e are well typed by inductive hypothesis and
(vd)((f)q|d(Vs,r)[r(m).0) and(ve)((g)e|e(Vg, r)|r(m).0) are balanced. Defing)y as follows:

(b =1b(M,r). i my = Othen (vd)((f)a|d(My,...,m.T))

else (vr')(b{my —1,my,...,mg, 1) [r'(n).(ve)({(Q)e |8(M — L,n,mp, ..., my,T))).

If we considerb : (Nat, NatlPk]) @kl with k, > kg > k- andky > ke > k;, thenb; b -, (r),; more-
over, ifr : NatlPk! we getr;r, ¥ (vb)((r)p|b(¥,r)|r(m).0).

In all cases-, impliest; (Lemma F.1)AP =TP =r andA® =T'“ = 0, hence eacks is balanced.
Now we can show the two directions of the statement:
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(=): we show that/va,...,vik € Ns.t. f(va,..., W) = n= (vb)((f)p|[b{va,... Vi, 1)|r(m).0) = LN

The proof proceeds by lexicographic induction on the gdif)p |, Si—1.. xVi); we distinguish the
different kinds of primitive recursive functions:

yenny

zero: Vv € N we haveN(v) = 0 and(vb) ((n)p|b{v,r)|r(m).0) — (vb)({n)p|T(0)|r(m).0) 0.

r

successor:¥v € N we have S(v) = v+ 1 and (vb)((S)p[B(v,r)|r(m).0) = (vb)((S)p|F(v +
1)[r(m).0) VY.,

identity: Vvi,...,v € NKwe haveUi(k) (V1. .., V) = Vi and (vb) ({ui)p|b{Vva, ..., Vi, r)|r(m).0)

(Wb ((u)blr () r(m).0) 4,

composition: considek valuesvy, ..., s.t.h(vy,..., ) = f(91(v1,..., k), .-, O (V1,...,V))
n, thatis, if we have; (v, ...,v) =m; (for j =1,... 1) thenh(vy, ..., v) = f(my,...,m)
n.
Suppose (gj)n; is the encoding ofg;; given that [(gj)n | < [(h)b], by induc-

T, Fimp)

tive hypothesis we have(Vb;)((gj)p, [Dj(V1,... i, Tj)|rj(m).0) —* —=5, for j =
1,...,1. Similarly, if (f)q is associated tof, by inductive hypothesis we have

(wd)((F)ald(my,....m,r)|r'(m).0) =+ "™ By looking at the definition ofh)y it is easy

to see thatvb)((h)p|B(va, .., Vi, r)|r(m).0) &+ .
primitive recursion: considervy, ..., v € NX we distinguish two cases:
vi=0: r(0,va,...,w) = f(v,...,wx) = n. Let be (f)q the encoding off. By induc-
tive hypothesis, given that(f)q| < |(r)b|, we have thatf(vo,...,v) = n implies
() ((F)ald(va, ... Vo) Ir(m).0) S+ 10 )
By looking at the definition ofr)p, if vi = 0 procesgvb) ((r)p|b(0,Vvz, ..., Vk,r)|r(m).0)
reduces in a step into

(VO)((r)p | (va) ({F)ald(Vz,... . Wi T)) [ 7(M).0)

that is(Vb)((r)p[B(0, Vo, ... ,vie, 1) |F (m).0) o+ L2

vi £ 0 r(vi,..., W) =0(vi—1,r(vi —1,vo,...,W),Va,...,V). It holds that (1 +vo+ - - -+
Vk) > (Vi —14+Vvo+---+ V). Let ber(vi —1,vp,...,V) = nr. By inductive hypoth-
esis, (Vb) ({F)p|b(vi — 1,Va, ..., Vi, I')|F' (m).0) =* Tire), and, if (g)q is the encoding
of g, g(vi — 1,nR,V2,...,Vk) = n implies, by inductive hypothesis @)d| < |(r)b]),

T, (M

(Vd)(<g>d|a<V1 - 17 NR,V2,... ,Vk,r>|r(m).0) —* —. Given thatV]_ ?é 01 procesqr>b
proceeds by choosing the else clause, hefwt®((r)p[b(v,Va, ... Vi, I)|r(x).0) —

« T
—~7

l-—c

(«<): By contradiction, suppose th& = (vb)(({f)p[b(¥,r)|r(m).0) -*G ", and f(V)=n #n. By

(=) we have thatvb)({f)p[b(¥,r)|r(m).0) -*G" "), Given thatr is responsive, by Proposi-
tion F.1,r is not used as subject of the communication in both sequesfaesluctions taG’ and

G”. By confluence (Corollary F.1) we have tf@t—* = Q andG” —* = Q, in both cases without

usingr as subject of the communication; hence, again by CoroIIa:tyQ‘FT—mL andQ ﬂ By
Theorem 1 (subject reductioR) A -, P impliesl’; A’ 1 Q for suitablel” andA'. r is responsive
andr € fn(Q), thus it cannot be used twice @, (T-PAR); hencen’ =n.
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G Proofs of Theorem 4 and Theorem 5

In this section we prove that the subject reduction theoesesatisfied by type systehy and the interme-
diate results needed for proving Theorem 5 (type soundmessy$tem-—5). Firstly we introduce some
preliminary results.

Proposition G.1 (substitution). Supposéd ;A X -, P, with t £ p,n and xb : T, then
1. b¢ Aand B" ¢ T imply ;A b 5 P[b/);
2. e b"¢ T andT #SPX, imply ;A P[b/x].

PROOF. In both cases the proof is straightforward by induction loa derivation of ;A,x -, P. The
additional constraints ob andt ensure that, in case is a parallel composition, the premise of rule
(T.-PaR) are still satisfied after substitution. O

Lemma G.1. P=Randl; A+, Pimplyl; A2 R.
PrROOF The proof is straightforward by induction on the derivataf P = Q. O

Proposition G.2. I'; A+, P implies:

1. ifP a0, P, with a: TV and c: T then

(@ ifcgAand ¢ ¢ T thenl ©F ({a}\in(P));A,ct 2 P with t  n, p;
(b) ifc e, c" ¢ T, witht#n,pandT #slPK, thenl ot ({a} \in(P));At2 P;

2. it p thenl;Ao™ ({a,b} \ on(P)) -2 P;

3. itP 22 P’ then eithel;Ao™ ({a}\on(P")),b2P and b: 1 or I, b; (A, b)o™ ({a,b}\on(P)) i

P and b: T#1.

ProOOFE The proof proceeds by induction on the derivatiorPots P'. In each case we distinguish the
last transition rule applied. Omitted cases can be eadilygat by applying the inductive hypothesis.

1. (N): a(b).P 2, P[C/b]. By the premise of (T-INP) andl",a"; A, a(b).P we geta: TK with
u#£w b:Tandl A b -, Pwitht #n,p.
Suppose™ ¢ I andc ¢ A. By ¢: T and by Proposition G.1 (1) (substitutiof),A, ¢! -5 P[C/b]
with t # n,p (note that™ = (I',a) o™ ({a}\ in(P[%/b])) becausea ¢ in(P[C/o]) by (T..-INP)).
Supposec™ ¢ T, ¢’ € A, with t' # n,p, and T # SPX. Thus, the capabilities andt’ are

univocally determined by (if T = S then ifu= wthent =t' = — and ifu = p* then
t=t'=m). Byb,c: T,t=t"and, by Proposition G.1 (2) (substitutiof),A -, P[C/b].
a(c)

(ReP): la(b).P la(b).P|P[C/b]. Suppose +-responsive, iais anw-receptive name the proof
proceeds similarly.
By the premise of (T-REF’) andl",aP;A-5la(b).P, we geta: TP K b: T, AP =AP =P =
MS=r®=rp=0Qandr;Ab , Pwitht+#n,p.
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Suppos&™ ¢ I" andc ¢ A. By c: T and by Proposition G.1 (1) (substitutiom),A, ¢ 5 P[C/b]
with t # n,p. Rule (T, -PAR) can be applied for deducirig a®; A, ¢t -,!a(b).P | P[C/b] (note
thatl,a® = ([,a?) o" ({a} \in('a(b).P| P[¢/h]))).
Supposec™ ¢ I andc’ € A with t' # n,p and T # SlPX. As already seen for rulen),
t = t’ because both are univocally determined hy By c: T, t =t’ and, by Proposi-
tion G.1 (2) (substitution)] ;A F, P[¢b]. Rule (T.-Par) can be applied for deducing
r,aP;Asla(b).P|P[Ch].

Note that in caseraR;) the premise of the rule are guaranteed by the additionataintst # n, p

andc™ ¢ T.

2. (ouT): alb) 20, o; by the premise of (T-OUT) and®; A, &, bt alb), we getAP = AP" = 0

hence, by (T-NIL), 0; (A,a',b') o {a,b} -, 0;

(ouTt?): la(b) ﬂ!a(bﬁ and 0;A,a”, b~ Fylalb) ((A,aP,b7) of ({a,b} \ on(tab))) =

(A,8°,b7)).

3. (oPEN): by (Vb)P 20, b and the premise of the rule, we géfibl» P’. Suppose (T-RES) is
the last rule applied in the derivation BfA 5 (vb)P. By the premise of the ruldy: TV and
I, b A b 5 P. Moreover, by Proposition G.2 (2, b'; (A,b") ©F ({a,b} \ on(P")) I, P
If (T, -REsI) is the last applied theb: 1 and froml";A, b, P and Proposition G.2 (2),
r;(Ab)ot ({a,b}\on(P)) 2 P.
Note that it cannot bb : | becausd € on(P).

0
Lemma G.2. Supposéd ;A P. P2 b and b responsive name imply thagton(P’).
PrROOF The proof is straightforward by induction on the derivatiaf I'; A, P. 0

(&

Theorem G.1 (Theorem 4).I';A+, P and P— P imply ;A =, P, with " =T o ({a} \in(P")) and
N =AoT ({a}\on(P)).

PrRoOOF The proof proceeds by induction on the derivatiorPoﬂ P’; we distinguish the last transition
rule applied:
(comz): by PIR -, PR and the premise of the rul® 20, P’ andR ), R. ByI;A, P|IRand
(T/+-PA/R), FN=TpUlMNR, A=ANpUAR, Tp;Ap 2 P, TR ArRF2 R, Féﬂ rét=0for /= P,s,p and
AL N AL = 0 for ¢ = p,p. Moreover ™ NA™ =0 andlPNAP = 0.

By P ab), P, [p;Ap -2 P and Proposition G.2 (2),p;Ap © ({a,b} \ on(P’)) F2 P'. b' € Ap with

t = n,p (because is used as object of an output and because of-QuT), (T, -OuT?)), thus
eithert = — ort = mand byl NA™ = 0 we have that it = m thenb™ ¢ T".

Suppose ¢ Ag. By Rﬂ R, Mr;ArF2 R, b™ ¢ T'r C T and Proposition G.2 (1,rO" ({a} \
in(R));Ar, b 2 R witht’ # n,p.

Letbel, =Tp, Tr=TrO" ({a}\in(R)), Ap = Op ot ({a,b} \ on(P")) (by Lemma G.2 ifb is
a responsive name thén¢ on(P')) andAk = Ag,b'. Note thatt = t’ because both are different
from n andp, hence univocally determined by the typebdthat is eithet =t = — ort =t' =m).
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The premise of rule (T-PAR) is satisfied, hence’;A' -, PR with "' =T, UlTg=T ot ({a}\
in(P'|R)) andd’ =Ao™ ({a} \ on(P'|R)).

Similar proof if bt € Ag. Note that it cannot be" € Ag with t + t' because otherwisfr U Ap
would not be defined;

(cLosk): the proof proceeds similarly. Note that in this case it tiesb ¢ Ag becausé is bound in
P;

(RE9), (RESP), (PAR1): the proof is straightforward by inductive hypothesis.

O
We now prove the intermediate results needed for provinggbponsiveness theorem. Firstly, we
show that each name carrying (+-)responsive objects hakdesather than the carried object’s.

Lemma G.3. Suppose P igl';A)-strongly balanced and@(b) € O(P), with b (+-)responsive, then
lev(a) > lev(b).

t t

PROOF P (I";A)-strongly balanced imply thdtP = AP, A® C T®, [P" C AP" and (AP")
(similar comments for bound +-responsive names). Hemteysed as input subject

Suppose the (possibly guarded) subprocess thatauassubject of an input iR is (!)a(x).R. By
well-typedness oP, lev(b) = lev(x). From (T, -NiL), (T;-OuT), (T;+-OuT”) and (T, -PAR), xis used
in Rin output either as subject or object. Moreover, this out@arinot be guarded by anreceptive
input, (T, -REP).

First of all, we prove thatP (I';A)-strongly balanced implies that each nameHncarrying
(+-)responsive names cannot have level equal to 0.

Considera and, by contradiction, suppose (@ = 0. By well typedness oP, the subprocess
(Ma(x).R is well-typed and™; &', X -, R, with t # n,p, for suitablel” andA’ extendingl” \ {a} and
A with some names in §R). Moreover, by the typing rules for inputc € ogR) Uis(R) it holds that
lev(c) < lev(a). Supposdr= 0, by rule (T,.-NiL), Rwouldn’'t be well typed becauses (+-)responsive:
contradiction. If eitheR= (!)d(y).R or R=d(e), it would be le\yd) < lev(a) = 0, and this is not pos-
sible because levels are positive integers: contradictiBmilarly, it cannot be thaR = Q|Q and
R= (v)Q, with Q,Q’ := (1)d(y).R' | d(e). Hence leya) > 0.

We continue by proving that I¢ls) < lev(a); the proof proceeds by induction on (&.

c(re)

lev(a) = 1. by (T4-INP), (T-ReP) and (T, -ReFP’), for eachc € (0os(R) Uis(R)) it holds that leyc) <
lev(a), hence leyc) = 0. The output action involving cannot be guarded by an input (because oth-
erwise the subject of the output should have a negative, leyéyping rules for input). Moreovex,
is the subject of such an action, because we have alreadynghaty ifa(b) with b (+-)responsive,
then lea) > 0. In conclusion, lefx) = 0 < lev(a).

lev(a) = n: Supposeis used as subject and the output is not guarded by a regliggiat K € oR)).
By (T4-INP), (T-REP) and (T,-ReP"), for eachc € (os(R) Uis(R)) it holds that leyc) < lev(a),
that is le\b) = lev(x) < lev(a). Suppose the output is guarded by a replicated input, layos
d (which is +-responsive becauseés free inR). d € is(R) and le\d) < lev(a). By (T.-REP’),
lev(b) = lev(x) < lev(d) < lev(a).

Supposex is used as object of an output action, let's &y). As previously seen, we have
lev(e) < lev(a), and by applying the inductive hypothesis (ley= lev(x) < lev(e) < lev(a).
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The following proposition ensures that each strongly begdmrocess always has an enabled reduc-
tion involving a (+-)responsive name.

Proposition G.3 (Proposition 5). Suppose P igl';A)-strongly balanced witiAP U [P £ 0. Then
ab) . . .

P ——= with either a or b (+-)responsive.

PROOF. Let ¢ be the (either free or bound) (+-)responsive hame with lsglevel appearing as input

subject inP anomg those not-guarded by a replicated input omaaceptive name. Sindeis (I';A)-

strongly balanced; is used in output irP.

By contradiction, suppose th&tcannot reduce using as subject or object of the communication
and consider the normal form (Lemma 2)RE& (vd)(Py|-- - |Pn).

If P cannot reduce usingias subject or object of the communication then either evetgut action
(ha(b) involving c is guarded, or each corresponding inpyta(x).R is guarded.

Suppose that all outputd)a(b), with a or b equal toc, are guarded. By the premise of rule
(TL-ReP), none of them can be guarded by a replicated input omwaaceptive name. By rules
(T4-INP) and (T.-ReP), (1)a(b) can be guarded by an input on a (+-)responsive namegdsagly
if lev(d) > lev(a) > lev(c) (Lemma G.3). But this is a contradiction, becawseas the highest level
among the (+-)responsive (free or bound) names used in ingeit Hence none of the outpyt)a(b)
involving cis guarded; that is for each of them there is@{1,...,n} such thaP; = (!)a(b).

Let us now look at the inputs.

Consider anya # ¢ for which there is &; = (!)a(c) for somej € {1,...,n}. Sincea carries the
(+-)responsive name, by definition of strong balancing must occur in input position iP. Assume
this input is not available because it is guarded. Nawannot be anw-receptive name because oth-
erwise each input oa should be not-guarded, by (FINP), (T -ReP) and (T, -REP’). Moreover,a
cannot be (+-)responsive because, by Lemma G.8aJev lev(c) andc has the highest level among the
(+-)responsive free or bound names used in inp@.in

Supposea = ¢ and that the input on, sayc(x), is guarded. As previously seen, by rule,(REP),
c(x) cannot be guarded by a replicated input onuareceptive name, while, by rules (fINP) and
(T4+-REP?), c(x) can be guarded by an input on a (+-)responsive named sy the latter case, from
well-typedness oP, it would follow that led) > lev(c) (rules (T.-INP) and (T, -REP’)): butc has the
highest level among the (+-)responsive free or bound nasexs in input inP.

In both cases we have a contradiction. In conclusion, ther® andP; such tha®, = (!)a(b) 20,

andP; = (!)a(x).P; —a@l with eithera or b equal toc; henceP XD with eithera or b equaltoc. O

Lemma G.4. Suppose o : T. wt* (P) = wtt (P[P/]).
PROOF. By definition of wtt(-). O

Lemma G.5. Supposd ;A5 P, then:

1. Pﬂ P/, with either a or b (+-)responsive name; @& and b: T, implies

(@) wtt(P) < wt"(P) if the input on a is not replicated;
(b) wt*(P") < wt" (P) 4 Ojev(a) if the input on a is replicated;

2. P22 b (P 2 by implies

45



(@) wt"(P") <wt"(P) — Oev(a) if the output on a is not replicated;
(b) wt™(P") = wt* (P) if the output on a is replicated.

PROOF In each case the proof proceeds by induction on the desivati P X P'; we consider the last
transition rule applied.

1. (a),(IN): ax).P 20) P[B/x]; wt (a(x).P) = Wt™ (P) + Ojey(a) and wi (P) = wt™ (P[B]) (by x,b: T
and Lemma G.4). Thus, WP[P/x]) < Wt (P) -+ Ojey(a) = Wt (a(X).P);

(b),(REP): la(x).P ﬂ!a(x).P]P[b/x]; wtt(1a(x).P) = 0 and wt ('a(X).P|P[P/x]) < Ojey(a) =
wtt (1a(x).P) 4 Ojev(a) because of the definition of w(-) and the premise of rule (T-REF")
or (T;-ReP) (Vc e (o5(P)Uis(P)) : lev(c) < lev(a)).

2. (a):
a(b)

(ouT): alb) — 0, wt" (a(b)) = Ojey(a) and wt"(0) = 0 = wt™(a(b)) — Ojey(a);

(oPEN): (Vb)P 20, p implies P 20, P’; by inductive hypothesis Wi{P') < wt™(P) —

Olev(a) = Wt+((Vb) P) - Olev(a);
(b):
a(b)

(ouTt?): la(b)y —=1a(b);

(OPEN): (Vb)P 20, p impliesP 20, pr and by inductive hypothesis WtP') = wt* (P) =

Wt ((Vb)P).

Omitted cases can be easily proved by applying the indubgmpethesis. 0
The following proposition is the analog of Proposition 2 pigal to system, and show that wt(-)

is a good measure because decreases after each (+-)rgspaasiction.

Proposition G.4 (Proposition 4).T;A 5, P and P b with either a or b (+-)responsive, implies

wtt(P') < wtt(P).

PrROOFE By induction on the derivation ofP Hab), P/, the proof proceeds by distinguishing the last

transition rule applied:

(comy): by P|RM P’|R and the premise of the rule, we getaﬁ)l P’ andRﬂ R.Byl;AFH,P|R

and the premise of (T-PAR), N'1;41 F2 P andlMy;As 2 R for suitablel, 2,47 andAp. We
consider the following cases:

both input and output are non-replicated: by Lemma G.5 (1a,2a), W{R) < wt"(R) and
Wit (P') 2wt (P) — Ojey(a); that is wi (P'|R') = wt* (P') +wt™ (R') < wt*(P) +wt™(R) =
wt™ (P|R);

the input is replicated: by Lemma G.5 (1b,2a), W{R) < wt*(R) + Ojey(sy and wt"(P') <
Wt* (P) — Ojey(a); that is wt™ (P'|R) = wt* (P') +wt™ (R') < wt™ (P) +-wt" (R) = wt™ (P|R);

the output is replicated: by Lemma G.5 (1a,2b), Wi{R) < wt*(R) and wt"(P') = wt*(P);
hence, wt (P'|R) =wt" (P") + wt™ (R) < wt™(P) + wt" (R) = wt" (P|R);

(cLosk): in this case the proof proceeds in a similar way.
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Omitted cases can be easily proved by applying the indubipethesis. O

The following lemma states that strong balancing is alwagsgrved by responsive andreceptive
reductions, while it can be violated by +-responsive reidast but only if a replicated input is involved.
Moreover, strong balancing can be re-established by erdlsensubprocess guarded by this input, with-
out affecting well-typedness.

Lemma G.6 (Lemma 3). Suppose P igl"; A)-strongly balanced and ﬁﬂ P’ with P non strongly
balanced. Assumie;A’ -, P/, with ", A’ as given by Theorem 4. Then for som&Rb andd:

L ac (M \&P) U (P)\ 15 (P));

2. P=(vd)('a(x).R|a(b)|R) and a¢ fn(R,b,R);

3. P = (vd)('a(x).R|R[PA]|R) and a¢ fn(RbA],R);

4. P’ = (vd)(R[b/]|R) is strongly balanced.
PROOF. By Theorem 4 (subject reduction) we have=T oF ({a} \in(P")) andA" = Ao ({a}\
on(P)).

1. P/ non strongly balanced means that Definition 8 is not satisfiedce at least one of its three

points does not hold.

It cannot bel™’? £ A'? because of the linearity of responsive names (rules-PER), (T_.-INP),
(T-ReP) and (T, -REP’)) andlP = AP.

It cannot beA’® Z I'® becauseaw-receptive names are used as subject of replicated inpules (r
(T.-ReP), (T.-INP) and (T, -REP")), which cannot disappear, add C .

Similarly, it cannot be neitheta® )" ¢ (r*")" nor (rf (P))" ¢ (r(P))", because +responsive

names carrying (+)-responsive objects are used as subjeeplicated inputs (by (T-INP)),
which cannot disappear.

In conclusionac (I \ A YU (rF (P)\rd (P')).

. We firstly prove thah is used (only) as subject of a replicated inpulirBy contradiction, assume
ais used as subject of non-replicated input®inThen there are at least two of such input®jn
because otherwise it cannot hes (I"?" \ A" ) U (r" (P") \ r§ (P")). Thereforea should have
capabilitym in I'. Hence, by strong balancing and rule (PAR) (condition ™ NA™ = 0) a has
to be used as subject of a replicated output (which cannapgesar), that ia € AP U r¢(P) and

this is not the case. Thua,s used as subject of a replicated inpuPirhence irP’. By (T -PAR)
and (T, -ReP’), ais used once in input subject position. Moreo@r[,i implies that such input

cannot be guarded. Similarly, there should be a unique simpt-guarded outp@(b) in P, with
b # a (recall that we do not consider recursive types, hence alamannot carry themselves).

Therefore, P = (vd)('a(x).R|a(b)|R) and by Lemma G.1 (T-PAR) and (T.-ReP’) a ¢
fn(R,b,R) (a¢ fn(R) is implied by the premise of (T-ReP’) and Lemma G.3).

(a,b)

3. By point (2) and the reductioA —— P'.
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4. By points (1,2,3) and ¢ on(P), we getl ;Ao {a} o P’ = (vd)(la(x).R|R[b/x] | R).

Suppose € fn(P) (hencea € fn(P’)) By the typing rules for restriction (suppose for simgici
d does not contain inert names)d; Ao " {a},d Fyla(x).R|R[P/X] |R. By (T,-PaAR), I, d =T U
{alUr,andAo™ {a},d = A UA, with Ty, a;A1 Fola(x).Randl ;A > R[] |R. Moreover, by
the premise of (T-REP’), it should bel"; C ', andA; C A, hencel, =T Ot {a},dandAz =
Aot {a},d. Again by the typing rules for restrictioh,o* {a}; Ao {a} 2 (vd) (R[] |R) = P”
andP” is strongly balanced.

The proof proceeds similarly in cases d. Note that in this casE; A+ (vd)(R[2/X] |R) follows
by applying (T, -WEAK-I') and (T, -WEAK-A).

H Proof of Theorem 6

In this section, the encoding afRc introduced in Section 9.2 is shown to be correct. In whabfed,

given anorcterm f, we write fv( f) for the set of free variables ih andP LN P’ stands foP = P, if
W # T and for eithelP L P orP=P,if K= T. In the following, we first recall the definition @xpansion
preorder, 2>, and ofstrong bisimulation relation~.

h A7

Definition H.1 (expansion preorder). A relation ® C P x P is an expansion preorder if8P implies:

1. whenever S S, there exists Ps.t. P£> P and SR F';
2. whenever R% P, there exists 'Ss.t. S S and IRP.
We say that S expands P, writtex®, if SR P for some expansiof ..

Definition H.2 (strong bisimulation). A symmetric relatior®, C P x P is a strong bisimulation if & P
implies that whenever $: S, there exists Psuch that P2 P’ and SRP’. We say that S is strongly
bisimilar to P, written S~ P, if SR P for some strong bisimulatiof .

The following lemmas introduce some properties-oind> that are useful for proving the correct-
ness of the encoding. The (omitted) proofs rely on asynghaml input locality of the calculus.

Lemma H.1.

L (vx)(I(c) [Pr[P2) ~ (vx)(1x(c) |P1) [ (v (1X(C) [ P2) if X ¢ on(Py, P2);
(va)(ta(y).P|PL|P2) ~ (va)(ta(y).P[P1) | (va)(‘a(y).P|P,) if a & in(PL, Py);
() (1x{c) ['a(y).P) ~ta(y).(v)(1x(c) [P) if &,y 7# X;

(vx)(1x(2).P" |'a(y).P) ~'a(y).(vx)(x(2).P’ | P) if a,y # x and ay ¢ fn(P).

LemmaH.2. P’ > P implies:

2.
3.
4.

1. P|R>PR;
2. (vd)P' = (vd)P;

3. a.P’ > a.P with eithera =!a(y) or a = a(y).
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In the following proofs, recall that given anrc term f, in [f]s all site and expression names are
used only in output subject position and all variables onlinput subject position. Moreover, ffis a
closed term[f]|s can interact with the environment only by calling sites goressions or by publishing
(outputting) ors.

Proposition H.1. (vd)(D| (vx)(*x{c) | [dls)) Z (vd)(D|[9[%X]s)-

PrROOF The proof is straightforward by induction on the structuwé g. In casesg ::=

let(p) [M(p) |E(p) we get(vd)(D| (vx)('x(c)|[d]s)) ~ (vd)(D|[g[SM]s) becausex ¢ fn([g]s). In
caseg = let(X) | E(x) | M(x) the proof proceeds by defining a suitable relati®rcontaining the pair

((vd)(D| (vx)(!x{c)|[d]s)) ; (vd)(D][g[¢/x|]s)) and by showing thaf is an expansion preoder up to
~. In caseg ::= (f|f') | f>y> f’| f wherey:e f’ the proof proceeds by performing some algebraic
manipulation. The most interesting cases are describesvbel

g=f>y>f:

(vd) (D] (vx)(Ix(c) [ [f >y > ']s))

= (by definition of [ f]|s)
(vd) (D (v) (1%{c) | (vw) ([l ['W(2)- (oY) (9@ [ 1F]5))) )
(by Lemma H.1 (1,2))
(vd) (D[ (vx)('%(Q)[[ fw)) | (vd) (D] () (1x(c) | !W(Z)-(vy)(!V<Z>|[[f’]]s))))
(by Lemma H.1 (3,4))
(vd) (D (v (1x(c) | [f]lw)) ['w(2).(vd,y) ('¥(2) |D | (vX) (!X(C) [[f’]]s)))
(by inductive hypothesis and Lemma H.2)
vd)(D| [f[¢M]w) |'w(z).(vd,y)('9(2) |D| [[f’[C/X]]]s))

(by Lemma H.1 (2))

2

(

<
=

/

)

2

(W)

S
2

=V
3

(W)

2

(V) (D[ (ww) ([ f [ Dw "W (2). (W) ('Y (2 [ [TF[5]s)))
= (by definition of [ f]]s)

(va)(D[[(f>y> )]s -
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g= fwherey:c f’:

(voT)(D| (vx)(!%(c) |[f wherey:€ f']|s))

= (by definition of [ ]|s)
(vd) (D | (vx) (1R(e) | (vw) ([F'Tw | (vy) (W(2).19(2) | [ f ]]s))))
(by LemmaH.1 (1,2))
(vd) (D (v (1%(e) | [f'Tw)) | (vd) (D | (vx.Y)(IX(c) | w(2).!y(2) | [[f]]s))>
(fn(w(2).ly(2)) N {d.x} = 0)
(vd) (D] (v (%(e)[[f'Dw)) | (vy) (W(2)-'y(2) | (vd)(D| (VX)(!>‘<<C>I[[f]]s))))
(by inductive hp. and Lemma H.2 (1,2))
(vd) (DI ['[5]w] (vy) (W(2).!9(2) | (vd) (D [ f [C/X]]]s))))
(by Lemma H.1 (2))

2

(W)

/N

2

(W)

b Q

(W)

2

(vd) (D [ (W) ([ 1S Tw | (V) (W(2).'y(2) [ [ F [C/X]]]s)))
= (by definition of [ f]]s)
(vd)(D|[[(f wherey:e f)[5X]s) -

d

Proposition H.2. Suppose D is a set of function and site definitiofval, ) (D|[f]y|P) 2 (vd)(D|P) if
y¢ fn(P),d=in(D), dnin(P) =0and f is closed.

PROOF By Lemma H.1 (2) (vd,y)(D|[f],|P) ~ (vd,y)(D|[f]y)|(vd)(D|P).  Moreover,
(vd,y)(D|[f]y) = 0 because f{f]y) C {d,y} and, by definition of] ]y, namey cannot be extruded.
Hence, by Lemma H.2 (2Jvd,y)(D|[f]y|P) = (vd)(D|P). O
The following proposition is a first step towards proving tuegrectness of the encoding.
In what follows A represents a gener@RC’s label and can be eithec br 1. We define[A]s and

[u]~* as follows:[[!c]s = 5(c), [t]s =T, [5(c)] ~* =!cand[t] ! =T1.
Proposition H.3. Let f be a closedrcterm.

1. £ gimplies(vd)(D| [f]s) %2 (vd)(D| [gls);

2. (vd)(D|[]e) % (vd)(D|P) implies . g, with (vd)(D|P) = (vd)(D| [gle):

3. <5 implies[f]s 2%

4. [f]s 2% implies <5,

PROOF

1. This case is straightforward by induction on the deroratf f A g. The base cases areug),
(sITE) and PEF). In the other cases the result is obtained by applying tedtive hypothesis
and Lemma H.2. Moreover, in cases=Q2) and (vH2) also Proposition H.1 and H.2 are applied.

50



2. The proof proceeds by induction on the derivationfe)f by considering only closedRc terms.
The most interesting cases are sequential composition symdnaetric parallel composition. In
the other cases the proof proceeds by applying the indultigethesis and Lemma H.2.

[t >x>gls (vd) (D[l 1Y@-) (%D [[gls) >  (vd)DIP)  implies
[

vd)(D|[]y) ¥ (vd)(D|P). By induction, f L § and(vd)(D|P) > (vd) (D |[]y).

We distinguish two cases dependingén

W #y(c): in this case f “”L”; f' implies, by €EQl), f > x> g CIRVAN
? > g moreover, (vd)(DIP) = (vd)(D|(v)(P'|y(@-(w)(X(2 |[gls))) 2
=Yy

(D1 ([F]y 1'y@)-(v) (1% (2) | [[QJ]s))) = (vd)(D[[f" > x> g]s) (Lemma H.2);

d)
(c): in this case, by inductionf &S and, by 6EQ2), f > x> ¢ SN (f' >x>
0) |g[¢X. By (vd)(D|P") > (vd)(D|[f "Ty), Lemma H.2 and Proposition H.1:

Vv
~—~ ~~ /2 —~~

Vv

[fuherex:e gls: (vd)(D](vy)([gly|(vX)(y(2).1%(2)|[f]s))) = (vd)(D|P); we distinguish the
following cases:

(vd)(D| [al) 2 (vd) (D[ P*) with 14 5(c): by applying the induciive hypothesig, X
)

g and(vd)(D|P’) 2 (vd)(D|[g]y
Moreover, by Lemma H.2:

(vd)(D|P)
= (vd)(D](vy)(P'| (vx)(¥(2)-1X(2) | [ ]s)))
> (vd)(D(vy)([g yI(VX)(y(Z)-!>‘<<Z>|[f]]s)))
= (vd)(D|[f wherex:e d]s)
Mt . [t

andg — d implies, by (WH1), f wherex:€ g — fwherex:c(’;
(vd)(D|[f]s) LS (vd)(D|P'): in this case the proof proceeds in a similar way;
(vd)(D|[gly) ~= (vd)(D|P'): by induction, g > ¢f, (vd)(D|P') 2 (vd)(D| [g']y) and
f whereXx:€ g<i> f[C/X, by (WH2).
Moreover, (Vd)(DIP) =)D (P |[fls) =

\
(vd) (D (vy) ([9Dy | (v3)(! Is))) = (vd)(D|[f[%X]s) by Proposition H.1
and Proposition H.2 (recall thdtls a closed term and¢ fn([[f]s).)

3. By induction on transitions, we distinguish the follogioases:
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let(c) <S: [Let(0)]s = s(c) 2%

flg & implies, by either ¥AR1) or (PAR2), eitherf & or g c!—c>; by induction either][ f]s 29,

s(0) () .

or [g)s — and[[f [glls = [f]s|[g]s —:
5(c)

gwhereX:€ f & implies, WH3), g <!—C>, and by induction][g]s —. [gwhereX :€ f]s =
s(c)

V) ([F]y 1 (vx)(¥(2).1X(2) [ [g]ls)) and (vy) ([ ]ly [ (V) (y(2).1%(2) | [lls)) —-

4. We distinguish the following cases:
[Let(0)]s 2% [1et(0)]s =3(c) 2% and1et(c) <5, (PUB):

3(c) 3(c) s(c)

[flgls —: [f|g]s — implies either[f]s —

or [[d]s 39, By induction, eitherf & or g <!—C>,

hencef |g c!—c>, by either fARL) or (PAR2);
s(c) 3(c) s(c)

[gwherex:e€ flls —>: (vy)([fly|(vX)(¥(2).!1%(2) | [g]ls)) —> implies[g]s —> and by induction
gfl—c>, that isgwherex:€ f <!—C>, (WH3).

O

Proposition H.4. Consider anorc term f and suppose Dwell typed. Iffv(f) =X, then F=
(vd, %) ([f]ls | Mxex!X(c) | Dt | !s(x).0), with fn(F) = {s}, c inert andd, X and s +-responsive names, is
strongly balanced.

ProOF Well typedness of f||s is easy to prove by induction on the structurefoin particular; A 2
[f]s, for suitablel” andA such thaf ® = 0, dom(I") = fv(f), each name iff is annotated with capability
m and donfA) contains onlys and expression and site names, annotated mwithlence well-typedness
of F is ensured. Balancing & may be proved by induction on the structurefof

As an example, we consider the cdse gy wherey:€ g;. In this case

F = (& d) ((vr) ([ulk| (w)(r (2 152 [g2]l9) | []%() | D1 |1s(x))

XeX

wherex'= %, U %, with % = fv(g1) ands = fv(gp) \ {y}, andd = d; U da, with d; anddj containing all
names corresponding to sites and expressions called tegheby g1 andg, (henceDt ~ D1|Dy).

By induction, Gi1 = (vdi,X1)([91]r | [xex!X(©) | D1 | 'r(2).0) and G =
(Vd2,%2,Y)([[02]]s | Mxex,'X(C) | '¥(c) | D2 | !s(x).0) are strongly balanced.

Note that inG; channelr is +-responsive and does not carry (+-)responsive namesehié we
replace t(z).0 with r(z).0 then the resultings] is still strongly-balanced. Thus, given tigtandg, can
share only sites, expression names and variables (whialisackonly in output — resp. input — figs ]|,
and[gz]s and replicated in input i — resp. replicated in output {!X(c)):

{1G2 = (vd,%,y) (T2l | []'X(e) | D1 | Dz | r(2.0] lgels| [!%(c) |'9(c) | 1s(x).0) £ G

XEX1 XEX2

Hence, given thaG; and G, are strongly balanced, the procegssabove is strongly balanced too.
Similarly, the processs defined below, obtained fror@' by applying the scope extension structural
law to (vy) and by replacind>; andD» by D+ in such a manner to eliminate possible duplicate of site
and expression definitions, is strongly balanced too:
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G = (vd, %) () ([l | 7(2).0115€) | [g2]ls) | ['X(c) | Dt | !5(x)-0) -

XexX
Finally, the procesBE below, obtained by bounding namand by replacing(z).0 | 'y(c) with r(2).!y(z),
is strongly balanced too. In fact, the balancing conditiaresnot influenced by restricting and by prefix-
ing:

F £ d.) () ([l | () (2)y ) | []'X(@) | Dt | 15(9.0) .

XexX

Theorem H.1 (Theorem 6).Let f be a closedRc term and suppose Os well typed.

1. [f]s is well-typed and F= (vd)([f]s| D¢ |'s(x).0), with s andd +-responsive, is strongly bal-
anced,

2. £2 ifand only if F25%

PROOF

1. Well-typedness dff]js and balancing oF follow by Proposition H.4.

2. (=) f = means thatf <* g <—> by Proposmon H.3 (1)f < f |mpI|es( d)(Ds |[f]s) —
(vd)(D¢|P) 2 (vd)(D¢|[f']s), ' < f” implies (vd)(Ds|[]s) ~ (vd)(Ds[P") >
(vd)(Dt|[f"]s) and by the definition and the transitivity of, (vd)(D¢|P)) —

(vd)(D¢|P") > (vd)(D¢|[[f"]s). This reasoning can be iterated for eadhansition fromf

tog. Thus, f <*g implies (vd) (D |[f]s) ~* (vd)(D¢ |P) 2 (vd)(Ds| [g]s) andg <= im-

plies, by Proposition H.3 (3(vd)(Ds | [g]ls) ~2: thus by definition of>, (vd)(Ds |P) 2

and(vd)(Ds | [f]Js|!s(x).0) =22,
(«<): inthis case we can proceed similarly, the result follows jyylging Proposition H.3 (2,4).

d
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