
A Typed Calculus for Querying
Distributed XML Documents ?

Lucia Acciai1, Michele Boreale2, and Silvano Dal Zilio1

1 Laboratoire d’Informatique Fondamentale de Marseille (LIF),
CNRS and Université de Provence, France

2 Dipartimento di Sistemi e Informatica, Università di Firenze, Italy

Abstract. We study the problems related to querying large, distributed XML
documents. Our proposal takes the form of a new process calculus in which XML
data are processes that can be queried by means of concurrent pattern-matching
expressions. What we achieve is a functional, strongly-typed programming model
based on three main ingredients: an asynchronous process calculus that draws
features from π-calculus and concurrent-ML; a model where both documents and
expressions are represented as processes, and where evaluation is represented as a
parallel composition of the two; a static type system based on regular expression
types.

1 Introduction

There is by now little doubt that XML will succeed as a lingua franca of data inter-
change on the Web. As a matter of fact, XML is a building block in the development of
new models of concurrent applications, often referred to as Service-Oriented Architec-
ture (SOA), where computational resources are made available on a network as a set of
loosely-coupled, independent services.

The SOA model is characterized by the need to exchange and query XML docu-
ments. In this paper, we concentrate on the specific problems related to querying large,
distributed XML documents. This is the case, for example, of applications interacting
with distributed heterogeneous databases or that process data acquired dynamically,
such as those originating from arrays of sensors (in this case, we can assume that the
document is in effect infinite). For another example, consider the programs involved in
the maintenance of the big Web indexes used by search engines [9]. A typical example
is the computation of a reverse web-link graph, that is a list of web pages which contain
a link to a common target URL. Distribution, concurrency and dynamic acquisition of
data must be explicitly taken into account when designing an effective computational
model for this kind of applications.

We most particularly pay attention to the processing model needed in this situation.
Our proposal takes the form of a process calculus in which XML data are processes that
can be queried by means of concurrent pattern-matching expressions. In this model, the
? The first and third author are supported by the French government research grant ACI

TRALALA. The second author is supported by the EU within the FET-GC2 initiative, project
SENSORIA.

evaluation of patterns is distributed among locations, in the sense that the evaluation
of a pattern at a node triggers concurrent evaluation of sub-patterns at other nodes,
and actions can be carried out upon success or failure of (sub-)patterns. The calculus
also provides primitives for storing and aggregating the results of intermediate com-
putations and for orchestrating the evaluation of patterns. In this respect, we radically
depart from previous works on XML-centered process calculi, see e.g. [2,6,11], where
queries would be programmed as operations invoked on (servers hosting) Web Services,
and XML documents would be exchanged in messages. In contrast, we view queries as
code being dispatched to the locations “hosting” a document. This shift of view is mo-
tivated by our target application domain. In particular, our model is partly inspired by
the MapReduce paradigm described in [9], that is used to write programs to be executed
on Google’s large clusters of computers in a simple functional style. Continuing with
the “reverse web-link graph example” above (developed in Section 5), assume that the
documents of interest are cached on different, perhaps replicated, servers. A query that
accomplishes the aforementioned task would dispatch sub-queries to every server and
create a dedicated reference cell to aggregate the partial results from each server. Sub-
queries sift the local documents and transmit to the central reference cell sequences of
pages with a link to the target URL, so as to eventually produce the global reverse web-
link graph. To achieve reliability, sub-queries may have to report back periodically with
status updates while the “master query” may decide to abort or reinstate queries in case
of servers failure.

Another important feature of our model is the definition of a static type system
based on regular expression types, an approach that matches well with Document Type
Definitions (DTD) and other XML schema languages. What we achieve is a functional,
strongly-typed programming model for computing over distributed XML documents
based on three main ingredients: a semantics defined by an asynchronous process cal-
culus in the style of the π-calculus [16] and proposed semantics for concurrent-ML [10];
a model where documents and expressions are both represented as processes, and where
evaluation is represented as a parallel composition of the two; a type system based on
regular expression types (the soundness of the static semantics is proved via a subject
reduction property, Theorem 1). Each of these choices is motivated by a feature of the
problem: the study of service-oriented applications calls for including concurrency and
explicit locations; the need to manipulate large, possibly dynamically generated, doc-
uments calls for a streamed model of processing; the documents handled by a service
should often obey a predefined schema, hence the need to check that queries are well-
typed, preferably before they are executed or “shipped”.

The rest of the paper is organized as follows. Section 2 presents the core components
of the calculus — documents, types and patterns — and Section 3 gives the formal
semantics of the calculus and an example of pattern-matching evaluation. In Section 4
we define a first-order type system with subtyping based on regular expression types
and prove the soundness of our type discipline. Before concluding, we develop the
example of the reverse web-link graph (Section 5) and we study possible extensions of
our model (Section 6). Appendice A contains proof of Theorem 1. Omitted proofs may
be found in a long version of this paper [3].

2 Documents, Types and Patterns

We consider a simple language of first-order functional expressions enriched with refer-
ences and recursive pattern definitions that are used to extract values from documents.
Patterns are built on top of a syntax for defining regular tree grammars [8], which is
also at the basis of our type system.

Documents. An XML document may be seen as a simple textual representation for
nested sequences of elements <a>. . .. In this paper, we follow notations simi-
lar to [15] and choose a simplified version of documents by leaving aside attributes
among other things. We assume an infinite set of tag names, ranged over by a, b,
A document is an ordered sequence of elements a1[v1] . . . an[vn], where v1, . . . , vn are
documents. Documents may be empty, denoted (), and can be concatenated, denoted
v, v′ (the composition operator “, ” is associative with identity ()).

In the following we consider distributed documents, meaning that each element
aj [vj] is placed in a given location, say ıj . Locations are visible only at the level of the
operational semantics, in which the contents of a document is represented by the index
ı1 . . . ın (the list of locations) of its elements. For simplicity, locations and indexes are
the only values handled in our calculus and we leave aside atomic data values such as
characters or integers.

Document Types. Applications that exchange and process XML documents rely on
type information, such as DTD, to describe structural constraints on the occurrences of
elements in a “valid” document. In our model, types take the form of regular tree expres-
sions [8], which are sets of recursive definitions of the form A := Reg(ai[Ai])i∈1..n,
where Reg is a regular expression and A,A1, . . . , An are type variables. A regular ex-
pression Reg(αi)i∈1..n can be an atom αi with i ∈ 1..n; it can be the constant All,
which matches everything, or Empty, which matches the empty sequence; it can be a
choice Reg1 Reg2, a sequential composition Reg1,Reg2, or an iteration Reg∗. For
instance, the declaration below defines the type L of family trees, which are sequences
of male or female people such that each person has a name element, and two elements,
d and s, for the list of his daughters and sons:

L := (man[P] woman[P])∗ P := name[All], d[WL], s[ML]
WL := woman[P]∗ ML := man[P] ∗ .

There is a natural notion of subtyping A <: B between regular expression types,
meaning that every document in A is also in B. The type system is close to what is
defined in functional languages for manipulating XML, see e.g. XDuce [13,14,15] or
the review in [7], hence we stay consistent with actual frameworks used in sequential
languages for processing XML data.

Selectors and Patterns. The core of our programming model is a system of distributed
pattern matching expressions that concurrently sift through documents to extract infor-
mation. Basically, patterns are types enhanced with parameters and capture variables.
However, like functions, patterns are declared and have a name.

We assume a countable set of names, partitioned into locations ı, , `, . . . and vari-
ables x, y, . . . We use the vector notation x for tuples of names. The declaration
p(x) :=

(
Reg(ai[pi(yi)])i∈1..n

)
as y defines a pattern called p, with parameters x,

that collects matched documents in the reference y (where y, the capture variable of p,
should occur in x). For instance, the following patterns can be used to collect the names
of male and female people occurring in a document of type L (see example in the next
subsection):

names(x, y) :=
(
man[p(x, y, x)] woman[p(x, y, y)]

)
∗

p(x, y, z) := name[all(z)], d[names(x, y)], s[names(x, y)]
all(z) := All as z .

In its most general form, a pattern declaration also allows let definitions and setting
continuations to be evaluated upon success or failure of the pattern. (These optional
continuations make it possible to add basic exception and transaction mechanisms to the
calculus.) Hence, a pattern declaration is of the following form, where S is a selector
Reg(ai[pi(yi)])i∈1..n .

p(x) := let z1 = e′1, . . . , zm = e′m in
(
S as y

)
then e1 else e2 .

An important feature of our model is that patterns may extract multiple sets of values
from documents in one pass, which contrasts with the monadic queries expressible with
technologies such as XPath. Also, types appears clearly as a particular kind of patterns
(patterns declared without parameters, let definitions and continuations), and every
pattern p can be associated with the type A obtained by erasing these extra information.
In this case, A is exactly the type of all documents that are matched by p.

Witness and Unambiguous Patterns. It is standard in XML to restrict to expressions
that denote sequences of elements unequivocally. We define formally what it means for
a pattern to match an index and define a notion of unambiguous patterns.

Assume S is the selector Reg(ai[pi(vi)])i∈1..n. The sequence ai1 . . . aim
matches

S if and only if it is a word in the language of Reg(ai)i∈1..n. This relation is denoted
ai1 . . . aim

`S pi1(vi1) . . . pim
(vim

) and we call the sequence (pij
(vij

))j∈1..m a witness
for S of ai1 . . . aim . We write ai1 . . . aim 6`S if the sequence has no witness for S.

We say that a pattern with selector S is unambiguous if each sequence of tags has at
most one witness for S. Assume that (pij

(vij
))j∈1..m is the witness of S for b1 . . . bm.

When a document b1[v1] . . . bm[vm] is matched against a pattern with selector S, each
sub-document vj is matched against pij

(vij
). If b1 . . . bm has no witness then pattern-

matching fails.
For instance, when matching the “pattern-call” names(ı, `) against a list of people,

the contents of elements tagged man is matched by p(ı, `, ı), which involves that the
value of the name element inside man is matched by all(ı). From the capture variable
in all , this results in storing the name in (the reference located at) ı. More generally, a
call to names(ı, `) stores the names of men in ı and women in `. A call to names(`, `)
stores all the names in `.

3 The Calculus

The presentation of the calculus can be naturally divided into two fragments: a lan-
guage of functional expressions, or programs, that are used in the body of pattern and
function declarations; and a language of processes, or configurations, that models dis-
tributed documents and the concurrent execution of programs. Typically, expressions
are “program sources” that should be evaluated (they do not contain references to ac-
tive locations), while a configuration represents the running state of a set of processes.

Programs. The calculus embeds a first-order functional language with references,
pattern-matching and constructs for building documents. In the following, we assume
that every function identifier f has an associated arity n > 0 and a unique definition
f(x) := e where the variables in x are distinct and include the free variables of e. We
take similar hypotheses for patterns. The syntax of expressions e, e′, . . . is given below:

u, v ::= results
x name: variable or location
ı1 . . . ın index (with n > 0)

e ::= expressions
u result
a[u] element creation
u, v result composition
f(u1, . . . , un) function call
let x = e1 in e2 let
newref u new reference (with initial value u)
!u dereferencing
u += v update (adds v to the values stored in u)
try u p(u1, . . . , un) pattern matching call
wait u(x) then e1 else e2 wait matching

A result is either a name or an index. Expressions include results, operators for
creating new elements a[u], for concatenating indexes u, v, and for creating, accessing
and updating references. Expressions also include operators for applying a pattern to a
document index (try) and for branching on the result of pattern-matching (wait).

Configurations. The syntax of processes P,Q, . . . is as follows:

P, Q, R ::= processes
e expression
let x = P in Q let
〈 ı 7→ d 〉 location
P � Q parallel composition
(νı)P restriction

d ::= resources
ref u reference with value u
node a(u) node, element tagged a with index u
try ı p(u1, . . . , un) try matching
test ı u vk test matching
ok ı successful match
fail ı failed match

The calculus features operators from the π-calculus: restriction (νı)P specifies the
scope of a name ı local to P ; parallel composition P � Q represents the concurrent
evaluation of P and Q. Overall, a process is a sequence of let expressions, describing
threads execution, and locations 〈 ı 7→ d 〉, that describes a resource d located in ı. Hence
the syntax of configurations is very expressive as it unifies the notions of expression,
store, thread and processes.

The calculus is based on an abstract notion of location that is, at the same time,
the minimal unit of interaction and the minimal unit of storage. Failures are not part
of this model (they can be viewed as an orthogonal feature) but could be added,
e.g. in the style of [4]. Locations store resources. The main resources are ref u, to
store the current state of a reference, and node a(u), to describe an element of the
form a[u]. The calculus explicitly takes into account the distribution of document
nodes and, for example, the document a[b[] c[]] can be represented (at runtime) by
the process: (νı1ı2)

(
〈 ı 7→ node a(ı1 ı2) 〉 �〈 ı1 7→ node b() 〉 �〈 ı2 7→ node c() 〉

)
. The

other resources arise in the evaluation of pattern-matching and correspond to differ-
ent phases in its execution: scheduling a “pattern call” (try); waiting for the result of
sub-patterns (test); stopping and reporting success (ok) or failure (fail).
Syntactic conventions: the operators let, wait and ν are name binders. Notions of α-
equivalence and of free and bound names arise as expected. We denote fv(P) the set of
variables that occur free in P and fn(P) the set of free names. We identify expressions
and terms up-to α-equivalence. Substitutions are finite partial maps from variables to
results: we write P{x←u} for the simultaneous, capture-avoiding substitution of all
free occurrences of x in P with u. Assume σ is the substitution {x1←u1} . . . {xn←un}
and u = (u1, . . . , un). We write f(u) := e′ if f(x) := e and e′ = σ(e) and we write
p(u) := S′ if the selector of p(x) is S and S′ = σ(S). Finally, we make use of the
following abbreviations: if u = ı1 . . . ın then (νu)P is a shorthand for (νı1) . . . (νın)P ;
the term (ν`)P � Q stands for ((ν`)P) � Q; the term let x = P in Q � R stands for
(let x = P inQ) � R; and wait `(x) then e1 stands for wait `(x) then e1 else ()
(and similarly for omitted then clause).

Reduction Semantics. The semantics of our calculus follows the chemical style found
in the π-calculus [16]: it is based on structural congruence and a reduction relation.
Reduction represents individual computation steps and is defined in terms of structural
congruence and evaluation contexts.
Structural congruence≡ allows the rearrangement of terms so that reduction rules may
be applied. It is the least congruence on processes to satisfy the following axioms:

(Struct Par Assoc)

(P � Q) � R ≡ P �(Q � R)

(Struct Par Let)
x /∈ fn(P)

P � let x = Q in R ≡ let x = (P � Q) in R

(Struct Par Com)

(P � Q) � R ≡ (Q � P) � R

(Struct Res Let)
` /∈ fn(Q)

(ν`)let x = P in Q ≡ let x = (ν`)P in Q

(Struct Res Res)

(νı)(ν`)P ≡ (ν`)(νı)P

(Struct Res Par R)
ı /∈ fn(P)

(νı)(P � Q) ≡ P �(νı)Q

(Struct Res Par L)
ı /∈ fn(Q)

(νı)(P � Q) ≡ ((νı)P) � Q

(Struct Let Assoc)
x /∈ fn(R)

let y = (let x = P in Q) in R ≡ let x = P in (let y = Q in R)

Since processes may return values, we take the convention that the result of a com-
position P1 � . . . � Pn is the result of its rightmost term Pn. The values returned by
the other processes are discarded. This entails that the order of parallel components
is relevant. For this reason, unlike the situation in most process calculi, parallel com-
position is “left commutative” but not commutative: we have (P � Q) � R equivalent
to (Q � P) � R but not necessarily P � Q ≡ Q � P . This choice is similar to what is
found in calculi introduced for defining the semantics of concurrent-ML [10] and for
concurrent extensions of object calculi [12]. An advantage of this approach is that we
directly include sequential composition of processes: the term P ;Q can be interpreted
by let x = P in Q, where x /∈ fv(Q). We also obtain a more direct style of program-
ming since the operation of returning a result does not require using continuations and
sending a message on a result channel, as in the π-calculus.
Reduction→ is the least binary relation on closed terms to satisfy the rules in Table 1.
The rules for expressions are similar to traditional semantics for first-order languages,
with the difference that the resources in a configuration play the role of the store. Like-
wise, the rules for operators that return new values (the operators newref, a[] and try)
yield reductions of the form e → (ν`)(〈 ` 7→ d 〉 � `), which means that new values are
always allocated in a fresh location. Actually a quick inspection of the rules shows that
resources are created in fresh locations and are always used in a linear way: an expres-
sion cannot discard a resource or create two different resources at the same location.
Informal Semantics. We can divide the rules in Table 1 according to the locations in-
volved in the reduction. A location 〈 ` 7→ ref w 〉 is a reference at ` with value w. Ref-
erence access, rule (Red Read), replaces a top-level occurrence of !` with the value w.
Reference update ` += v, rule (Red Write), has a slightly unusual semantics since its
effect is to append v to the value stored in `. Actually, we could imagine that each refer-
ence is associated with an “aggregating function” (denoted op in Table 1) that specifies
how the sequence of values stored in the reference has to be combined1.

A location 〈 ı 7→ node a(u) 〉 is created by the evaluation of an element creation ex-
pression a[u], where u is an index, (Red Node). A location 〈 ` 7→ try ı p(v) 〉 is created
by the evaluation of a try operator. The expression try u p(v) applies the pattern p
to the index u = ı1 . . . ın, rule (Red Try). A try expression returns at once with the
index ` of the fresh location where the matching occurs. It also creates a document node
〈 ı 7→ node o(u) 〉 that points to the index u that is processed (we use the reserved name

1 For example, assume ` is an “integer reference” that increments its value by one on every
assignment. Then, in the example of Section 2, a call to names(`, `) counts the number of
people in a document of type L. For the sake of simplicity, we only consider index composition
in this work.

(Red Fun)
f declared as f(x) := e

f(u1, . . . , un)→ e{x1←u1} . . . {xn←un}

(Red Let)

let x = u in P → P{x←u}

(Red Struct)
P ≡ Q, Q→ Q′, Q′ ≡ P ′

P → P ′

(Red Context)(?)

P → P ′

E[P]→ E[P ′]

(Red Ref)
u = ı1 . . . ın

newref u→ (ν`)(〈 ` 7→ ref u 〉 � `)

(Red Read)

〈 ` 7→ ref u 〉 �!`→ 〈 ` 7→ ref u 〉 � u

(Red Write)(??)

w = u, v

〈 ` 7→ ref u 〉 � ` += v → 〈 ` 7→ ref w 〉 �()

(Red Node)
u = ı1 . . . ın

a[u]→ (νı)(〈 ı 7→ node a(u) 〉 � ı)

(Red Comp)
u1 = ı1 . . . ık u2 = ık+1 . . . ın

u1, u2 → ı1 . . . ın

(Red Try)
u = ı1 . . . ın ı, ` fresh names

try u p(v)→ (νı)(ν`)(〈 ı 7→ node o(u) 〉 �〈 ` 7→ try ı p(v) 〉 � `)

(Red Try Match)
P = 〈 ı 7→ node a(ı1 . . . ın) 〉 �

Q
l∈1..n〈 ıl 7→ node al(wl) 〉

p(v) := S as vk a1 . . . an `S p1(v1) . . . pn(vn) w = 1 . . . n fresh names

P �〈 ` 7→ try ı p(v) 〉 → P � (νw)
`Q

l∈1..n〈 l 7→ try ıl pl(vl) 〉 �〈 ` 7→ test ı w vk 〉
´

(Red Try Error)
P = 〈 ı 7→ node a(ı1 . . . ın) 〉 �

Q
k∈1..n〈 ık 7→ node ak(wk) 〉 p(v) := S as vk a1 . . . an 6`S

P �〈 ` 7→ try ı p(v) 〉 → P �〈 ` 7→ fail ı 〉

(Red Test Ok)
P = 〈 ı 7→ node a(ı1 . . . ın) 〉 �

Q
k∈1..n〈 k 7→ ok ık 〉 w = 1 . . . n x fresh name

P �〈 ` 7→ test ı w vk 〉 → P � let x = (vk += (ı1 . . . ın)) in 〈 ` 7→ ok ı 〉

(Red Test Fail)
P = 〈 ı 7→ node a(ı1 . . . ın) 〉 �

Q
k∈1..n〈 k 7→ dk 〉 w = 1 . . . n

∀k ∈ 1..n : dk ∈ {ok ık, fail ık} ∃j ∈ 1..n : dj = fail ıj

P �〈 ` 7→ test ı w vk 〉 → P �〈 ` 7→ fail ı 〉

(Red Wait Ok)
P = 〈 ı 7→ node a(u) 〉 �〈 ` 7→ ok ı 〉

P � wait `(x) then e1 else e2 → P � e1{x←u}

(Red Wait Fail)
P = 〈 ı 7→ node a(u) 〉 �〈 ` 7→ fail ı 〉

P � wait `(x) then e1 else e2 → P � e2{x←u}

(?) where E ::= Q � E | E � P | [.] | (ν`)E | let x = E in P
(??) in the general case we have w = op(u, v), where op is some “aggregating” function

Table 1. Reductions

o for the root tag of this node). Assume that S is the selector of p, the try resource will
trigger evaluation of sub-patterns selected from a witness of S. If there is no witness,
the matching fails, rule (Red Try Error). If a witness exists, the try resource spawns
new try resources and turns into a test, rule (Red Try Match), waiting for the results
of these evaluations. Upon termination of all the sub-patterns, a test resource turns
into ok or fail, rules (Red Test Ok) and (Red Test Fail). The ok and fail resources
are immutable.

The remaining rules are related to the evaluation of a wait expression. The status
of a pattern evaluation can be checked with the expression wait `(x) then e1 else e2,
see rules (Red Wait Ok) and (Red Wait Fail). If the resource at ` is ok ı then the wait
expression evaluates to e1{x←v}, where v is the index of the node located at ı. If the
resource is fail ı then the expression evaluates to e2{x←v}. In all the other cases the
expression is stalled.
Remark. In rule (Red Try Match), we compute the witness for all the children of an
element in one go. This is not always realistic since the size of the children’s index can
be very large (actually, in real applications, big documents are generally shallow and
have a large number of children). It is possible to refine the operational semantics so
that each sub-pattern is fired independently, not necessarily following the order of the
document. For instance, we should be able to start the evaluation on an element without
necessarily matching all its preceding siblings beforehand. Also, we can imagine that
indexes are implemented using streams or linked lists. We have chosen this presentation
for the sake of simplicity.

Example: pattern-matching evaluation. As an example of pattern-matching evalu-
ation, consider the pattern p below, which extracts all the sub-elements tagged a and
discards elements tagged b.

p(x) := (a[p(x)] as x | b[p(x)])∗

Let d be the document a[b[a[]]] b[]. We assume that the elements of d are stored at
the indexes (ı1ı4), that is d is represented by the process:

(νı2ı3)
(
〈 ı1 7→ node a(ı2) 〉 �〈 ı2 7→ node b(ı3) 〉 �〈 ı3 7→ node a() 〉 �〈 ı4 7→ node b() 〉

)
.

The following expression starts the pattern-matching evaluation of p against d:

let x = newref () in try (ı1ı4) p(x).

In what follows we show the matching evaluation step-by-step. By rules (Red Ref) and
(Red Let), a new location containing a new reference (a “capture” reference) is created
and substituted to x in the pattern invocation. By applying structural equivalence we
obtain

→ (ν`′)
(
〈 `′ 7→ ref () 〉 � try (ı1ı4) p(`′)

)
.

By rule (Red Try), two fresh locations are created: `, where the pattern-matching is
evaluated, and ı, where the index of the document to analyze is stored

→ (νı, `, `′)
(
〈 `′ 7→ ref () 〉 �〈 ı 7→ node o(ı1ı4) 〉 �〈 ` 7→ try ı p(`′) 〉 � `

)
.

Note that the “result” of the try evaluation is the location `, which will contain ok
or fail at the end of the evaluation. This location can be captured by using a let
construct, and can be used e.g. in a wait expression.

Rule (Red Try Match) is now applied. Let’s call S the selector of p(`′); a b `S

p(`′) p(`′), thus two sub-evaluations are started (between documents at ı1 and ı4 and
p(`′)). The try resource at ` becomes a test resource which waits for the sub-
evaluation results

→ (νı, `, `′, `1, `4)
(
〈 `′ 7→ ref () 〉 �〈 ı 7→ node o(ı1ı4) 〉 �〈 `1 7→ try ı1 p(`′) 〉
�〈 `4 7→ try ı4 p(`′) 〉 �〈 ` 7→ test ı(`1`4) 〉 � `

)
.

Sub-evaluations are concurrently started. By rule (Red Try Match) applied twice,
two sub-evaluations are triggered, because b `S p(`′) and a `S p(`′)

→∗ (νı, `, `′, `1, `2, `4, `5)
(
〈 `′ 7→ ref () 〉 �〈 ı 7→ node o(ı1ı4) 〉 �〈 `2 7→ try ı2 p(`′) 〉
�〈 `5 7→ try () p(`′) 〉 �〈 `4 7→ test ı4(`5) 〉
�〈 `1 7→ test ı1(`2)`′ 〉 �〈 ` 7→ test ı(`1`4) 〉 � `

)
.

Note that in location `1 we take note about the reference `′ where the index ı1 will
be stored in case of successful evaluation.

The evaluation at `5 ends, because the empty document is accepted by p, and there
are no triggered sub-evaluations. While evaluation at `2 continues

→∗ (νı, `, `′, `1, `2, `3, `4, `5)
(
〈 `′ 7→ ref () 〉 �〈 ı 7→ node o(ı1ı4) 〉
�〈 `3 7→ try ı3 p(`′) 〉 �〈 `2 7→ test ı2(ı3) 〉
�〈 `5 7→ ok () 〉 �〈 `4 7→ test ı4(`5) 〉
�〈 `1 7→ test ı1(`2)`′ 〉 �〈 ` 7→ test ı(`1`4) 〉 � `

)
.

By (Red Test Ok) evaluation at `4 ends successfully. Moreover, for evaluation at `3
we can reason as previously seen for `4, and obtain a success. Note that ı3 contains a
document tagged a, thus by (Red Test Ok) location `′ is updated by adding ı3 to its
content

→∗ (νı, `, `′, `1, `2, `3, `4, `5)
(
〈 `′ 7→ ref (ı3) 〉 �〈 ı 7→ node o(ı1ı4) 〉 �〈 `3 7→ ok ı3 〉
�〈 `2 7→ test ı2(ı3) 〉 �〈 `5 7→ ok () 〉 �〈 `4 7→ ok ı4 〉
�〈 `1 7→ test ı1(`2)`′ 〉 �〈 ` 7→ test ı(`1`4) 〉 � `

)
.

By (Red Test Ok) applied twice, evaluation at `1 ends and location `′ is updated:

→∗ (νı, `, `′, `1, `2, `3, `4, `5)
(
〈 `′ 7→ ref (ı3) 〉 �〈 ı 7→ node o(ı1ı4) 〉 �〈 `3 7→ ok ı3 〉
�〈 `2 7→ ok ı2 〉 �〈 `5 7→ ok () 〉 �〈 `4 7→ ok ı4 〉
� let = (`′ += ı1) in

〈 `1 7→ ok ı1 〉 �〈 ` 7→ test ı(`1`4) 〉 � `
)
.

Finally, the evaluation ends by (Red Write), (Red Let) and (Red Test Ok)

→∗ (νı, `, `′, `1, `2, `3, `4)
(
〈 `′ 7→ ref (ı3ı1) 〉 �〈 ı 7→ node o(ı1ı4) 〉 �〈 `3 7→ ok ı3 〉
� . . . �〈 `1 7→ ok ı1 〉 �〈 ` 7→ ok ı 〉 � `

)
.

4 Static Semantics

The types of document indexes are the same as the types for documents defined in
Section 2. Apart from regular expressions types A, the type t of a process can also be:
the resource type ? (a constant type for terms that return no values); a reference type
ref A; a node type node a(u) (the type of a location holding an element a[u]); or a try
type loca(A) (the type of locations hosting the evaluation of a pattern of type A on the
contents of an element tagged a).

t ::= type
? no value
A regular expression type
ref A reference
node a(u) node location
loc a(A) try location

We can easily adapt the definition of witness to types (a type is some sort of selec-
tor). Assume A is declared as A := Reg(ai[Ai])i∈1..n. We say that there is a witness
for A of ai1 . . . aim , denoted ai1 . . . aim `A Ai1 . . . Aim , if and only if the sequence
of tags ai1 . . . aim

is in the language of the regular expression Reg(ai)i∈1..n. We can
define the language of a type A as the set of documents that are matched by the pat-
tern Reg(ai[Ai])i∈1..n. Based on this definition, we obtain a natural notion of subtyping
A <: B, meaning that the language of A is included in the language of B. We write
A

.= B if the languages of A and B are equal. We write A for some chosen regular
expression type whose language is the complement of A. (We will not need the type A
when A

.= All, which means that we do not need to introduce a type with an empty
language.) In the case of type witness, we have ai1 . . . aim

6`A if and only if there is a
witness for A of ai1 . . . aim

.
The type system is given in Table 2. A type environment E is a finite mapping

x1 : t1, . . . , xn : tn between names and types. The type system is based on a single
type judgment, E ` P : t, meaning that the process P has type t under the hypothesis
E. We assume that there is a given, fixed set of type declarations of the form A :=
Reg(ai[Ai])i∈1..n. We assume that functions and patterns are (explicitly) well-typed,
which is denoted f : t → t0 and p : t → A. The types t1, . . . , tn in t are the types of
the parameters, while t0 is the type of the body of f and A is the type of the selector of
p. The type of a selector S = Reg(ai[pi(xi)])i∈1..n is obtained from S by substituting
to every pattern pi in the selector its corresponding type Ai. Hence the type of S is
equivalent to some type variable A such that A := Reg(ai[Ai])i∈1..n. Note that if a
pattern p(x) := S as xk has type t→ A, then the type tk is compatible with A, which
means that tk = ref B and B, A <: B.

The typing rules for the functional part of the calculus are standard. In what follows,
we consider that references can only hold document values (a reference can be of type
refA but not reft). Note that, for every assignment of a value of type B into a reference
of type refA, rule (Type Write), we check that A, B <: A. This is to take into account
that references combine the sequence of values that are assigned to them.

The remaining typing rules are for resources and pattern-matching operators. The
type of an expression try u p(v) is loc o(A) if the pattern p matches documents of

(Type x)

E, x : t, E′ ` x : t

(Type Sub)
A <: B

E ` P : A

E ` P : B

(Type Fun)
f : (t1, . . . , tn)→ t0
E ` ui : ti i ∈ 1..n

E ` f(u) : t0

(Type Let)

E ` P : t E, x:t ` Q : t′

E ` let x = P in Q : t′

(Type Doc)
E ` ık : node ak(uk) E ` uk : Bk k ∈ 1..n

E ` ı1 . . . ın : a1[B1], . . . , an[Bn]

(Type Node)
E ` u : A

E ` a[u] : a[A]

(Type Comp)
E ` ui : Ai i ∈ {1, 2}

E ` u1, u2 : A1, A2

(Type Ref)
E ` u : A

E ` newref u : ref A

(Type Read)
E ` u : ref A

E ` !u : A

(Type Write)
E ` u : ref A E ` v : B A, B <: A

E ` u += v : Empty

(Type Res)
E, `1 : t1, . . . , `n : tn ` P : t {`1, . . . , `n} ∩ fn(E) = ∅

E ` (ν`1) . . . (ν`n)P : t

(Type Par)

E ` P : t′ E ` Q : t

E ` P � Q : t

(Type Try Doc)
p : (t1, . . . , tn)→ A

E ` vi : ti i ∈ 1..n E ` u : B

E ` try u p(v1, . . . , vn) : loc o(A)

(Type Wait)
E ` u : loc a(A)

E, x : A ` e1 : t E, x : A ` e2 : t

E ` wait u(x) then e1 else e2 : t

(Type Loc Ref)
E ` ` : ref A E ` u : A

E ` 〈 ` 7→ ref u 〉 : ?

(Type Loc Node)
E ` ` : node a(ı1 . . . ın)

E ` 〈 ` 7→ node a(ı1 . . . ın) 〉 : ?

(Type Loc Ok)
E ` ` : loc a(A) E ` ı : node a(u)

u = ı1 . . . ın E ` u : A

E ` 〈 ` 7→ ok ı 〉 : ?

(Type Loc Fail)
E ` ` : loc a(A) E ` ı : node a(u)

u = ı1 . . . ın E ` u : A

E ` 〈 ` 7→ fail ı 〉 : ?

(Type Try Loc)
E ` ` : loc a(A) E ` ı : node a(ı1 . . . ın) p : (t1, . . . , tn)→ A E ` vi : ti i ∈ 1..n

E ` 〈 ` 7→ try ı p(v) 〉 : ?

(Type Test Loc)
E ` ` : loc a(A) E ` ı : node a(u) E ` k : loc ak(Ak)

w = (1 . . . n) a1 . . . an `A A1 . . . An E ` vk : tk tk = ref B B, A <: B

E ` 〈 ` 7→ test ı w vk 〉 : ?

Table 2. Typing Rules

type A, see rule (Type Try Doc). Indeed the effect of this expression is to return a fresh

location hosting the evaluation of p on an element of the form o[u]. Correspondingly,
a wait expression is well typed only if it is blocking on a location of type loc a(A),
that is the location of a resource that can eventually turn into ok or fail. The important
aspect of this rule is that, while the continuations e1 and e2 of the wait expression must
have the same type, they are typed under different typing environment: the expression
e1 is typed with the hypothesis x : A while e2 is typed with the hypothesis x : A. This
leads to more precise types for filtering expressions.

The typing rules for locations are straightforward. Since a resource returns no value
it has type ?. By rule (Type Try Loc), a location ` containing a try resource, evaluating
a pattern p of type A, is well typed if ` is of type loc a(A) and the root tag of the
evaluated document is a. Note that no assumption is made on (ı1, . . . , ın), which might
well not be of type A. Finally, the rule for node location, (Type Loc Node), states that
a location containing node a(u) has only one possible type, namely node a(u) itself.
Hence this rule avoids the presence of two node resources with the same location but
containing different elements. Actually, we could extend our type system in a simple
way to ensure that a well-typed configuration cannot have two resources at the same
location: we say such a configuration is well-formed (see e.g. [12] for an example of
how to extend the type system).

An important feature of our calculus is that every pattern is strongly typed: its type
is the regular expression obtained by erasing capture variables. Likewise we can type
locations, expressions and processes using a combination of regular expression types
and ref types. Since we have a strongly typed language, we need to prove that well-
typedness of processes is preserved by reduction. The proof of this theorem is given in
Appendix A.

Theorem 1 (subject reduction). Suppose that P is well formed and contains only un-
ambiguous patterns and t contains only unambiguous types. If E ` P : t and P → Q
then E ` Q : t.

The proof of Theorem 1 is more involved than in “traditional proofs” for subject
reduction. A reason for this is the need to take into account complement types and the
fact that it is not possible to reason on a whole document at once (its content is scattered
across distinct resource locations.)

We do not state a progress theorem in connection with Theorem 1. Indeed, there ex-
ists no notion of errors in our calculus (like e.g. the notion of “message not understood”
in object-oriented languages) as it is perfectly acceptable for a pattern matching to fail
or to get blocked on a wait statement. Nonetheless the subject reduction theorem is
still useful. For instance, we can use it for optimizations purposes, like detecting trivial
patterns (i.e. matching expressions that will always fail).

5 Example: the Reverse Web-Link Graph

We study the reverse web-link graph application [9], used e.g. in Google’s search-
engine to compute page ranks. The goal is to build a list of all pages contain-
ing a link to a given URL. We consider a calculus enriched with an atomic type
for strings and a construct if x = y then . . . to test equalities between strings,

these extensions are straightforward to accommodate. We assume that web pages
in the index are stored as documents of type WP = pg[B], where B is the
type (url[String], link[URL∗], text[String]) and URL is a shorthand for
url[String], meaning that for each page we have its location (url), a list of its hy-
perlinks (link) and its textual content (text). For simplicity, assume that each list
contains no duplicate hyperlinks. The following patterns are used for building a reverse
web-link graph:

revWL(t, r) :=
(
pg[revWL′(t, r)]

)
∗

revWL′(t, r) := let x = newref () , y = newref () in(
url[String as x], link[URL∗ as y], text[String]

)
then

(
try !y sift(t, !x, r)

)
sift(t, t′, r) :=

(
url[sift ′(t, t′, r)]

)
∗

sift ′(t, t′, r) := let z = newref () in
(
String as z

)
then

(
if z = t then r += url[t′]

)
.

The main pattern is revWL(t, r), where t is the string representing the target URL, and
r is a (global) reference cell for t’s reverse-index. revWL visits each indexed page and
invokes revWL′, which extracts the page’s location and list of links, and stores them
in two fresh references x and y. Then the pattern sift is used to test whether the list of
URL in y contains the target location t. If true, the result r is updated by adding to it
the value of x (that is passed as the second parameter of sift). In each pattern, the “lo-
cation” parameters t and t′ have type String while the final result, held in the param-
eter r, is a reference holding values of type URL∗. Hence the pattern revWL has type
(String, ref (URL∗))→WP∗ and sift has type (String, String, ref (URL∗))→
URL∗. Assume ı1 . . . ın are the indexes of the web pages of interest, possibly stored in
different physical locations, we can create a reverse index for the target location ta with
the expression: let z = newref() in try (ı1 . . . ın) revWL(ta, z). Note that patterns
and functions are evaluated locally at each site, while the result reference z is “global”
(it is local to the caller, but is accessed by every site for storing the results.)

6 Extensions

We study how to interpret two interesting programming idioms in our model: spawning
an expression in a new thread, and handling user-defined exceptions.

Concurrency. We show how to model simple threads, that is, we want to encode an
operator spawn such that the effect of spawn e1; e2 is to evaluate e1 in parallel with e2,
yielding the value of e2 as a result. The simplest solution is to interpret spawn e1; e2 by
the configuration e1 � e2. A disadvantage of this solution is that it is not possible to test
in e2 whether the evaluation of e1 has ended. Another simple approach is to rely on the
pattern-matching mechanism. Let p be the pattern p() := (Empty then e1). We can
interpret the statement spawn e1; e2 with the expression let x = (try () p()) in e2.

Indeed we have:

let x = (try () p()) in e2 →∗ (νı`)
(
〈 ı 7→ node o() 〉 �(

let z = e1 in 〈 ` 7→ ok ı 〉
)
� e2{x←`}

)
.

In the resulting process, e1 and e2 are evaluated concurrently and the resource
〈 ` 7→ ok ı 〉 cannot interact with e2 until the evaluation of e1 ends. Hence we can use
the expression (waitx(y) then e) in e2 to block the execution until e1 returns a value.
(We can in fact improve our encoding so that the result of e1 is bound to z in e.) It
emerges from this example that a try location can be viewed as a future, that is a
reference to the “future result” of an asynchronous computation. More generally, we
can liken a process (〈 ı 7→ node a(u) 〉 �〈 ` 7→ ok ı 〉) to an (asynchronous) output action
`!〈ok, u〉 as found in process calculi such as the π-calculus. Similarly, we can compare
an expression wait `(x) then e1 else e2 with an input action.

Exceptions. We show how to model a simple exception mechanism in our calculus.
Suppose we need to check that a document u of type L (the type of family trees, see
Section 2) contains only women. This can be achieved using the pattern declarations
p() := woman[q()]∗ and q() := name[All], d[p()], s[Empty] and a matching expres-
sion try u p(). A drawback of this approach is that we need to wait for the completion
of all sub-patterns to terminate before completing the computation, even if the matching
trivially fails because we find an element tagged man early in the matching. A solution
is to encode a basic mechanism for handling exceptions using the following derived
operators, where ıe is a default name associated to the location 〈 ıe 7→ node o() 〉:

exception = (ν`)` creates a fresh (location) exception
throw ` = 〈 ` 7→ ok ıe 〉 �() raises an exception at `

catch ` e = wait `(x) then e catches exception ` and runs e (x /∈ fv(e)) .

For instance, it is possible to raise the exception in the compensation part of a pattern
declaration, to catch this exception and avoid to wait the end of the pattern-matching
evaluation. E.g. the pattern p above can be redefined in: p′(x) := woman[q()]∗ else
throw x.

7 Conclusions and related work

We study a formal model for computing over large (even dynamic) distributed XML
documents. We extend the functional approach taken in e.g. XDuce and define a typed
process calculus which supports a first-order type system with subtyping based on reg-
ular expression types, a system compatible with DTD and other schema languages for
XML.

This work may be compared with recent proposals for integrating XML data into
π-calculus, where pattern-matching plays a fundamental role: Iota [5] is a concurrent
XML scripting language with channel-based communications that relies on types to
guarantee the well-formedness (not the validity) of documents; XPi [2] is a typed π-
calculus extended with XML values in which documents are exchanged during com-
munications; PiDuce [6] features asynchronous communications and code mobility and

includes pattern matching expressions with built-in type checks. In all these proposals,
documents are first class values exchanged in messages, which make these approaches
inappropriate in the case of very large or dynamically generated data.

The goal of this paper is not to define a new programming language. We rather
try to provide formal tools for the study of concurrent computation models based on
service composition and streamed XML data. However our calculus could be a basis
for developing concurrent extensions of strongly typed languages for XML, such as
XDuce. To this end, we will also need to answer questions concerning observational
equivalences that we intend to study in future work. Our approach could also be used
to provide the semantics of systems in which XML documents contain active code that
can be executed on distributed sites (i.e. processes and document text are mixed), like
in the Active XML system for example [1]. Although, for this, it will be necessary to
add an “eval/quote” mechanism, as in e.g. LISP, and to revise our static type checking
approach. Finally, another avenue to investigate is the encoding of other concurrency
primitives, especially channel-based synchronization and distributed transactions.

References

1. Abiteboul S., Benjelloun O., Milo T., Manolescu I., Weber R.: Active XML: Peer-to-Peer
Data and Web Services Integration. In Proc. of VLDB, 2002.

2. Acciai L., Boreale M.: XPi: a typed process calculus for XML messaging. In Proc. of
FMOODS, LNCS vol. 3535, Springer, 2005.

3. Acciai L., Boreale M., Dal Zilio, S.: A Typed Calculus for Querying Distributed XML Doc-
uments. LIF Research Report 29, 2006.

4. Amadio R.: An Asynchronous Model of Locality, Failure And Process Mobility. In Proc. of
COORDINATION, LNCS vol. 1282, Springer, 1997.

5. Bierman G., Sewell P.: Iota: A concurrent XML scripting language with applications to
Home Area Networking. TR 577, Computer Lab., Cambridge, 2003.

6. Brown A., Laneve C., Meredith G.: PiDuce: a process calculus with native XML datatypes.
In Proc. of Workshop on Web Services and Formal Methods, 2005.

7. Castagna G.: Pattern and types for querying XML documents. In Proc. of DBPL, XSYM
2005 joint keynote talk, 2005.

8. Comon H., Dauchet M., Jacquemard F., Tison S., Lugiez D., Tommasi M.: Tree Automata
on their application. 1999. http://www.grappa.univ-lille3.fr/tata/

9. Dean J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Cluster. In Proc.
of OSDI, 2004.

10. Ferreira W., Hennessy M., Jeffrey A.S.: A theory of weak bisimulation for core CML. J.
Functional Programming 8(5), 1998.

11. Gardner P., Maffeis S.:Modelling dynamic web data. Theor. Comput. Sci. 342(1) (2005).
12. Gordon A.D., Hankin P.D.: A concurrent object calculus: reduction and typing. In Proc. of

HLCL. Electr. Notes Theor. Comput. Sci. 16(3), 1998.
13. Hosoya H., Vouillon J., Pierce B.J.: Regular expression types for XML. ACM Transactions

on Programming Languages and Systems, 27(1), 2004.
14. Hosoya H., Pierce B.J.: Regular expression pattern matching for XML. In Proc. of POPL,

2001.
15. Hosoya H., Pierce B.J.: XDuce: A Statically Typed XML Processing Language. In Proc. of

ACM Transaction on Internet Technology, 2003.
16. Milner R.: Communicating and Mobile Systems: The π-Calculus. CUP , 1999.

A Proof of Theorem 1

We start by introducing some few preliminary results.

Proposition 1 (weakening). If E, x:t ` P : t′ and x /∈ fn(P) then E ` P : t′ and
vice versa.

Proposition 2. Assume S = Reg(ai[pi(vi)])i∈1..k is a unambiguous pattern with type
A. If a1 . . . an `S p1(v1) . . . pn(vn) then we also have a1 . . . an `A A1 . . . An.

Proposition 3. Assume A is a an unambiguous type. If a1 . . . an `A A1 . . . An then
a1[A1], . . . , an[An] <: A and if a1 . . . an 6`A then there is no B1, . . . , Bn such that
a1[B1], . . . , an[Bn] <: A.

Proposition 4. Suppose A unambiguous and A 6= All. a1 . . . aj . . . an `A

A1 . . . Aj . . . An ⇒ a1[A1], . . . , aj[Aj], . . . , an[An] <: A.

Proposition 5. Suppose E ` S : A and u = ı1 . . . ın with E ` ıi : node ai(ui) for
i ∈ 1, . . . , n. If a1 . . . an 6`S then E ` u : A.

Theorem 1 Suppose that P is well formed and contains only unambiguous patterns
and t contains only unambiguous types. If E ` P : t and P → Q then E ` Q : t.

Proof. By induction on reduction rules. We distinguish the last rule applied for deduc-
ing P → Q (remember that at every step we work with a well formed term). The most
interesting cases are the following:

(Red Try Match) by rules (Type Par), (Type Try Doc), and (Type Loc Node) E `∏
k∈1...n〈 ık 7→ node ak(wk) 〉 �〈 ı 7→ node a(ı1 . . . ın) 〉 �〈 ` 7→ try ı p(v) 〉 : ? im-

plies:
– E ` ı : node a(ı1 . . . ın);
– E ` ık : node ak(wk) and wk = (ı1k

. . . ınk
);

– E ` ` : loc a(A), p : (t) → A, and E ` v : t; thus if p(x) := S as xk

then S : A, E ` vk : tk and tk is compatible with A, that is tk = ref B and
B, A <: B (see page 11).

By (Red Try Match)∏
k∈1...n〈 ık 7→ node ak(wk) 〉 �〈 ı 7→ node a(ı1 . . . ın) 〉 �〈 ` 7→ try ı p(v) 〉 →∏

k∈1...n〈 ık 7→ node ak(wk) 〉 �〈 ı 7→ node a(ı1 . . . ın) 〉 �
(νw)(

∏
〈 k 7→ try ık pk(vk) 〉 �〈 ` 7→ test ı w vk 〉)

implies w = 1 . . . n fresh and a1 . . . an `S p1(v1) . . . pn(vn).
If pk : (tk) → Ak we choose jk : loc ak(Ak) and E, jk : loc ak(Ak)k=1,...,n `∏

k〈 k 7→ try ık pk(vk) 〉 : ?.
We have to show that E ` 〈 ` 7→ test ı w vk 〉 : ?. We know that:

– E ` ` : loc a(A);
– E ` ı : node a(ı1 . . . ın);
– jk : loc ak(Ak)k=1,...,n;
– E ` vk : tk, tk = ref B and B, A <: B.

We have to prove that a1 . . . an `A A1 . . . An. By the reduction we have
a1 . . . an `S p1(v1) . . . pn(vn); moreover pi(vi) : Ai, and S : A, so by Propo-
sition 2 a1 . . . an `A A1 . . . An, thus E ` 〈 ` 7→ test ı w vk 〉 : ?. In conclusion
E ` (νw)(

∏
〈 k 7→ try ık pk(vk) 〉 �〈 ` 7→ test ı w vk 〉) : ?;

(Red Try Error) E `
∏

k∈1,...,n〈 ık 7→ node ak(vk) 〉 �〈 ı 7→ node a(ı1 . . . ın 〉 �
〈 ` 7→ try ı p(v) 〉 : ? implies E ` ı : node a(ı1 . . . ın), E ` ık : node ak(vk),
vk = (ı1k

. . . ınk
) E ` ` : loc a(A), p : (t) → A, and E ` v : t. By the

reduction p(v) := S as vk, thus E ` S : A. a1 . . . an 6`S , thus, by Proposition 5,
E ` ı1 . . . ın : A so, by (Type Let) and (Type Loc Fail), E ` 〈 ` 7→ fail ı 〉 : ?;

(Red Test Ok) by rule (Type Loc Ok), (Type Loc Node), and (Type Test Loc) E `
〈 ı 7→ node a(ı1 . . . ın) 〉 �

∏
k∈1,...,n〈 k 7→ ok ık 〉 �〈 ` 7→ test ı w vk 〉 : ? (where

w = 1 . . . n) implies E ` ı : node a(ı1 . . . ın), ∀k ∈ 1, . . . , n : E ` k :
locak(Ak), E ` ık : nodeak(uk), and E ` uk : Ak. Moreover E ` ` : loca(A),
a1 . . . an `A A1 . . . An, E ` vk : tk, tk = ref B and B, A <: B.
a1 . . . an `A A1 . . . An implies a1[A1], . . . , an[An] <: A, by Proposition 3; thus
by (Type Doc) E ` ık : node ak(uk), and E ` uk : Ak we have E ` ı1 . . . ın :
a1[A1], . . . , an[An] and by (Type Sub) E ` ı1 . . . ın : A.
By rule (Type Write), E ` ı1 . . . ın : A, E ` vk : tk, tk = ref B and B, A <:
B imply that E ` vk += (ı1 . . . ın) : Empty; x fresh name and Proposition 1
imply that E ` let x = (vk += (ı1 . . . ın)) in 〈 ` 7→ ok ı 〉 : ?. Finally, by (Type
Par), E ` 〈 ı 7→ node a(ı1 . . . ın) 〉 �

∏
k∈1,...,n〈 k 7→ ok ık 〉 � let x = (vk +=

(ı1 . . . ın)) in 〈 ` 7→ ok ı 〉 : ?;
(Red Test Fail) We have E ` 〈 ı 7→ node a(ı1 . . . ın) 〉 �

∏
k∈1,...,n〈 k 7→ dk 〉 �

〈 ` 7→ test ı w vk 〉 : ? (with w = 1 . . . n) implies:
– by rule (Type Loc Node) E ` ı : node a(ı1 . . . ın);
– by rule (Type Loc Ok) ∀k ∈ 1, . . . , n : s.t. dk = ok ık we have E ` k :
loc ak(Ak), E ` ık : node ak(vk), and E ` vk : Ak;

– by rule (Type Loc Fail) ∀k ∈ 1, . . . , n : s.t. dk = fail ık we have E ` k :
loc ak(Ak), E ` ık : node ak(vk), and E ` vk : Ak;

– by rule (Type Test Loc) E ` ` : loc a(A), E ` ı : node a(ı1 . . . ın), E ` k :
loc ak(Ak), a1 . . . an `A A1 . . . An and E ` tk, tk = refB and B, A <: B.

By (Red Test Fail) 〈 ı 7→ node a(ı1 . . . ın) 〉 �
∏

k∈1,...,n〈 k 7→ dk 〉 �
〈 ` 7→ test ı w vk 〉 → 〈 ı 7→ node a(ı1 . . . ın) 〉 �

∏
k∈1,...,n〈 k 7→ dk 〉 �〈 ` 7→ fail ı 〉

if ∃j ∈ 1, . . . , n : 〈 j 7→ fail ıj 〉 (note that for j we have E ` vj : Aj). Ob-
viously A 6= All (because All : All and every document satisfies the match
with All), so by Proposition 4 a1[A1], . . . , aj [Aj], . . . , an[An] <: A. By rule
(Type Doc) E ` ı1 . . . ın : a1[A1], . . . , aj[Aj], . . . , an[An] and by (Type Sub)
E ` ı1 . . . ın : A. In conclusion, by (Type Loc Fail), E ` 〈 ` 7→ fail ı 〉 : ?. ut

