
Responsiveness in process calculi∗

Lucia Acciai and Michele Boreale
Dipartimento di Sistemi e Informatica

Università di Firenze

Email: {lacciai, boreale}@dsi.unifi.it

Abstract

A system guarantees responsive usage of a channelr if a communication alongr is guaranteed
to eventually take place. Responsiveness is important, forinstance, to ensure that any request to
a service be eventually replied. We propose two distinct type systems, each of which statically
guarantees responsive usage of names in well-typed pi-calculus processes. In the first system, we
achieve responsiveness by combining techniques for deadlock and livelock avoidance withlinearity
andreceptiveness. The latter is a guarantee that a name is ready to receive as soon as it is created.
These conditions imply relevant limitations on the nestingof actions and on multiple use of names in
processes. In the second system, we relax these requirements so as to permit certain forms of nested
inputs and multiple outputs. We demonstrate the expressivepower of the two systems by showing
that primitive recursive functions – in the case of the first system – and Cook and Misra’s service
orchestration languageORC – in the case of the second system – can be encoded into well-typed
processes.

Keywords: pi-calculus, type systems, responsiveness, receptiveness, linearity.

1 Introduction

A system guarantees responsive usage of a channel namer if a communication alongr is guaranteed
to eventually take place. That is, under a suitable assumption of fairness, all computations from the
initial state contain at least one reduction withr as subject. We christen this propertyresponsiveness
as we are particularly interested in the case wherer is a return channel passed to a service or function.
As an example, a network of processesS may contain a service !a(x, r).P invocable inRPC style: the
caller sends ata an argumentx and a return channelr. S’s responsive usage ofr implies that every
request ata will be eventually replied. This may be a critical property in domains of applications such
as service-oriented computing.

Our goal is to devise typing disciplines that statically guarantee responsiveness of significant classes
of processes. In the past decade, several type systems for the pi-calculus have been proposed to analyze
properties that share some similarities with responsiveness, such as linearity [10], uniform receptive-
ness [13], lock freedom [6, 7] and termination [5]; they willbe examined throughout the paper. However

∗Research partially supported by the EU within the FET-GC2 initiative, project SENSORIA. Corresponding author:
Michele Boreale, Università di Firenze, Dipartimento di Sistemi e Informatica, Viale Morgagni 65, I-50134 Firenze. E-mail:
boreale@dsi.unifi.it.

1

none of the above mentioned properties alone is sufficient, or even necessary, to ensure the property we
are after, as we discuss below (further discussion is found in the concluding section).

The first system we propose builds around Sangiorgi’s systemfor uniform receptiveness [13]. How-
ever, we discard uniformity and introduce additional constraints, as explained below. As expected, most
difficulties in achieving responsiveness originate from responsive names being passed around. If an in-
tended receiver of a responsive namer, saya(x).P, is not available “on time”,r might never be delivered,
hence used. In this respect, receptiveness is useful, because it can be used to ensure that inputs ona and
on r are available as soon as these names are created.

Even when delivery ofr is ensured, however, one should take care thatr will be processed properly.
Indeed, the recipient might just “forget” aboutr, like in (νa, r)(a(x).0|a〈r〉) ; or r might be passed from
one recipient to another, its use as a subject being delayed indefinitely, like in

(νa, b, r)
(

!a(x).b〈x〉 | !b(y).a〈y〉 | a〈r〉
)
. (1)

The first situation can be avoided by imposing that in the receiver a(x).P, namex occurs at least once
in the bodyP. In fact, as we shall discuss in the paper, it is necessary that any responsive name be used
linearly, that is, it appears exactly once in input and once in output.Indefinite delays like (1) can be
avoided by using a stratification of names intolevels, like in the type system for termination of Deng and
Sangiorgi [5]. We will rule out divergent computations thatinvolve responsive names infinitely often,
but we’ll do allow divergence in general.

Finally, even when a responsive name is eventually in place as a subject of an output action, one
has to make sure that such action becomes eventually available. In other words, one must avoid cyclic
waiting like in

r(x).s〈x〉 | s(y).r〈y〉 . (2)

This will be achieved by building a graph of the dependenciesamong responsive names and then check-
ing for its acyclicity.

In the first system, receptiveness and linearity impose relevant limitations on the syntax of well-typed
processes: nested free inputs are forbidden, as well as multiple outputs on the same responsive name. On
the other hand, the type system is expressive enough to enable aRPC programming style; in particular,
we show that the usualCPSencoding of primitive recursive functions gives rise to well-typed processes.

In the second system we propose, the constraints on receptiveness and linearity are relaxed so as to
allow certain forms of nested inputs and multiple outputs. Relaxation of linearity and receptiveness raises
new issues, though. As an example, responsiveness might fail due to “shortage” of inputs or outputs, like
in the following example, where a reduction onr is followed by one ons, while a communication ont
cannot occur (r, sandt responsive):

r〈s〉|r〈t〉|r(x).x|s|t
τ
−→

τ
−→ r〈t〉|t .

These issues must be dealt with by carefully “balancing” inputs and outputs in typing contexts and in
processes. The resulting system is flexible enough to let allorchestration patterns of Cook and Misra’s
ORC language [4] be encoded into well-typed processes. Due to a rather crude use of levels, however,
only certain forms of (tail-)recursion are encodable. In fact, neither the first system is subsumed by the
second one, nor vice versa.

The rest of the paper is organized as follows. Syntax and operational semantics of the calculus
are presented in Section 2, and responsiveness is formally defined. Section 3 introduces the first type
system, after an informal discussion on the requirements for responsiveness. The main results, subject
reduction and type soundness, are presented in Section 4; there we also give a bound, depending on the

2

size of a process, on the number of reductions necessary before a given responsive name is used. Simple
extensions of the first system (summation,if-then-else and recursion on data values) are presented
in Section 5, where the encoding of primitive recursive functions is also discussed. The second system
and its properties are discussed in Section 6 and 7. Several examples illustrating the extent and limits of
the system are discussed in Section 8. Encoding ofORC into pi-calculus is discussed in Section 9. The
concluding Section 10 contains some indications for further work and a detailed discussion of related
work. For the sake of readability, the most technical proofshave been confined to separate Appendices
(A-H).

2 Syntax and operational semantics

In this section we describe the syntax (processes and types)and the operational semantics of the calculus.
On top of the operational semantics, we define the responsiveness property we are after.

2.1 Syntax

We focus on an asynchronous variant of the pi-calculus [14] without nondeterministic summations.
Asynchrony is a natural assumption in a distributed environment and simplifies the technical treatment.
Nondeterministic summation andif-then-else can be accommodated, but they would raise some no-
tational burden in the proofs that we prefer to avoid at this stage: we defer its treatment to a later stage
(see Subsection 5.1).

A countable set of namesN , ranged over bya,b, . . . ,x,y, . . . , is presupposed. The setP of processes
P,Q, . . . is defined as the set of terms generated by the following grammar.

P ::= 0 Inaction
∣∣ a〈b〉 Output
∣∣ a(x).P x /∈ in(P) Input prefix
∣∣ !a(x).P x /∈ in(P) Replication
∣∣ P|Q Parallel composition
∣∣ (νb)P Restriction

In a non blocking output actiona〈b〉, namea is said to occur inoutput subject positionandb in
output object position. In an input prefixa(x).P, and in a replicated input prefix !a(x).P, namea is said
to occur ininput subject positionandx in input object position. We denote by in(P) the set of names
occurring free in input subject position inP. The conditionx /∈ in(P), for input and replicated input,
means that names can be passed around with the output capability only. This assumption simplifies
reasoning on types and does not significantly affect the expressiveness of the language (see e.g. [3, 11]).
As usual, parallel composition,P|Q, represents the concurrent execution ofP and Q and restriction,
(νb)P, creates a fresh nameb with initial scope P. Notions of free and bound names (fn(·) and bn(·)),
and alpha-equivalence (=α) arise as expected. We assume the set of namesN is partitioned into a family
of countablesortsS ,S ′, A fixed sorting à la Milner [12] is presupposed: that is, any sort S has an
associated object sortS ′, and a name of sortS can only carry names of sortS ′. Alpha-equivalence is
assumed to be sort-respecting: this means a bound name can bealpha-renamed only to a fresh name in
the same sort. We only consider processes that are well-sorted in this system.

3

Notationally, we shall often abbreviatea(x).0 asa(x), and(νa1) . . . (νan)P as(νa1, . . . ,an)Por (νã)P,
whereã = a1, . . . ,an. In a few examples, the object part of an action may be omittedif not relevant for
the discussion; e.g.,a(x).P may be shortened intoa.P.

2.2 Sorts and types

We assume a surjective mapping from the set of sorts to the setof typesT defined below. We writea : T
if a belongs to a sortS with associated typeT.

A channel typeT[u,k] conveys three pieces of information: a type of carried objects T, a usageu,
that can beresponsive(ρ) or ω-receptive(ω), and an integerlevel k≥ 0. If a : T[u,k] andu = ρ (resp.
u = ω) we say thata is responsive(resp.ω-receptive). Informally, responsive names are guaranteed to be
eventually used as subject in a communication, whileω-receptive names are guaranteed to be constantly
ready to receive. Levels are used to bound the number of timesa responsive name can be passed around,
so to avoid infinite delay in their use as subject. We also consider a typeI of inert names that cannot be
used as subject of a communication – they just serve as tokensto be passed around. Finally, a type⊥ is
introduced to collect those names that cannot be used at all:as we discuss below,⊥ is useful to formulate
the subject reduction property while keeping the standard operational semantics.

Definition 1 (types). The setT of typescontains the constant⊥ and the set of terms generated by the
grammar below. We useT,S, ... to range overT .

T ::= I
∣∣ TU U ::= [ρ,k]

∣∣ [ω,k] (k≥ 0)

Note that even if⊥ ∈ T , the grammar above rules out compound types containing⊥, e.g.⊥[ρ,k] is
not a type. For the sake of simplicity, recursive types are omitted. In particular we do not allow channels
to carry names belonging to their own sort.

2.3 Operational semantics

The semantics of processes is given by a labelled transitionsystem in the early style, whose rules are
presented in Table 1. Anaction µcan be of the following forms: free output,a〈b〉, bound output,a(b),
input a(b), or internal moveτ〈a,b〉. We definen(a(b)) = n(a〈b〉) = n(a(b)) = n(τ〈a,b〉) = {a,b}. A
substitutionσ is a finite partial map from names to names; for any termP, we writePσ for the result of
applyingσ to P, with the usual renaming conventions to avoid captures.

The rules are standard, but inτ-transitions
τ〈a,b〉
−−−→ we keep track of the –free or bound– namesa

andb that are used as subject and object, respectively, of a communication. This extra information will
be useful on several occasions. In rule (RES-ρ), a bound responsive subjecta is renamed to a fresh
namec of type⊥ – a sort of “casting” ofa to type⊥. Informally, this casting is necessary because in a
well-typed process, due to the linearity constraint on responsive names, namea must vanish after being
used as subject. Rule (RES) deals with the remaining cases of restriction. Note that iftype and sorting
information are ignored, one gets back the standard operational semantics of pi-calculus.

Convention In the paper,processes are identified modulo alpha-equivalence. Formally, this means
that we work with alpha-equivalence classes of terms, rather than with individual terms. A few caveats
apply to this convention. For each alpha-equivalence class[P], we choose a representative term in a
canonical form, written can(P), having all bound names pairwise distinct and disjoint fromthe set of
free names. All (syntax-directed) functions or relations taking [P] as an argument are defined in terms

4

(IN) a(x).P
a(b)
−−→ P[b/x] (REP) !a(x).P

a(b)
−−→!a(x).P|P[b/x]

(OUT) a〈b〉
a〈b〉
−−→ 0 (PAR1)

P
µ
−→ P′ bn(µ)∩ fn(Q) = /0

P|Q
µ
−→ P′|Q

(OPEN) P
a〈b〉
−−→ P′ a 6= b

(νb)P
a(b)
−−→ P′

(CLOSE1)
P

a(b)
−−→ P′ Q

a(b)
−−→ Q′ b /∈ fn(Q)

P|Q
τ〈a,b〉
−−−→ (νb)(P′|Q′)

(COM1) P
a〈b〉
−−→ P′ Q

a(b)
−−→ Q′

P|Q
τ〈a,b〉
−−−→ P′|Q′

(RES-ρ) P
τ〈a,b〉
−−−→ P′ a responsive c : ⊥ c fresh

(νa)P
τ〈a,b〉
−−−→ (νc)P′[c/a]

(RES)

P
µ
−→ P′ if a∈ n(µ) then∃b 6= a :





either µ = τ〈b,a〉

or µ = τ〈a,b〉 anda not responsive

(νa)P
µ
−→ (νa)P′

Symmetric rules not shown.

Table 1: Rules for the labeled transition system

of can(P). In particular: (a) bn([P]) is formally defined as the set of bound names of the term can(P),
that is bn(can(P)); (b) the operational semantics given in Table 1, which does not mention a rule for
alpha-equivalence, is formally defined over plain terms, not over equivalence classes. The semantics of
equivalence classes is then given in terms of the semantics of their representatives. Formally, this is done
via the rule below, which we assume implicitly:

can(P)
µ
−→ Q

[P]
µ
−→ [Q]

.

For the sake of simplicity, in the rest of the paper we shall write [P] simply asP, and omit making
explicit reference to can(P) when no ambiguity arises. So, for example, we write bn(P) instead of
bn([P]). Given any collection of terms, reductions etc. we shall assume that all bound names occurring
in this collection are pairwise distinct and disjoint from free names.

Notation We shall often refer to a transitionP
τ〈a,b〉
−−−→ P′, sometimes abbreviated asP

τ
−→ P′, as a

reduction. P
[a]
−→ P′ meansP

τ〈a,b〉
−−−→ P′ for some free or bound nameb. For a strings= a1 · · ·an ∈ N ∗,

P
[s]
−→ P′ meansP

[a1]
−→ ·· ·

[an]
−→ P′, while P

[c]
=⇒ P′ meansP

τ
−→

∗ [c]
−→

τ
−→

∗
P′. We use such abbreviations as

P
[c]
=⇒ to mean that there existsP′ such thatP

[c]
=⇒ P′.

We can now introduce the responsiveness property we are after. To motivate the definition below,

think of a fair computation as a sequence of communications where for no namea a transition
[a]
−→ is

weakly (i.e. up to some reductions) enabled infinitely oftenwithout ever taking place. Assuming a fair
scheduling of transitions in this sense, responsiveness ofr is guaranteed if, in all states reachable without

doing
[r]
−→, a communication onr is weakly enabled.

5

Definition 2 (responsiveness).Let P be a process and c∈ fn(P). We say that Pguarantees responsive-

ness ofr if whenever P
[s]
−→ P′ (s∈ N ∗) and r does not occur in s then P′

[r]
=⇒.

3 The type system⊢1

The type system consists of judgments of the formΓ ; ∆ ⊢1 P, whereΓ and∆ are sets of names.

3.1 Overview of the system

Informally, names inΓ are those used byP in input, while in∆ are those used byP in output actions.
There are several constraints on the usage of these names byP. A name inΓ must occurimmediately(at
top level) in input subject position, exactly once if it is responsive and replicated if it isω-receptive. A
responsive name in∆ must occur inP exactly once either in subject or in object output position,although
not necessarily at top level, that is, occurrences in outputactions underneath prefixes are allowed. There
are no constraints on the use in output actions ofω-receptive names: they may be used an unbounded
number of times, including zero. Linearity (“exactly once”usage) on responsive names is useful to avoid
dealing with “dangling” responsive names, that might ariseafter a communication, like in (r responsive,
object parts ignored):

(νr)(r.0|r |r) τ
−→ (νr)(0|0|r) .

If the process on theLHS above were declared well-typed, this transition would violate the subject re-
duction property, as the process on theRHS above cannot be well-typed.

Linearity and receptiveness alone are not sufficient to guarantee a responsive usage of names. As
discussed in the Introduction, we have also to avoid deadlock situations involving responsive names,
like (2). This is achieved by building agraph of dependenciesamong responsive names ofP (defined
in the sequel) and checking for its acyclicity. We have also to avoid those situations described in the
Introduction by which a responsive name is indefinitely “ping-pong”-ed among a group of replicated
processes, like in (1). To this purpose, levels in types are introduced and the typing rules decree that
sending a responsive name to a replicated receiver of levelk may only trigger output of level less than
k. This is similar to the use of levels in [5] to ensure termination. In our case, we just avoid divergent
computations that involve responsive names infinitely often.

There is one more condition necessary for responsiveness, that is, the sets of input and output names
must be “balanced”, so as to ban situations like an output with no input counterpart. This constraint,
however, is most easily formulated “on top” of well-typed-ness, and will be discussed later on.

3.2 Preliminary definitions

Formulation of the actual typing rules requires a few preliminary definitions.Structural equivalenceis
necessary in order to correctly formulate the absence of cyclic waiting on responsive names. We define
structural equivalence≡ as the least equivalence relation over processes satisfying the axioms below
and closed under restriction and parallel composition. Letus point out a couple of differences from the
standard notion [12]. First, there is no rule for replication (!P≡ P|!P), as its right-hand side would not
be well-typed. Consider e.g. the process !a(x).R, with a ω-receptive name; the processa(x).R| !a(x).R
is not well-typed becauseω-receptive names cannot be used as subjects of non-replicated inputs. For
a similar reason, in the rule(νa)0 ≡ 0 we requirea : ⊥ or a : I. Indeed, the type system requires that
restrictedω-receptive or responsive names be used in input subject position at least once.

6

(νa)(νb)P≡ (νb)(νa)P (νa)(P|Q) ≡ (νa)P|Q if a /∈ fn(Q)

P|Q≡ Q|P P|0≡ P

(P|Q)|R≡ P|(Q|R) (νa)0≡ 0 if a : ⊥ or a : I

Let us call a processP primeif P is of the form eithera〈b〉, or a(x).P′ or !a(x).P′. A processP is in
normal formif P is of the form(νd̃)(P1| · · · |Pn) (n≥ 0), where everyPi is prime andd̃ ⊆ fn(P1, ...,Pn).

In a dependency graph, defined below, nodes are responsive names and there is an arc froma to b
exactly when an output action that involvesa depends on an input action onb. Although the following
definition does not mention processes, one should think of the pairs(Γi ,∆i) mentioned below as typing
contexts – limited to responsive names – for primePi ’s in P1| · · · |Pn.

Definition 3 (dependency graph).Let{(Γi ,∆i) : i = 1, ...,n} be a set of context pairs. Thedependency
graph DG(Γi ,∆i)i=1,...,n is a graph(V,T) where: V=

S

i=1,...,n(Γi ∪∆i) is the set of nodes and T=
S

i=1,...,n(∆i ×Γi) is the set of arcs.

Example 1. Consider the sets of namesΓ1 = {a}, ∆1 = {b,c,d}, Γ2 = { f}, ∆2 = {a}, Γ3 = {c} and
∆3 = { f}. By applying the typing rules introduced in the next section, these contexts can be used for
deriving well-typedness of the processa.(b|c|d) | f .a|c. f . The graph DG(Γi,∆i)i=1,2,3 depicted below
is cyclic.

a

d

c

b

f

We will have more to say on both structural equivalence and dependency graphs in Remark 1 at the
end of the section. Like in [5], we will use a function os(P), defined below, that collects all – either free
or bound – names inP that occur as subject of anactiveoutput action, that is, an output not underneath
a replication (!).

os(0) = /0 os(!a(b).P) = /0 os(a(b).P) = os(P)

os(a〈b〉) = {a} os((νa)P) = os(P) os(P|Q) = os(P)∪os(Q)

Finally, some notation for contexts and types. For any namea, we set lev(a) = k if a : T[u,k] for

someT and u, otherwise we leave lev(a) undefined. Given a set of namesV, defineVρ △
= {x ∈

V | x is responsive} and Vω △
= {x ∈ V | x is ω-receptive}. For V and W sets of names, we define

V ⊖W
△
= V \Wρ. If ∆∩∆′ = /0, we abbreviate∆∪∆′ as∆,∆′ and if a /∈ ∆, we abbreviate∆∪{a} as

∆,a; similarly for Γ.

3.3 The typing rules

The type system is displayed in Table 2. Recall that each sorthas an associated type. Linear usage of
responsive names is ensured by rules (T-NIL) and (T-OUT), by the disjointness conditions in (T-PAR)
and by forbidding responsive names to occur free underneathreplication (T-REP). Absence of cyclic
waiting involving responsive names is checked in (T-PAR) and in (T-INP) (a /∈ ∆). Note the use of levels
in rule (T-REP): communication involving a replicated input subjecta and a responsive object can only

7

trigger outputs of level less than lev(a). This condition is meant to avoid those never-ending “ping-
pongs” of responsive names mentioned above. Finally, rule (T-RES) ensures that bound responsive
names are used both in input and in output andω-receptive names are used at least as input subjects.
Rule (T-RES-⊥) prevents from using a name of type⊥ and (T-RES-I) deals with inert names. We say
that a processP is well-typedif there areΓ and∆ such thatΓ;∆ ⊢1 P holds.

(T-NIL) ∆ρ = /0
/0;∆ ⊢1 0 (T-OUT) a,b∈ ∆ a : TU b : T ∆ρ ⊖{a,b}= /0

/0;∆ ⊢1 a〈b〉

(T-STR) P≡ Q Γ;∆ ⊢1 Q
Γ;∆ ⊢1 P (T-INP) a : T[ρ,k] b : T a /∈ ∆ /0;∆,b⊢1 P

a;∆ ⊢1 a(b).P

(T-RES-⊥) a : ⊥ Γ;∆ ⊢1 P
Γ;∆ ⊢1 (νa)P

(T-RES-I) a : I Γ;∆,a⊢1 P
Γ;∆ ⊢1 (νa)P

(T-RES) a : TU Γ,a;∆,a⊢1 P
Γ;∆ ⊢1 (νa)P

(T-REP)
a : T[ω,k] b : T ∆ρ = /0 /0 ;∆,b ⊢1 P (b responsive implies∀c∈ os(P) : lev(c) < k)

a;∆ ⊢1!a(b).P

(T-PAR)

P = P1| · · · |Pn (n > 1) ∀i : Pi is prime andΓi ; ∆i ⊢1 Pi

∀i 6= j : Γρ
i ∩Γρ

j = /0 and∆ρ
i ∩∆ρ

j = /0 DG(Γρ
i ,∆

ρ
i)i=1,...,n is acyclic

[

i=1,...,n

Γi ;
[

i=1,...,n

∆i ⊢1 P

Bound names in processes are assumed to be different from free names and from names in contexts.

Table 2: Typing rules of⊢1

Remark 1. (1) Avoiding deadlock on responsive names might be achievedby using levels in rule
(T-INP), in the same fashion as in rule (T-REP), rather than using graphs. In fact, this would rule out
cyclic waiting such as the one in (2) in the Introduction. We shall pursue this approach in the system of
Section 6, where there is no way of defining a meaningful notion of dependency graph. However, in the
present system this way of dealing with cyclic waiting wouldbe unnecessarily restrictive, in particular it
would ban as ill-typed the usual encoding of recursive functions into processes (see also Section 8).

(2) We note that, despite the presence of a rule for structural equivalence, the type system may be
viewed as essentially syntax driven, in the following sense. GivenP in normal form,P= (νd̃)(P1| · · · |Pn),
and ignoring structural equalities that just rearrange thed̃ or thePi ’s, there is at most one rule one can
apply withP in the conclusion. This is made formal below.

We define a normal derivation ofΓ;∆ ⊢1 P to be one where rule (T-STR) is applied only where
strictly necessary:

Definition 4 (normal derivation). A normal derivationof Γ;∆ ⊢1 R is a derivation where at each appli-
cation of rule(T-STR) (Table 2) the process P in the conclusionis not in normal-form, while the process
Q in the premiseis in normal form.

For each well typed processP there exists a normal derivation (the proof is reported in Appendix A).

Lemma 1. SupposeΓ;∆ ⊢1 P, then there exists a normal derivation ofΓ;∆ ⊢1 P.

8

Example 2. Consider the process

P
△
= c|a〈c〉 |a(x).(νb)

(
b.x| f 〈b〉

)
| f (y).y

with c,x : I[ρ,kc] = T, a : T[ρ,ka], b,y : I[ρ,kb] = S, f : S[ρ,kf], for any kc, ka, kb and kf , and contextΓ =
∆ = {a,c, f}. P is a parallel composition of well-typed prime processes, the resulting dependency graph
is acyclic and rule (T-PAR) can be applied for deducingΓ;∆ ⊢1 P. As we will see in the next section
(Theorem 2) responsiveness ofc is guaranteed.

Example 3. As expected, there exist processes that guarantee responsiveness, but which are discarded
by our type system. Consider e.g.

P
△
= a〈c〉|!a(x).a〈x〉|a(x).(x|x) .

Assumec is responsive. ProcessP is not well typed, because channela is used in input as a subject
of both a replicated input – hence it cannot be responsive, (T-REP) – and of a simple input – hence it
cannot beω-receptive, (T-INP). However,P guarantees responsiveness ofc according to Definition 2.
Indeed, along every computation not involvingc, a reduction onc is weakly enabled at any stage (which

guarantees that reduction
[c]
−→ will take place under a fair scheduling assumption).

4 Subject reduction and type soundness for system⊢1

Subject reduction states that well-typedness is preservedthrough reductions, and it is our first step to-
wards proving type soundness. Proofs omitted here are reported in Appendix B, C and D.

Theorem 1 (subject reduction). SupposeΓ;∆ ⊢1 P and P
[a]
−→ P′. ThenΓ⊖{a};∆ ⊖{a} ⊢1 P′.

Our task is proving that any “balanced” well-typed process guarantees responsiveness (Definition 2)
for all responsive names it contains. In the following definition we formally identify balanced processes.

Definition 5 (balanced processes).A process P is(Γ;∆)-balancedif Γ;∆ ⊢1 P, Γρ = ∆ρ and∆ω ⊆ Γω.
It is balancedif it is (Γ;∆)-balanced for someΓ and∆.

We need two main ingredients for the proof. The first one is given by the following proposition,
stating that if the dependency graph of a processP is acyclic, thenP always offers at least one output
action involving a responsive name.

Proposition 1. Suppose thatΓ;∆ ⊢1 P, with Γ, ∆ and P satisfying the conditions in the premise of rule
(T-PAR) andΓρ = ∆ρ 6= /0. Then for some j∈ {1, . . . ,n} we have Pj = a〈b〉 with either a or b responsive.

Following Deng and Sangiorgi’s approach, we define a measureof processes that is decreased by
reductions involving responsive names. We borrow from [5] the definition ofweightof P, written wt(P).
In particular, wt(P) is defined only ifP is well-typed and is a vector〈wk,wk−1, . . . ,w0〉, wherek ≥ 0 is
the highest level of names in os(P), andwi is the number of occurrences in output subject position of
names of leveli in P. A formal definition is given below. It is woth to notice that in wt(a〈b〉) it can never
be the case thata is of typeI nor⊥, because otherwisea〈b〉 would not be well-typed. Here, “0k” is an
abbreviation for the vector〈1,0, . . . ,0〉 with k components “0” following “1”. The vector with just one
component that equals “0” is denoted by0. Sum “+” between two vectors is performed component-wise
if they are of the same length; if not, the shorter one is first “padded” by inserting on the left as many 0’s
as needed.

9

wt(0) = 0 wt(!a(b).P) = 0 wt(a〈b〉) = 0k if lev(a) = k

wt(a(b).P) = wt(P) wt((νa)P) = wt(P) wt(P|Q) = wt(P)+wt(Q)

The set of all vectors can be ordered lexicographically. Assuming two vectors are of equal length (if
not, the shorter vector is padded with 0’s on the left), we define 〈wk, . . . ,w0〉 ≺ 〈w′

k, . . . ,w
′
0〉 if there is

i in 0, . . . ,k such thatw j = w′
j for all k ≥ j > i andwi < w′

i . This order is total and well-founded, that
is, there are no infinite descending chains of vectors. The next proposition states that the weight of a
process is decreased by reductions involving a responsive name, and leads us to Theorem 2, which is the
main result of the section.

Lemma 2. For each P such thatΓ;∆ ⊢1 P there exists R in normal form such that P≡ R.

Proposition 2. SupposeΓ;∆ ⊢1 P and P
τ〈a,b〉
−−−→ P′, with either a or b responsive. Thenwt(P′) ≺ wt(P).

Theorem 2 (type soundness).Let P be(Γ;∆)-balanced and r∈ ∆ρ. Then P guarantees responsiveness
of r.

PROOF: AssumeP
[s′]
−→ R, for anyR, andr /∈ s′. We have to show thatR

[r]
=⇒. Let P′ be a process with a

minimalwt(·) satisfyingR
[s′′]
−→ P′ for somes′′ such thatr /∈ s′′: this P′ must exist by well-foundedness

of ≺. Let s = s′ · s′′. By subject reduction we have thatP′ is (Γ′;∆′)-balanced, withΓ′ = Γ ⊖ s and
∆′ = ∆ ⊖s.

Consider now a normal form of processP′ (Lemma 2):P′ ≡ N
△
= (νd̃)N′ with N′ = P1| · · · |Pn for

someP1, · · · ,Pn prime. By rule (T-STR), we getΓ;∆ ⊢1 N. Therefore, we deduce that it must ben > 1,
asr occurs in both input and output and, by rule (T-INP), an outputr cannot occur under an input onr.

By Lemma 1, there exists a normal derivation ofΓ′;∆′ ⊢1 N. In this derivation,Γ′;∆′ ⊢1 N is
deduced fromΓ′, d̃;∆′, d̃ ⊢1 P1| · · · |Pn by repeated applications of (T-RES) and (T-RES-I), and rule
(T-PAR) must have been applied to inferΓ′, d̃;∆′, d̃ ⊢1 N′. Hence it must be:(Γ′, d̃) =

S

i=1,...,n Γi, and
(∆′, d̃) =

S

i=1,...,n ∆i, andΓi;∆i ⊢1 Pi, where∆ρ
i (resp.Γρ

i) are pairwise disjoint and DG(Γρ
i ,∆

ρ
i)i=1,...,n is

acyclic. Moreover, from balancing ofΓ and∆ and definition of⊖ we deduce the balancing ofΓ′, d̃ and
∆′, d̃, hence(∆′, d̃)

ρ
= (Γ′, d̃)

ρ
. By Proposition 1 there is aj such thatPj = a〈b〉 with a or b responsive.

By (T-OUT) andΓ′, d̃;∆′, d̃ ⊢1 N′ we havea∈ ∆′, d̃. By (∆′, d̃)
ω
⊆ (Γ′, d̃)

ω
and receptiveness of respon-

sive andω-receptive names ((T-INP) and (T-REP)), there is ak such thatPk = (!)a(x).P′
k. This implies

N′ τ〈a,b〉
−−−→ N′′, by (COM), henceN

τ〈a,b〉
−−−→ M. Hence,N ≡ P′ τ〈a,b〉

−−−→ P′′ ≡ M as well and, since eithera or b
is responsive, by Proposition 2 we get wt(P′′) ≺ wt(P′). This impliesa = r, asP′ was assumed to be the

process with minimal weight satisfyingR
[s′′]
−→ P′, for somes′′ such thatr /∈ s′′. Hence we have proved

thatR
[r]
=⇒. 2

Next, we establish an upper bound on the number of steps that are always sufficient for a given
responsive name to be used as subject. This upper bound can begiven as a function of the syntactic size
of P, written |P|, and of name levels inP. A similar result was given in [5] for terminating processes.
Here, since we deal with processes that in general may not terminate, the upper bound must be given
relatively to a notion ofschedulingof transitions, that is introduced below.

Definition 6 (responsive scheduling).A responsive schedulingis a finite or infinite sequence of reduc-

tions P= P0
τ〈a1,b1〉
−−−−→ P1

τ〈a2,b2〉
−−−−→ ·· · where the bound names in{(ai ,bi)|i ≥ 1} are all distinct from the free

names in P and for each i≥ 0, either ai or bi is responsive.

10

The size of a processP, written |P|, is defined as

|0|=0 |a(x).P|=1+ |P| |(νc)P|= |P|

|a〈b〉 |=1 | !a(x).P|=1+ |P| |P|R|= |P|+ |R| .

Note that structural equivalence preserves the size of a process.
We denote by O(P) the multiset of all output actions ofP that are active, that is, not underneath a
replication. O(P) is formally defined as follows

O(0) = /0 O(a(b).P) = O(P) O(a〈b〉) = {a〈b〉}

O(!a(b).P) = /0 O((νa)P) = O(P) O(P|R) = O(P)⊎O(R) .

We indicate by Oρ(P) the multiset containing all output actions in O(P) involving a responsive name.

Theorem 3. Let P be(Γ;∆)-balanced and r∈ ∆ρ and let k be the maximal level of names appearing in
active responsive output actions of P,Oρ(P). In all responsive schedulings, the number of reductions
preceding a reduction on r is upper-bounded by|P|k+1.

The proof relies on Theorem 2 (type soundness), which ensures that a communication onr must
take place. The maximal number of communications that can precede the reduction onr is estimated by
considering that each reduction can increase the number of outputs – that is, of potential reductions –
in the continuation, but this increase is limited by the initial size of the process (see Appendix D for a
detailed proof).

5 Extensions of system⊢1

In this section we introduce two simple extensions of our type system.

5.1 Summation and if-then-else

We introduce guarded summation andif-then-else and extend the original definitions and results to
the new constructs.

Summation. In the process syntax, plain input prefix is replaced by guarded summation

P ::= · · ·
∣∣∑

i∈I

ai(xi).Pi

which, as expected, has the following transition rule:

(SUM)
j ∈ I

∑
i∈I

ai(xi).Pi
aj (b)
−−→ Pj [b/x j]

.

A summation is well-typed if all its branches can be typed under one and the same context:

(T-SUM)
∀i ∈ I : Γ;∆ ⊢1 ai(xi).Pi |I | > 1

Γ;∆ ⊢1 ∑
i∈I

ai(xi).Pi
.

11

This rule implies thatai = a j for eachi, j ∈ I and that all responsive names in∆ρ are used in output
in each branch. The results introduced in Section 4 still hold for the extended calculus, modulo a few
notational changes described below. First, processes of the form∑i∈I ai(xi).Pi are prime. Concerning the
functions defined on processes, we have

|∑i∈I ai(xi).Pi |=maxi∈I |ai(xi).Pi | os(∑i∈I ai(xi).Pi)=
S

i∈I os(ai(xi).Pi)

O(∑i∈I ai(xi).Pi)=
U

i∈I O(ai(xi).Pi) wt(∑i∈I ai(xi).Pi)= ∑i∈I wt(ai(xi).Pi) .

All proofs are obvious generalization (with summations replacing inputs) of those reported in Appen-
dices B and C, hence omitted.

If-then-else. The syntax of processes is extended as follows:

P ::= · · ·
∣∣if G then P else P.

We leave the syntax of guardsG unspecified, but assume guards can be formed using predicates over
names (e.g.(a = b)). We assume an evaluation function that maps each guardG to true or f alse:
G ; true or G ; f alse.

The operationl semantics of theif-then-else construct is as usual:

(IF-T)
G ; true

if G then P else Q
[ε]
−→ P

(IF-F)
G ; f alse

if G then P else Q
[ε]
−→ Q

There are no new structural rules. Anif-then-else is well-typed if both branches are well-typed:

(T-IF)
Γ;∆ ⊢1 P Γ;∆ ⊢1 Q

Γ;∆ ⊢1 if G then P else Q
.

The results presented in Section 4 can be extended to the calculus enriched withif-then-else
(see Appendix E; for the sake of simplicity, we omit the extension of Theorem 3, which would require
additional technicalities to take into accountε-transitions originated by (IF-T) and (IF-F)).

Example 4. A web portal, available atportal, allows users to subscribe to a given service, subject
to an assessment of their reliability. Any client contacting the portal must supply its personal data,
d. The portal passes the personal data to a sub-service, reachable atassess, who actually performs
the assessment. The result of the assessment can be either “high” or “ low” reliability. After receiving
this piece of information from the assessment service, the portal produces a security tokent, which is
internally associated with the client’s reliability and personal data, and then passest onto the client in
response. At a later time, the client contacts, atsubscribe, the subscription service providing it the token
t. The subscription service usest to retrieve the client’s reliability (and private information) and grants
or denies subscription according to the following policy: subscription requests originating from clients
with “high” reliability are always accepted, while those from clientswith “ low” reliability may be either
accepted or rejected, depending on other circumstances which are left out of the model.

An abstract description of this system is given bySys
△
= P|A|S|C where (internal nondeterministic

12

sums〈“ok”〉 ⊕ s〈“nok”〉 is an abbreviation for(νa)(a|a.s〈“ok”〉 + a.s〈“nok”〉)):

P
△
= !portal(d, r).(νs)

(
assess〈d,s〉 |s(x).(νt)

(
if x= “ok”

then (r〈t〉 | t(v).v〈“high” ,d〉)

else (r〈t〉 | t(v).v〈“ low” ,d〉)
))

A
△
= !assess(d,s).(s〈“ok”〉 ⊕ s〈“nok”〉)

S
△
= !subscribe(t,q).(νv)

(
t〈v〉 |v(w,d).if w = “high”

then q〈“done”〉

else (q〈“deny”〉 ⊕ q〈“done”〉)
)

C
△
= (νdata)(νr)

(
portal〈data, r〉 | r(t).(νq)

(
subscribe〈t,q〉 |q(x).C′

))
.

It is worth noticing that the tokent can be viewed as a temporary service that is delegated byportal to
pass the client’s personal information directly to thesubscribeservice.

Sys is balanced under the assumption that:C′ is balanced, r, t,q /∈ fn(C′), lev(portal) >
lev(assess), lev(r), lev(v), lev(assess) > lev(s) and lev(subscribe) > lev(t), lev(q), while data, “high”,
“ low”, “ ok”, “ done”, “ deny”, d, w andx are of sort inert. Therefore, a communication onq is guaranteed
to take place and the client is ensured to receive a reply to its subscription request.

Note that, formally, we are not allowed to talk about responsiveness ofq, which is bound inSys. To

get around this small difficulty, assumeC′ △= done|C′′ and considerSys|done, in place ofSys, with done
responsive: then Theorem 2 ensures that a communication ondoneis guaranteed, which in turn implies
that a communication onq must eventually take place.

5.2 Recursion on well-founded data values

The system presented in Section 3 bans as ill-typed processes implementing recursive functions. As an
example, consider the traditional implementation of the factorial function, the processP below. For the
purpose of illustration, let us consider a polyadic versionof the calculus enriched with natural numbers,
variables (n,m, ...) and predicates/functions on them as expected.

P
△
= ! f (n, r).if n = 0 then r〈1〉 else (νr ′)

(
f 〈n−1, r ′〉 | r ′(m).r〈m∗n〉

)
. (3)

It would be natural to seef asω-receptive andr and r ′ as responsive, but under these assumptionsP
would not be well-typed: the recursive callf 〈n−1, r ′〉 violates the constraint on levels of output actions
under replication (rule (T-REP)). Nevertheless, it is natural to see the outputf 〈n− 1, r ′〉, triggered by
a recursive call atf , as “smaller” than the outputf 〈n, r〉 that has triggered it: at least, this is true if one
takes into account the ordering relation on natural numbers. This means that the “weight” of the process
decreases after each recursive call, and since natural numbers are well-founded, after some reductions
no further recursive call will be possible, and a communication onr must take place. This idea from [5]
is adapted here to our type system. For simplicity, we only consider the domain of natural valuesNat.
However, the results may be extended to any data type on whicha well-founded ordering relation can be
defined. We define an ordering relation “<” between (possibly open) integer expressions and variables
as follows:e< n if, for each evaluationρ under whiche is defined,eρ < ρ(n). E.g.,n−1 < n. In the
case of the monadic calculus, this relation is lifted to a “smaller than” relation⊳ between output and
input actions as follows. Below,d,d′ denote either names or (open) expressions.

13

Definition 7 (ordering on actions). We writec〈d〉 ⊳ a(d′) if either lev(c) < lev(a) or lev(c) = lev(a)
and d= e< x = d′.

The “⊳” relation is used in the typing rule below, that replaces rule (T-REP).

(T-REP’)

a : T[ω,k] b : T ∆ρ = /0 /0;∆,b⊢1 P

(b : Nat or b responsive) implies∀c〈d〉 ∈ O(P) : c〈d〉⊳a(b)

a;∆ ⊢1!a(b).P

In the polyadic case, “⊳” compares first the subject and then the object parts of two actions lex-
icographically; this is a correct choice because the lexicograhic ordering is well-founded. (Actually,
this is not the only possibility, see e.g. [5].) More precisely, “⊳” is generalized as follows. We write
c〈d1, · · · ,dk〉⊳a(d′

1, · · · ,d
′
k) if either lev(c) < lev(a) or lev(c) = lev(a) and for somej, with 1≤ j ≤ k, it

holds thatd j = e< n= d′
j anddi = d′

i for each 1≤ i < j. E.g. assuming that lev(c) = lev(a), it holds that
c〈n−1,m+1, r〉⊳a(n,m,s), for each channel namer ands. As an example of application of (T-REP’),
it is easy to see that the processP in (3) is well-typed if f : (Nat,Nat[ρ,0])[ω,1] andr, r ′ : Nat[ρ,0].

The proof of type soundness remains the same, modulo a changein function wt(·). Here, we need
a measure that records, for each output prefix, not only the level of the subject, but also the value of the
corresponding object. This can be achieved by considering acompound vector, which consists of two
parts: the weight and a multiset of natural values recordingthe objects’ contribution to wt(·). We omit
the details of the formal definition, which can be found in [5].

Primitive Recursive Functions can be encoded into well-typed processes, with (T-REP) replaced by
(T-REP’). The schema of the encoding is an easy generalization of that seen in (3) above for the factorial
function. We have the following result (the proof is reported in Appendix F).

Proposition 3. For every k-ary primitive recursive function f there is a well-typed process〈 f 〉b such

that: for each(v1, . . . ,vk) in Natk the process G
△
= (νb)(〈 f 〉b|b〈v1, . . . ,vk, r〉 | r(n).0), with bω-receptive

and r : (Nat)[ρ,h] (h≥ 0), is balanced. Moreover, f(v1, . . . ,vk) = m if and only if G
τ
−→∗ r〈m〉

−−→.

6 Nested inputs, multiple outputs: the type system⊢2

The type system presented in Section 3 puts rather severe limitations on nesting of input actions and mul-
tiple use of channels. These limitations stem from the “immediate receptiveness” and linearity conditions
imposed on responsive names. For instance, the following encoding of internal choicer〈a〉⊕ r〈b〉, where
r is responsive anda,b inert, is not well-typed

(νc)(c〈a〉|c〈b〉 |c(x).r 〈x〉) . (4)

Limitations are also built-in in process syntax, as for example replicated outputs, that clearly violate
linearity, are not permitted. Replicated outputs might be useful to encode environments holding con-
stants. As an example, in the process below an environment with one entrya is initialized with the first
input received atr, and then repeatedly read ata (these situations do arise in the encoding of high-level
languages into pi-calculus):

(νa)
(
r(x).!a〈x〉|a(y).P|a(y).Q|a(y).R

)
. (5)

For another example, a process that receives two integers ina fixed order from two return channels,r1

andr2, and then outputs the max alongs, may not be well-typed

r1(n).r2(m).if n≥ mthen s〈n〉 else s〈m〉 . (6)

14

In fact, the type system⊢1 does not allow (free) input actions guarded by other inputs.
We present below a new type system⊢2 that overcomes the limitations discussed above. In fact, we

will trade off flexibility for expressiveness in terms of encodable functions, as only certain patterns of
(tail-)recursion will be well-typed in the new system.

6.1 Syntax and operational semantics

We extend the syntax of processes by introducing replicatedoutput and the syntax of types by introducing
a new responsive usage of names,ρ+, as follows:

P ::= · · · | !a〈b〉

U ::= · · · | [ρ+,k].

A namea : T[ρ+,k] is called+-responsive, as it is meant to be usedat least onceas subject of a communi-
cation. Therefore now we consider three different usages:ρ (for names used once),ρ+ (for names used
at least once) andω (for names used an undefined number of times.) We point out that responsive names
are not subsumed by +-responsive: in particular, as we shallsee, the conditions on the type of carried
objects are more liberal for responsive names. Operationalsemantics is enriched by adding the obvious
rule for replicated output:

!a〈b〉
a〈b〉
−−→!a〈b〉 .

6.2 Overview of the system

We give here an informal overview of the type system. Judgments are of the formΓ;∆ ⊢2 P where in
Γ and∆ each +-responsive namea is annotated with acapability t, written at . A capability t can be
one of four kinds:n (null), s (simple), m (multiple) andp (persistent). Informally, capabilities have the
following meaning (in the examples below, we ignore object parts of some actions and assumeb is a
(+-)responsive name):

• an indicates thata cannot be used at all. This capability has been introduced touniformly account
for +-responsive names that disappear after being used as subjects.

• as indicates thata appears exactly once and not under a replication. Examples:a.P, b.a.P, a and
b.a.

• am indicates thata appears at least once, even under replication, but never as subject of a replicated
action. Examples:a.P|a.Q, !b.a.P and !b.a.

• ap indicates thata only appears as subject of a replicated action. Examples: !a.P, !a, b.!a and
!b.!a.

Note that a namea may be given distinct capabilities in input (Γ) and output (∆). E.g. one may have,
again ignoring the object parts,Γ;∆ ⊢2!a.P|a|a, whereap ∈ Γ andam ∈ ∆. Next we illustrate and mo-
tivate the constraints on name usages realized by the typingrules. They guarantee correct usage of
+-responsive names under the balancing conditions discussed in the next section. Roughly, these condi-
tions extend those in Definition 5 by ensuring that each inputaction involving a +-responsive subject is
always matched by a corresponding output.

15

(1) If as ∈ Γ then a occurs exactly once in input subject position. This constraint relieves one from
checking that there are “enough”a available. Indeed, usinga more than once in input would
require ensuring that the number of inputs involving each name does not exceed the number of
available outputs. E.g. the process (a andb +-responsive names)

a|a.b|a|b
[a]
−→ a.b|b 6→ . (7)

has to be discarded, becausea is used twice in input and only once in output.

(2) If am ∈ Γ andaℓ ∈ ∆ thenℓ = p. If a is used more than once in input and at least once as output
subject, then deadlocks arising from not having enough output actions of subjecta, like in (7), are
avoided, because the output ona is replicated as ina|a.b| !a|b.

(3) If at ∈ Γ and a carries (+-)responsive names, thent = p – hencea must be used as subject of a
replicated input. This is to avoid deadlocks arising from having not enough input of subjecta that
carry (+-)responsive names, like in (a +-responsive,b andd (+-)responsive names):

a〈b〉|a〈d〉|a(x).x|b|d
[a]
−→

[b]
−→ a〈d〉|d .

(4) Concerningap, names with capabilityp (persistent) are required to occurexactly oncein subject
position (either in input or in output). This is necessary toavoid deadlock situations due to shortage
of outputs like in (b andc +-responsive)

!a.b| !a.c|a|c|b
[a]
−→!a.b| !a.c|b|c|b

[b]
−→!a.b| !a.c|c 6

τ
−→

where a communication onc would never happen.

Moreover, we ban names persistent both in input and in output. This is a simplifying condition
that relieve us from dealing with divergent computations involving +-responsive names, like in (a
+-responsive)

!a| !a.P .

To preserve both these conditions at run-time, we have also to forbid

(i) replicated actions guarded by replicated inputs. This is toavoid situations like

!a.!b|a
[a]
−→!a.!b| !b

where theRHS violates the requirement that+−responsive names can appear exactly once
as subjects of replicated inputs;

(ii) persistent names passed around as objects.

(5) Names occurring under an (either simple or replicated) input must be assigned smaller levels than
the input subject. The role of this condition is twofold, now. Under replicated inputs, it avoids
infinite delays, like in the first system. Under simple inputs, it serves to avoid cyclic waiting, like
in (a,b (+-)responsive):

a.b|b.a .

This was achieved by the use of dependency graphs in the first system. As announced in Remark 1,
however, there appears to be no meaningful extension of thisnotion of graph in the present system.

16

In particular, acyclicity of the graph might not be preserved by reductions. E.g. consider the
process

b(x).a〈x〉|c(x).a(y).x〈y〉|c〈b〉 .

Its graph is acyclic, but after a reduction onc the process become

b(x).a〈x〉|a(y).b〈y〉

and the corresponding dependency graph has a cycle involving a andb. As a by product of discard-
ing the dependency graph, we achieve a simplification of the typing rule for parallel composition.
However, this rather crude use of levels to ban cyclic waiting is also the cause of the reduced
expressiveness in terms of typable functions.

Finally, we introduce a syntactic restriction. As +-responsive names used once or more than once
in output are treated in the same manner, we reserve capability s for inputs, and use onlym andp for
outputs. This choice alleviates some technicalities in theproof of the subject reduction theorem.

6.3 The typing rules

In what follows, we denote by is(P) the set of eitherboundor freenames used in input subject position
in P. ContextsΓ and∆ are sets of annotated names of the format , wheret is a capability. Each name
occurs at most once in a context. +-responsive names are annotated with one of the four capabilitiesn,
s (only in Γ), m or p, while non-+-responsive names are always annotated with a default “−” capability;
when convenienta− is abbreviated simply asa. Union and intersection of two contexts, writtenΓ1∪Γ2

andΓ1∩Γ2, are defined only if the contexts agree on capabilities of common names, that is whenever
ati ∈ Γi for i = 1,2 thent1 = t2. We writeΓ1,Γ2 in place ofΓ1∪Γ2 if Γ1∩Γ2 = /0, whileΓ1,at abbreviates

Γ1,{at}. For any contextΓ and capabilityt, we defineΓt △
= {a|at ∈ Γ}. The set of namesΓρ+ △

= {a|
a is +-responsive andat ∈ Γ for somet 6= n } andΓρ, Γω are defined similarly. The typing rules are
presented in Table 3. We briefly comment on the rules by re-considering conditions(1−5) discussed in
the preceding subsection.

(1) is ensured in (T+-PAR) by checking the disjointness ofΓs
1 andΓs

2 and in (T+-INP), by requiring
a /∈ Γ;

(2) is ensured in (T+-PAR) by Γm ∩∆m = /0;

(3) is ensured in (T+-INP) by checking that +-responsive names used as subject of non-replicated inputs
cannot carry (+-)responsive objects;

(4) all rules for input ensure that received names cannot be usedas subjects of replicated outputs (by
enforcing the capability of the received objects to be different fromp); moreover, (T+-REP) and
(T+-REPP) ensure that inputs on persistent names cannot be guarded byreplicated inputs (by
checkingΓp = /0). Rules for outputs check that persistent names cannot be passed around. Fi-
nally, (T+-PAR) ensures the linear usage of persistent names in both input and output subject (by
checking the disjointness ofΓ1

p andΓ2
p and of∆1

p and∆2
p) and bans the usage of names with

persistent capability in both input and output (by checkingthe disjointness ofΓp and∆p);

(5) is ensured in rules (T+-INP), (T+-REP) and (T+-REPP), where the level of the input prefixes are
compared against the level of each nested input and output.

17

(T+-INP)

a : T[u,k] with u 6= ω b : T ∀c∈ os(P)∪ is(P) : lev(c) < k
Γω = /0 a +-responsive impliesb not (+-)responsive

Γ;∆,bt′ ⊢2 P t 6= n,p t ′ 6= n,p

Γ,at ;∆ ⊢2 a(b).P

(T+-REP)

a : T[ω,k] b : T ∆ρ = ∆ρ+
= /0 /0;∆,bt′ ⊢2 P t′ 6= n,p

b (+-)responsive implies∀c∈ os(P)∪ is(P) : lev(c) < k

a−;∆ ⊢2!a(b).P

(T+-REPP)

a : T[ρ+,k] b : T Γℓ = /0 for ℓ ∈ {ρ,ω,s,p} ∆ℓ′ = /0 for ℓ′ ∈ {p,ρ}
Γ;∆,bt ⊢2 P t 6= n,p ∀c∈ os(P)∪ is(P) : lev(c) < k

Γ,ap;∆ ⊢2!a(b).P

(T+-OUT) a : TU b : T ∆ρ = ∆ρ+
= /0 t ′ 6= n,p t 6= n,p

/0;∆,at ,bt′ ⊢2 a〈b〉

(T+-OUTP) a : T[ρ+,k] b : T b not (+-)responsive ∆ρ = ∆ρ+
= /0

/0;∆,ap,b− ⊢2!a〈b〉

(T+-NIL) ∆ρ = ∆ρ+
= /0

/0;∆ ⊢2 0 (T+-RES) a : TU Γ,at ;∆,at′ ⊢2 P
Γ;∆ ⊢2 (νa)P

(T+-RES-⊥) a : ⊥ Γ;∆ ⊢2 P
Γ;∆ ⊢2 (νa)P

(T+-RES-I) a : I Γ;∆,a− ⊢2 P
Γ;∆ ⊢2 (νa)P

(T+-WEAK-Γ) Γ;∆ ⊢2 P
Γ,an;∆ ⊢2 P

(T+-WEAK-∆) Γ;∆ ⊢2 P
Γ;∆,an ⊢2 P

(T+-PAR)

Γ = Γ1∪Γ2 ∆ = ∆1∪∆2 Γi ;∆i ⊢2 Pi (i = 1,2)

Γℓ
1∩Γℓ

2 = /0 for ℓ ∈ {ρ,s,p} ∆ℓ′
1 ∩∆ℓ′

2 = /0 for ℓ′ ∈ {ρ,p}

Γp ∩∆p = /0 Γm ∩∆m = /0
Γ ;∆ ⊢2 P1|P2

Table 3: Typing rules of⊢2

Finally, linear usage of responsive names is ensured by the typing rules for replicated inputs (∆ρ =
Γρ = /0), by (T+-OUT) and (T+-NIL) (Γ = ∆ρ = /0), by (T+-PAR) (Γ1

ρ ∩Γ2
ρ = /0 and∆1

ρ ∩∆2
ρ = /0),

by (T+-WEAK-Γ) and (T+-WEAK-∆) (only names annotated with capabilityn can be freely added to
typing contexts) and by (T+-INP) (a /∈ Γ).

7 Subject reduction and type soundness for system⊢2

Subject reduction carries over to the new system, modulo a notational change. ForΓ a typing context
andV a set of names let us denote byΓ ⊖+ V the typing context obtained by removing fromΓ eachat

such thata∈V. Let us denote by on(P) the set of names occurring free in output position inP.

18

Theorem 4 (subject reduction for system⊢2). Γ;∆ ⊢2 P and P
[a]
−→ P′ imply Γ′;∆′ ⊢2 P′, with Γ′ =

Γ⊖+ ({a}\ in(P′)) and∆′ = ∆ ⊖+ ({a}\on(P′)).

What follow are the analogs of Propositions 1 and 2 for system⊢2 (their proofs can be found in
Appendix G). We consider the extension of wt(·) to the system⊢2, written wt+(·), defined as follows.

wt+(0) = 0 wt+(!a〈b〉) = 0 wt+(!a(b).P) = 0

wt+(a〈b〉) = 0lev(a) wt+(P|R) = wt+(P)+wt+(R)

wt+((νa)P) = wt+(P) wt+(a(b).P) = wt+(P)+0lev(a)

Note the different clause for inputa(b).P, where the level ofa contributes to the weight of the whole
process. This is necessary for guaranteeing that wt+(·) decreases through reductions involving replicated
outputs.

Proposition 4. Γ;∆ ⊢2 P and P
τ〈a,b〉
−−−→ P′ with either a or b (+-)responsive, implieswt+(P′) ≺ wt+(P).

The balancing requirements are now more stringent. They include those for responsive andω-
receptive names necessary in the first system (condition 1 below). Concerning +-responsive names,
“perfect balancing” between input and output is required only for those names that carry (+-)responsive
names (condition 2). Moreover, the same requirements applyalso to restricted +-responsive names (con-
dition 3).

Given a set of namesV let us defineV† = {a ∈ V |a : T andT is of the form(S[u,k])[u
′,h] with u ∈

{ρ,ρ+} }. Define r+i (P) (resp. r+o (P)) as the set of restricted +-responsive names inP occurring in an
input (resp. output) action inP, even underneath a replication. We have the following definition and
results. Proofs omitted here are reported in Appendix G.

Definition 8 (strongly balanced processes).A process P is(Γ;∆)-strongly balancedif Γ;∆ ⊢2 P and
the following conditions hold:

1. Γρ = ∆ρ and∆ω ⊆ Γω;

2. Γρ+
⊆ ∆ρ+

and(∆ρ+
)
†
⊆ (Γρ+

)
†
;

3. r+i (P) ⊆ r+o (P) and(r+o (P))† ⊆ (r+i (P))
†.

Proposition 5. Suppose P is(Γ;∆)-strongly balanced with∆ρ ∪Γρ+
6= /0. Then P

τ〈a,b〉
−−−→ with either a or

b (+-)responsive.

The proof of the theorem below is non-trivial, as strong balancing is preserved through reductions only
up to certain transformations on processes. The lemma belowidentifies such transformations.

Lemma 3. Suppose P is(Γ;∆)-strongly balanced and P
τ〈a,b〉
−−−→P′ with P′ non strongly balanced. Assume

Γ′;∆′ ⊢2 P′, with Γ′,∆′ as given by Theorem 4. Then for some R,R′, b andd̃:

1. a∈ (Γ′ρ+

\∆′ρ+

)∪ (r+i (P′)\ r+o (P′));

2. P≡ (νd̃)(!a(x).R|a〈b〉 |R′) and a/∈ fn(R,b,R′);

3. P′ ≡ (νd̃)(!a(x).R|R[b/x] |R′) and a/∈ fn(R[b/x],R′);

19

4. P′′ = (νd̃)(R[b/x] |R′) is strongly balanced.

Theorem 5 (type soundness for system⊢2). Suppose P is(Γ;∆)-strongly balanced and r∈ ∆ρ ∪Γρ+
.

Then P guarantees responsiveness of r.

PROOF: Suppose thatP
[s]
−→ P′, with P′ having a minimal weight among processes reachable fromP

with r /∈ s (this P′ must exist by well-foundedness of≺). Let s= a1 · · ·an, and consider the sequence of
reductions leading toP′:

P = P0
[a1]
−→ P1

[a2]
−→ ·· ·

[an]
−→ Pn = P′ . (8)

By Γ;∆ ⊢2 P and subject reduction we have thatΓi ;∆i ⊢2 Pi for i = 0, ...,n, whereΓ0 = Γ and∆0 = ∆ and

Γi = Γi−1⊖+ ({ai}\ in(Pi)) and∆i = ∆i−1⊖+ ({ai}\on(Pi)) for i > 0. We prove thatP′ [r]
=⇒ by induction

on the numberk of non-strongly balanced processes in the sequence of reductions (8), that is

k =
∣∣{i |0≤ i ≤ n andPi is not(Γi ,∆i)-strongly balanced}

∣∣.

k = 0: ThenP′ is strongly balanced. Sincer ∈ (∆n
ρ ∪Γn

ρ+
) (asr /∈ s), by Proposition 5,P′ τ〈a,b〉

−−−→ P′′,
with eithera or b (+-)responsive, and, by Proposition 4, wt+(P′′)≺wt+(P′). Hencea= r, because
P′ was assumed to have minimal weight among the processes reachable fromP without usingr as
subject.

k > 0: Let Pj (j > 0) be the leftmost non-strongly balanced process in the sequence (8). Consider the

reductionPj−1
[aj]
−→ Pj . ProcessPj−1 is strongly balanced whilePj is not, thus, by Lemma 3 (1, 2),

a j ∈ (Γ j
ρ+

\∆ j
ρ+

)∪ (r+i (Pj) \ r+o (Pj)) andPj−1 ≡ (νd̃)(!a j (x).R|a j〈c〉 |S), with a j /∈ fn(R,c,S).
Again by Lemma 3 (3),Pj ≡ (νd̃)(!a j (x).R|R[c/x] |S) with a j /∈ fn(R[c/x],S). MoreoverP′ ≡

(νd̃′)(!a j(x).R|P′′′) with a j /∈ fn(P′′′). Suppose for simplicitya j free in Pj , that isa ∈ (Γ j
ρ+

\

∆ j
ρ+

). Now, the processP′
j = (νd̃)(R[c/x] |S), obtained by erasing the term !a j(x).R from Pj , is

strongly balanced (Lemma 3 (4)), and, asa /∈ fn(R[c/x],S), it holdsP′
j

[aj+1]
−−−→ ·· ·

[an]
−→ P′

n = P′′, with
P′′ ≡ (νd̃′)P′′′. This sequence has≤ k−1 unbalanced processes, and moreoverP′′ has minimal
weight among the processes reachable fromP′

j without usingr as subject, because wt+(P′′) =

wt+(P′) (by definition of wt+(·) we have wt+((νd̃′)(!a j(x).R|P′′′)) = wt+((νd̃′)P′′′)). Then, by

induction hypothesis,P′′ [r]
=⇒, which impliesP′ [r]

=⇒.

2

8 Examples

Let us now examine a few examples. We begin by considering processes (4)-(6), then a couple of
examples useful to compare our system to type systems that guarantee lock freedom, and a recursive
function. Finally, we show a more concrete example (a Web Service).

Basic examples. In what follows, unless otherwise stated, we assume thatx,y are of sort inert, that
a,b,c are +-responsive and thatr,s are responsive. Conditions on levels are ignored when obvious.

Process (4) at the beginning of Section 6 is well-typed withc of capability multiple (m) in output
and simple (s) in input; it is strongly balanced if put in parallel with an appropriate context of the form

20

r(x).P. Process (5) is well-typed witha of capability persistent (p) in output and simple (s) in input (also,
P must be assumed strongly balanced, and not containing free persistent inputs or names of level greater
thana’s); it is strongly balanced if put in parallel withr〈x〉. Process (6) is well-typed assumingr1 and
r2 of capability simple in input andn,m natural number variables (the obvious extension of the system
with if-then-else and naturals is here assumed); again, it is strongly balanced if put in parallel with
an appropriate context.

The next two examples involve non-linear usages of +-responsive names arising from replication and
reference passing. We mention these examples also because they will help us to compare our system to
existing type systems that enforce lock freedom, a propertyrelated to responsiveness (see the concluding
section). The first example involves only replication, object parts play no role:

!a.b|a|b. (9)

The above process is strongly balanced under the assumptionthata has capability persistent in input and
multiple in output, andb has capability simple in input and multiple in output; also,the level ofb must
be less thana’s. In the next example, an agent “looks up” a directorya to get the address of a serviceb,
and then calls this service:

!a(z).z〈b〉 |(νr)(a〈r〉 | r(w).w) |b. (10)

This process is strongly balanced under the assumption that: a is persistent in input and multiple in
output;b is simple in input and multiple in output; also, it must be lev(b) < lev(r) < lev(a) (the variant
where the inputb is replaced by !b is also strongly balanced; in this caseb is persistent in input.)

The type system⊢2 can be extended to the polyadic version of the calculus with naturals and variables
exactly as seen in Section 5.2, i.e. by relying on the “⊳” relation over actions in rules (T+-INP), (T+-REP)
and (T+-REPP).

Moreover, as already seen for⊢1, the results introduced in the previous section are still valid for the
system⊢2 extended with summation andif-then-else. The proofs reported in Appendix G require
some changes in the vein of those reported in Appendix E, hence are omitted. Now, consider the process
implementing the factorial function in (3) and assumer, r ′ are (+-)responsive. It is easily seen that the
process in (3) is not well-typed in the present system: in fact, because of the recursive call atf , it
cannot be lev(r) < lev(r ′). In general, the type system bans as ill-typed recursive calls of the form
g(h(g(i), i)), thus ruling out the usual encoding of primitive recursion.Certain forms of recursion, like
the tail-recursive version of factorial below, are howeverstill well-typed

! f (n,m, r).if n = 0 then r〈m〉 else f 〈n−1,m∗n, r〉 .

A broker service. A broker service, available atbroker, upon receiving from a client some travel
informationd and a reply channelr from a client, contacts agenciesA1 andA2 and waits for their offers.
Upon receiving a response from both agencies, the broker compares their offers and passes onto the
client a link to contact the agency that made the most advantageous one; a refusal message is passed to
the other agency. The client can now decide to either accept or decline the offer. In the former case, the
selected agency replies to the client by sending the reservation details.

The scenario described above can be modeled asSys
△
= B|A1 |A2 |C, where (as usual, this is an

21

abstract model where many details about internal computations are left out):

B
△
= !broker(d, r).(νs, t)

(
ag1〈d,s〉 |ag2〈d, t〉 |s(o1, r1).t(o2, r2).

if o1 � o2 then r〈o1, r1〉 |(νv)(r2〈“decline” ,v〉 |v(x))

else r〈o2, r2〉 |(νv)(r1〈“decline” ,v〉 |v(x))
)

Ai
△
= !agi(d, r).(νs,offer)

(
r〈offer,s〉 |s(x, t).if x = “accept” then t〈“details”〉 else t〈“void”〉

)

C
△
= (νdata, r)

(
broker〈data, r〉 | r(o,y).(νs)

(
(y〈“accept” ,s〉 |s(x).C′) ⊕ (y〈“decline” ,s〉 |s(x))

))

Sysis strongly balanced under the assumption thatC′ is (/0;∆)-strongly balanced, for some∆ such that
∆ρ = /0; thatbrokerandagi areω-receptive; “decline” , “details” , “accept” , “void” ,offer,data,x,z,o1,o2,o
andd are inert; the remaining names are (+-)responsive and the obvious requirements on levels. There-
fore, a communication ons is guaranteed to eventually take place: the client is guaranteed to receive
a confirmation request from a travel agency. This example emphasizes the usefulness of nested (free)
inputs: without this feature, no broker could be defined, as comparison between two or more received
data would be impossible.

9 Encoding the Structured Orchestration Language

ORC [4] is a recently proposed language for Web Services orchestration that supports a structured model
of concurrent and distributed programming. This model assumes that basic services, performing basic
sequential computations and data manipulations, are implemented byprimitive sites, and provides con-
structs to orchestrate the concurrent invocation of sites to achieve a given goal. In this section we briefly
introduceORC and then show that it can be encoded into pi-calculus. Responsiveness on the target terms
can be used to reason about responsiveness on the originalORC terms.

9.1 ORC: syntax and operational semantics

For the sake of simplicity, we consider a monadic version of this calculus, and we suppose that inert
names,c,c′, . . . , are the onlydata valuesthat can be exchanged amongORC services. We also consider
a countable set ofvariables x,y, ORC terms, ranged overf ,g, . . . , are defined by the following
grammar:

p ::= x Variable
∣∣c Value

f ,g ::= 0 Inaction
∣∣M(p) Site call
∣∣E(p) Expression call
∣∣let(p) Publication
∣∣ f > x > g Sequential composition
∣∣ f |g Symmetric parallel composition
∣∣ g where x :∈ f Asymmetric parallel composition

22

(PUB)
let(c)

!c
→֒ 0

(SITE)
M(c)

τ
→֒ let(FM(c))

(PAR1) f
λ
→֒ f ′

f |g
λ
→֒ f ′ |g

(PAR2) g
λ
→֒ g′

f |g
λ
→֒ f |g′

(SEQ1) f
λ
→֒ f ′ λ 6=!c

f > x > g
λ
→֒ f ′ > x > g

(SEQ2) f
!c
→֒ f ′

f > x > g
τ
→֒ (f ′ > x > g) |g[c/x]

(WH1) f
λ
→֒ f ′ λ 6=!c

g where x :∈ f
λ
→֒ g where x :∈ f ′

(WH2) f
!c
→֒ f ′

g where x :∈ f
τ
→֒ g[c/x]

(WH3) g
λ
→֒ g′

g where x :∈ f
λ
→֒ g′ where x :∈ f

(DEF) E(x)
△
= f

E(p)
τ
→֒ f [p/x]

where in (SITE) FM(c) is any function on data values.

Table 4:ORC operational semantics.

In the syntax,M is a primitive site name,p is a parameter (either a variablex or a namec) and

for every expression nameE there exists a declarationE(x)
△
= f , wherex is the formal parameter and

fv(f) ⊆ {x}. The primitives can be informally explained as follows. Each closed expressionf publishes
(returns) a (finite or infinite) sequence of zero or more values. A site callM(c) always publishes a
predefined valueFM(c), whereFM(·) is the function associated with siteM. An expression callE(c)

publishes the values returned byf [c/x] if E(x)
△
= f . The expressionlet(c) publishes the valuec. In

f > x > g, the execution off is started, and every valuec published byf triggers a new instance ofg,
g[c/x]; the sequence of values produced by all these instances ofg running in parallel is published. In the
following, f >> g abbreviatesf > x > g whenx /∈ fv(g). In f |g a sequence obtained by interleaving
values produced byf andg is published. Ingwhere x :∈ f the values produced byg are published;
however, the execution off and g is started in parallel, and each subterm ofg that depends onx is
blocked until f produces the first valuec, which causesx to be replaced everywhere byc; subsequent
values published byf are discarded. The operational semantics is formally defined in Table 4. Labels,

λ,λ′, range over published values, written !c, and synchronizations,τ. We write f
!c
=⇒ if f

τ
→֒∗ !c

→֒, that is
if f publishes the valuec possibly after some internal reductions.

9.2 Encoding

ORC terms are translated into pi-calculus by the function[[·]]s, wheres is a chosen “result channel”,
defined as follows

23

name c,y x s p r t E M

Type I I[ρ
+,kx] I[ρ

+,ks] I[ρ
+,kp] I[ρ

+,kr] I[ρ
+,kt] (I, I[ρ

+,ks])[ρ
+,kE] (I, I[ρ

+,kr])[ρ
+,kM]

I-Cap. m s or p s s p p p

O-Cap. − p m m m m m m

with: kx > ks,kp,kE,kM, kE > ks, kM > kp, kp > ks, kr ,kt > ks,kx

Table 5: Typing assumptions.

[[let(x)]]s = x(y).s〈y〉 [[let(c)]]s = s〈c〉

[[E(x)]]s = x(y).E〈y,s〉 [[E(c)]]s = E〈c,s〉

[[M(x)]]s = x(y).(νp)(M〈y, p〉 | p(z).s〈z〉) [[M(c)]]s = (νp)(M〈c, p〉 | p(y).s〈y〉)

[[f |g]]s = [[f]]s | [[g]]s [[f > x > g]]s = (νt)
(
[[f]]t | !t(y).(νx)(!x〈y〉 | [[g]]s)

)

[[gwherex :∈ f]]s = (νr)
(
[[f]]r |(νx)(r(y).!x〈y〉 | [[g]]s)

)
.

Encoding of a declarationE(x)
△
= f is given by !E(x,s).[[f]]s. The encoding of the siteM is

!M(x,s).s〈FM(c)〉. The encodings oflet(p), E(p) andM(p) for p = c correspond to outputtingc on
the result channels and invoking expressionE and siteM with parametersc ands, respectively. When
p = x, it is first necessary to retrieve the content of variablex (by reading on it) before proceeding by
either outputting, callingE or callingM. The encoding of the parallel composition of two terms corre-
sponds to the parallel composition of both encodings. The remaining two cases are more interesting. In
[[f > x > g]]s the execution of[[f]]t is started and each published value is sent ont. For each of these
values a new copy of[[g]]s is started with a new “local variable”x containing such a value. In the case
[[gwherex :∈ f]]s, the executions off andg are started in parallel, and only the first value published byf
is considered (thanks to the non-replicated input onr). Note that the first publication off does not stop
f ’s execution, which does not interfere with the execution ofg because the namer is no longer available.

The encoded terms are well typed if the typing assumptions inTable 5 can be enforced. Levels are
left unspecified, but some constraints on the values they canassume are given on the bottom part of the
table.

The following result can be used for reasoning about responsiveness ofORC expressions. More
precisely, the theorem below ensures that each well-typed process, encoding of anORC term – and site
and expression it needs –, always publish at least one value.The proof is reported in Appendix H. In what
follows, given anORC term f , D f stands for the parallel composition of the encodings of all declarations
and sites involved in the definition off , andd̃ = fn(D f).

Theorem 6. Let f be a closedORC term and suppose Df is well typed. Under the typing assumptions

of Table 5,[[f]]s is well-typed and F
△
= (νd̃)([[f]]s |D f | !s(x).0), with s andd̃ +-responsive, is strongly

balanced. Moreover, f
!c
=⇒ if and only if F

τ〈s,c〉
==⇒.

Note that, as already discussed in the previous section, some recursive functions can be typed by
extending⊢2 by considering “⊳” in place of “<”, as already seen for system⊢1 in Section 5.2. Hence
some recursive expressions, more precisely the tail-recursive ones, can be handled. Specifically, for each
encoding of expression !E(x,s).[[f]]s the level associated to channel nameE is deduced by forcing the

24

constraints identified in Table 5. E.g. ifE(x)
△
= let(x)|E(x−1), wherex is supposed to be an integer

value, then[[E(x)]] =!E(x,s).
(
s〈x〉 |E〈x−1,s〉

)
is well-typed under the assumption that lev(E) > lev(s)

ands is +-responsive. For another example ofORC tail-recursive function, which can be encoded into a
well-typed term, considerMN defined in the following example.

Example 5. The following ORC expressions are taken from [4]. Consider two primitive sites, CNN and
BBC that, when invoked with null argument, reply by publishing apiece of news. Consider also a site
Mail(m,a), which receives a messagemand an e-mail addressa, and notifies (publishes an uninteresting
null value) after sendingm to a. The ORC function below emails the firstn pieces of news received
from eitherCNNor BBC to addressa, and publishes the current value ofn after every sending and upon
termination:

MN(n,a)
△
= if n = 0 then let(n)

else (Mail(t,a) >> let(n)) where t :∈ (CNN|BBC)

| MN(n−1,a) .

Consider the extension of the calculus with natural values,Nat, polyadic communication and an
if-then-else construct. Suppose the encodings of sitesCNN, BBC and Mail are, respectively,
!CNN(x).(νn)x〈n〉, !BBC(x).(νn′)x〈n′〉 and !Mail(x,a, r).(a〈x〉 | r), wheren andn′ represent pieces of
news. Suppose thats is the result channel, the functionMN is encoded as follows:

[[MN(n,a)]]s
△
= !Mn(n,a,s).if n = 0 then s〈n〉

else

(
(νr)

(
CNN〈r〉 |BBC〈r〉 | (νt)

(
r(y).!t〈y〉 | (νr ′)(t(x).Mail〈x,a, r ′〉

| !r ′(x) .s〈n〉)
))

|Mn〈n−1,a,s〉

)

[[MN(n,a)]]s is well-typed assumings, r, r ′ and t +-responsive, lev(Mn) > lev(CNN), lev(Mn) >
lev(BBC) and lev(CNN), lev(BBC) > lev(r) > lev(t) > lev(Mail) > lev(r ′) > lev(s).

Example 6. Not all ORC terms are encodable into well-typed processes. Consider the term f = Inc(0),

where the expressionInc is recursively defined asInc(n)
△
= Succ(n) > m> Inc(m) andSuccis the suc-

cessor functionSucc(n)
△
= n+1. The termF below is not well-typed.

F
△
= (νSucc, Inc)([[f]]s | !s(x).0|D f)

[[f]]s
△
= Inc〈0,s〉

D f
△
= !Succ(n,s).s〈n+1〉

| !Inc(n, r).(νs)
(
Succ〈n,s〉 | !s(m).(νw)(!w〈m〉 |w(o).Inc〈o, r〉)

)

In fact, !Inc(n, r).(νs)
(
Succ〈n,s〉 | !s(m).(νw)(!w〈m〉 |w(o).Inc〈o, r〉)

)
is not well-typed

(not Inc〈o, r〉⊳ Inc(n, r)) and the premise of Theorem 6 are not satisfied.

10 Conclusions and related works

We have presented two type systems for statically enforcingresponsive usage of names in pi-calculus.
The first system combines linearity, receptiveness and techniques for deadlock and livelock avoidance.

25

In the second system, receptiveness and linearity are relaxed at the price of stronger requirements on
levels and balancing: we lose some expressive power in termsof encodable recursive functions, but are
able to type interesting processes, such as translations ofORC terms. Both systems are syntax driven, so
that type checking should be straightforward and efficient to implement. Extensions with type inference
and subtyping deserve further investigation, mainly due tothe presence of levels. Implementation of the
type checking algorithm and the study of its complexity are left as future work.

Beside the works, already discussed, on receptiveness [13]and termination [5], there are a few more
works related to ours and that are discussed below.

Closely related to our system⊢1 are a series of papers by Berger, Honda and Yoshida on linearity-
based type systems. In [17], they introduce a type system that guarantees termination and determinacy
of pi-calculus processes, i.e.Strong Normalization(SN). Our techniques of system⊢1 are actually close
to theirs, as far as the linearity conditions and cycle-detection graphs are concerned (see also the type
system in [15]). However SN is stronger than responsiveness, in particular SN implies responsiveness
on all linear names under a balancing condition. In fact, thesystem in [17] is stricter than our system
⊢1, e.g. it does not allow linear subjects to carry linear objects, and bansω-names, hence any form of
nondeterminism and divergence, as these features would obviously violate SN. Yoshida’s type system
in [16], in turn a refinement of the systems in [17] and [2], is meant to ensure aLinear Livenessproperty,
by which processes eventually prompt for a free output at a given channel. This property is related
to responsiveness, the difference being that Linear Liveness does not imply synchronization, hence the
corresponding input might not become available. Two kinds of names are considered in [16]: linear
(used exactly once) andaffine(used at most once). Linear subjects carrying linear objects are forbidden
and internal mobility is assumed – only restricted names canbe passed around.

Closely related to our system⊢2 are a series of papers by Kobayashi and collaborators. A type
system for linearity in the pi-calculus was first introducedin [10]. This system can be used to ensure that
any linear name in a process occurs exactly once in input and once in output; however, it cannot ensure
that a linear name will be eventually used as a subject of a synchronization. Kobayashi’s type systems
in [6, 7] can be used to guarantee that, under suitable fairness assumptions, certain actions are lock free,
i.e. are deemed to succeed in synchronization, if they become available ([8] is a further refinement, but
the resulting system cannot be used to enforce responsiveness.) Channel types are defined in terms of
usages: roughly,CCS-like expressions on the alphabet{I ,O}, that define the order in which each channel
must be used in input (I) and in output (O). EachI/O action is annotated with anobligation level, related
to when the action must become available, and acapability level, related to when the action must succeed
in synchronization if it becomes available. A level can be a natural number or infinity, the latter used to
annotate actions that are not guaranteed to become available/succeed in synchronization. This scheme
is fairly general, allowing e.g. for typing of shared-memory structures such as locks and semaphores,
which are outside the scope of our systems. Concerning responsiveness, on the other hand, it appears
that our+-responsive types cannot in general be encoded into lock-freedom types. More precisely, one
can exhibit processes well-typed in our system two and containing +-responsive names that cannot be
assigned a finite capability in Kobayashi’s systems. For example, both the process (9) and the “service-
lookup” (10) are well-typed (in fact, strongly balanced) inour system two, under a typing context where
b is +-responsive. They are not in the systems of [6, 7], under any type context that assigns tob a finite
capability: the reason is that in these systems a finite-capability input on b is required to be balanced by
an instance of a finite-obligation outputb, that cannot be statically determined in the given processes1.
Another difference from [6, 7] is that these systems partly rely on a form of dynamic analysis: the

1In the latest version of Kobayashi’s TyPiCal tool [9], released after the publication of [1], these examples are handled,
though.

26

reliability condition on usages, which roughly plays the same role played in our systems by balancing,
is checked via a reduction to the reachability problem for Petri Nets. As previously noted, our systems
are entirely static.

Acknowledgments We wish to thank Davide Sangiorgi and Naoki Kobayashi for stimulating discus-
sions on the topics of the paper.

References

[1] L. Acciai and M. Boreale. Responsiveness in process calculi. In Proc. of ASIAN, 2006.LNCS4435:136–150,
2007.

[2] M. Berger, K. Honda and N. Yoshida. Sequentiality and theπ-calculus. InProc. of TCLA, 2001.LNCS
2044:29–45, 2001.

[3] M. Boreale. On the Expressiveness of Internal Mobility in Name-Passing Calculi.Theoretical Computer
Science195(2):205–226, 1998.

[4] W. R. Cook and J. Misra. Computation Orchestration: A Basis for Wide-Area Computing.Software and
Systems Modeling6(1):83–110, 2007.

[5] Y. Deng and D. Sangiorgi. Ensuring Termination by Typability. In Proc. of IFIP TCS, pp.619–632, 2004.
Full version inInformation and Computation204(7):1045–1082, 2006.

[6] N. Kobayashi. A type system for lock-free processes.Information and Computation177(2):122–159, 2002.

[7] N. Kobayashi. Type-Based Information Flow Analysis forthe Pi-Calculus.Acta Informartica42(4-5): 291–
347, 2005.

[8] N. Kobayashi. A New Type System for deadlock-Free Processes. InProc. of CONCUR, 2006. LNCS
4137:233–247.

[9] N. Kobayashi. TheTyPiCal tool, available athttp://www.kb.ecei.tohoku.ac.jp/∼koba/typical/.

[10] N. Kobayashi, B.C. Pierce and D.N. Turner. Linearity and the Pi-Calculus. InProc. of POPL, 1996. Full
version inACM Transactions on Programming Languages and Systems21(5):914–947, 1999.

[11] M. Merro and D. Sangiorgi. On asynchrony in name-passing calculi. In Proc. of ICALP, 1998. LNCS
1443:856–867. Full version inMathematical Structures in Computer Science14(5):715–767, 2004.

[12] R. Milner. The polyadicπ-calculus: a tutorial. Tec.Rep. LFCS report ECS-LFCS-91-180, 1991. Also inLogic
and Algebra of Specification, Springer-Verlag, pp.203–246, 1993.

[13] D. Sangiorgi. The name discipline of uniform receptiveness. InProc. of ICALP, 1997.TCS221(1–2):457-
493, 1999.

[14] D. Sangiorgi and D. Walker.Theπ-calculus: a Theory of Mobile Processes.Cambridge University Press,
2001.

[15] N. Yoshida. Graph Types for Monadic Mobile Processes. In Proc. of 16th FST/TCS, 1996.LNCS1180:371–
386, 1996.

[16] N. Yoshida. Type-Based Liveness in the Presence of Nontermination and Nondeterminism. MCS Technical
Report, 2002-20, University of Leicester, 2002.

[17] N. Yoshida, M. Berger and K. Honda. Strong Normalisation in theπ-calculus. InProc. of LICS, 2001.IEEE,
pp.311–322. Also inInformation and Computation191(2):145–202, 2004.

27

A Proof of Lemma 1

In this section we prove that for each typing derivation in⊢1 there exists a syntax driven one with the
same conclusion.

Lemma A.1. SupposeΓ;∆ ⊢1 P has been derived by a normal derivation. Then there exists Rin normal
form such that R≡ P andΓ;∆ ⊢1 R is obtained by a normal derivation.

PROOF: The proof proceeds by induction on the derivation ofΓ;∆ ⊢1 P and by distinguishing the last
typing rule applied.

(T-N IL), (T-OUT), (T-I NP), (T-REP), (T-PAR): there is nothing to prove, the process is already in
normal form;

(T-RES-⊥): supposeP = (νa)R, by the premise of the rule we getΓ;∆ ⊢1 R. By applying the inductive
hypothesis toR we get that there exists aQ in normal form such thatQ ≡ R andΓ;∆ ⊢1 Q has
been derived by a normal derivation. Given that it must bea /∈ fn(R), we getQ≡ (νa)R, hence the
result.

(T-RES): supposeP = (νa)R, by the premise of the rule we getΓ,a;∆,a ⊢1 R. The proof proceeds by
applying the inductive hypothesis toR followed by an application of (T-RES) (note that in this
case it must bea∈ fn(R));

(T-RES-I): supposeP = (νa)R. The proof proceeds as already seen either for (T-RES) or for
(T-RES-⊥), depending ona∈ fn(R) or not;

(T-STR): by Γ;∆ ⊢1 P and the premise of the rule we getP≡ Q andΓ;∆ ⊢1 Q. By definition of normal
derivation,Γ;∆ ⊢1 Q is derived by applying a normal derivation andQ is in normal form.

2

Lemma A.2. If P = (νa1) · · · (νan)
(
P1 | · · · |Pm

)
is in normal form and Q≡ P with Q in normal form

then there exist permutations i1, · · · , in and j1, · · · , jm such that Q= (νai1) · · · (νain)
(
Pj1 | · · · |Pjm

)
.

PROOF: The proof is straightforward by induction on the derivation of Q≡ P. 2

Lemma A.3. Suppose P is in normal form andΓ;∆ ⊢1 P has been derived by a normal derivation. Then
Q≡ P and Q in normal form imply that there is a normal derivation of Γ;∆ ⊢1 Q.

PROOF: By Lemma A.2, we have

P = (νa1) · · · (νan)(P1 | · · · |Pm)

Q = (νai1) · · · (νain)(Pj1 | · · · |Pjm) .

Assume, for the sake of simplicity, that none of theai ’s is of type⊥ or I.
In the normal derivation ofΓ;∆ ⊢1 P, rule (T-RES) has been applied in the lastn steps, preceded by

an application of (T-PAR):

(T-PAR)
· · ·

(T-RES)
Γ,a1, · · · ,an : ∆,a1, · · · ,an ⊢1 P1 | · · · |Pm

(T-RES)
Γ,a1, · · · ,an−1 : ∆,a1, · · · ,an−1 ⊢1 (νan)(P1 | · · · |Pm)

(T-RES)

...
Γ;∆ ⊢1 P

28

By the premise of (T-PAR) we get:Γ,a1, · · · ,an =
S

i∈I Γi and∆,a1, · · · ,an =
S

i∈I ∆i andΓi;∆i ⊢1 Pi for
eachi. Moreover, the disjointness constraints are satisfied and the dependency graph is acyclic. Note
also thatΓi;∆i ⊢1 Pi is derived by a normal derivation andPi is prime for eachi.

Therefore, rule (T-PAR) can be applied for deducing,Γ,a1, · · · ,an;∆,a1, · · · ,an ⊢1 Pj1 | · · · |Pjm and
by n applications of (T-RES), in order to bindain, · · · ,ai1 in this order, we obtain a normal derivation of
Γ;∆ ⊢1 Q. 2

Lemma A.4 (Lemma 1). SupposeΓ;∆ ⊢1 P, then there exists a normal derivation ofΓ;∆ ⊢1 P.

PROOF: The proof proceeds by induction on the derivation ofΓ;∆ ⊢1 P. The most interesting case is
when rule (T-STR) is the last applied. ByΓ;∆ ⊢1 P and the premise of the rule, we getP ≡ Q and
Γ;∆ ⊢1 Q.

By applying the inductive hypothesis toQ, a normal derivation ofΓ;∆ ⊢1 Q exists.
SupposeQ is not in normal form. By Lemma A.1, there isR in normal form such thatR≡ Q and

a normal derivation ofΓ;∆ ⊢1 R exists. By the transitivity of≡ andR≡ Q, we getR≡ P. The proof
proceeds by distinguishing two cases. IfP is not in normal form then rule (T-STR) can be applied with
premiseP ≡ R andΓ;∆ ⊢1 R for deducingΓ;∆ ⊢1 P with a normal derivation. IfP is in normal form,
Lemma A.3 can be applied to obtain a normal derivation ofΓ;∆ ⊢1 P.

In caseQ is in normal form the proof proceeds similarly. 2

B Proof of Theorem 1

As usual a preliminary result on substitutions is needed.

Proposition B.1 (substitution). SupposeΓ;∆,x⊢1 P with x /∈ in(P), x,b : T and b/∈ Γ then

1. b /∈ ∆ impliesΓ;∆,b⊢1 P[b/x];

2. b∈ ∆ and b is either anω-receptive or inert name implyΓ;∆ ⊢1 P[b/x].

PROOF: In both cases the proof proceeds by induction on the derivation of Γ;∆,x⊢1 P.

1. Consider the last typing rule applied in the derivation. The interesting case is (T-OUT), in the
other cases the proof proceeds by applying the inductive hypothesis. In particular, concerning rule
(T-PAR), b /∈ Γ∪∆ in the premise ensures that acyclicity of the graph and disjointness of∆ρ

i , for
i = 1, . . . ,n, are preserved.

(T-OUT) by /0;∆,x ⊢1 P = a〈c〉 and the premise of the rule, we geta : SU, c : S and (∆,x)ρ ⊖

{a,c} = /0. We distinguish the following cases:

a,c 6= x: (∆,b)ρ ⊖{a,c} = /0;

a = x: x〈c〉[b/x] = b〈c〉, T = SU and(∆,b)ρ ⊖{b,c} = /0;

c = x: a〈x〉[b/x] = a〈b〉, T = S and(∆,b)ρ ⊖{a,b} = /0;

in each case, by (T-OUT), /0;∆,b⊢1 a〈c〉[b/x].

Note that it cannot be the case thata = c = x because recursive types are not allowed.

2. The result follows by a straightforward induction on typing rules. Recall that rule (T-PAR) does
not impose linearity on the usage ofω-receptive and inert names in output.

29

2

The following lemma ensures that structural congruent processes have the same behavior. Note that
the presence of (T-STR) spares us from introducing a subject congruence proposition.

Lemma B.1. If P ≡ R and P
µ
−→ P′ then R

µ
−→ R′ and P′ ≡ R′.

PROOF: The proof is straightforward by induction on the derivation of P≡ R. 2

The following proposition represents the analog of subjectreduction for visible transitions.

Proposition B.2. SupposeΓ;∆ ⊢1 P.

1. Whenever P
a(b)
−−→ P′, with a: TU and b: T then

(a) if b /∈ ∆ thenΓ⊖{a};∆,b⊢1 P′;

(b) if b∈ ∆ and eitherT = S[ω,k] or T = I thenΓ⊖{a};∆ ⊢1 P′;

2. Whenever P
a〈b〉
−−→ P′ thenΓ;∆ ⊖{a,b} ⊢1 P′;

3. Whenever P
a(b)
−−→ P′ then

(a) either b: TU andΓ,b;(∆,b)⊖{a,b} ⊢1 P′

(b) or b : I andΓ;(∆,b)⊖{a,b} ⊢1 P′.

PROOF:

1. By induction on the derivation ofΓ;∆ ⊢1 P; the proof proceeds by distinguishing the last typing
rule applied:

(T-N IL), (T-OUT): it cannot be the case thatP
a(b)
−−→;

(T-STR): the proof proceeds by applying the induction hypothesis, Lemma B.1 and (T-STR);

(T-I NP): In this caseP = a(x).Q and by well-formedness ofP, x /∈ in(Q). Moreover, byΓ;∆ ⊢1

a(x).Q and the premise of the rule, we getΓ = {a}, a : TU, x : T and/0;∆,x⊢1 Q. By hypothesis

P = a(x).Q
a(b)
−−→ Q[b/x] = P′ andb : T, therefore

(a): if b /∈ ∆, by Proposition B.1 (1) (substitution), it follows that/0;∆,b⊢1 Q[b/x];

(b): if b : T with eitherT = S[ω,k] or T = I andb∈ ∆, by Proposition B.1 (2) (substitution),
it follows that /0;∆ ⊢1 Q[b/x];

(T-REP): the proof proceeds as already seen for the previous case;

(T-RES): by Γ;∆ ⊢1 P = (νc)Q and the premises of the rule, we getΓ,c;∆,c⊢1 Q. By P
a(b)
−−→ P′

and (RES), we geta,b 6= c and Q
a(b)
−−→ Q′, with P′ = (νc)Q′. By applying the inductive

hypothesis toQ, we get eitherΓ ⊖ {a},c;∆,b,c ⊢1 Q′, if b /∈ ∆, or Γ ⊖ {a},c;∆,c ⊢1 Q′,
if b∈ ∆ andb is either an inert orω-receptive name. Therefore, by (T-RES), we get either
Γ⊖{a};∆,b⊢1 P′, if b /∈∆, or Γ⊖{a};∆ ⊢1 P′, if b∈ ∆ andb is either an inert orω-receptive
name;

(T-RES-I), (T-RES-⊥): the proof proceeds as already seen for the previous case;

30

(T-PAR): by Γ;∆⊢1 Pand the premise of the rule, we getP= P1| · · · |Pn with Pi prime,Γi;∆i ⊢1 Pi

for eachi, Γ =
S

i Γi and∆ =
S

i ∆i. Moreover,Γρ
i ∩Γρ

j = ∆ρ
i ∩∆ρ

j = /0, for eachi 6= j, and

DG(Γρ
i ,∆

ρ
i)i=1,··· ,n is acyclic.

P
a(b)
−−→ P′ means that there is aj ∈ {1, · · · ,n} such thatPj

a(b)
−−→ P′

j .
The induction hypothesis can be applied toPj : either Γ j ⊖ {a};∆ j ,b ⊢1 P′

j , if b /∈ ∆ j , or
Γ j ⊖{a};∆ j ⊢1 P′

j if b∈ ∆ j andb is either an inert orω-receptive name.
Supposeb /∈ ∆, henceb /∈ ∆i for eachi.
In this caseΓ j ⊖{a};∆ j ,b⊢1 P′

j holds. IfP′
j is prime, rule (T-PAR) can be applied for deduc-

ing Γ ⊖ {a};∆,b ⊢1 P′. (Note that in this caseb /∈ ∆ guarantees that acyclicity of the graph
and disjointness of∆ρ

i are preserved.) IfP′
j is not prime then an equivalent normal form

exists (Lemma 2):P′
j ≡ (νd̃)(Q1| · · · |Qm) with Qi prime for eachi. Suppose for simplicity

the d̃ are allω-receptive or responsive names. ByΓ j ⊖{a};∆ j ,b⊢1 P′
j and (T-RES), we get

Γ j ⊖{a}, d̃;∆ j ,b, d̃⊢1 Q1| · · · |Qm. Hence, by (T-PAR), eachQi is well-typed, the dependency
graph is acyclic and the responsive parts ofQi ’s input and output contexts are disjoint. There-
fore, Γ ⊖ {a}, d̃;∆,b, d̃ ⊢1 P1| · · · |Pj−1|Q1| · · · |Qm|Pj+1| · · · |Pn can be inferred (by applying
(T-PAR)) and, by (T-RES), Γ ⊖ {a};∆,b ⊢1 (νd̃)(P1| · · · |Pj−1|Q1| · · · |Qm|Pj+1| · · · |Pn) ≡ P′,
therefore, by (T-STR), Γ⊖{a};∆,b⊢1 P′.
Suppose now thatb ∈ ∆ and eitherb is an inert orω-receptive name. Ifb ∈ ∆ j thenΓ ⊖

{a};∆ ⊢1 P′
j elseΓ⊖{a};∆,b⊢1 P′

j . In both cases, the proof proceeds as already seen in the

previous case. Note that acyclicity of the graph and disjointness of∆ρ
i is guaranteed because

b is either of type inert orω-receptive.

2. By induction on the derivation ofΓ;∆ ⊢1 P, the proof proceeds by distinguishing the last typing
rule applied:

(T-N IL), (T-I NP), (T-REP): it cannot be the case thatP
a〈b〉
−−→;

(T-OUT): by /0;∆ ⊢1 a〈b〉 and the premise of (T-OUT) we get(∆ ⊖{a,b})ρ = /0. Moreover, by

(OUT), P = a〈b〉
a〈b〉
−−→ 0 = P′ and /0;∆ ⊖{a,b} ⊢1 0 = P′ by rule (T-NIL);

(T-STR): the proof proceeds by applying the induction hypothesis, Lemma B.1 and (T-STR);

(T-PAR): by Γ;∆⊢1 Pand the premise of the rule, we getP= P1| · · · |Pn with Pi prime,Γi;∆i ⊢1 Pi

for eachi, Γ =
S

i Γi and∆ =
S

i ∆i. Moreover,Γρ
i ∩Γρ

j = ∆ρ
i ∩∆ρ

j = /0, for eachi 6= j, and

DG(Γρ
i ,∆

ρ
i)i=1,··· ,n is acyclic.

P
a〈b〉
−−→ P′ means that there is aj ∈ {1, · · · ,n} such thatPj = a〈b〉

a〈b〉
−−→ 0.

The induction hypothesis can be applied toPj : Γ j ;∆ j ⊖ {a,b} ⊢1 0. Note that∆ρ
i ∩∆ρ

j = /0
for i 6= j implies that∆ ⊖ {a,b} =

S

i 6= j ∆i ∪ (∆ j ⊖ {a,b}). Therefore, rule (T-PAR) can be
applied for deducingΓ;∆ ⊖{a,b} ⊢1 P1| · · · |Pj−1|Pj+1| · · · |Pn = P′;

(T-RES): by Γ;∆ ⊢1 P = (νc)Q and the premise of the rule, we getΓ,c;∆,c⊢1 Q. By hypothesis

P
a〈b〉
−−→ P′. By (RES), a,b 6= c andQ

a〈b〉
−−→ Q′, with P′ = (νc)Q′. By applying the induction

hypothesis toQ, we getΓ,c;∆⊖{a,b},c⊢1 Q′ and by (T-RES), Γ;∆⊖{a,b} ⊢1 (νc)Q′ = P′;

(T-RES-I), (T-RES-⊥): the proof proceeds as already seen for the previous case.

3. By induction on the derivation ofΓ;∆⊢1 P, the proof proceeds by distinguishing the last typing rule
applied. The interesting cases are (T-RES) and (T-RES-I), in the other cases the proof proceeds
by applying the induction hypothesis as already seen for theprevious point.

31

(T-RES): by P = (νc)Q and the premise of the rule, we getc : TU andΓ,c;∆,c ⊢1 Q. If c 6= b

thenQ
a(b)
−−→ Q′, P

a(b)
−−→ P′ = (νc)Q′ and the induction hypothesis can be applied for deducing

Γ,b,c;(∆,b,c)⊖ {a,b} ⊢1 Q′ Hence, by (T-RES), Γ,b;(∆,b)⊖ {a,b} ⊢1 (νc)Q′ = P′. Sup-

pose nowb = c. In this case,Q
a〈b〉
−−→ Q′ andP

a(b)
−−→ P′ = Q′. By the previous point, we get

Γ,b;(∆,b)⊖{a,b} ⊢1 Q′, hence the result;

(T-RES-I): in this case the proof proceeds similarly, recall that inertnames are not added to the
input contextΓ.

2

Theorem B.1 (Theorem 1).SupposeΓ;∆ ⊢1 P and P
[a]
−→ P′. ThenΓ⊖{a};∆ ⊖{a} ⊢1 P′.

PROOF: Consider the normal form ofP (Lemma 2)P≡ (νd̃)(P1| · · · |Pn)
△
= N. By Lemma B.1,N

[a]
−→ N′,

with N′ ≡ P′.
Consider a normal derivation ofΓ;∆ ⊢1 N (Lemma 1) and suppose for simplicity that iñd there

are no channels of type⊥ or I. Supposed̃ is not empty, the last typing rule applied in the derivation
must be (T-RES). Before (T-RES), rule (T-PAR) must have been applied for derivingΓ, d̃;∆, d̃ ⊢1

P1| · · · |Pn. Hence, by its premise we get that there are suitableΓi ,∆i such thatΓi;∆i ⊢1 Pi , for eachi,
Γ, d̃ = ∪i=1,...,nΓi , ∆, d̃ = ∪i=1,...,n∆i, Γρ

i ∩Γρ
j = ∆ρ

i ∩∆ρ
j = /0, for eachi, j ∈ {1, . . . ,n} and i 6= j, and

DG(Γρ
i ,∆

ρ
i)i=1,...,n is acyclic.

Let us proceed by considering the reductionN
[a]
−→ N′ ≡ P′. Given that(νd̃)(P1| · · · |Pn)

△
= N, it must

be P1| · · · |Pn
[a]
−→ R. EachPi is prime, hence it must bePi = a〈b〉 andPj = (!)a(x).P′

j for someb and

i, j ∈ {1, . . . ,n}. ThereforePi
a〈b〉
−−→ 0 = P′

i andPj
a(b)
−−→ P′

j [b/x]. By Proposition B.2, it can be derived that
/0;∆i ⊖{a,b} ⊢1 0. Note also that eitherb /∈ ∆ j or b∈ ∆ j andb is anω-receptive or inert name. Indeed, if
b were responsive andb∈ ∆ j , given that/0;∆i ⊢1 a〈b〉, it would beb∈ ∆i, hence∆ρ

i ∩∆ρ
j 6= /0. Therefore,

again by Proposition B.2, it can be derived thatΓ j ⊖{a};∆′
j ⊢1 P′

j [b/x], with either∆′
j = ∆ j ,b, if b /∈ ∆ j ,

or ∆′
j = ∆ j , if b∈ ∆ j andb is either anω-receptive or an inert name.
It is easy to see that the premise of (T-PAR) are still satisfied: the graph is acyclic because nested

inputs are not allowed hence no new arcs fromb can be added to the graph; and ifb is responsiveb /∈ ∆ j

andb /∈ (∆i ⊖{a,b}). Hence(Γ, d̃)⊖{a};(∆, d̃)⊖{a} ⊢1 P1| · · · |P′
i | · · · |P

′
j | · · · |Pn = R.

We distinguish the following two main cases.

• Suppose either (COMi), or (PARi), or (RES) is the last rule applied in the derivation ofN
[a]
−→ N′. In

this case,N′ = (νd̃)Rand from(Γ, d̃)⊖{a};(∆, d̃)⊖{a} ⊢1 Rand the typing rules for restriction,
we getΓ⊖{a};∆ ⊖{a} ⊢1 (νd̃)R= N′.

• Suppose (RES-ρ) is the last applied in the derivation ofN
[a]
−→ N′. In this case,N′ = (νd̃[c/a])R[c/a],

for somec : ⊥. Given thata is responsive anda∈ d̃ we geta /∈ (Γ, d̃)⊖{a} anda /∈ (∆, d̃)⊖{a}.
Hence, from(Γ, d̃) ⊖ {a};(∆, d̃) ⊖ {a} ⊢1 R and the typing rules for restriction, we getΓ;∆ ⊢1

(νd̃′)R, for d̃′ = d̃−a, anda /∈ fn(R). Hence, by (T-RES-⊥), Γ;∆ ⊢1 (νc)(νd̃′)R, for eachc : ⊥.
Therefore, by (T-STR), Γ;∆ ⊢1 N′.

Finally, fromΓ;∆ ⊢1 N′ and (T-STR), we getΓ;∆ ⊢1 P′. 2

32

C Proof of Theorem 2

In this section we prove the intermediate results needed forproving Theorem 2 (type soundness).

Proposition C.1 (Proposition 1). Suppose thatΓ;∆ ⊢1 P, with Γ, ∆ and P satisfying the conditions in
the premise of rule(T-PAR) andΓρ = ∆ρ 6= /0. Then for some j in1, . . . ,n we have Pj = a〈b〉 with either
a or b responsive.

PROOF: Let P= P1 | · · · |Pn. For eachi, processPi is prime,Γi ;∆i ⊢1 Pi, Γρ
i ∩Γρ

j = /0 and∆ρ
i ∩∆ρ

j = /0 for

i 6= j. Moreover,Γ =
S

i=1...nΓi , ∆ =
S

i=1...n ∆i; and DG(Γρ
i ,∆

ρ
i)i=1,...,n is acyclic.

The acyclicity of the graph implies that there is at least onenodec with no outgoing arcs. By
definition of the graph andΓρ = ∆ρ we have that∃ j ∈ {1, . . . ,n} s.t. c∈ ∆ρ

j andΓρ
j = /0. Consider the

processPj . By hypothesisPj is prime andΓ j ;∆ j ⊢1 Pj .
By contradiction, assumePj is of the form !a(b).R. By Γ j ;∆ j ⊢1!a(b).R and the premise of rule

(T-REP), we get∆ρ
j = /0, but this is in contradiction with the hypothesisc∈ ∆ρ

j , thusPj is not of the form
!a(b).R.

Again by contradiction, assumePj is of the forma(b).P. By Γ j ;∆ j ⊢1 a(b).P and the premise of rule
(T-INP), we getΓρ

j = {a}, but this is in contradiction with the hypothesisΓρ
j = /0, thusPj is not of the

form a(b).P.
In conclusion,Pj prime implies thatPj = a〈b〉 with eithera = c or b = c, thus at least one of the two

names is responsive. 2

The lemma below ensures that substitutions preserve wt(·).

Lemma C.1. SupposeΓ;∆,x⊢1 P and x,b : T. Thenwt(P) = wt(P[b/x]).

PROOF: The proof is straightforward by induction on the definitionof wt(·) (note thatx,b : T implies
that lev(x) = lev(b)). 2

The following lemma ensures that the weight of a process is a good measure when considering
responsive reductions, in fact it decreases after each communication involving responsive names. This
is a consequence of the constraints on levels in the premise of rule (T-REP) and of the linearity of
responsive names. The lemma below is a step forward this result.

Lemma C.2. SupposeΓ;∆ ⊢1 P, then:

1. if a∈ Γ, a : TU and b: T then P
a(b)
−−→ P′ and, if either a or b is responsive, thenwt(P′) ≺ wt(P)+

0lev(a);

2. if P
a〈b〉
−−→ P′ (or P

a(b)
−−→ P′) thenwt(P′) � wt(P)−0lev(a).

PROOF: In both cases the proof proceeds by induction on the derivation of Γ;∆ ⊢1 P.

1. Consider the last typing rule applied in the derivation; the most interesting cases are rules (T-INP)
and (T-REP). The other cases can be easily proved by applying the inductive hypothesis.

(T-INP): SupposeP = a(x).R. By rule (IN), a(x).R
a(b)
−−→ R[b/x] and by the premise of (T-INP),

x : T. wt(a(x).R)+0lev(a) = wt(R)+0lev(a) ≻ wt(R[b/x]) = wt(R), by Lemma C.1.

(T-REP): SupposeP =!a(x).R. By a;∆ ⊢1!a(x)R and the premise of the rule, we getx : T and

∀c∈ os(R) : lev(c) < lev(a). By rule (REP), !a(x).R
a(b)
−−→!a(x).R|R[b/x]. If b is ω-receptive,

there is nothing to prove. Otherwise, from∀c ∈ os(R) : lev(c) < lev(a) and x,b : T we
get∀c∈ os(R[b/x]) : lev(c) < lev(a). Hence, wt(!a(x).R)+ 0lev(a) = 0lev(a) ≻ wt(R[b/x]) =
wt(!a(x).R|R[b/x]);

33

2. Consider the last typing rule applied in the derivation; the most interesting cases are rules (T-OUT)
and (T-RES). The other cases can be easily proved by applying the inductive hypothesis.

(T-OUT): SupposeP = a〈b〉. By (OUT), a〈b〉
a〈b〉
−−→ 0 and wt(0) = wt(a〈b〉)−0lev(a);

(T-RES): SupposeP = (νd)R and d : T (the casesd : I and d : ⊥ are proved similarly.) By
the premise of (T-RES) andΓ;∆ ⊢1 (νd)R we getΓ,d;∆,d ⊢1 R. We distinguish two cases
considering the transition rule applied:

(OPEN): by (νd)R
a(d)
−−→ R′ and the premise of the rule, we getR

a〈d〉
−−→ R′ and, by inductive

hypothesis, wt(R′) � wt(R)−0lev(a) = wt((νd)R)−0lev(a);

(RES): by (νd)R
a〈b〉
−−→ (νd)R′ and the premise of the rule, we getR

a〈b〉
−−→ R′, a,b 6= d and,

by inductive hypothesis, wt(R′) � wt(R)−0lev(a). By definition of wt(·), wt((νd)R′) =
wt(R′) � wt(R)−0lev(a) = wt((νd)R)−0lev(a).

2

Lemma C.3. P≡ R implieswt(P) = wt(R).

PROOF: The proof is straightforward by induction on the derivation of P≡ R. 2

Proposition C.2 (Proposition 2). SupposeΓ;∆ ⊢1 P and P
τ〈a,b〉
−−−→ P′, with either a or b responsive. Then

wt(P′) ≺ wt(P).

PROOF: Consider the normal form ofP (Lemma 2)P≡ (νd̃)(P1| · · · |Pn)
△
= N. By Lemma B.1,N

τ〈a,b〉
−−−→

N′, with N′ ≡ P′.
Consider a normal derivation ofΓ;∆ ⊢1 N (Lemma 1) and suppose for simplicity that iñd there are

no channels of type⊥ or I. The last typing rule applied in the derivation should be (T-RES) – if d̃ is
not empty. Before (T-RES), rule (T-PAR) must have been applied for derivingΓ, d̃;∆, d̃ ⊢1 P1| · · · |Pn.
Hence, by its premise, we get that there are suitableΓi,∆i such thatΓi ;∆i ⊢1 Pi , for eachi = 1, . . . ,n.

Let us proceed by considering the reductionN
τ〈a,b〉
−−−→ N′ ≡ P′. It must beR

△
= P1| · · · |Pn

τ〈a,b〉
−−−→ R′.

EachPi is prime, hence it must bePi = a〈b〉 andPj = (!)a(x).P′
j for someb andi, j ∈ {1, . . . ,n}. Suppose

for simplicity Pj = a(x).P′
j . Therefore,Pi

a〈b〉
−−→ 0 = P′

i , Pj
a(b)
−−→ P′

j [b/x], R′ = P1| · · · |P′
i | · · · |P

′
j | · · · |Pn and

N′ = (νd̃′)R′, with either d̃′ = d̃ or d̃′ = d̃[a/c] for somec : ⊥. Given thata or b is responsive, by
Lemma C.2 we get wt(P′

j [b/x])≺wt(Pj)+0lev(a) and wt(P′
i)�wt(Pi)−0lev(a). Hence, wt(R′) = wt(P1)+

· · ·+wt(P′
i)+ · · ·+wt(P′

j)+ · · ·+wt(Pn)≺∑i wt(Pi) = wt(R) and wt(N′)≺wt(N), by definition of wt(·).
Finally, by Lemma C.3,P≡ N andP′ ≡ N′, we get wt(P′) ≺ wt(P). 2

D Proof of Theorem 3

In what follows we introduce some notations and prove some preliminary results useful for proving
Theorem 3. Note that proof of a similar statement is outlinedin [5]; our proof proceeds along the same
lines.

In the following, we write|Oρ(P) | and|O(P) | for the cardinality of Oρ(P) and O(P), respectively.
Theheightof P, written h(P), is defined as the greatest size of a replicated term inP. E.g. h(!a(x).P) =
1+ |P|.

First of all, we prove that size, weight and height of a process and the number of outputs it contains
are preserved by structural equivalence and substitutions. Moreover we prove that the number of outputs

34

in a processP is upper bounded by|P|. Next, in Proposition D.1, we show that the number of output
actions inP and its size may increase only after a reduction where the subject is anω-receptive name,
but this increase is limited by h(P).

Lemma D.1.

1. If P≡ R then|P| = |R|, |Oρ(P) | = |Oρ(R) | andh(P) = h(R).

2. Let be x,b : T. wt(P) = wt(P[b/x]), |Oρ(P) | = |Oρ(P[b/x]) | andh(P) = h(P[b/x]).

PROOF: The proof is straightforward by induction on the derivation of P≡ R and by definition of| · |,
wt(·), |Oρ(·) | and h(·). 2

Lemma D.2. If Γ;∆ ⊢1 P then|Oρ(P) | ≤ |P|.

PROOF: By definition of|Oρ(P) |. 2

Proposition D.1. If Γ;∆ ⊢1 P then:

1. if either P
a〈b〉
−−→ P′ or P

a(b)
−−→ P′ and either a or b is responsive then|Oρ(P′) | = |Oρ(P) |−1;

2. if P
a(b)
−−→ P′, with a responsive, then|Oρ(P′) | = |Oρ(P) |;

3. if P
a(b)
−−→ P′, with aω-receptive, then|Oρ(P′) | ≤ |Oρ(P) |+h(P);

4. if P
[a]
−→ P′, with a responsive, then|Oρ(P′) | ≤ |Oρ(P) |−1;

5. if P
[a]
−→ P′, with aω-receptive carrying responsive names, then|Oρ(P′) | ≤ |Oρ(P) |+h(P)−1.

PROOF: In all cases the proof proceeds by induction on the derivation of P
µ
−→ P′ and distinguishes the

last transition rule applied:

1. the interesting case is (OUT); the other cases ((PAR1), (OPEN) and (RES)) can be proved by apply-
ing the inductive hypothesis.

By (OUT), a〈b〉
a〈b〉
−−→ 0 with a or b responsive, and|Oρ(a〈b〉) |−1 = 0 = |Oρ(0) |;

2. the interesting case is (IN); the other cases ((PAR1) and (RES)) can be proved by applying the
inductive hypothesis.

By (IN), a(x).P
a(b)
−−→ P[b/x]. By the premise of (T-INP), Γ;∆ ⊢1 a(x).P anda : T[ρ,k], we getx : T.

Oρ(a(x).P) = Oρ(P), thus |Oρ(a(x).P) | = |Oρ(P) | and |Oρ(P) | = |Oρ(P[b/x]) | by b,x : T and
Lemma D.1 (2);

3. the interesting case is (REP); the other cases ((PAR1) and (RES)) can be proved by applying the
inductive hypothesis.

By (REP), !a(x).P
a(b)
−−→!a(x).P|P[b/x]. By the premise of (T-REP), Γ;∆ ⊢1!a(x).P anda : T[ω,k], it

follows thatx : T.

Oρ(!a(x).P) = /0, h(!a(x).P) = 1+ |P| and|Oρ(!a(x).P|P[b/x]) | = |Oρ(P[b/x]) |. By Lemma D.2,
|Oρ(P) | ≤ |P|, hence byb,x : T, Lemma D.1 (2) and h(!a(x).P) = 1+ |P|, |Oρ(P[b/x]) | ≤
h(!a(x).P) and|Oρ(!a(x).P|P[b/x]) | ≤ |Oρ(!a(x).P) |+h(!a(x).P);

35

4. the interesting cases are rules (COM1) and (CLOSE1); the other cases ((PAR1), (RES) and (RES-ρ))
can be proved by applying the inductive hypothesis.

(COM1): by R|S
τ〈a,b〉
−−−→R′|S′, with a responsive name, and the premise of the rule, it follows that

R
a〈b〉
−−→R′ andS

a(b)
−−→S′. By Γ;∆ ⊢1 R|Sand rules (T-STR), (T-RES), (T-RES-I) and (T-PAR),

there are suitable contextsΓ1,∆1,Γ2 and∆2, such thatΓ1;∆1 ⊢1 RandΓ2;∆2 ⊢1 S. Moreover,
by well-typedness anda : T[ρ,k] we getb : T.

By (1,2) it follows that|Oρ(R′) | = |Oρ(R) |−1 and|Oρ(S′) | = |Oρ(S) |, thus|Oρ(R′|S′) | =
|Oρ(R′) |+ |Oρ(S′) | = |Oρ(R) |−1+ |Oρ(S) | = |Oρ(R|S) |−1;

(CLOSE1): this case is similar to the previous one;

5. the interesting cases are rules (COM1) and (CLOSE1); the other cases ((PAR1) and (RES)) can be
proved by applying the inductive hypothesis.

(COM1): by R|S
τ〈a,b〉
−−−→ R′|S′, with a ω-receptive name, and the premise of the rule, it follows that

R
a〈b〉
−−→R′ andS

a(b)
−−→S′. By Γ;∆ ⊢1 R|Sand rules (T-STR), (T-RES), (T-RES-I) and (T-PAR),

there are suitable contextsΓ1,∆1,Γ2 and∆2, such thatΓ1;∆1 ⊢1 RandΓ2;∆2 ⊢1 S. Moreover,
by well-typedness anda : T[ω,k] it follows thatb : T.

By (1,3) it can be deduced that|Oρ(R′) |= |Oρ(R) |−1 and|Oρ(S′) | ≤ |Oρ(S) |+h(S), thus
|Oρ(R′|S′) |= |Oρ(R′) |+ |Oρ(S′) | ≤ |Oρ(R) |−1+ |Oρ(S) |+h(S)≤ |Oρ(R|S) |+h(R|S)−1
(note that h(R|S) ≥ h(S) by definition);

(CLOSE1): this case is similar to the previous one.

2

The height of a process is preserved by transitions:

Lemma D.3. If P
µ
−→ P′ thenh(P′) = h(P).

PROOF: The proof is straightforward by induction on the derivation of P
µ
−→ P′. 2

Each component of the weight vector of a processP gives the number of active outputs inP of the
corresponding level.

Lemma D.4. If Γ;∆ ⊢1 P andwt(P) = 〈wk, . . . ,w0〉 then inOρ(P) there are at most wi outputs of level i
for i in 0, . . . ,k.

PROOF: The proof is straightforward by induction on the structureof P. 2

Theorem D.1 (Theorem 3).Let P be(Γ;∆)-balanced and r∈∆ρ and let k be the maximal level of names
appearing in active responsive output actions of P,Oρ(P). In all responsive schedulings, the number of
reductions preceding a reduction on r is upper-bounded by|P|k+1.

PROOF: (outline) By Theorem 2 (type soundness) we get that whenever P
[s]
−→ P′ with s∈ N ∗ andr /∈ s

thenP′ [r]
=⇒.

Let S= P0
τ〈a1,b1〉
−−−−→ P1

τ〈a2,b2〉
−−−−→ P2

τ〈a3,b3〉
−−−−→ ·· · be a maximal responsive scheduling not containingr

as subject. The length ofS, which is finite because each reduction step involving a responsive name
decreases wt (Proposition 2), is an upper bound forn.

First, note that every processPi in S is well typed by Theorem 1 (subject reduction). Moreover,
h(Pi) = h(P) for eachi = 1,2, . . ., Lemma D.3.

36

Suppose that wt(P) = 〈wk, . . . ,w0〉. In general, any reduction of involving a subject of leveli ∈
{1, . . . ,k} can directly activate at most h(P) ≤ |P| reductions – that is, can add to Oρ(P) at most h(P) ≤
|P| outputs – of level at mosti−1 (Proposition D.1, Lemma D.2, well typed-ness ofPi and (T+-REPP)).
Hence, each reduction of leveli can directly or indirectly be causally involved in at most f(i) reductions
of S, where the function f is defined as





f(0)=1

f(i) =1+ |P| ∗ f(i −1) ≤ ∑i
j=0 |P| j = |P|i+1−1

|P|−1 .

Note that f(i) is monotone oni by definition. By definition of Oρ(·), only output in Oρ(P) can be involved
in a responsive reduction fromP. Moreover, by Lemma D.4, there are at mostwi active outputs of level
i in Oρ(P). Thus:

n≤
k

∑
i=0

wi ∗ f(i) hence, by monotonicity, f(i) ≤ f(k)∗ (w0 + · · ·+wk) .

Now, f(k) ≤ |P|k+1−1
|P|−1 andwk + · · ·+w0 ≤ |P|, thus

n≤ f(k)∗ (wk + · · ·+w0) ≤ |P|k+1 .

2

E Proof of Theorem 1 and Theorem 2 in the extended calculus

In this section we prove that subject reduction and type safety are guaranteed in the calculus extended
with if-then-else.

First of all some notations/definitions have to be extended.Each process of the form
if G then P else Q is considered prime. The auxiliary functions over processes defined through the
paper are extended as follows.

|if Gthen P else Q|=1+max(|P|, |Q|)

wt(if Gthen P else Q)=wt(P)+wt(Q)

O(if Gthen P else Q)=O(P)⊎O(Q)

os(if Gthen P else Q)=os(P)∪os(Q)

In the following we report the enunciates and proofs of the results proved in Appendices A-C that
require major changes.

Theorem E.1 (Theorem 1). (i) SupposeΓ;∆ ⊢1 P and P
[a]
−→ P′. ThenΓ ⊖ {a};∆ ⊖ {a} ⊢1 P′. (ii)

SupposeΓ;∆ ⊢1 P and P
[ε]
−→ P′. ThenΓ;∆ ⊢1 P′.

PROOF: Point (i) has been already proved at page 32. Concerning thenew point (ii), the proof proceeds

by induction on the derivation ofP
[ε]
−→ P′. The base case is when either (IF-T) or (IF-F) is the last rule

applied. In the other cases the proof proceeds by applying the inductive hypothesis.

37

Suppose (IF-F) is the last applied; henceif G then P1 else P2
[ε]
−→ P1. By Γ;∆ ⊢1

if G then P1 else P2 and the premise of (T-IF), we getΓ;∆ ⊢1 P1, hence the result.
The proof proceeds similarly if (IF-T) is the last applied. 2

Proposition 1 does not hold for the extended calculus because of the possible presence top-level
if-then-else’s. Therefore, it is necessary to limit that result toε-stable processes (see Proposition E.1

below). A process isε-stableif P 6
[ε]
−→. The following holds.

Lemma E.1. For each process P there exists anε-stable P′ such that P
[ε]
=⇒ P′.

Proposition E.1. Suppose thatΓ;∆ ⊢1 P, with P ε-stable,Γ, ∆ and P satisfying the conditions in the
premise of rule(T-PAR) andΓρ = ∆ρ 6= /0. Then for some j∈ {1, . . . ,n} we have Pj = a〈b〉 with either a
or b responsive.

PROOF: The proof coincides with that on page 33. Note that it cannotbePj = if G then R1 else R2

because in this case it would bePj
[ε]
−→, henceP

[ε]
−→. 2

Lemma E.2. SupposeΓ;∆ ⊢1 P and P
ε
−→ P′ thenwt(P′) � wt(P).

PROOF: Follows by definition of wt(·); recall that wt(if G then P else Q) = wt(P)+wt(Q). 2

Theorem E.2 (type soundness, Theorem 2).Let P be(Γ;∆)-balanced, and r∈ ∆ρ. Then P guarantees
responsiveness of r.

PROOF: The proof proceeds as that on page 10, with one difference:P′ is taken to be anε-stable process
with minimal wt reachable fromP without usingr as communication subject. The rest of the proof
proceeds unchanged, modulo relying on Proposition E.1 rather than on Proposition 1. 2

F Proof of Proposition 3

In this section we prove that primitive recursive functionscan be encoded into well typed processes and
that the proposed encoding is correct. We will take advantage of some special properties enjoyed by
type derivations for processes that encode primitive recursive functions. To this purpose, we introduce
the notationΓ;∆ ⊢u P to mean thatΓ;∆ ⊢1 P can be deduced with the following extra constraint onω-
receptive names in the premise of (T-PAR): Γω

i ∩Γω
j = /0. (Of curse (T-REP) is replaced by (T-REP’) in

both⊢1 and⊢u.) The following result obviously holds true:

Lemma F.1. Γ;∆ ⊢u P impliesΓ;∆ ⊢1 P.

The extra constraints of⊢u are related to confluence, which is a crucial ingredient for the proof of
correctness of the encoding.

Proposition F.1. If Γ;∆ ⊢1 P, P
a〈b〉
−−→ and P

τ〈a1,b1〉
−−−−→ ·· ·

τ〈an,bn〉
−−−−→ P′, with a 6= ai and b6= bi for every i, then

P′ a〈b〉
−−→. Moreover, if P′

r〈c〉
−−→ with r ∈ ∆ρ then r 6= ai for each i.

PROOF: The result follows by observing thatP
a〈b〉
−−→ implies thatP≡ (νd̃)(a〈b〉|Q) for suitabled̃ andQ,

anda 6= ai for eachi = 1, . . . ,n impliesQ
τ〈a1,b1〉
−−−−→ ·· ·

τ〈an,bn〉
−−−−→ Q′ andP′ ≡ (νd̃′)(a〈b〉|Q′). Finally, r 6= ai

follows from the linear usage of responsive names in well typed processes. 2

38

Proposition F.2. SupposeΓ;∆ ⊢u P. If P
τ〈a,b〉
−−−→ P′ and P

τ〈a′,b′〉
−−−→ P′′ then there is a P′′′ such that

P′ τ〈a′,b′〉
−−−→≡ P′′′ and P′′

τ〈a,b〉
−−−→≡ P′′′. Moreover, if r∈ Γρ ∩∆ρ, P

r〈c〉
−−→ and r 6= a,a′ then P′′′

r〈c〉
−−→.

PROOF: Consider the normal form ofP: P≡ (νd̃)(∏i∈{1,...,n} Pi). First of all we prove the existence of

P′′′. Suppose thatP
τ〈a,b〉
−−−→ P′ andP

τ〈a′,b′〉
−−−→ P′′ and both inputs ona,a′ are replicated. In both cases, by

the premise of rules (RES), (PAR1), (COM1), (OUT) and (REP), we have that:

• there arej,k ∈ {1, . . . ,n} s.t. Pj = a〈b〉, Pk =!a(x).P′
k and P′ = (νd̃)(∏i∈{1,...,n}\{ j} Ri), where

Rk = Pk|P′
k[

b/x] andRi = Pi for i 6= k;

• there arel ,m∈ {1, . . . ,n} s.t. Pl = a′〈b′〉, Pm =!a′(x).P′
m andP′′ = (νd̃)(∏i∈{1,...,n}\{l} R′

i), where

R′
m = Pm|P′

m[b
′
/x] andR′

i = Pi for i 6= m.

We distinguish two cases depending ona anda′:

a = a′: by linearity ofω-receptive names in input (Γω
i ∩Γω

t = /0 for i 6= t and i, t = 1, · · · ,n), it follows
thatk = m. If j = l we haveP′ = P′′. Otherwise:

• P′ ≡ (νd̃)(∏i∈{1,...,n}\{ j} Ri), whereRk = Pk|P′
k[

b/x] andRi = Pi for i 6= k; note thatRl = Pl ,

thusP′ τ〈a,b′〉
−−−→ Q′ whereQ′ = (νd̃)(∏i∈{1,...,n}\{ j,l} Q′

i), with Q′
k = Pk|P′

k[
b/x]|P′

k[
b′/x] andQ′

i =
Pi for i 6= k;

• P′′ ≡ (νd̃)(∏i∈{1,...,n}\{l} R′
i), whereR′

k = Pk|P′
k[

b′/x] and R′
i = Pi for i 6= k; R′

j = Pj , thus

P′′ τ〈a,b〉
−−−→Q′′ whereQ′′ = (νd̃)(∏i∈{1,...,n}\{l , j} Q′′

i), with Q′′
k = Pk|P′

k[
b′/x]|P′

k[
b/x], andQ′′

i = Pi

for i 6= k;

that isQ′ ≡ Q′′ = P′′′.

a 6= a′: then j 6= l andk 6= m. Look at the structure ofP′ andP′′:

• P′ ≡ (νd̃)(∏i∈{1,...,n}\{ j} Ri), whereRk = Pk|P′
k[

b/x] andRi = Pi for i 6= k. Note thatRl = Pl

andRm = Pm, thusP′ τ〈a′,b′〉
−−−→ Q′ with Q′ = (νd̃)(∏i∈{1,...,n}\{ j,l} Q′

i), whereQ′
k = Pk|P′

k[
b/x],

Q′
m = Pm|P′

m[b
′
/x] andQ′

i = Pi for i 6= k,m;

• P′′ ≡ (νd̃)(∏i∈{1,...,n}\{l} R′
i), whereR′

m = Pm|P′
m[b

′
/x] andR′

i = Pi for i 6= m. R′
j = Pj and

R′
k = Pk, thus P′′ τ〈a,b〉

−−−→ Q′′ with Q′′ = (νd̃)(∏i∈{1,...,n}\{l , j} Q′′
i), whereQ′′

m = Pm|P′
m[b

′
/x],

Q′′
k = Pk|P′

k[
b/x] andQ′′

i = Pi for i 6= k,m;

that is:Q′ ≡ Q′′ = P′′′.

Similar proofs in the other cases.

Finally, P′′′ r〈c〉
−−→ follows from r 6= a,a′ and Proposition F.1. 2

Corollary F.1 (confluence). SupposeΓ;∆ ⊢u P. If P
τ
−→∗P′ and P

τ
−→∗P′′ then there is a P′′′ such that

P′ τ
−→∗ ≡ P′′′ and P′′

τ
−→∗ ≡ P′′′. Moreover, if r∈ Γρ ∩∆ρ, P

r〈c〉
−−→ and r is not used in the derivations from

P to P′ and P′′ then P′′′
r〈c〉
−−→.

PROOF: The result follows by Proposition F.2. 2

39

Proposition F.3 (Proposition 3). For every k-ary primitive recursive function f there is a well-typed

process〈 f 〉b such that: for each(v1, . . . ,vk) in Natk the process G
△
= (νb)(〈 f 〉b|b〈v1, . . . ,vk, r〉 | r(n).0),

with b ω-receptive and r: (Nat)[ρ,h] (h ≥ 0), is balanced. Moreover, f(v1, . . . ,vk) = m if and only if

G
τ
−→∗ r〈m〉

−−→.

PROOF: First of all, we show how to represent a primitive recursivefunction f using a well-typed process
〈 f 〉b and that the processG is balanced.

A function f (ñ) is represented as a replicated process〈 f 〉b, like !b(ñ, r).P, whereb receives a tuple
of first-order arguments and a namer, which is a responsive name used as return channel for sending
results. We encode the primitive recursive functions in a standard way (see e.g. [5]):

zero: 〈n〉b
△
=!b(m, r).r〈0〉. If we supposeb : (Nat,Nat[ρ,1])[ω,2] we have thatb; /0⊢u 〈n〉b; thus, considering

(νb)(〈n〉b|b〈v, r〉|r(m).0), with r : Nat[ρ,1], we have thatr; r,v⊢u (νb)(〈n〉b|b〈v, r〉|r(m).0);

successor:〈s〉b
△
=!b(m, r).r〈m+ 1〉. If we supposeb : (Nat,Nat[ρ,1])[ω,2] we have thatb; /0 ⊢u 〈s〉b;

thus if we consider the process(νb)(〈s〉b|b〈v, r〉|r(m).0) with r : Nat[ρ,1] we have thatr; r,v ⊢u

(νb)(〈s〉b|b〈v, r〉|r(m).0);

identity: 〈ui〉b
△
=!b(m1, . . . ,mk, r).r〈mi〉. If we supposeb : (Ñat,Nat[ρ,1])[ω,2] we have thatb; /0 ⊢u 〈ui〉b;

thus if we consider the process(νb)(〈ui〉b|b〈ṽ, r〉|r(m).0) with r : Nat[ρ,1] we have thatr; r, ṽ ⊢u

(νb)(〈ui〉b|b〈ṽ, r〉|r(m).0);

composition: Suppose that〈gi〉bi is defined for everygi , with bi : (Ñat,Nat[ρ,kri])[ω,kbi] for all i in 1, . . . , l ,
and〈 f 〉d is defined forf with d : (Ñat,Nat[ρ,kr])[ω,kd], 〈 f 〉d and all〈gi〉bi are well typed by inductive
hypothesis and(νd)(〈 f 〉d|d〈ṽ′, r ′〉|r ′(m).0) and (νbi)(〈gi〉bi |bi〈ṽi , r i〉|r i(m).0) are balanced. We
define〈h〉b as follows:

〈h〉b
△
= !b(m̃, r).(νb1, r1)

(
〈g1〉b1 |b1〈m̃, r1〉 | r1(n1).(νb2, r2)(〈g2〉b2 |b2〈m̃, r2〉 | r2(n2).(νb3, r3)(. . .

| rm−1(nm−1).(νbm, rm)(〈gm〉bm |bm〈m̃, rm〉 | rm(nm).(νd)(d〈ñ, r〉 |〈 f 〉d)

) . . .))
)
.

If we considerb : (Ñat,Nat[ρ,kr])[ω,kb] with kb > kd > kr andkb > kbi > kr i for i = 1, . . . ,n then,
by repeatedly applying rules (T-RES) and (T-PAR), it is easy to see thatb; /0 ⊢u 〈h〉b; thus, if
r : Nat[ρ,kr], we getr; r, ṽ⊢u (νb)(〈h〉b|b〈ṽ, r〉|r(m).0);

primitive recursion: Suppose that〈 f 〉d is defined for f , with d : (Ñat,Nat[ρ,kr])[ω,kd], and 〈g〉e for
g, with e : (Ñat,Nat[ρ,kr])[ω,ke]; both 〈 f 〉d and 〈g〉e are well typed by inductive hypothesis and
(νd)(〈 f 〉d|d〈ṽf , r〉|r(m).0) and(νe)(〈g〉e|e〈ṽg, r〉|r(m).0) are balanced. Define〈r〉b as follows:

〈r〉b
△
= !b(m̃, r).if m1 = 0 then (νd)(〈 f 〉d |d〈m2, . . . ,mk, r〉)

else (νr ′)(b〈m1−1,m2, . . . ,mk, r ′〉 | r ′(n).(νe)(〈g〉e |e〈m1−1,n,m2, . . . ,mk, r〉)).

If we considerb : (Ñat,Nat[ρ,kr])[ω,kb], with kb > kd > kr andkb > ke > kr , thenb;b⊢u 〈r〉b; more-
over, if r : Nat[ρ,kr], we getr; r, ṽ⊢u (νb)(〈r〉b|b〈ṽ, r〉|r(m).0).

In all cases⊢u implies⊢1 (Lemma F.1),∆ρ = Γρ = r and∆ω = Γω = /0, hence eachG is balanced.
Now we can show the two directions of the statement:

40

(⇒): we show that∀v1, . . . ,vk ∈ N s.t. f (v1, . . . ,vk) = n⇒ (νb)(〈 f 〉b|b〈v1, . . . ,vk, r〉|r(m).0)
τ
−→∗ r〈n〉

−−→.
The proof proceeds by lexicographic induction on the pair(| 〈 f 〉b |,∑i=1,...,k vi); we distinguish the
different kinds of primitive recursive functions:

zero: ∀v∈ N we haveN(v) = 0 and(νb)(〈n〉b|b〈v, r〉|r(m).0) → (νb)(〈n〉b|r〈0〉|r(m).0)
r〈0〉
−−→;

successor:∀v ∈ N we have S(v) = v + 1 and (νb)(〈s〉b|b〈v, r〉|r(m).0)
τ
−→ (νb)(〈s〉b|r〈v +

1〉|r(m).0)
r〈v+1〉
−−−→;

identity: ∀v1, . . . ,vk ∈ N
k we haveU (k)

i (v1, . . . ,vk) = vi and(νb)(〈ui〉b|b〈v1, . . . ,vk, r〉|r(m).0)
τ
−→

(νb)(〈ui〉b|r〈vi〉|r(m).0)
r〈vi 〉
−−→;

composition: considerk valuesv1, . . . ,vk s.t.h(v1, . . . ,vk) = f (g1(v1, . . . ,vk), . . . ,gl (v1, . . . ,vk)) =
n, that is, if we haveg j(v1, . . . ,vk) = mj (for j = 1, . . . , l) thenh(v1, . . . ,vk) = f (m1, . . . ,ml) =
n.
Suppose 〈g j〉bj is the encoding ofg j ; given that | 〈g j〉bj | < | 〈h〉b |, by induc-

tive hypothesis we have(νb j)(〈g j 〉bj |b j〈v1, . . . ,vk, r j〉|r j(m).0)
τ
−→ ∗ r j 〈mj 〉

−−−→, for j =
1, . . . , l . Similarly, if 〈 f 〉d is associated tof , by inductive hypothesis we have

(νd)(〈 f 〉d|d〈m1, . . . ,ml , r ′〉|r ′(m).0)
τ
−→∗ r ′〈n〉

−−→. By looking at the definition of〈h〉b it is easy

to see that(νb)(〈h〉b|b〈v1, . . . ,vk, r〉|r(m).0)
τ
−→∗ r〈n〉

−−→;

primitive recursion: considerv1, . . . ,vk ∈ N
k we distinguish two cases:

v1 = 0: r(0,v2, . . . ,vk) = f (v2, . . . ,vk) = n. Let be 〈 f 〉d the encoding off . By induc-
tive hypothesis, given that| 〈 f 〉d | < | 〈r〉b |, we have thatf (v2, . . . ,vk) = n implies

(νd)(〈 f 〉d|d〈v2, . . . ,vk, r〉|r(m).0)
τ
−→∗ r〈n〉

−−→.
By looking at the definition of〈r〉b, if v1 = 0 process(νb)(〈r〉b|b〈0,v2, . . . ,vk, r〉|r(m).0)
reduces in a step into

(νb)(〈r〉b |(νd)(〈 f 〉d|d〈v2, . . . ,vk, r〉) | r(m).0)

that is(νb)(〈r〉b|b〈0,v2, . . . ,vk, r〉|r(m).0)
τ
−→∗ r〈n〉

−−→;
v1 6= 0: r(v1, . . . ,vk) = g(v1−1, r(v1−1,v2, . . . ,vk),v2, . . . ,vk). It holds that (v1 +v2+ · · ·+

vk) > (v1 − 1+ v2 + · · ·+ vk). Let ber(v1 − 1,v2, . . . ,vk) = nR. By inductive hypoth-

esis,(νb)(〈r〉b|b〈v1 − 1,v2, . . . ,vk, r ′〉|r ′(m).0)
τ
−→∗ r ′〈nR〉

−−−→ and, if 〈g〉d is the encoding
of g, g(v1 − 1,nR,v2, . . . ,vk) = n implies, by inductive hypothesis (| 〈g〉d | < | 〈r〉b |),

(νd)(〈g〉d|d〈v1 − 1,nR,v2, . . . ,vk, r〉|r(m).0)
τ
−→∗ r〈n〉

−−→. Given thatv1 6= 0, process〈r〉b

proceeds by choosing the else clause, hence(νb)(〈r〉b|b〈v1,v2, . . . ,vk, r〉|r(x).0)
τ
−→

∗ r〈n〉
−−→.

(⇐): By contradiction, suppose thatG = (νb)(〈 f 〉b|b〈ṽ, r〉|r(m).0)
τ
−→∗G′ r〈n〉

−−→ and f (ṽ) = n′ 6= n. By

(⇒) we have that(νb)(〈 f 〉b|b〈ṽ, r〉|r(m).0)
τ
−→∗G′′ r〈n′〉

−−→. Given thatr is responsive, by Proposi-
tion F.1,r is not used as subject of the communication in both sequencesof reductions toG′ and
G′′. By confluence (Corollary F.1) we have thatG′ τ

−→∗ ≡Q andG′′ τ
−→∗ ≡Q, in both cases without

usingr as subject of the communication; hence, again by Corollary F.1, Q
r〈n〉
−−→ andQ

r〈n′〉
−−→. By

Theorem 1 (subject reduction)Γ;∆ ⊢1 P impliesΓ′;∆′ ⊢1 Q for suitableΓ′ and∆′. r is responsive
andr ∈ fn(Q), thus it cannot be used twice inQ, (T-PAR); hencen′ = n.

41

2

G Proofs of Theorem 4 and Theorem 5

In this section we prove that the subject reduction theorem is satisfied by type system⊢2 and the interme-
diate results needed for proving Theorem 5 (type soundness for system⊢2). Firstly we introduce some
preliminary results.

Proposition G.1 (substitution). SupposeΓ;∆,xt ⊢2 P, with t 6= p,n and x,b : T, then

1. b /∈ ∆ and bm /∈ Γ imply Γ;∆,bt ⊢2 P[b/x];

2. bt ∈ ∆, bm /∈ Γ andT 6= S[ρ,k], implyΓ;∆ ⊢2 P[b/x].

PROOF: In both cases the proof is straightforward by induction on the derivation ofΓ;∆,xt ⊢2 P. The
additional constraints onb and t ensure that, in caseP is a parallel composition, the premise of rule
(T+-PAR) are still satisfied after substitution. 2

Lemma G.1. P≡ R andΓ;∆ ⊢2 P implyΓ;∆ ⊢2 R.

PROOF: The proof is straightforward by induction on the derivation of P≡ Q. 2

Proposition G.2. Γ;∆ ⊢2 P implies:

1. if P
a(c)
−−→ P′, with a : TU and c: T then

(a) if c /∈ ∆ and cm /∈ Γ thenΓ⊖+ ({a}\ in(P′));∆,ct ⊢2 P′ with t 6= n,p;

(b) if ct ∈ ∆, cm /∈ Γ, with t 6= n,p andT 6= S[ρ,k], thenΓ⊖+ ({a}\ in(P′));∆ ⊢2 P′;

2. if P
a〈b〉
−−→ P′ thenΓ;∆ ⊖+ ({a,b}\on(P′)) ⊢2 P′;

3. if P
a(b)
−−→P′ then eitherΓ;∆⊖+ ({a}\on(P′)),b⊢2 P′ and b: I or Γ,b;(∆,b)⊖+ ({a,b}\on(P′))⊢2

P′ and b: T 6= I.

PROOF: The proof proceeds by induction on the derivation ofP
µ
−→ P′. In each case we distinguish the

last transition rule applied. Omitted cases can be easily proved by applying the inductive hypothesis.

1. (IN): a(b).P
a(c)
−−→ P[c/b]. By the premise of (T+-INP) andΓ,at ′′ ;∆ ⊢2 a(b).P we geta : T[u,k] with

u 6= ω, b : T andΓ;∆,bt ⊢2 P with t 6= n,p.

Supposecm /∈Γ andc /∈∆. By c : T and by Proposition G.1 (1) (substitution),Γ;∆,ct ⊢2 P[c/b]
with t 6= n,p (note thatΓ = (Γ,a)⊖+ ({a}\ in(P[c/b])) becausea /∈ in(P[c/b]) by (T+-INP)).

Supposecm /∈ Γ, ct ′ ∈ ∆, with t ′ 6= n,p, andT 6= S[ρ,k]. Thus, the capabilitiest and t ′ are
univocally determined byT (if T = S[u,k] then if u = ω thent = t ′ = − and if u = ρ+ then
t = t ′ = m). By b,c : T, t = t ′ and, by Proposition G.1 (2) (substitution),Γ;∆ ⊢2 P[c/b].

(REP): !a(b).P
a(c)
−−→!a(b).P|P[c/b]. Supposea +-responsive, ifa is anω-receptive name the proof

proceeds similarly.

By the premise of (T+-REPP) andΓ,ap;∆ ⊢2!a(b).P, we geta : T[ρ+,k], b : T, ∆ρ = ∆p = Γρ =
Γs = Γω = Γp = /0 andΓ;∆,bt ⊢2 P with t 6= n,p.

42

Supposecm /∈Γ andc /∈∆. By c : T and by Proposition G.1 (1) (substitution),Γ;∆,ct ⊢2 P[c/b]
with t 6= n,p. Rule (T+-PAR) can be applied for deducingΓ,ap;∆,ct ⊢2!a(b).P |P[c/b] (note
thatΓ,ap = (Γ,ap)⊖+ ({a}\ in(!a(b).P |P[c/b]))).

Supposecm /∈ Γ and ct ′ ∈ ∆ with t ′ 6= n,p and T 6= S[ρ,k]. As already seen for rule (IN),
t = t ′ because both are univocally determined byT. By c : T, t = t ′ and, by Proposi-
tion G.1 (2) (substitution),Γ;∆ ⊢2 P[c/b]. Rule (T+-PAR) can be applied for deducing
Γ,ap;∆ ⊢2!a(b).P |P[c/b].

Note that in case (PAR1) the premise of the rule are guaranteed by the additional constraintst 6= n,p
andcm /∈ Γ.

2. (OUT): a〈b〉
a〈b〉
−−→ 0; by the premise of (T+-OUT) and /0;∆,at ,bt ′ ⊢2 a〈b〉, we get∆ρ = ∆ρ+

= /0;
hence, by (T+-NIL), /0;(∆,at ,bt ′)⊖+ {a,b} ⊢2 0;

(OUTP): !a〈b〉
a〈b〉
−−→!a〈b〉; and /0;∆,ap,b− ⊢2!a〈b〉 ((∆,ap,b−) ⊖+ ({a,b} \ on(!a〈b〉)) =

(∆,ap,b−)).

3. (OPEN): by (νb)P
a(b)
−−→ P′ and the premise of the rule, we getP

a〈b〉
−−→ P′. Suppose (T+-RES) is

the last rule applied in the derivation ofΓ;∆ ⊢2 (νb)P. By the premise of the rule,b : TU and
Γ,bt ;∆,bt ′ ⊢2 P. Moreover, by Proposition G.2 (2),Γ,bt ;(∆,bt ′)⊖+ ({a,b}\on(P′)) ⊢2 P′.

If (T +-RES-I) is the last applied thenb : I and fromΓ;∆,b ⊢2 P and Proposition G.2 (2),
Γ;(∆,b)⊖+ ({a,b}\on(P′)) ⊢2 P′.

Note that it cannot beb : ⊥ becauseb∈ on(P).

2

Lemma G.2. SupposeΓ;∆ ⊢2 P. P
a〈b〉
−−→ P′ and b responsive name imply that b/∈ on(P′).

PROOF: The proof is straightforward by induction on the derivation of Γ;∆ ⊢2 P. 2

Theorem G.1 (Theorem 4).Γ;∆ ⊢2 P and P
[a]
−→ P′ implyΓ′;∆′ ⊢2 P′, with Γ′ = Γ⊖+ ({a}\ in(P′)) and

∆′ = ∆ ⊖+ ({a}\on(P′)).

PROOF: The proof proceeds by induction on the derivation ofP
[a]
−→ P′; we distinguish the last transition

rule applied:

(COM1): by P|R
[a]
−→ P′|R′ and the premise of the rule,P

a〈b〉
−−→ P′ andR

a(b)
−−→ R′. By Γ;∆ ⊢2 P|R and

(T+-PAR), Γ = ΓP∪ΓR, ∆ = ∆P∪∆R, ΓP;∆P ⊢2 P, ΓR;∆R ⊢2 R, Γℓ
P∩Γℓ

R = /0 for ℓ = ρ,s,p and
∆ℓ′

P ∩∆ℓ′
R = /0 for ℓ′ = ρ,p. Moreover,Γm ∩∆m = /0 andΓp ∩∆p = /0.

By P
a〈b〉
−−→ P′, ΓP;∆P ⊢2 P and Proposition G.2 (2),ΓP;∆P ⊖+ ({a,b}\on(P′)) ⊢2 P′. bt ∈ ∆P with

t 6= n,p (becauseb is used as object of an output and because of (T+-OUT), (T+-OUTP)), thus
eithert = − or t = m and byΓm ∩∆m = /0 we have that ift = m thenbm /∈ Γ.

Supposeb /∈ ∆R. By R
a(b)
−−→ R′, ΓR;∆R ⊢2 R, bm /∈ ΓR ⊆ Γ and Proposition G.2 (1),ΓR⊖+ ({a}\

in(R′));∆R,bt ′ ⊢2 R′ with t ′ 6= n,p.

Let beΓ′
P = ΓP, Γ′

R = ΓR⊖+ ({a}\ in(R′)), ∆′
P = ∆P ⊖+ ({a,b}\on(P′)) (by Lemma G.2 ifb is

a responsive name thenb /∈ on(P′)) and∆′
R = ∆R,bt ′ . Note thatt = t ′ because both are different

from n andp, hence univocally determined by the type ofb (that is eithert = t ′ =− or t = t ′ = m).

43

The premise of rule (T+-PAR) is satisfied, henceΓ′;∆′ ⊢2 P′|R′ with Γ′ = Γ′
P∪Γ′

R = Γ⊖+ ({a}\
in(P′|R′)) and∆′ = ∆ ⊖+ ({a}\on(P′|R′)).

Similar proof if bt ∈ ∆R. Note that it cannot bebt ′ ∈ ∆R with t 6= t ′ because otherwise∆R∪∆P

would not be defined;

(CLOSE1): the proof proceeds similarly. Note that in this case it must beb /∈ ∆R becauseb is bound in
P;

(RES), (RES-ρ), (PAR1): the proof is straightforward by inductive hypothesis.

2

We now prove the intermediate results needed for proving theresponsiveness theorem. Firstly, we
show that each name carrying (+-)responsive objects has level greather than the carried object’s.

Lemma G.3. Suppose P is(Γ;∆)-strongly balanced anda〈b〉 ∈ O(P), with b (+-)responsive, then
lev(a) > lev(b).

PROOF: P (Γ;∆)-strongly balanced imply thatΓρ = ∆ρ, ∆ω ⊆ Γω, Γρ+
⊆ ∆ρ+

and (∆ρ+
)
†
⊆ (Γρ+

)
†

(similar comments for bound +-responsive names). Hence,a is used as input subject inP.
Suppose the (possibly guarded) subprocess that usesa as subject of an input inP is (!)a(x).R. By

well-typedness ofP, lev(b) = lev(x). From (T+-NIL), (T+-OUT), (T+-OUTP) and (T+-PAR), x is used
in R in output either as subject or object. Moreover, this outputcannot be guarded by anω-receptive
input, (T+-REP).

First of all, we prove thatP (Γ;∆)-strongly balanced implies that each name inP carrying
(+-)responsive names cannot have level equal to 0.

Considera and, by contradiction, suppose lev(a) = 0. By well typedness ofP, the subprocess
(!)a(x).R is well-typed andΓ′;∆′,xt ⊢2 R, with t 6= n,p, for suitableΓ′ and ∆′ extendingΓ \ {a} and
∆ with some names in bn(P). Moreover, by the typing rules for input,∀c∈ os(R)∪ is(R) it holds that
lev(c) < lev(a). SupposeR= 0, by rule (T+-NIL), Rwouldn’t be well typed becausex is (+-)responsive:
contradiction. If eitherR= (!)d(y).R′ or R= d〈e〉, it would be lev(d) < lev(a) = 0, and this is not pos-
sible because levels are positive integers: contradiction. Similarly, it cannot be thatR = Q|Q′ and
R= (νt)Q, with Q,Q′ ::= (!)d(y).R′

∣∣d〈e〉. Hence lev(a) > 0.
We continue by proving that lev(b) < lev(a); the proof proceeds by induction on lev(a).

lev(a) = 1: by (T+-INP), (T+-REP) and (T+-REPP), for eachc∈ (os(R)∪ is(R)) it holds that lev(c) <
lev(a), hence lev(c) = 0. The output action involvingxcannot be guarded by an input (because oth-
erwise the subject of the output should have a negative level, by typing rules for input). Moreover,x
is the subject of such an action, because we have already shown that, ifa〈b〉 with b (+-)responsive,
then lev(a) > 0. In conclusion, lev(x) = 0 < lev(a).

lev(a) = n: Supposex is used as subject and the output is not guarded by a replicated input (x∈ os(R)).
By (T+-INP), (T+-REP) and (T+-REPP), for eachc∈ (os(R)∪ is(R)) it holds that lev(c) < lev(a),
that is lev(b) = lev(x) < lev(a). Suppose the output is guarded by a replicated input, let’s say on
d (which is +-responsive becausex is free inR). d ∈ is(R) and lev(d) < lev(a). By (T+-REPP),
lev(b) = lev(x) < lev(d) < lev(a).

Supposex is used as object of an output action, let’s saye〈x〉. As previously seen, we have
lev(e) < lev(a), and by applying the inductive hypothesis lev(b) = lev(x) < lev(e) < lev(a).

44

2

The following proposition ensures that each strongly balanced process always has an enabled reduc-
tion involving a (+-)responsive name.

Proposition G.3 (Proposition 5). Suppose P is(Γ;∆)-strongly balanced with∆ρ ∪ Γρ+
6= /0. Then

P
τ〈a,b〉
−−−→ with either a or b (+-)responsive.

PROOF: Let c be the (either free or bound) (+-)responsive name with highest level appearing as input
subject inP anomg those not-guarded by a replicated input on anω-receptive name. SinceP is (Γ;∆)-
strongly balanced,c is used in output inP.

By contradiction, suppose thatP cannot reduce usingc as subject or object of the communication
and consider the normal form (Lemma 2) ofP≡ (νd̃)(P1| · · · |Pn).

If P cannot reduce usingc as subject or object of the communication then either every output action
(!)a〈b〉 involving c is guarded, or each corresponding input(!)a(x).R is guarded.

Suppose that all outputs(!)a〈b〉, with a or b equal toc, are guarded. By the premise of rule
(T+-REP), none of them can be guarded by a replicated input on anω-receptive name. By rules
(T+-INP) and (T+-REPP), (!)a〈b〉 can be guarded by an input on a (+-)responsive name, sayd, only
if lev(d) > lev(a) ≥ lev(c) (Lemma G.3). But this is a contradiction, becausec has the highest level
among the (+-)responsive (free or bound) names used in inputin P. Hence none of the output(!)a〈b〉
involving c is guarded; that is for each of them there is aj ∈ {1, . . . ,n} such thatPj = (!)a〈b〉.

Let us now look at the inputs.
Consider anya 6= c for which there is aPj = (!)a〈c〉 for some j ∈ {1, . . . ,n}. Sincea carries the

(+-)responsive namec, by definition of strong balancing,a must occur in input position inP. Assume
this input is not available because it is guarded. Now,a cannot be anω-receptive name because oth-
erwise each input ona should be not-guarded, by (T+-INP), (T+-REP) and (T+-REPP). Moreover,a
cannot be (+-)responsive because, by Lemma G.3, lev(a) > lev(c) andc has the highest level among the
(+-)responsive free or bound names used in input inP.

Supposea = c and that the input onc, sayc(x), is guarded. As previously seen, by rule (T+-REP),
c(x) cannot be guarded by a replicated input on anω-receptive name, while, by rules (T+-INP) and
(T+-REPP), c(x) can be guarded by an input on a (+-)responsive name, sayd. In the latter case, from
well-typedness ofP, it would follow that lev(d) > lev(c) (rules (T+-INP) and (T+-REPP)): butc has the
highest level among the (+-)responsive free or bound names used in input inP.

In both cases we have a contradiction. In conclusion, there are Pi andPj such thatPi = (!)a〈b〉
a〈b〉
−−→

andPj = (!)a(x).P′
j

a(b)
−−→, with eithera or b equal toc; henceP

τ〈a,b〉
−−−→ with eithera or b equal toc. 2

Lemma G.4. Suppose x,b : T. wt+(P) = wt+(P[b/x]).

PROOF: By definition of wt+(·). 2

Lemma G.5. SupposeΓ;∆ ⊢2 P, then:

1. P
a(b)
−−→ P′, with either a or b (+-)responsive name, a: TU and b: T, implies

(a) wt+(P′) ≺ wt+(P) if the input on a is not replicated;

(b) wt+(P′) ≺ wt+(P)+0lev(a) if the input on a is replicated;

2. P
a〈b〉
−−→ P′ (P

a(b)
−−→ P′) implies

45

(a) wt+(P′) � wt+(P)−0lev(a) if the output on a is not replicated;

(b) wt+(P′) = wt+(P) if the output on a is replicated.

PROOF: In each case the proof proceeds by induction on the derivation of P
µ
−→ P′; we consider the last

transition rule applied.

1. (a),(IN): a(x).P
a(b)
−−→P[b/x]; wt+(a(x).P) = wt+(P)+0lev(a) and wt+(P) = wt+(P[b/x]) (by x,b : T

and Lemma G.4). Thus, wt+(P[b/x]) ≺ wt+(P)+0lev(a) = wt+(a(x).P);

(b),(REP): !a(x).P
a(b)
−−→!a(x).P|P[b/x]; wt+(!a(x).P) = 0 and wt+(!a(x).P|P[b/x]) ≺ 0lev(a) =

wt+(!a(x).P)+0lev(a) because of the definition of wt+(·) and the premise of rule (T+-REPP)
or (T+-REP) (∀c∈ (os(P)∪ is(P)) : lev(c) < lev(a)).

2. (a):

(OUT): a〈b〉
a〈b〉
−−→ 0, wt+(a〈b〉) = 0lev(a) and wt+(0) = 0 = wt+(a〈b〉)−0lev(a);

(OPEN): (νb)P
a(b)
−−→ P′ implies P

a〈b〉
−−→ P′; by inductive hypothesis wt+(P′) � wt+(P)−

0lev(a) = wt+((νb)P)−0lev(a);

(b):

(OUTP): !a〈b〉
a〈b〉
−−→!a〈b〉;

(OPEN): (νb)P
a(b)
−−→ P′ impliesP

a〈b〉
−−→ P′ and by inductive hypothesis wt+(P′) = wt+(P) =

wt+((νb)P).

Omitted cases can be easily proved by applying the inductivehypothesis. 2

The following proposition is the analog of Proposition 2 adapted to system⊢2 and show that wt+(·)
is a good measure because decreases after each (+-)responsive reduction.

Proposition G.4 (Proposition 4). Γ;∆ ⊢2 P and P
τ〈a,b〉
−−−→ P′ with either a or b (+-)responsive, implies

wt+(P′) ≺ wt+(P).

PROOF: By induction on the derivation ofP
τ〈a,b〉
−−−→ P′, the proof proceeds by distinguishing the last

transition rule applied:

(COM1): by P|R
τ〈a,b〉
−−−→P′|R′ and the premise of the rule, we getP

a〈b〉
−−→P′ andR

a(b)
−−→R′. By Γ;∆ ⊢2 P|R

and the premise of (T+-PAR), Γ1;∆1 ⊢2 P and Γ2;∆2 ⊢2 R for suitableΓ1,Γ2,∆1 and ∆2. We
consider the following cases:

both input and output are non-replicated: by Lemma G.5 (1a,2a), wt+(R′) ≺ wt+(R) and
wt+(P′) � wt+(P)− 0lev(a); that is wt+(P′|R′) = wt+(P′)+ wt+(R′) ≺ wt+(P)+ wt+(R) =
wt+(P|R);

the input is replicated: by Lemma G.5 (1b,2a), wt+(R′) ≺ wt+(R) + 0lev(a) and wt+(P′) �
wt+(P)−0lev(a); that is wt+(P′|R′) = wt+(P′)+wt+(R′) ≺ wt+(P)+wt+(R) = wt+(P|R);

the output is replicated: by Lemma G.5 (1a,2b), wt+(R′) ≺ wt+(R) and wt+(P′) = wt+(P);
hence, wt+(P′|R′) = wt+(P′)+wt+(R′) ≺ wt+(P)+wt+(R) = wt+(P|R);

(CLOSE1): in this case the proof proceeds in a similar way.

46

Omitted cases can be easily proved by applying the inductivehypothesis. 2

The following lemma states that strong balancing is always preserved by responsive andω-receptive
reductions, while it can be violated by +-responsive reductions, but only if a replicated input is involved.
Moreover, strong balancing can be re-established by erasing the subprocess guarded by this input, with-
out affecting well-typedness.

Lemma G.6 (Lemma 3). Suppose P is(Γ;∆)-strongly balanced and P
τ〈a,b〉
−−−→ P′ with P′ non strongly

balanced. AssumeΓ′;∆′ ⊢2 P′, with Γ′,∆′ as given by Theorem 4. Then for some R,R′,b andd̃:

1. a∈ (Γ′ρ+

\∆′ρ+

)∪ (r+i (P′)\ r+o (P′));

2. P≡ (νd̃)(!a(x).R|a〈b〉 |R′) and a/∈ fn(R,b,R′);

3. P′ ≡ (νd̃)(!a(x).R|R[b/x] |R′) and a/∈ fn(R[b/x],R′);

4. P′′ = (νd̃)(R[b/x] |R′) is strongly balanced.

PROOF: By Theorem 4 (subject reduction) we haveΓ′ = Γ ⊖+ ({a} \ in(P′)) and ∆′ = ∆ ⊖+ ({a} \
on(P′)).

1. P′ non strongly balanced means that Definition 8 is not satisfied, hence at least one of its three
points does not hold.

It cannot beΓ′ρ 6= ∆′ρ because of the linearity of responsive names (rules (T+-PAR), (T+-INP),
(T+-REP) and (T+-REPP)) andΓρ = ∆ρ.

It cannot be∆′ω 6⊆ Γ′ω becauseω-receptive names are used as subject of replicated inputs (rules
(T+-REP), (T+-INP) and (T+-REPP)), which cannot disappear, and∆ω ⊆ Γω.

Similarly, it cannot be neither(∆ρ+
)
†
6⊆ (Γρ+

)
†

nor (r+o (P))
†
6⊆ (r+i (P))

†, because +-responsive
names carrying (+)-responsive objects are used as subject of replicated inputs (by (T+-INP)),
which cannot disappear.

In conclusion,a∈ (Γ′ρ+

\∆′ρ+

)∪ (r+i (P′)\ r+o (P′)).

2. We firstly prove thata is used (only) as subject of a replicated input inP. By contradiction, assume
a is used as subject of non-replicated inputs inP. Then there are at least two of such inputs inP,
because otherwise it cannot bea ∈ (Γ′ρ+

\ ∆′ρ+

)∪ (r+i (P′) \ r+o (P′)). Thereforea should have
capabilitym in Γ. Hence, by strong balancing and rule (T+-PAR) (conditionΓm ∩∆m = /0) a has
to be used as subject of a replicated output (which cannot disappear), that isa∈ ∆′ρ+

∪ r+o (P′) and
this is not the case. Thus,a is used as subject of a replicated input inP, hence inP′. By (T+-PAR)

and (T+-REPP), a is used once in input subject position. Moreover,P
[a]
−→ implies that such input

cannot be guarded. Similarly, there should be a unique simple not-guarded outputa〈b〉 in P, with
b 6= a (recall that we do not consider recursive types, hence channels cannot carry themselves).

Therefore, P ≡ (νd̃)(!a(x).R|a〈b〉 |R′) and by Lemma G.1 (T+-PAR) and (T+-REPP) a /∈
fn(R,b,R′) (a /∈ fn(R) is implied by the premise of (T+-REPP) and Lemma G.3).

3. By point (2) and the reductionP
τ〈a,b〉
−−−→ P′.

47

4. By points (1,2,3) anda /∈ on(P′), we getΓ;∆ ⊖+ {a} ⊢2 P′ ≡ (νd̃)(!a(x).R|R[b/x] |R′).

Supposea∈ fn(P) (hencea∈ fn(P′)). By the typing rules for restriction (suppose for simplicity
d̃ does not contain inert names)Γ, d̃;∆ ⊖+ {a}, d̃ ⊢2!a(x).R|R[b/x] |R′. By (T+-PAR), Γ, d̃ = Γ1∪
{a}∪Γ2 and∆⊖+{a}, d̃ = ∆1∪∆2 with Γ1,a;∆1 ⊢2!a(x).RandΓ2;∆2 ⊢2 R[b/x] |R′. Moreover, by
the premise of (T+-REPP), it should beΓ1 ⊆ Γ2 and∆1 ⊆ ∆2, henceΓ2 = Γ ⊖+ {a}, d̃ and∆2 =
∆⊖+{a}, d̃. Again by the typing rules for restriction,Γ⊖+{a};∆⊖+ {a} ⊢2 (νd̃)(R[b/x] |R′) = P′′

andP′′ is strongly balanced.

The proof proceeds similarly in casea∈ d̃. Note that in this caseΓ;∆ ⊢2 (νd̃)(R[b/x] |R′) follows
by applying (T+-WEAK-Γ) and (T+-WEAK-∆).

2

H Proof of Theorem 6

In this section, the encoding ofORC introduced in Section 9.2 is shown to be correct. In what follows,

given anORC term f , we write fv(f) for the set of free variables inf andP
µ̂
−→ P′ stands forP

µ
−→ P′, if

µ 6= τ and for eitherP
τ
−→P′ or P= P′, if µ= τ. In the following, we first recall the definition ofexpansion

preorder, &, and ofstrong bisimulation relation, ∼.

Definition H.1 (expansion preorder). A relationR ⊆ P ×P is an expansion preorder if SR P implies:

1. whenever S
µ
−→ S′, there exists P′ s.t. P

µ̂
−→ P′ and S′R P′;

2. whenever P
µ
−→ P′, there exists S′ s.t. S

µ
=⇒ S′ and S′R P′.

We say that S expands P, written S& P, if SR P for some expansionR .

Definition H.2 (strong bisimulation). A symmetric relationR ⊆ P ×P is a strong bisimulation if SR P
implies that whenever S

µ
−→ S′, there exists P′ such that P

µ
−→ P′ and S′R P′. We say that S is strongly

bisimilar to P, written S∼ P, if SR P for some strong bisimulationR .

The following lemmas introduce some properties of∼ and& that are useful for proving the correct-
ness of the encoding. The (omitted) proofs rely on asynchrony and input locality of the calculus.

Lemma H.1.

1. (νx)(!x〈c〉 |P1 |P2) ∼ (νx)(!x〈c〉 |P1) |(νx)(!x〈c〉 |P2) if x /∈ on(P1,P2);

2. (νa)(!a(y).P |P1 |P2) ∼ (νa)(!a(y).P |P1) |(νa)(!a(y).P |P2) if a /∈ in(P1,P2);

3. (νx)(!x〈c〉 | !a(y).P) ∼!a(y).(νx)(!x〈c〉 |P) if a,y 6= x;

4. (νx)(!x(z).P′ | !a(y).P) ∼!a(y).(νx)(!x(z).P′ |P) if a,y 6= x and a,y /∈ fn(P′).

Lemma H.2. P′ & P implies:

1. P′ |R& P|R;

2. (νd̃)P′ & (νd̃)P;

3. α.P′ & α.P with eitherα =!a(y) or α = a(y).

48

In the following proofs, recall that given anORC term f , in [[f]]s all site and expression names are
used only in output subject position and all variables only in input subject position. Moreover, iff is a
closed term[[f]]s can interact with the environment only by calling sites or expressions or by publishing
(outputting) ons.

Proposition H.1. (νd̃)(D |(νx)(!x〈c〉 | [[g]]s)) & (νd̃)(D | [[g[c/x]]]s).

PROOF: The proof is straightforward by induction on the structureof g. In casesg ::=
let(p)

∣∣M(p)
∣∣E(p) we get(νd̃)(D |(νx)(!x〈c〉 | [[g]]s)) ∼ (νd̃)(D | [[g[c/x]]]s) becausex /∈ fn([[g]]s). In

casesg ::= let(x)
∣∣E(x)

∣∣M(x) the proof proceeds by defining a suitable relationR containing the pair
〈(νd̃)(D |(νx)(!x〈c〉 | [[g]]s)) ; (νd̃)(D | [[g[c/x]]]s)〉 and by showing thatR is an expansion preoder up to
∼. In casesg ::= (f | f ′)

∣∣ f > y > f ′
∣∣ f wherey :∈ f ′ the proof proceeds by performing some algebraic

manipulation. The most interesting cases are described below.

g = f > y > f ′:

(νd̃)
(
D |(νx)(!x〈c〉 | [[f > y > f ′]]s)

)

= (by definition of[[f]]s)

(νd̃)
(

D |(νx)
(
!x〈c〉 |(νw)([[f]]w | !w(z).(νy)(!y〈z〉 | [[f ′]]s))

))

∼ (by Lemma H.1 (1,2))

(νw)
(
(νd̃)

(
D |(νx)(!x〈c〉|[[f]]w)

)
|(νd̃)

(
D |(νx)(!x〈c〉 | !w(z).(νy)(!y〈z〉|[[f ′]]s))

))

∼ (by Lemma H.1 (3,4))

(νw)
(
(νd̃)

(
D |(νx)(!x〈c〉 | [[f]]w)

)
| !w(z).(νd̃,y)

(
!y〈z〉 |D |(νx)(!x〈c〉 | [[f ′]]s)

))

& (by inductive hypothesis and Lemma H.2)

(νw)
(
(νd̃)(D | [[f [c/x]]]w) | !w(z).(νd̃,y)(!y〈z〉 |D | [[f ′[c/x]]]s)

)

∼ (by Lemma H.1 (2))

(νd̃)(D |(νw)([[f [c/x]]]w | !w(z).(νy)(!y〈z〉 | [[f ′[c/x]]]s)))

= (by definition of[[f]]s)

(νd̃)(D | [[(f > y > f ′)[c/x]]]s .

49

g = f wherey :∈ f ′:

(νd̃)
(
D |(νx)(!x〈c〉 | [[f wherey :∈ f ′]]s)

)

= (by definition of[[f]]s)

(νd̃)
(

D |(νx)
(
!x〈c〉 |(νw)([[f ′]]w |(νy)(w(z).!y〈z〉 | [[f]]s))

))

∼ (by Lemma H.1 (1,2))

(νw)
(
(νd̃)

(
D |(νx)(!x〈c〉 | [[f ′]]w)

)
|(νd̃)

(
D |(νx,y)(!x〈c〉 |w(z).!y〈z〉 | [[f]]s)

))

∼ (fn(w(z).!y〈z〉)∩{d̃,x} = /0)

(νw)
(
(νd̃)

(
D |(νx)(!x〈c〉|[[f ′]]w)

)
|(νy)

(
w(z).!y〈z〉 |(νd̃)(D |(νx)(!x〈c〉|[[f]]s))

))

& (by inductive hp. and Lemma H.2 (1,2))

(νw)
(
(νd̃)

(
D | [[f ′[c/x]]]w |(νy)(w(z).!y〈z〉 |(νd̃)(D | [[f [c/x]]]s))

))

∼ (by Lemma H.1 (2))

(νd̃)
(

D |(νw)([[f ′[c/x]]]w |(νy)(w(z).!y〈z〉 | [[f [c/x]]]s))
)

= (by definition of[[f]]s)

(νd̃)(D | [[(f wherey :∈ f ′)[c/x]]]s) .

2

Proposition H.2. Suppose D is a set of function and site definitions.(νd̃,y)(D|[[f]]y|P) & (νd̃)(D|P) if
y /∈ fn(P), d̃ = in(D), d̃∩ in(P) = /0 and f is closed.

PROOF: By Lemma H.1 (2) (νd̃,y)(D|[[f]]y|P) ∼ (νd̃,y)(D|[[f]]y) |(νd̃)(D|P). Moreover,
(νd̃,y)(D|[[f]]y) & 0 because fn([[f]]y) ⊆ {d̃,y} and, by definition of[[·]]y, namey cannot be extruded.
Hence, by Lemma H.2 (2),(νd̃,y)(D|[[f]]y|P) & (νd̃)(D|P). 2

The following proposition is a first step towards proving thecorrectness of the encoding.
In what followsλ represents a genericORC’s label and can be either !c or τ. We define[[λ]]s and

[[µ]]−1 as follows:[[!c]]s = s〈c〉, [[τ]]s = τ, [[s〈c〉]]−1 =!c and[[τ]]−1 = τ.

Proposition H.3. Let f be a closedORC term.

1. f
λ
→֒ g implies(νd̃)(D | [[f]]s)

[[λ]]s
−−→& (νd̃)(D | [[g]]s);

2. (νd̃)(D | [[f]]s)
µ
−→ (νd̃)(D |P) implies f

[[µ]]−1

→֒ g, with (νd̃)(D |P) & (νd̃)(D | [[g]]s);

3. f
!c
→֒ implies[[f]]s

s〈c〉
−−→;

4. [[f]]s
s〈c〉
−−→ implies f

!c
→֒.

PROOF:

1. This case is straightforward by induction on the derivation of f
λ
→֒ g. The base cases are (PUB),

(SITE) and (DEF). In the other cases the result is obtained by applying the inductive hypothesis
and Lemma H.2. Moreover, in cases (SEQ2) and (WH2) also Proposition H.1 and H.2 are applied.

50

2. The proof proceeds by induction on the derivation of
µ
−→, by considering only closedORC terms.

The most interesting cases are sequential composition and asymmetric parallel composition. In
the other cases the proof proceeds by applying the inductivehypothesis and Lemma H.2.

[[f > x > g]]s: (νd̃)
(
D |(νy)([[f]]y | !y(z).(νx)(!x〈z〉 | [[g]]s))

) µ
−→ (νd̃)(D |P) implies

(νd̃)(D | [[f]]y)
µ′
−→ (νd̃)(D |P′). By induction, f

[[µ′]]−1

→֒ f ′ and(νd̃)(D |P′) & (νd̃)(D | [[f ′]]y).
We distinguish two cases depending onµ′:

µ′ 6= y〈c〉: in this case f
[[µ′]]−1

→֒ f ′ implies, by (SEQ1), f > x > g
[[µ′]]−1

→֒ f ′ >
x > g; moreover, (νd̃)(D |P) = (νd̃)

(
D |(νy)

(
P′ | !y(z).(νx)(!x〈z〉 | [[g]]s)

))
&

(νd̃)
(
D |(νy)

(
[[f ′]]y | !y(z).(νx)(!x〈z〉 | [[g]]s)

))
= (νd̃)(D | [[f ′ > x > g]]s) (Lemma H.2);

µ′ = y〈c〉: in this case, by induction,f
!c
→֒ f ′ and, by (SEQ2), f > x > g

τ
→֒ (f ′ > x >

g) |g[c/x]. By (νd̃)(D |P′) & (νd̃)(D | [[f ′]]y), Lemma H.2 and Proposition H.1:

(νd̃)(D |P)

= (νd̃)
(
D |(νy)

(
P′ | !y(z).(νx)(!x〈z〉 | [[g]]s) |(νx)(!x〈c〉 | [[g]]s)

))

& (νd̃)
(
D |(νy)

(
[[f ′]]y | !y(z).(νx)(!x〈z〉 | [[g]]s) |(νx)(!x〈c〉 | [[g]]s)

))

= (νd̃)(D | [[f ′ > x > g]]s |(νx)(!x〈c〉 | [[g]]s))

& (νd̃)(D | [[f ′ > x > g]]s | [[g[c/x]]]s) ;

[[f wherex :∈ g]]s: (νd̃)
(
D |(νy)

(
[[g]]y |(νx)(y(z).!x〈z〉 | [[f]]s)

)) µ
−→ (νd̃)(D |P); we distinguish the

following cases:

(νd̃)(D | [[g]]y)
µ
−→ (νd̃)(D |P′) with µ 6= y〈c〉: by applying the inductive hypothesis,g

[[µ]]−1

→֒
g′ and(νd̃)(D |P′) & (νd̃)(D | [[g′]]y).
Moreover, by Lemma H.2:

(νd̃)(D |P)

= (νd̃)
(
D |(νy)

(
P′ |(νx)(y(z).!x〈z〉 | [[f]]s)

))

& (νd̃)
(
D |(νy)

(
[[g′]]y |(νx)(y(z).!x〈z〉 | [[f]]s)

))

= (νd̃)(D | [[f wherex :∈ g′]]s)

andg
[[µ]]−1

→֒ g′ implies, by (WH1), f wherex :∈ g
[[µ]]−1

→֒ f wherex :∈ g′;

(νd̃)(D | [[f]]s)
µ
−→ (νd̃)(D |P′): in this case the proof proceeds in a similar way;

(νd̃)(D | [[g]]y)
y〈c〉
−−→ (νd̃)(D |P′): by induction, g

!c
→֒ g′, (νd̃)(D |P′) & (νd̃)(D | [[g′]]y) and

f wherex :∈ g
τ
→֒ f [c/x], by (WH2).

Moreover, (νd̃)(D |P) = (νd̃)
(
D |(νy)

(
P′ |(νx)(!x〈c〉 | [[f]]s)

))
&

(νd̃)
(
D |(νy)

(
[[g′]]y |(νx)(!x〈c〉 | [[f]]s)

))
& (νd̃)(D | [[f [c/x]]]s) by Proposition H.1

and Proposition H.2 (recall thatf is a closed term andy /∈ fn([[f]]s).)

3. By induction on transitions, we distinguish the following cases:

51

let(c)
!c
→֒: [[let(c)]]s = s〈c〉

s〈c〉
−−→;

f |g
!c
→֒: implies, by either (PAR1) or (PAR2), either f

!c
→֒ or g

!c
→֒; by induction either[[f]]s

s〈c〉
−−→

or [[g]]s
s〈c〉
−−→ and[[f |g]]s = [[f]]s | [[g]]s

s〈c〉
−−→;

gwherex :∈ f
!c
→֒: implies, (WH3), g

!c
→֒, and by induction[[g]]s

s〈c〉
−−→. [[g where x :∈ f]]s =

(νy)
(
[[f]]y |(νx)(y(z).!x〈z〉 | [[g]]s)

)
and(νy)

(
[[f]]y |(νx)(y(z).!x〈z〉 | [[g]]s)

) s〈c〉
−−→.

4. We distinguish the following cases:

[[let(c)]]s
s〈c〉
−−→: [[let(c)]]s = s〈c〉

s〈c〉
−−→ andlet(c)

!c
→֒, (PUB);

[[f |g]]s
s〈c〉
−−→: [[f |g]]s

s〈c〉
−−→ implies either[[f]]s

s〈c〉
−−→ or [[g]]s

s〈c〉
−−→. By induction, eitherf

!c
→֒ or g

!c
→֒,

hencef |g
!c
→֒, by either (PAR1) or (PAR2);

[[gwherex :∈ f]]s
s〈c〉
−−→: (νy)

(
[[f]]y |(νx)(y(z).!x〈z〉 | [[g]]s)

) s〈c〉
−−→ implies[[g]]s

s〈c〉
−−→ and by induction

g
!c
→֒, that isgwherex :∈ f

!c
→֒, (WH3).

2

Proposition H.4. Consider anORC term f and suppose Df well typed. If fv(f) = x̃, then F=
(νd̃, x̃)([[f]]s | ∏x∈x̃!x〈c〉 | D f | !s(x).0), with fn(F) = {s}, c inert andd̃, x̃ and s +-responsive names, is
strongly balanced.

PROOF: Well typedness of[[f]]s is easy to prove by induction on the structure off . In particularΓ;∆ ⊢2

[[f]]s, for suitableΓ and∆ such thatΓρ = /0, dom(Γ) = fv(f), each name inΓ is annotated with capability
m and dom(∆) contains onlys and expression and site names, annotated withm. Hence well-typedness
of F is ensured. Balancing ofF may be proved by induction on the structure off .

As an example, we consider the casef = g2wherey :∈ g1. In this case

F = (νx̃, d̃)
(
(νr)

(
[[g1]]r |(νy)(r(z).!y〈z〉|[[g2]]s)

)
| ∏

x∈x̃
!x〈c〉 | D f | !s(x)

)

wherex̃ = x̃1∪ x̃2, with x̃1 = fv(g1) andx̃2 = fv(g2)\{y}, andd̃ = d̃1∪ d̃2, with d̃1 andd̃2 containing all
names corresponding to sites and expressions called respectively by g1 andg2 (henceD f ∼ D1|D2).

By induction, G1 = (νd̃1, x̃1)([[g1]]r | ∏x∈x̃1
!x〈c〉 | D1 | !r(z).0) and G2 =

(νd̃2, x̃2,y)([[g2]]s | ∏x∈x̃2
!x〈c〉 | !y〈c〉 | D2 | !s(x).0) are strongly balanced.

Note that inG1 channelr is +-responsive and does not carry (+-)responsive names, hence if we
replace !r(z).0 with r(z).0 then the resultingG′

1 is still strongly-balanced. Thus, given thatg1 andg2 can
share only sites, expression names and variables (which areused only in output – resp. input – in[[g1]]r
and[[g2]]s and replicated in input inD – resp. replicated in output in∏!x〈c〉):

G′
1|G2 ≡ (νd̃, x̃,y)

(
[[g1]]r | ∏

x∈x̃1

!x〈c〉 | D1 | D2 | r(z).0 | [[g2]]s | ∏
x∈x̃2

!x〈c〉 | !y〈c〉 | !s(x).0
) △

= G′.

Hence, given thatG1 and G2 are strongly balanced, the processG′ above is strongly balanced too.
Similarly, the processG defined below, obtained fromG′ by applying the scope extension structural
law to (νy) and by replacingD1 andD2 by D f in such a manner to eliminate possible duplicate of site
and expression definitions, is strongly balanced too:

52

G
△
= (νd̃, x̃)

(
(νy)

(
[[g1]]r | r(z).0 | !y〈c〉 | [[g2]]s

)
| ∏

x∈x̃
!x〈c〉 | D f | !s(x).0

)
.

Finally, the processF below, obtained by bounding namer and by replacingr(z).0 | !y〈c〉 with r(z).!y〈z〉,
is strongly balanced too. In fact, the balancing conditionsare not influenced by restricting and by prefix-
ing:

F
△
= (νd̃, x̃)

(
(νr)

(
[[g1]]r | (νy)(r(z).!y〈z〉 | [[g2]]s)

)
| ∏

x∈x̃
!x〈c〉 | D f | !s(x).0

)
.

2

Theorem H.1 (Theorem 6).Let f be a closedORC term and suppose Df is well typed.

1. [[f]]s is well-typed and F
△
= (νd̃)([[f]]s |D f | !s(x).0), with s andd̃ +-responsive, is strongly bal-

anced;

2. f
!c
=⇒ if and only if F

τ〈s,c〉
==⇒.

PROOF:

1. Well-typedness of[[f]]s and balancing ofF follow by Proposition H.4.

2. (⇒): f
!c
=⇒ means thatf

τ
→֒∗g

!c
→֒; by Proposition H.3 (1),f

τ
→֒ f ′ implies (νd̃)(D f | [[f]]s)

τ
−→

(νd̃)(D f |P′) & (νd̃)(D f | [[f ′]]s), f ′
τ
→֒ f ′′ implies (νd̃)(D f | [[f ′]]s)

τ
−→ (νd̃)(D f |P′′) &

(νd̃)(D f | [[f ′′]]s) and by the definition and the transitivity of&, (νd̃)(D f |P′)
τ
−→

(νd̃)(D f |P′′′) & (νd̃)(D f |[[f ′′]]s). This reasoning can be iterated for eachτ transition from f

to g. Thus, f
τ
→֒∗g implies (νd̃)(D f | [[f]]s)

τ
−→∗(νd̃)(D f |P) & (νd̃)(D f | [[g]]s) andg

!c
→֒ im-

plies, by Proposition H.3 (3),(νd̃)(D f | [[g]]s)
s〈c〉
−−→; thus by definition of&, (νd̃)(D f |P)

s〈c〉
==⇒

and(νd̃)(D f | [[f]]s | !s(x).0)
τ〈s,c〉
==⇒;

(⇐): in this case we can proceed similarly, the result follows by applying Proposition H.3 (2,4).

2

53

