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Abstract. We introduce a type system providing a guarantee of client progress
for a fragment of CaSPiS, a recently proposed process calculus for service-
oriented applications. The interplay of sessioning and data-orchestration primi-
tives makes the design of a type system for CaSPiS challenging. Our main result
states that in a well-typed CaSPiS system, and in absence of divergence, any
client invoking a service is guaranteed not to get stuck during the execution of a
conversation protocol because of inadequate service communication capabilities.
Keywords: process calculi, service-oriented computing, pi-calculus, type sys-
tems

1 Introduction

Recent years have seen the emergence of web-based applications composed by several
loosely coupled components, often referred to as web services, relying on message-
passing as the sole means of cooperation. This technological shift has in turn led to the
formulation of a new computational paradigm underpinning the construction of such
applications and known as Service Oriented Computing (SOC). Equipping SOC with
rigorous semantic foundations is the subject of a very active research area. We just
mention here the SENSORIA project [17], a large, EU-funded research initiative aiming
at the development of a comprehensive approach to the engineering of SOC software
systems, starting from rigorous methodological foundations.

CaSPiS (Calculus of Sessions and Pipelines, [2]) is a language currently being
considered in SENSORIA as a candidate core calculus for SOC programming. CaSPiS
design, influenced both by Cook and Misra’s Orc [8] and by the pi-calculus [16], is
centered around the notions of session and of pipeline. In CaSPiS, these concepts, and
the related programming primitives, are viewed as natural tools for structuring client-
service interaction and orchestration, the following description of CaSPiS is partly
adopted from [2].

In CaSPiS, service definitions and invocations are written like (nullary) input and
output prefixes in CCS, thus we have:

s.P and s.Q
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where s is the name of the service. There is an important difference, though, as the
bodies P and Q are not quite continuations, but rather protocols that, within a session,
govern interaction between (instances of) the client and the server. As an example

currency_converter .(x).〈x ∗ r〉 and currency_converter .〈amount〉.(y).〈y〉↑

are respectively: a service that once called waits for an amount expressed in euros and
then sends back its counter-value in US dollars, computed according to an exchange
rate r; and a client that passes argument amount to the service, then waits for the
counter-value and returns this value as a result.

A session is generated as the result of a service invocation and represents an ongoing
conversation between a client and a service. In the variant of CaSPiS we consider, a
session is written [P |||Q], with P and Q the communicating protocols running at the
client and at the service side, respectively. For instance, synchronization of the client
and of the service described above triggers a new session

[〈amount〉.(y).〈y〉↑ ||| (x).〈x ∗ r〉] .

Here, after one reduction step, the counter-value x ∗ r will be computed by the service
protocol and then sent to the client:

[(y).〈y〉↑ ||| 〈amount ∗ r〉] → [〈amount ∗ r〉↑ ||| 0] .

The remaining activity will be performed by the client side, which will emit amount∗r
outside the session. In fact, values can be returned outside a session to the enclosing
environment using the return operator, 〈·〉↑. These values can be used to start new activ-
ities. To orchestrate flows of data arising from different sessions, CaSPiS provides the
programmers with a pipe operator, written P > Q. As an example, pipes allow to pass
the results produced by one service invocation in P onto the next service Q in a given
chain of invocations; or to wait for the results produced by two concurrent invocations
before invoking a third service. For instance, what follows is a client that invokes the
service currency_converter and then checks if the amount is available on his bank
account:

currency_converter .〈amount〉.(y).〈y〉↑ > (z).check_bank_availability .〈z〉 .

Very often, client-service interactions in a SOC scenario comprise not only the ex-
change of messages between the two main parties, but also invocation of subsidiary
services. The results produced by these subsidiary invocations are used in the main (top
level) session. For this reason, CaSPiS allows service invocations to be placed inside
sessions, hence giving rise to hierarchies of invocations and nested sessions. As an ex-
ample, suppose the exchange rate from euros to US dollars in the example above is not
fixed and that service currency_converter calls service exchange_rates for obtaining
the up to date rate as described below.

currency_converter .
(
(x).exchange_rates.

(
〈“e/$”〉.(z)〈z〉↑

)
> (r).〈x ∗ r〉

)
.



Interaction of the client above and the new version of the currency_converter service
will lead to [

(y).〈y〉↑|||
(
[〈“e/$”〉.(z)〈z〉↑) |||R] > (r).〈amount ∗ r〉

)]
where R is the interaction protocol of service exchange_rates . Once R gets “e/$”
message, it provides the up to date exchange rate rate, the innermost session passes
this value through the pipeline and the whole process reduces to[

(y).〈y〉↑ |||
(
[0 ||| R′] > 〈amount ∗ rate〉

)]
and then to [

〈amount ∗ rate〉↑ |||
(
[0 ||| R′] > 0

)]
.

The presence of pipes and nested sessions makes the dynamics of a CaSPiS session
quite complex: it is substantially different from simple type-regulated interactions as
found in the pi-like languages of, e.g. [11,10], or in the finite-state contract languages
of [5,4,6].

The present paper is a contribution towards developing programming techniques for
safe client-service interaction in a SOC scenario. Technically, we offer a type system
for CaSPiS that provides guarantees of client progress. In practice, this means that in a
well-typed CaSPiS system, and in absence of divergence, any client invoking a service
is guaranteed, during the execution of a conversation protocol, not to get stuck because
of inadequate service communication capabilities. More generally, we hope that some
of the concepts we discuss here may be further developed and find broader applications
in the future.

There are three key aspects involved in the design of our type system. A first aspect
concerns abstraction: types focus on flows of I/O value-types and ignore the rest (actual
values, service calls, . . . ). Specifically, types take the form of CCS-like terms describing
I/O flows of processes. In fact, a tiny fragment of CCS, with no synchronization and
restriction, is employed, where the role of atomic actions is played by basic types. A
second aspect concerns compliance of client protocols with service protocols, which is
essential to avoid deadlocks. In the type system, the operational abstractions provided
by types are employed to effectively check client-service compliance. To this purpose,
types are required to account for process I/O behaviour quite precisely. Indeed, ap-
proximation might easily result into ignoring potential client-service deadlocks. A final
aspect concerns the nesting of sessions. A session at a lower level can exercise effects
on the upper level, say the level of any enclosing session. To describe this phenomenon,
we follow [3,14] and keep track, in the type system, of the behaviour at both the current
level and at the level of a (fictitious) enclosing session. This results in type judgments of
the form P : [S]T, where S is the the current-level type and T is the upper-level effect
of P . Note that the distinction between types and effects we make here is somehow
reminiscent of the type-and-effects systems of [18], with the difference that our effects
are very simple (sequences of outputs) and are exercised on an upper level of activity
rather than on a shared memory.

The version of CaSPiS considered in this paper differs from the “official” one
in [2] in one important respect: we restrict our attention to the case where values can



be returned outside a session only on the client side (the same restriction applies to the
language considered in [3]). The theoretical reasons for doing so will be discussed in
the concluding section. From a practical point of view, this limitation means that, once a
session is started, for the service there will be no “feedback” of sort as to what is going
on inside the session. This is somehow consistent with the idea that services should be
stateless entities.

Related work. Our work is mainly related to Bruni and Mezzina’s [3] and to Lanese et
al.’s [14]. In these papers, type systems for languages affine to CaSPiS are put forward.
In particular, the language considered in [3] is essentially CaSPiS with the restriction
discussed above. The language of [14], SSCC, differs from CaSPiS essentially be-
cause streams, rather than pipes, are provided for data orchestration of different activ-
ities. We share with [3,14] the two-level types technique. In some important aspects,
though, our system differs from theirs, resulting into a gain of simplicity and generality.
These aspects we discuss below. First, we take advantage of the restriction that values
can be returned only to the client and adopt a new syntax and operational semantics for
sessions that spares us the necessity of explicit session names and the annoying “bal-
ancing” conditions on them (see also [2]). Second, our type system does not suffer from
certain heavy restrictions of [3,14], like for example, forcing either of the two compo-
nents in a parallel composition to have a null effect. Also, the client-service compliance
relation we adopt is more flexible than the bare complementarity relation inherited from
session-types disciplines employed in [3,14]. Finally, our client-progress theorem is an
immediate consequences of two natural properties of the system (subject reduction, type
safety). In particular, we do not have to resort to a complex system of obligations and
capabilities a l Kobayashi [13,12], like [3] does. This is a benefit partly of a precise op-
erational correspondence between processes and types and partly of our new syntax for
sessions. Note that, in [14], synchronization problems related to data streams prevent
achieving a deadlock-freeness result.

Both CaSPiS and SSCC evolved from SCC (Serviced Centered Calculus) [1], a
language that arose from a joint effort of various partners involved in the SENSORIA
consortium. The original proposal turned out later to be unsatisfactory in some impor-
tant respects. In particular, SCC had no dedicated mechanisms for data orchestration
and came equipped with no type system. These problems motivated the proposal of a
few evolutions of SCC. As mentioned above, SSCC is stream-oriented, in that values
produced by sessions are stored into dedicated queues, accessible by their names, while
CaSPiS relies solely on pipes. Another evolution of SCC is the language in [19], fea-
turing message-passing primitives for communication in all directions (within a session,
from inside to outside and vice-versa).

Structure of the paper. The rest of the paper is organized as follows. In Section 2
we present CaSPiS−, the variant of CaSPiS we will consider. Client progress, the
property we wish to capture with our system, is also defined. A language of types is
introduced in Section 3, while a type system is presented in Section 4. Results about
the type system are discussed in Section 5, culminating in Corollary 1, which asserts
that well-typed processes enjoy the client progress property. We conclude with a few
remarks concerning the limitation of our system and further work in Section 6.



P,Q ::=
P
i∈I πi.Pi Guarded Summation π ::= (x : b) Input Prefix

| 〈u〉↑ Return | 〈u〉 Output Prefix

| s.P Service Definition

| u.P Service Invocation

| [P |||Q] Session

| P > Q Pipeline

| P |Q Parallel Composition

| (νs)P Restriction

| ∗P Replication

Table 1. Syntax of CaSPiS−.

2 Processes

2.1 Syntax and semantics

We introduce below the variant of CaSPiS, which we christen CaSPiS−, that we have
chosen as a target language for our type system.

Syntax. We presuppose the following disjoint sets: a set B of base values, a countable
set N of service names ranged over by n, s, . . . and a countable set V of variables,
ranged over by x, y, . . .. In the following, we let u be a generic element of N ∪ B ∪ V
and v be a generic element of N ∪ B. We presuppose a set Bt of base types, b, b′, . . .
which include name sorts S,S ′, . . .. We finally presuppose a generic base-typing re-
lation, mapping base values and service names to base types, written v : b, with the
obvious proviso that service names are mapped to sorts and base values are mapped to
the remaining base types.

The syntax of the calculus is reported in Table 1. Input prefixes are annotated with
types b, which are associated to input variables. In service definitions and invocations,
s.P and s.Q, processes P and Q are the protocols followed respectively by the service
and client side. As in [2], the grammar defined in Table 1 should be considered as
a run-time syntax. In particular sessions [P |||Q] can be generated at run-time, upon
service invocation, but a programmer is not expected to explicitly use them. In [P |||Q]
processesP andQ represent respectively the rest of the client and the service protocol to
be executed. The free and bound names and variables of a term are defined as expected.
In the following, we suppose each bound name in a process different from free, and we
identify terms up to alpha-equivalence. We denote by fn(P ), resp. fv(P ), the set of free
names, resp. variables, of P , and indicate with P the set of closed terms, that is, the
set of process terms with no free variables. In what follows, we abbreviate the empty
summation by 0.

CaSPiS− is essentially the close-free fragment of the calculus in [2], but for a ma-
jor difference: in CaSPiS− sessions are one-sided. In particular, sessions are executed



on the client side and all returned values are available only at this side. This simplifica-
tion allows us to dispense with session names and balancing conditions on them – see
[2] – which are necessary when the two sides of a sessions are distinct and far apart.
Practically, this limitation means that services in CaSPiS− cannot return values and
are stateless. Another, minor difference from [2] is that here returns are asynchronous.
Finally, for the sake of simplicity we do not consider structured values and expressions,
which can be easily accommodated.

Semantics. The operational semantics of the calculus is given in terms of a labelled
transition relation, λ−→ defined as the least relation generated by axioms in Table 2.
Labels λ can be of the following form: input (v), output 〈v〉 or (νŝ)〈s〉 – where (νŝ)
indicates that the restriction (νs) may or may not be present –, return 〈v〉↑ or (νŝ)〈s〉↑,
service definition (νñ)s〈R〉, service invocation s(R) and synchronization τ . It is worth
noticing that service definitions are persistent, (DEF), and only (synchronous) in-session
value-passing is allowed, (S-COMl) and (S-COMr). As already stated, sessions are one-
sided, (CALL), and possible returns arising from the service protocol Q are ignored –
there is no symmetric rule of (S-RET). Note that in (P-PASS) we have used an optional
restriction (νn̂) to indicate that the passed value might be a bound service name. Fi-
nally, note the run-time type check in (IN), which avoids type mismatch between the
received object and the expected base type. From a computational point of view, this
rule should not be particularly worrying, since we are only considering checks on base
values. Note that in pi-like process calculi, static checks on channels are often suffi-
cient to avoid such type mismatches – see e.g. the sorting system of [15]. In CaSPiS−,
this solution is not viable as communication takes place freely inside sessions. In fact,
an alternative to run-time checks would be assigning “tags” to I/O actions, to regu-
late data-exchange inside sessions, which would essentially amount to re-introducing a
channel-based discipline, which is not our main concern here. Note that this issue does
not arise in [3], because, as discussed in the Introduction, their type system discards the
parallel composition of two or more outputs inside sessions.

We shall often refer to a silent move P τ−→ P ′ as a reduction; P ⇒ P ′ and P λ=⇒ P ′

mean respectively P τ−→∗P ′ and P τ−→∗ λ−→ τ−→∗P ′.

2.2 Client progress property

The client progress property will be defined in terms of an error predicate. Informally,
an error occurs when the client protocol of an active session tries to send to or receive a
value from the service side, but the session as a whole is blocked. This is formalized by
the predicate→ERR defined below. In the definition, we rely on two standard notions,
structural congruence and contexts, briefly introduced below. Structural congruence,
≡, is defined as the least congruence over (open) processes preserved by substitutions
and satisfying the axioms in Table 3. In the vein of [2], the laws in Table 3 comprise the
structural rules for parallel composition and restriction from the pi-calculus, plus some
extra scope extension laws for pipelines and sessions.

Contexts, C[·], C ′[·], . . ., are process terms with a hole; we shall indicate with C[P ]
the process obtained by replacing the hole with P . The notion of context can be gener-
alized to n-holes contexts as expected. We say a context is static if its hole is not under



(IN) v : b

(x : b).P
(v)−→ P [v/x]

(OUT)
〈v〉.P 〈v〉−→ P

(RET)
〈v〉↑ 〈v〉

↑
−−→ 0

(REP) P | ∗ P
λ−→ P ′

∗P λ−→ P ′
(DEF)

s.P
s〈P 〉−−→ s.P

(CALL)
s.P

s(Q)−−→ [P |||Q]

(SYNCl)
P

(νñ)s〈R〉−−−−−→ P ′ Q
s(R)−−→ Q′

P |Q τ−→ (νñ)(P ′|Q′)
(S-RET) P

(νv̂)〈v〉↑−−−−−→ P ′

[P |||Q]
(νv̂)〈v〉−−−−→ [P ′|||Q]

(S-PASSl)
P

λ−→ P ′ λ ::= τ | s(Q) | (νñ)s〈Q〉
[P |||Q]

λ−→ [P ′|||Q]
(S-COMl)

P
(v)−→ P ′ Q

(νv̂)〈v〉−−−−→ Q′

[P |||Q]
τ−→ (νv̂)[P ′|||Q′]

(S-SYNCl)
P

(νñ)s〈R〉−−−−−→ P ′ Q
s(R)−−→ Q′

[P |||Q]
τ−→ (νñ)[P ′|||Q′]

(SUM) πj .Pj
λ−→ Pj j ∈ I |I| > 1X
i∈I

πi.Pi
λ−→ Pj

(P-PASS) P
λ−→ P ′ λ 6= (νv̂)〈v〉
P > Q

λ−→ P ′ > Q
(P-SYNC) P

(νv̂)〈v〉−−−−→ P ′ Q
(v)−→ Q′

P > Q
τ−→ (νv̂)(P ′ > Q|Q′)

(PARl)
P

λ−→ P ′ fn(Q) ∩ bn(λ) = ∅
P |Q λ−→ P ′|Q

(R-PASS) P
λ−→ P ′ n /∈ n(λ)

(νn)P
λ−→ (νn)P ′

(OPEN) P
λ−→ P ′ λ ::= (νã)s〈R〉 | (νã)〈n〉 | (νã)〈n〉↑ s 6= n n ∈ fn(λ)

(νn)P
(νn)λ−−−→ P ′

Symmetric versions of (S-SYNCl), (PARl), (S-PASSl), (S-SYNCl) and (S-COMl) are not displayed.

Table 2. Labeled Semantics

the scope of a dynamic operator (input and output prefixes, replication, service defini-
tions and invocations, and the right-hand side of a pipeline). In essence, active subterms
in a process P are those surrounded by a static context.

Definition 1 (error). P →ERR if and only if whenever P ≡ C[[Q|||R]], with C[·]
static, and Q λ−→, with λ ::= (v) | (νv̂)〈v〉, then [Q|||R] 6λ

′

−→, with λ′ ::= τ | s(P ′).

A process guarantees client progress if it is error-free at run-time.

Definition 2 (client progress). Let be P ∈ P . We say P guarantees client progress if
and only if whenever P ⇒ P ′ then P ′ 6→ERR.



(P |Q)|R ≡ P |(Q|R) P |Q ≡ Q|P P |0 ≡ P

(νn)(νm)P ≡ (νm)(νn)P ∗P ≡ ∗P |P

(νn)P |Q ≡ (νn)(P |Q) (νn)P > Q ≡ (νn)(P > Q) if n /∈ fn(Q)

[Q|||((νn)P )] ≡ (νn)[Q|||P ] [((νn)P )|||Q] ≡ (νn)[P |||Q] if n /∈ fn(Q)

Table 3. Structural Congruence

The above definition of error may seem too liberal, as absence of error does not

actually guarantee progress of the session if [Q|||R]
s(P ′)−−−→ and service s is not available.

In fact, we are interested in processes where such situations do not arise: we call these
processes well-formed, and define them formally below. First, we need a notion of s-
receptive process, a process where a service definition for the service name s is available
under a static context, hence is active.

Definition 3 (s-receptive process). Let be P an (open) process. P is s-receptive if
s ∈ fn(P ) and P ≡ C[s.R] for some static C[·] not binding s.

Definition 4 (well-formed process). Let be P ∈ P . P is well-formed if and only if for
each s ∈ fn(P ) P is s-receptive and whenever P ≡ C[(νs)Q] processQ is s-receptive.

Well-formedness is preserved by reductions.

Lemma 1. Let P be well-formed. P ⇒ P ′ implies P ′ is well-formed.

The following lemma ensures that, in well-formed processes, each active service
call can be immediately served, thus substantiating our previous claim that our defini-
tion of error is adequate for well-formed processes.

Lemma 2. Let P ∈ P be well-formed. If P ≡ C[s.Q], with C[·] static, then either
C[·] = C0

[
C1[·] |C2[s.R]

]
,C[·] = C0

[
[C1[·]|||C2[s.R]]

]
orC[·] = C0

[
[C1[s.R]|||C2[·]]

]
,

for some static contexts C0[·], C1[·] and C2[·], and for some process R.

3 Types

In this section we introduce syntax and semantics of types, essentially a fragment of
CCS corresponding to BPP processes [7].

The set T of types is defined by the grammar in Table 4. Recall that b, b′, . . . range
over base types in Bt, including sorts. Notice that, like in [3], we need not nested ses-
sion types in our system, because in order to check session safety it is sufficient to check
local, in-session communications. In what follows we abbreviate with 0 the empty sum-
mation type.

The semantics of types is described in terms of a labelled transition relation, α−→,
derived from the axioms in Table 5. It is worth noticing that input and output prefixes, ?b



T,S,U,V ::=
P
i αi.Ti Guarded Summation α ::= !b Output Prefix

| T |T Interleaving | ?b Input Prefix

| ∗T Replication

Table 4. Syntax of types.

(SUM-T) j ∈ IX
i∈I

αi.Ti
αj−→ Tj

(PAR-Tl) T α−→ T′

T|S α−→ T′|S

(PAR-Tr ) S α−→ S′

T|S α−→ T|S′
(REP-T) T| ∗ T α−→ T′

∗T α−→ T′

Table 5. Labeled transition system of types.

and !b, cannot synchronize with each other – we only have interleaving in this fragment
of CCS.

The basic requirement for ensuring client progress is type compliance between
client and service protocols involved in sessions, defined below. In the following, we
indicate with α the coaction of α: ?b =!b and !b =?b. This notation is extended to sets
of actions as expected. Moreover, we indicate with I(S) the set of initial actions S can
perform: I(S) = {α | ∃S′ : S α−→ S′}. Type compliance is defined co-inductively and
guarantees that, given two compliant types S and T, either S is stuck, or there is at least
one action from S matched by a coaction from T. Formally:

Definition 5 (type compliance). Let be S,T ∈ T . Type compliance is the largest re-
lation on types such that whenever S is compliant with T, written S ∝ T, it holds that
either I(S) = ∅ or K = I(S) ∩ I(T) 6= ∅ and for each α ∈ K and each S′ and T′

such that S α−→ S′ and T α−→ T′, it holds that S′ ∝ T′.

4 A type system for client progress

In this section we introduce a type system that ensures client progress, that is, ensures
that sessions cannot block as long as the client’s protocol is willing to do some action.

The type system is along the lines of those in [3,14] and is reported in Table 6. We
presuppose a mapping ob from sorts {S,S ′, . . .} to types T , with the intended meaning
that if ob(S) = T then names of sort S represent services whose abstract protocol is T.
We take s : T as an abbreviation of s : S and ob(S) = T for some S. A context Γ is a
finite partial mapping from types to variables. For u a service name, a base value or a



(T-OUT) Γ ` P : [S]T Γ ` u : b
Γ ` 〈u〉.P : [!b.S]T (T-RES) Γ ` P : [S]T

Γ ` (νa)P : [S]T

(T-INP) Γ, x : b ` P : [S]T
Γ ` (x : b).P : [?b.S]T (T-PAR) Γ ` P : [S1]T1 Γ ` Q : [S2]T2

Γ ` P |Q : [S1|S2](T1|T2)

(T-RET) Γ ` u : b
Γ ` 〈u〉↑ : [0]!b

(T-SUM) ∀i ∈ I : Γ ` πi.Pi : [αi.Si]T |I| 6= 1

Γ `
X
i∈I

πi.Pi : [
X
i∈I

αi.Si]T

(T-DEF) s : V Γ ` P : [V]0
Γ ` s.P : [0]0

(T-CALL) Γ ` u : V Γ ` P : [S]T S ∝ V
Γ ` u.P : [T]0

(T-REP) Γ ` P : [S]T
Γ ` ∗P : [∗S] ∗ T (T-SESS) Γ ` P : [S]U Γ ` Q : [T]0 S ∝ T

Γ ` [P |||Q] : [U]0

(T-PIPE) Γ ` P : [S]T Γ ` Q : [?b.U]V monomf(S, b) NoSum(S)
Γ ` P > Q : [S 1 U](T|S @ V)

Table 6. Rules of the type system

variable, we take
Γ ` u : T

to mean either that u = s : T, or u = v : b or u = x ∈ dom(Γ ) and Γ (x) = T.
Type judgments are of the form Γ ` P : [S]T, where Γ is a context, P is a possi-
bly open process with fv(P ) ⊆ dom(Γ ) and S and T are types. Informally, S and T
represent respectively the in-session, or internal, and the external types of P . The first
one describes inputs and outputs P can perform at the current session level, while the
second one represents the outputs P can perform at the parent level – which correspond
to P ’s returns. As already discussed in the Introduction, the external type T describes
the effects produced outside the enclosing session, that is the effects visible one level
up.

Rule (T-DEF) checks that the internal type of the service protocol corresponds to the
type expected by the sorting system; moreover, the rule requires the absence of exter-
nal effects, hence, as discussed earlier, no returns are allowed on the service protocol.
Concerning rules (T-CALL) and (T-SESS), it is worth noticing that the premises en-
sure compliance between client and service internal types. Rule (T-SUM) requires that
each summand exposes the same external type: intuitively, sums are resolved as internal
choices from the point of view of an enclosing session, hence which branch is chosen
should not matter as for the external effect. Finally, rule (T-PIPE) deserves some expla-
nations. We put some limitations on the types of the pipeline operands. First, the right-
hand processQ is a single, input-prefixed process of type ?b.U, ready to receive a value.
Second, we make sure, through predicate NoSum(S), that the left-hand P ’s type does



not contain any summation. Third, we make sure, through predicate monomf(S, b),
that the type of the left-hand side of a pipeline is “monomorphic”, that is, contains only
outputs of the given type b. Formal definition of NoSum(S) and monomf(S, b) are
obvious and omitted. We will come back to these restrictions in Remark 1.

The auxiliary functions 1 and @ are used to build respectively the internal and the
external type of P > Q starting from the types of P and Q. In essence, both S 1 U
and S @ V spawn a new copy of type U and V, respectively, in correspondence of each
output prefix in S. The main difference is that in @ inputs in S are discarded, while
in 1 they are preserved. This because S is an internal type, hence its actions cannot
be observed from the external viewpoint. Formally, S 1 U and S @ V are inductively
defined on the structure of S as follows.

!b.S 1 U = U|(S 1 U) !b.S @ U = U|(S @ U)

?b.S 1 U = ?b.(S 1 U) ?b.S @ U = S @ U

∗S 1 U = ∗(S 1 U) ∗S @ U = ∗(S @ U)

(S1|S2) 1 U = (S1 1 U)|(S2 1 U) (S1|S2) @ U = (S1 @ U)|(S2 @ U)

Note that NoSum(S) ensures the absence of summations on the internal type S,
hence we intentionally omit definitions of 1 and @ for this case.

Example 1 (pipelines). Consider the process P below, which calls two services ansa
and bbc, supposed to reply by sending a newspage of type news, returns an acknowl-
edgment of type ack, sends the received news by e-mail to address a and outputs an
acknowledgment:

P
4
= (νcallnews)

( (
callnews.

(
ansa.(y : news).〈y〉↑ | bbc.(y : news).〈y〉↑

)
| callnews.(w : news).(z : news).〈(w · z)〉↑

)
> (x : (news× news)).

(
〈ack〉↑ |Email.〈(x, a)〉.(y : ack).〈y〉↑

))
where we suppose service Email is defined elsewhere with associated protocol of the
expected type ?(news× news× eAddr).!ack.
Suppose callnews :!news | !news. Then the left hand side of the pipeline is of type
[!(news× news)]0 and the right one of type [?(news× news).!ack]!ack. Hence, given
that !(news× news) 1 !ack = !ack and !(news× news) @ !ack = !ack, the whole pro-
cess P has associated type [!ack]!ack.

Remark 1 (summations and pipelines). We discuss here the necessity of banning sum-
mations on both side of pipelines. Suppose summations on the left hand side are allowed
and consider e.g. the following process

P
4
=
(
(x : int).(〈x〉 | 〈x〉 | 〈x〉↑) + (y : int).(〈y〉 | 〈y〉↑)

)
> (w : int).〈w〉↑ .

It is clear that

(x : int).(〈x〉 | 〈x〉 | 〈x〉↑) + (y : int).(〈y〉 | 〈y〉↑) : [?int.(!int | !int)+?int.!int]!int

(w : int).〈w〉↑ : [?int]!int .



And by definition of 1 and @, P : [S]T with

S 4= (?int.(!int | !int)+?int.!int) 1 0 = 0

T 4= !int |
(
(?int.(!int | !int)+?int.!int) @!int

)
= !int |

(
(!int | !int)+!int

)
.

But T contains a non-guarded summation, hence T /∈ T .
Similarly, suppose that summations at top level are allowed on the right-hand side

of pipelines, like in

Q
4
= 〈1〉 >

(
(x : int).((z : int).R1 | (w : int).R2) + (y : int).R3

)
the internal type associated to Q is

!int 1
(
(?int.TR1 | ?int.TR2) + TR3

)
= (?int.TR1 | ?int.TR2) + TR3

which contains a non-guarded summation. In fact, we might type sums with distinct
input prefixes (external determinism only). In such a manner, each output performed
by the left-hand side must be deterministically associated to one choice on the right
one and no summation would arise by 1. We have preferred to restrict our attention
to pipelines where the right-hand side does not contain summations at top level for the
sake of simplicity.

Let us now discuss some important differences with [3], relative to how pipelines
and parallel compositions are managed. In typing a pipeline, Bruni and Mezzina require
that the left-hand side be a single output if the right-hand side contains more than a
single input (or the vice-versa). As discussed, we only require absence of summations
on the left-hand side. E.g. in [3] the process (x).

(
∗ 〈x〉

)
> (y).s.〈y〉.(z).〈z〉↑, which

receives a value and uses it to call service s an unbounded number of times, is not
well-typed, while it is in our system. Concerning parallel composition, they require that
either of the two components has a null type. This means that, e.g. a process invoking
two services in parallel, and then return something, like in Example 1, are not well
typed in their system. Concerning sessions, in [3] the authors decide to keep the two-
sided structure of the original calculus, but ignore all effects on the service side. From
the point of view of expressiveness, this is essentially equivalent to using one-sided
sessions, like we do.

5 Results

The first step towards proving that well-typed processes guarantee client progress is
establishing the usual subject reduction property (Proposition 1). Next, we prove that
if a type is not stuck, the associated process is not stuck either (Proposition 2). Finally,
type safety (Theorem 1), stating that a well typed process cannot immediately generate
an error, is sufficient to conclude.

In the following, we denote by Γ `n P : [S]T a type judgment whose derivation
from the rules in Table 6 has depth n. Moreover, we abbreviate ∅ ` P : [S]T as P :
[S]T. Finally, we say P ∈ P is well-typed if P : [S]T for some S and T.



Lemma 3 (substitution). If Γ, x : b `n P : [S]T and v : b then Γ `m P [v/x] : [S]T,
with m ≤ n.

Lemma 4. 1. Whenever S ?b−→ S′ then S 1 T ?b−→ S′ 1 T.
2. Whenever S !b−→ S′ then S 1 T = T|S′ 1 T.

3. Whenever S 1 T ?b−→ V then either S ?b−→ S′ and V = S′1 T or S !b′−→ S′, T ?b−→ T′

and V = T′|S′1 T.

4. Whenever S 1 T !b−→ V then S !b′−→ S′, T !b−→ T′ and V = T′|S′ 1 T.

Lemma 5. 1. Whenever S ?b−→ S′ then S @ T = S′@ T.
2. Whenever S !b−→ S′ then S @ T = T|S′@ T.

3. Whenever S @ T !b−→ V then S !b′−→ S′, T !b−→ T′ and V = T′|S′@ T.

Proposition 1 (subject reduction). Suppose P : [S]T. Then

1. whenever P
(v)−→ P ′, for some v : b, then S ?b−→ S′ and P ′ : [S′]T;

2. whenever P
(νv̂)〈v〉−−−−→ P ′, for some v : b, then S !b−→ S′ and P ′ : [S′]T;

3. whenever P
〈v〉↑−−→ P ′, with v : b, then T !b−→ T′ and P ′ : [S]T′;

4. whenever P
(νñ)s〈Q〉−−−−−→ P ′ then P ′ : [S]T;

5. whenever P
s(Q)−−→ P ′, with s : U and Q : [U]0, then P ′ : [S]T;

6. whenever P τ−→ P ′ then P ′ : [S]T.

Proof. The proof is straightforward by induction on the derivation of P : [S]T and
proceeds by distinguishing the last tying rule applied. The most interesting case is
(T-SESS), which we examine below (concerning other cases, note that case (T-INP)
relies on Lemma 3 and (T-PIPE) relies on Lemma 3, 4 and 5).

(T-SESS): by [P |||Q] : [S]0 and the premises of the rule, we get P : [T]S, Q : [U]0 and
T ∝ U. We distinguish various cases, depending on the rule applied for deducing
[P |||Q] λ−→.
(S-RET): λ = (νv̂)〈v〉 and by the premises of the rule and (S-RET), it must be

P
〈v〉↑−−→ P ′. Suppose v : b. Hence, by applying the inductive hypothesis to P ,

we get P ′ : [T]S′, with S !b−→ S′, and [P ′|||Q] : [S′]0, by (T-SESS).
(S-PASSl): by the premises of the rule, we get P λ−→ P ′, and by applying the

inductive hypothesis to P , we get P ′ : [T]S. Therefore, [P ′|||Q] : [S]0, by
(T-SESS).

(S-COMl): λ = τ and by the premises of the rule, we getP
(v)−→ P ′ andQ

〈v〉−→ Q′.
Suppose that v : b. By applying the inductive hypothesis to both P and Q, we
get T ?b−→ T′, U !b−→ U′, P : [T′]S and Q : [U′]0. Moreover, by definition of ∝ it
must be T′ ∝ U′. Hence, by (T-SESS), [P ′|||Q′] : [S]0.

(S-SYNCl): λ = τ and by the premises of the rule, we get P
(νñ)s〈R〉−−−−−→ P ′,Q

s(R)−−→
Q′, P ′ : [T]S and Q′ : [U]0. Therefore, by (T-SESS), we get [P |||Q] : [S]0.



(S-PASSr), (S-COMr), (S-SYNCr): the proof proceeds in a similar way.

Proposition 2. Suppose P : [S]T. Then:

1. whenever S α−→ then P λ−→ with λ ::= τ | s(Q) |λ′ and either λ′ = (v), if α =?b,
or λ′ = (νv̂)〈v〉, if α =!b, for some v : b;

2. whenever T !b−→ then P λ−→ with λ ::= τ | 〈v〉↑ | (v′) | (νv̂′)〈v′〉 | s(Q), for some
v : b.

Proof. The proof is straightforward by induction on the derivation of P : [S]T and
proceeds by distinguishing the last typing rule applied. For the first result, the most
interesting cases are (T-SESS) and (T-PIPE).

(T-SESS): by [P |||Q] : [S]0 and the premises of the rule, we get P : [T]S, Q : [U]0 and
S ∝ U.
By applying the inductive hypothesis to P , given that it must be α =!b for some b,
we get P λ−→ with λ ::= τ | 〈v〉↑ | (v′) | (νv̂′)〈v′〉 | s(Q), for some v : b.

If P τ−→, then [P |||Q] τ−→, by (S-PASSl). Similarly, if P
s(Q)−−→, then [P |||Q]

s(Q)−−→,
by (S-PASSl).

If P
〈v〉↑−−→ then [P |||Q]

〈v〉−→ with v : b, by (S-RET).
Otherwise, by Proposition 1 (subject reduction) and λ ::= (v′) | (νv̂′)〈v′〉 for some
v′ : b′, we get T α−→, with α ::=?b′ | !b′. Hence, by ∝, U α−→ and by applying the

inductive hypothesis to Q we get either Q λ−→, Q τ−→, or Q
s(Q)−−→. In the first case,

either (S-COMl) or (S-COMr) can be applied for deducing [P |||Q] τ−→. In both
the second and the third case, rule (S-PASSr) can be applied for deducing either

[P |||Q] τ−→ or [P |||Q]
s(Q)−−→.

(T-PIPE): by P > Q : [S 1 U]T|S @ V and the premises of the rule, we get P : [S]T,
Q : [?b′.U]V, NoSum(S) and monomf(S, b′).

Suppose α =?b. By Lemma 4, S 1 U ?b−→ implies either S ?b−→ or S !b′−→ and U ?b−→.
In both cases, by applying the inductive hypothesis to P we get P λ−→, with λ ::=
τ | (v) | (νv̂′)〈v′〉 | s(Q), for some v : b and v′ : b′. Therefore, either P > Q

τ−→,

P > Q
(v)−→ or P > Q

s(Q)−−→, by (P-PASS) and (P-SYNC).

Suppose α =!b. By Lemma 4, S !b′−→, S 1 U = S′1 U|U and U !b−→. Hence, again
by applying the inductive hypothesis to P , we get either P > Q

τ−→ or P >

Q
s(Q)−−→, by either (P-PASS) or (P-SYNC).

Concerning the second result, the most interesting case is (T-PIPE) and proceeds by
applying Lemma 5 instead of Lemma 4 as shown for the previous case.

The following theorem is the main result of the paper.

Theorem 1 (type safety). Suppose P is well typed. Then P 6→ERR.



Proof. Suppose by contradiction that P →ERR. This means that P ≡ C[[P1|||P2]],

P1
λ−→, with λ ::= (v) | (νv̂)〈v〉 and [P1|||P2] 6

λ′−→, with λ′ ::= τ | s(R).
Given that P is well typed, by induction on C[·] we can prove that [P1|||P2] is well-

typed too, hence there are suitable S,T and U such that P1 : [S]T, P2 : [U]0 and
S ∝ U.

Now, by P1
λ−→, for some λ, and by Proposition 1 (subject reduction), we deduce

that there is a suitable α ::=?b | !b such that S α−→. Hence I(S) 6= ∅. By definition of∝,
we get I(S) ∩ I(U) 6= ∅. That is, there is at least one α such that S α−→ and U α−→.

Suppose α =?b (the case when α =!b is similar). By Proposition 2, we have P1
λ−→

and P2
λ′−→, with λ ::= (v) | τ | s(Q) and λ′ ::= (νv̂)〈v〉 | τ | s(Q′), for a suitable v : b.

Now, if either λ or λ′ is a τ or a service call, we get a contradiction, because we would
get a transition for [P1|||P2] violating P →ERR. The only possibility we are left with
is λ = (v) and λ′ = (νv̂)〈v〉, but this would imply [P1|||P2]

τ−→, contradicting again
P →ERR.

Corollary 1 (client progress). Suppose P is well typed. Then P guarantees client
progress.

Proof. By Proposition 1 and Theorem 1.

Example 2. Consider the system Sys below, composed by:

– a directory of services D, which upon invocation offers a set of services s̃i. We
suppose that each service definition si.Pi is well typed;

– a clientC that asks S service to compute the summation of two integers and outputs
its value;

– a service S, that, upon invocation: (1) asks D for the name of an available service
of type Ssum, with ob(Ssum) = ?int.?int.!int – that is a service capable of receiv-
ing two integers and computing and outputting their sum; (2) invokes the received
service and gets the result of the computation; and, (3) passes this value to its client.

D
4
= (νs̃i)(dir.

∑
i〈si〉|

∏
si
si.Pi)

C
4
= sum.〈2〉.〈3〉.(w : int)〈w〉↑

S
4
= sum.(z : int).(y : int).(

dir.
(
(x : Ssum).〈x〉↑

)
> (y : Ssum).y.

(
〈z〉.〈y〉.(w′ : int).〈w′〉↑

))
Sys

4
= C|(ν dir)(S|D) .

The whole system is well typed assuming sum :?int.?int.!int and dir :
∑
i!Si, with

si : Si for each i (Sys : [!int]0) and, as expected,

Sys⇒≡ [〈5〉↑|||0] | (ν dir)(S|D) .



Example 3 (divergence). Let us show a simple example of a process that is well typed
but diverges. Let s be a service with associated type !b and let be Q = s.(x : b).〈x〉↑.

It is easy to see that (x : b).〈x〉↑ : [?b]!b, (T-RET) and (T-IN), ?b ∝!b and Γ `
s.(x : b).〈b〉↑ : [!b]0, (T-CALL).

Note also that by (SYNC):

Q|s.Q→ [((x : b).〈x〉↑)|||Q]|s.Q→ [((x : b).〈x〉↑)|||
(
[((x : b).〈x〉↑)|||Q]

)
]|s.Q→ · · ·

hence Q | s.Q diverges.
More complex types are needed for avoiding such kind of divergences. E.g. types

extended with service calls, and an extended type system for ensuring termination and
livelock freedom, in the style of [9,13]. We let these extensions as future works.

6 Conclusion

We have presented a type system ensuring client progress for well typed CaSPiS−

processes. While capturing an interesting class of services, the system we propose suf-
fers from an important limitation with respect the language in [2]: CaSPiS− does not
allow values produced inside a session to be returned to the service. Overcoming this
limitation would imply allowing non-null effects in the body P of a service definition
s.P , at the same time labelling those effects as “potential” – as they are to be exercised
only if and when s is invoked.

It would also be important to account in a type-theoretic framework another for
another important feature offered by the language in [2]: the possibility of explicitly
closing sessions and handling the corresponding compensation actions.

Although the compliance relation we make use of already offers some flexibility
on the client side, it would be interesting to extend the type system with subtyping on
service protocols. This would imply, in the first place, understanding when two service
protocols in CaSPiS can be considered as conformant, that is, equivalent from the
point of view of any client. To this purpose, a good starting point is represented by the
theories of [5,6], which provide notions of conformance for contracts, that is, service
protocols.
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