
Weighted bisimulation in linear algebraic form∗

Michele Boreale

Università di Firenze

Abstract

We study bisimulation and minimization for weighted automata, relying on a geometrical
representation of the model, linear weighted automata (lwa). In a lwa, the state-space of the
automaton is represented by a vector space, and the transitions and weighting maps by linear
morphisms over this vector space. Weighted bisimulations are represented by sub-spaces that
are invariant under the transition morphisms. We show that, over the state-space, the largest
bisimulation equivalence coincides with weighted language equivalence and can be computed
by a linear algebraic version of the partition refinement algorithm. Quotienting an automaton
corresponds to taking the orthogonal projection of the original state-space onto a bisimulation.
In the case of the largest bisimulation, this yields the minimal weighted-language-preserving
automaton. We also clarify the relations of our notion of bisimulation to other definitions found
in the literature, including probabilistic bisimulation, and to certain classical constructions in
Automata Theory.

Keywords: bisimulation, weighted automata, minimization, linear representations, proba-
bilistic bisimulation.

1 Introduction

Weighted automata [29, 4] unify various computational models of practical relevance, arising in
such diverse areas of application as modelling of probabilistic and stochastic systems (e.g. [20, 5,
15]), language and speech processing (e.g. [23]), Enumerative Combinatorics [25], Control Theory
(e.g. [16]). In this type of automaton, transitions are labelled with both a letter from a finite
alphabet, or action, and a weight taken from a semiring. In this paper, we will be exclusively
concerned with the case when the semiring is actually a field, and particularly with the field of real
numbers. This weight may have different interpretations, such as probability, transition speed,
cost or multiplicity. In particular, Markov chains [18], probabilistic transition systems [20] and
stochastic automata [5, 15] can all be seen as instances of this class of automata. Bisimulation,
introduced in Concurrency theory by Park and Milner [24, 22], is a well-understood concept for
ordinary automata and transition systems. It serves a conceptual and a pragmatical purpose,
both of paramount importance. Conceptually, it provides a sensible notion of equivalence that
can be used to reason about systems. Pragmatically, it allows one to reduce the number of state
of a system by aggregation of bisimilar states, being assured that the reduction preserves certain

∗Author’s e-mail: boreale@dsi.unifi.it. Address: Dipartimento di Sistemi e Informatica, Viale Morgagni 65,

I-50134, Firenze. Work partially supported by eu within the fet-GC2 initiative, project Sensoria.

1

properties. Moreover, bisimulation comes equipped with nice coinductive proof techniques and
partition refinement algorithms.

We study bisimulation , quotients and minimization in finite-state weighted automata over
the field of real numbers. The motivation of this study is twofold. In the past two decades,
bisimulation has been adapted to several flavours of probabilistic and stochastic systems. There
is a large body of literature on the subject, see e.g. [12, 20, 5, 1, 6] and references therein. These
definitions are presented in different formats and notations and give rise, in general, to different
equivalences, whose mutual relationships are difficult to asses. At the same time, one wonders if
any alternative, linear-time equivalence exists that might replace bisimulation-based equivalences
in certain situations. On ordinary lts’s, language equivalence, aka may testing [10], is known to
be more generous than bisimulation and appropriate to reason on certain classes of properties,
like safety ones. Unfortunately, it is also much more complex to decide than bisimilarity [21]. In
practice, one often uses bisimulation as an incomplete proof technique for language equivalence.
One wonders to what extent this state of things carries over to the weighted setting.

In an ordinary automaton, each state is associated with a recognized language. Likewise, in a
weighted automaton, each state q is associated with a recognized weighted language σ(q), that is,
a set of words each coming with a weight (probability/multiplicity/cost...). Classically, weighted
languages are known as formal power series [4]. Two states q and q′ are weighted language
equivalent if σ(q) = σ(q′). It is worth to notice that, in the case of probabilistic transition systems,
σ(q) has a very natural interpretation: the weight of a word x= a1 · · ·an in σ(q) is just the probability
of observing the word x if the execution of the system starts from q. Or, to phrase it in the testing
equivalence jargon [10], it is the probability that the system passes the test a1. · · ·an.ω starting
its execution from q. In other weighted settings, like the counting automata of [25], language
equivalence enjoys an equally natural interpretation. Now, on ordinary automata, one way of
computing the minimal language equivalent automaton is to first make the original automaton
deterministic and then quotient the result of this operation by the largest bisimulation. It is also
known that the first operation, the powerset construction, takes exponential time. One wonders
what is an equivalent construction in the weighted setting. Or, in other words, what is, if any, the
form of bisimulation underpinned by language-preserving minimization in weighted automata. Note
that a polynomial weighted-language-preserving minimization procedure for weighted automata
has been known for more than forty years [29]. This leads us to the second motivation for our
study, that is, to clarify the connections of bisimulation for weighted transition systems and similar
structures to classical results in Automata and Language Theory.

We undertake our study by first introducing a linear algebraic representation of weighted au-
tomata, linear weighted automata (lwa, Section 2). In the familiar representation, transitions of
a weighted automaton can be viewed as maps taking each individual state into a set of states,
each having its own weight. It is useful to view this set as a formal linear combination of states.
It is then natural to extend the transition maps so that they take linear combinations to linear
combinations (of states). This leads to the notion of lwa, where the state-space of an automaton
is a vector space – the set of linear combinations of states – and the transitions are linear maps.
If the automaton has a final weight function, this too can be seen as a linear map from the state-
space to the reals. Compared to the usual representation [4, 6], lwa’s identify automata up to
similarity of their transition matrices, thus providing one with a basic level of abstraction, some-
what analogous to that provided by structural congruence in process calculi. In this formulation,
it is natural to define a linear weighted bisimulation (Section 3) as a sub-space that is invariant
under the transition maps and is included in the kernel of the weight function. This definition

2

retains the nice coinductive proof technique found in ordinary bisimulation: to prove two stated
related, it is sufficient to exhibit a“small”bisimulation relation containing them as a pair. We show
that the largest linear weighted bisimulation equivalence exists and coincides with coincides with
weighted language equivalence. Moreover, it can be effectively computed by a geometrical version
of the partition refinement algorithm (Section 4). Or, more accurately, a basis of the corresponding
sub-space can be effectively computed. The resulting algorithm is polynomial in the dimension,
i.e. the number of states, of the underlying weighted automaton. We next show that taking the
quotient of a lwa by a bisimulation corresponds, geometrically, to projecting the original state-
space onto the (orthogonal) complement of the sub-space representing the bisimulation (Section
5). When the chosen bisimulation is the largest one, this operation results into a practical method
for constructing the minimal language-equivalent lwa out of a given one.

The overall construction resembles that for ordinary automata, with determinization corre-
sponding to building the lwa. The important difference is that here there is no exponential
blow-up involved. When we specialize this construction to automata with an initial state (Section
7), we re-discover essentially the original minimization algorithm proposed by Schützenberger [29].
The minimal form is canonical, in the sense that minimal lwa’s representing the same weighted
language are isomorphic. We also compare linear weighted bisimilarity to the probabilistic bisimu-
lation of Larsen and Skou [20] and find the latter to be to be strictly finer than the former (Section
6).

Our work is related to recent and less recent work by Buchholz and Kemper [6, 7], by Rutten
[26, 25, 27] and by Stark [31], who have studied some of the issues we consider here.A detailed
comparison with their work and proposals, as well as with the classical constructions in Automata
theory [4], is deferred to Section 9.

In summary, we make the following contributions:

• we give a simple linear algebraic formulation of linear weighted bisimulation; this enjoys
the usual coinductive proof technique and is correct and complete for weighted language
equivalence;

• we give a feasible partition refinement algorithm in linear algebraic form for computing the
largest bisimulation;

• we give an account of minimization as orthogonal projection, this results into a feasible
minimization algorithm and canonical forms;

• we clarify the relationship between linear weighted bisimulation and other equivalences, like
probabilistic bisimulation, and classical minimization algorithms in Automata Theory.

Structure of the paper Linear weighted automata are introduced in Section 2 and linear
weighted bisimulation in Section 3, where the coincidence with weighted-language equivalence is
also discussed. The partition refinement algorithm is discussed in Section 4. Quotients are the
subject of Section 5. In Section 6 we study the relationship between weighted and probabilistic
bisimulation. For technical convenience, lwa’s are presented in the preceding sections as not
featuring an initial distribution/weighting; when this is considered, we obtain rooted lwa’s, which
are the subject of Section 7. An extension to the case of weights in a generic field is outlined
in Section 8.A detailed discussion of related and further work is found in Section 9. To enhance
readability, a few technical definitions and proofs have been confined to a few separate appendices
(A, B and C).

3

Background and notation We will make use of a few basic concepts from Linear Algebra, such
as vector space and sub-space, span of a set of vectors, basis, dimension, vector space homomor-
phism, kernel of a homomorphism, matrix representation, orthogonality, orthogonal complement,
inner product, inner product space, free vector space. These concepts are described in any intro-
ductory textbook in Linear Algebra, e.g. [19]. For the reader’s convenience, a brief summary of
the most relevant definitions and results is also provided in Appendix A. We will often refer to
elements of a vector space as “vectors”; the null vector will be always denoted by 0, as the context
will be always sufficient to avoid confusion with the zero scalar. We shall often omit brackets sur-
rounding function arguments, writing e.g. Tv rather than T (v), unless this jeopardizes readability.
“Homomorphism” is shortened as “morphism”.

2 Linear weighted automata

In the sequel, we fix a finite, non-empty alphabet A of actions. V will denote a finite-dimensional
inner product space, that is a vector space over R equipped with a inner product 〈· , ·〉 : V ×V → R
(in fact, inner product will not come into use until Section 4).

Definition 1 (weighted automaton in linear form) A linear weighted automaton (lwa, for
short) is a triple L = (V, {Ta}a∈A,φ), where V is a inner product space over R, and Ta : V → V, for

each a ∈ A, and φ : V → R are morphisms. The dimension of L is dim(L)
△
= dim(V).

The three elements of a lwa L are referred to as: the state-space V, the transition functions Ta,
a ∈ A, and the (final) weight function φ, respectively. We do not consider yet initial distributions
on states, that will be the subject of Section 7. In the rest of the section, L will denote a generic
lwa (V, {Ta}a∈A,φ). A family of morphisms indexed over A, {Ta}a∈A, induces a family of morphisms

indexed over A∗, {Tx}x∈A∗ , defined as follows: for each v ∈ V, Tǫv
△
= v, Taxv

△
= TxTav. Recall that a

formal power series (fps for short) over A and R is a function σ : A∗ → R. The set of all fps’s
over A and R is denoted by R〈〈A〉〉.We view a fps as the same thing as a weighted language, a
generalization of the usual notion of language where which word comes with a real multiplicity,
possibly 0 to indicate absence.

Definition 2 (weighted language semantics) The weighted language associated by L to any

v ∈ V is the fps σL(v) : A∗ → R defined by: σL(v)(x)
△
= φ(Txv) for each x ∈ A∗. We say u and v are

weighted-language equivalent if σL(u) = σL(v).

In passing, we note that the preceding two definitions do not depend on the fact that V is
finite-dimensional, so that they can be extended without modifications to the infinite-dimensional
case (we will use this fact at some point in Section 7). Weighted automata are often represented
in matrix form. Ignoring for the moment initial states, a weighted automaton (wa, for short) W
is often defined as a triple (Q, {Ma}a∈A, f), where: Q = (q1, ...,qn) is an ordered finite set of states1;
each Ma ∈R

n×n is a real-valued square matrix, with Ma(i, j) specifying the weight of the a-transition
from q j to qi; and f ∈ R1×n is a real-valued row vector, describing the final weights assigned to
the qi’s (see e.g. [6]). The weighted language semantics of W can be described as follows. Given
an initial distribution on states specified by a column vector s ∈ Rn×1, the fps associated to s

1This component can be dispensed with, if it is stipulated that the set of states is always an integer interval 1..n.

4

q1

q2 q3

1

1 1

a,1 a,−1

a,1 a,1

q1+q2

q2+q3 q1+q3

2

2

2

a, 3
2

a, 1
2 a,− 3

2

a,1 a, 1
2

a, 1
2

a,− 1
2

Figure 1: Two weighted automata representing the same linear weighted automaton.

by W is given by: σW (s)(x)
△
= f Mx s, where for x = a1 · · ·ak, Mx is the product matrix Man · · ·Ma1

(with Mǫ = I). The matrix representation corresponds, up to the ordering of states, to the familiar
graphical representation (see the next example).

It should be evident that the matrix formulation is equivalent to the one given in Definition 1.
More precisely, given a lwa L, by fixing an ordered basis Q = (e1, ...,en) of V one determines a wa

WL,Q = (Q, {Ma}a∈A, f), where Ma (resp. f) is the matrix (resp. row vector) representing Ta (resp.
φ) in the basis Q. This correspondence preserves weighted-language semantics, that is, for each
v ∈ V, σL(v) = σWL,Q (s), where s is the column vector of coordinates of v in Q. Conversely, a wa

W = (Q, {Ma}a∈A, f) determines a lwa LW = (RQ, {Ta}a∈A,φ), by considering RQ as the (free) vector

space with the expected inner product (g · h
△
=
∑

q∈Q g(q) · h(q)), and taking Ta (resp. φ) to be the

linear morphism on RQ represented by the matrix Ma (resp. row-vector f) in the basis2 Q. Again,
this correspondence preserves the weighted-language semantics. The two constructions are inverse
of one another, e.g. one has WLW ,Q = W. Note that two wa’s derived from the same lwa w.r.t.
different bases need not be have isomorphic transitions, although they have the same number of
states. In particular, they have similar transition matrices. This is discussed in the next example
and in a bit more detail in Appendix B.

Example 1 Let A = {a} be a singleton alphabet and Q = (q1,q2,q3). Consider the wa W =
(Q, {Ma}, f) represented by the graph in Fig. 1, on the left. Transitions having weight 0 are not dis-
played. The standard convention is adopted to specify final weights: qi r means that fi = r (this
graphical representation alone actually determines the matrix representation up to the ordering of
the states q1,q2,q3). The wa W gives rise to the lwa L = LW = (RQ, {Ta},φ). Another representation
of the same lwa L, this time w.r.t. the basis Q′ = (q1+q2,q2+q3,q1+q3), is given by the automaton
W′ in Fig. 2 on the right. That is, we have that L = LW = LW′ . Hence, the two automata in the
figure are similar, despite the fact that the one on the right has a more complicated transition
structure. This difference may be practically important, though: for computational purposes, one
will generally prefer the representation on the left to the one on the right.

3 Linear weighted bisimulation

We first show how to represent binary relations over V as sub-spaces of V, following [31].

2As customary, we identify each q ∈ Q with δq ∈ R
Q defined as: δq(q′) = 1 if q′ = q, δq(q′) = 0 otherwise. Under this

identification, we have Q ⊆ RQ.

5

Definition 3 (linear relation) Let U be a sub-space of V. The binary relation RU over V is
defined by

u RU v if and only if u− v ∈ U .

A relation R is linear if there is a subspace U such that R = RU.

Note that a linear relation is a total equivalence relation on V. Let now R be any binary
relation over V. There is a canonical way of turning R into a linear relation, which we describe in

the following. The kernel of R is defined by: ker(R)
△
= {u−v |uRv}. The linear extension of R, denoted

Rℓ, is defined by: uRℓ v if and only if (u− v) ∈ span(ker(R)). The following lemma summarizes two
useful facts about linear relations.

Lemma 1 (1) Let U be a sub-space of V, then ker(RU) = U. (2) Given any binary relation R, Rℓ

is the smallest linear relation containing R.

According to the first part of the above lemma, a linear relation R is completely described by
its kernel, which is a sub-space, that is

uRv if and only if (u− v) ∈ ker(R) . (1)

Conversely, to any sub-space U ⊆ V there corresponds, by definition, a linear relation RU whose
kernel is U. Hence, without loss of generality, we can identify linear relations on V with sub-spaces
of V. For example, by slight abuse of notation, we can write uU v instead of uRU v; and conversely,
we will sometime denote by R the sub-space ker(R), for a linear relation R. The context will be
sufficient to tell whether we are actually referring to a linear relation or to the corresponding
sub-space (kernel). Note that the sub-space {0} corresponds to the identity relation on V, that is
R{0} = IdV . In fact: u IdV u iff u= v iff u−v= 0. Similarly, the space V itself corresponds the universal
relation on V. Another consequence of the preceding lemma, part (2), is that it is not restrictive
to confine ourselves, as we do below, to relations over V that are linear. Note that, again by virtue
of (2), Rℓ = R if R is linear, hence (·)ℓ is idempotent: (Rℓ)ℓ = Rℓ.

We are now set to define linear weighted bisimulation. The definition relies on the familiar
step-by-step game on transitions, plus an initial condition requiring that two related states have
the same weight. We christen this form of bisimulation linear to stress the difference with other
forms of bisimulation proposed for wa’s [6]. In the rest of the section, we let L denote a generic
lwa (V, {Ta}a∈A,φ).

Definition 4 (linear weighted bisimulation) Let L be a lwa. A linear relation R over V is a
linear weighted L-bisimulation (L-bisimulation, for short) if whenever uRv then: (a) φ(u) = φ(v)
and (b) Tau R Tav for each a ∈ A.

That a largest L-bisimulation, denoted ∼L, exists, is quite obvious: in analogy with the ordi-
nary case, one takes the span of the union of all L-bisimulations, and checks that it is in turn a
L-bisimulation, the largest one. Note that the mentioned union is non-empty, as e.g. the identity
relation is a L-bisimulation. We shall give two characterizations of ∼L, one in terms of language
equivalence (Theorem 1) and one in algorithmic terms (Theorem 2). A useful property of bisim-
ulation on ordinary transition systems is that, to prove two states related, exhibiting a “small”
relation containing the given pair is sufficient. This property is preserved in the present setting,
despite the fact that Definition 4 mentions linear, hence total, relations on V.

6

Lemma 2 Let L be a lwa and R be a binary relation over V satisfying clauses (a) and (b) of
Definition 4. Then Rℓ is the smallest weighted L-bisimulation containing R.

The following lemma provides a somewhat handier characterization of linear weighted bisim-
ulation. Let us say that a sub-space U is T -invariant if T (U) ⊆ U. Bisimulations are transition-
invariant relations that refine the kernel of φ.

Lemma 3 Let L be a lwa and R be linear relation over V. R is a L-bisimulation if and only if (a)
ker(φ) ⊇ R, and (b) R is Ta-invariant for each a ∈ A.

The largest L-bisimulation ∼L coincides with the weighted-language equivalence.

Theorem 1 For any u,v ∈ V, we have that u ∼L v if and only if σL(u) = σL(v).

Proof Suppose that u ∼L v. It is easy to prove by induction on |x| that σL(u)(x) = σL(v)(x),
for each x ∈ A∗. Conversely, consider the relation R = {(u,v) |σL(u) = σL(v)}. It is easy to see that
this is a linear relation. Moreover, it is a L-bisimulation. Concerning clause (a) of Definition
4, note that φ(u) = σL(u)(ǫ) = σL(v)(ǫ) = φ(v). Concerning (b), note that, for each a and x ∈ A∗:
σL(Tau)(x) = σL(u)(ax) = σL(v)(ax) = σL(Tav)(x), so that σL(Tau) = σL(Tav), that is, Tau R Tav. 2

4 Partition refinement

Two well-known concepts from Linear Algebra, orthogonal complements and transpose morphisms,
will be used to describe geometrically two basic operations of the algorithm: the complement of a
relation and the operation of “reversing arrows” in an automaton, respectively.

Let U,W be sub-spaces of V. We recall that the orthogonal complement U⊥ enjoys the following
properties: (i) U⊥ is a sub-space of V; (ii) (·)⊥ reverses inclusions, i.e. if U ⊆ W then W⊥ ⊆ U⊥;
(iii) (·)⊥ is an involution, that is (U⊥)⊥ = U. These three properties suggest that U⊥ can be
regarded as a complement, or negation, of U seen as a relation. Another useful property is: (iv)
dim(U⊥)+ dim(U) = dim(V). Concerning transpose morphisms, we have the following definition.
The need for ortho-normal bases is explained in the remark below.

Definition 5 (transpose morphism) Let T : V→ V be any endomorphism on V. Fix any ortho-
normal basis of V and let M be the square matrix representing T in this basis. We let the transpose
of T , written tT , be the endomorphism V → V represented by tM in the given basis.

Remark 1 It is easy to check that the definition of tT does not depend on the choice of the
ortho-normal basis: this is a consequence of fact that the change of basis matrix N between two
ortho-normal bases is unitary (N−1

=
tN). The transpose operator is of course an involution, in the

sense that t(tT) = T .

Transpose morphisms and orthogonal spaces are connected via the following property, which
is crucial to the development of the partition refinement algorithm. It basically asserts that T -
invariance of R corresponds to tT -invariance of the complementary relation R⊥.

Lemma 4 Let U be a sub-space of V and T be an endomorphism on V. If U is T -invariant then
U⊥ is tT -invariant.

7

An informal preview of the algorithm is as follows. Rather than computing directly the sub-
space representing ∼L, the algorithm computes the sub-space representing the complementary
relation. To this end, the algorithm starts from a relation R0 that is the complement of the relation
identifying vectors with equal weights, then incrementally computes the space of all states that are
backward reachable from R0. The largest bisimulation is obtained by taking the complement of this
space. Geometrically, “going backward”means working with the transpose transition functions tTa

rather than with Ta. Taking the complement of a relation actually means taking its orthogonal
complement.

Theorem 2 (partition refinement) Let L be a lwa. Consider the sequence (Ri)i≥0 of sub-spaces
of V inductively defined by:

R0 = ker(φ)⊥ Ri+1 = Ri+
∑

a∈A
tTa(Ri) .

Then there is j ≤ dim(L) s.t. R j+1 = R j. The largest L-bisimulation is ∼L= R⊥j .

Proof Since R0⊆R1⊆R2⊆ · · · ⊆V, the sequence of the dimensions of these spaces is non-decreasing.
As a consequence, for some j ≤ dim(V), we get dim(R j) = dim(R j+1). Since R j ⊆ R j+1, this implies
R j = R j+1.

We next show that R⊥j is a L-bisimulation. Indeed, by the properties of the orthogonal

complement: (a) ker(φ)⊥ ⊆ R j implies (ker(φ)⊥)⊥ = ker(φ) ⊇ R⊥j . Moreover: (b) for any action a,
tTa(R j) ⊆ tTa(R j)+R j ⊆ R j+1 = R j implies, by Lemma 4, that t(tTa(R⊥j)) = Ta(R⊥j) ⊆ R⊥j ; by (a), (b)

and Lemma 3, we conclude that R⊥j is an L-bisimulation.

We finally show that any L-bisimulation S is included in R⊥j . We do so by proving that for each i,
S ⊆ R⊥i , thus, in particular S ⊆R⊥j . We proceed by induction on i. Again by Lemma 3, we know that

R⊥0 = ker(φ)⊇ S . Assume now S ⊆ R⊥i , that is, S ⊥ ⊇ Ri. For each action a, by Lemma 3 we have that
Ta(S) ⊆ S , which implies tTa(S ⊥) ⊆ S ⊥ by Lemma 4. Hence S ⊥ ⊇ tTa(S ⊥) ⊇ tTa(Ri), where the last
inclusion stems from S ⊥ ⊇ Ri. Since this holds for each a, we have that S ⊥ ⊇

∑

a
tTa(Ri)+Ri = Ri+1.

Taking the orthogonal complement on both sides reverses the inclusion and yields the wanted
result. 2

Remark 2 What is being“refined”in the algorithm above are not, of course, the sub-spaces Ri, but
their orthogonal complements: R⊥0 ⊇ R⊥1 ⊇ · · · ⊇ R⊥j =∼L. One could also devise a version of the above
algorithm that starts from ker(φ) and refines it working forward, operating with intersections of sub-
spaces rather than with sums. This“forward”version appears to be less convenient computationally
for at least two reasons. First, ker(φ) is a large sub-space: since φ : V→R with dim(R)= 1, by virtue
of the fundamental identity relating the dimensions of the kernel and of the image of a morphism(see
equality (4) in Appendix A), we have that dim(ker(φ))≥ dim(V)−1. Second, the backward algorithm
returns at no additional cost the orthogonal complement of ∼L, which is anyway necessary to build
the minimal automaton (see next section), this is not the case for the forward version.

To end the section, we briefly discuss some practical aspects involved in the implementation of
the algorithm. By virtue of (1), checking u ∼L v, for any pair of vectors u and v, is equivalent to
checking u− v ∈ ker(∼L). This can be done by first computing a basis of ∼L and then checking for
linear independence of u− v. Alternatively, and more efficiently, one can check whether u− v is in
the orthogonal complement of R j, by showing that u− v is orthogonal to each element of a basis of
R j. Thus, our task reduces to computing one such basis. To do so, fix any orthonormal basis B of
V and let f and Ma (a ∈ A) be the row-vector and matrices representing the weight and transition

8

functions of the lwa in this basis. All the computations are carried out representing coordinates
in this basis.

1. Compute a basis B0 of R0. As already discussed, dim(ker(φ))≥ dim(V)−1, hence dim(ker(φ)⊥)≤
1. It is readily checked that ker(φ)⊥ is spanned by the vector v0 represented in B by t f , thus
we set B0 = {v0}.

2. For each i ≥ 0, compute a basis Bi+1 of Ri+1. This can be obtained by incrementally joining to
Bi the vectors tTav, for a ∈ A and v ∈ Bi that are linearly independent from previously joined
vectors. The actual computations of tTav are carried out using the transposed matrices tMa.

After j ≤ n iterations, one finds a set B j s.t. B j+1 = B j: this is the basis of R j, the orthogonal
complement of ∼L. We illustrate this algorithm in the example below.

Example 2 Consider the lwa L = (V, {Ta},φ), with V = RQ and Q = (q1,q2,q3), given in Example
1. The wa describing L w.r.t. Q is the one depicted in Fig. 1, on the left. Q is an ortho-normal
basis, so that it is easy to represent the transpose transitions tTa. According to the above outline
of the algorithm, since f = (1,1,1) represents φ in Q, we have that R0 = ker(φ)⊥ is spanned by
v0 = q1+ q2+ q3. Next, we apply the algorithm to build the Bi’s as described above. Manually,
the computation of the vectors tTav can be carried out by looking at the transitions of the wa

with arrows reversed. Since tTa(q1+q2+q3) = q1+q2−q1+q3 = q2+q3 and tTa(q1+q2+q3) = q2+q3,
we obtain B0 = {q1+ q2+ q3}, then B1 = {q1+ q2+ q3, q2+ q3} and finally B2 = B1. Hence B1 is a
basis of (∼L)⊥. As an example, let us check that q1 ∼L q1+q2−q3. To this purpose, note that the
difference vector (q1+q2−q3)−q1= q2−q3 is orthogonal to each elements of B1, which is equivalent
to q1 ∼L q1+q2+q3.

Remark 3 The space R j corresponds to what is known in numerical Linear Algebra as Krylov
space. There exist numerically stable methods to build a basis of such spaces in O(n3) floating-
point operations, such as the Arnoldi iteration, see [13, Ch. 9]. The Arnoldi iteration returns
at no additional cost the projection of the transition matrix on the space R j, thus automatically
providing the minimized automaton (see next section).

5 Quotients

The purpose of the quotient operation is to obtain a reduced automaton that has the same semantics
as the original one. Let us make the notions of reduction and minimality precise first.

Definition 6 (reduction, minimality) Let L and L′ be two lwa’s having V and V′, respectively,
as underlying state-spaces. Let h : V → V′ be a morphism. We say (h,L′) is a reduction of L if
dim(L′) ≤ dim(L) and for each v ∈ V, σL(v) = σL′ (hv). We say L is minimal if for every reduction
(h,L′) of L we have dim(L) = dim(L′).

We now come to the actual construction of the minimal automaton. This is basically obtained
by quotienting the original space by the largest bisimulation. In inner product spaces, there is a
canonical way of representing quotients as orthogonal complements. Let U be any sub-space of
V. Then V can be decomposed as the direct sum of two sub-spaces: V = U ⊕U⊥ and dim(V) =
dim(U)+dim(U⊥). This means that any element v ∈ V can be written in a unique way as a sum
v= u+w with u ∈U and w ∈U⊥. The orthogonal projection of V onto U⊥ is the morphism π : V→U⊥

9

defined as π(u+w)
△
= w. The following lemma says that taking the quotient of V by a linear relation

(whose kernel is) U amounts to “collapsing”vectors of V along the U-direction. Or, in other words,
to projecting vectors of V onto U⊥, the sub-space orthogonal to U (this is a well known result in
Linear Algebra).

Lemma 5 Let U be a sub-space of V and π : V → U⊥ be the projection onto U⊥. Then for each
u,v ∈ V: (a) u U v if and only if πu = πv; (b) u U πu.

In view of the above lemma, we will sometimes denote the orthogonal complement of U w.r.t.
V as “V/U”. In what follows, L denotes a lwa (V, {Ta}a∈A,φ). We shall make use of the morphisms

(πT)a
△
= π ◦Ta, for a ∈ A.

Definition 7 (quotient automaton) Let R be a L-bisimulation and let π be the projection func-
tion onto V/R. We let the quotient automaton L/R be (V/R, {T q

a }a∈A,φ
q) where T q

a = (πTa)|V/R and
φq
= φ|V/R.

The following lemma states a simple property of invariant relations and projections.

Lemma 6 Let R be a T -invariant subspace and π be the projection function onto V/R. Then
π ◦T ◦π = π ◦T .

Proof Let v ∈ V. Then v − πv ∈ R (Lemma 5(b)) implies T (v− πv) ∈ R (R-invariance) implies
πT (v−πv)= 0 (by definition of projection) that is πTv = πTπv. 2

Theorem 3 (minimal automaton) Let R be a L-bisimulation and π be the projection function
from V onto V/R. Then (π,L/R) is a reduction of L such that: (a) dim(L/R) = dim(L)−dim(R), and
(b) for each u,v ∈ V, u ∼L v if and only if πu ∼L/R πv. Moreover, if R is ∼L, then L/R is minimal
and the following coinduction principle holds: for each u,v ∈ V, u ∼L v if and only if πu = πv.

Proof First observe that for each x ∈ A∗, R is Tx-invariant. Exploiting this fact and relying
on Lemma 6, it is easy to check that σL(v)(x) = σL/R(πv)(x) for each x and v ∈ V. Moreover, by
definition of orthogonal complement, we have that dim(V/R) = dim(R⊥) = dim(V)−dim(R) ≤ dim(V).
These facts say that (π,L/R) is a reduction of L and its dimension is as stated in part (a). Part
(b) is a consequence of (π,L/R) being a reduction of L and of the characterization of the largest
bisimulation in terms of weighted language equivalence (Theorem 1).

Suppose now that R =∼L, the largest L-bisimulation. Let us first consider the coinduction
principle: this is in fact an instance of Lemma 5(a). Also note that, combining coinduction and
part (b) above, we find that the largest (L/ ∼L)-bisimulation, that is ∼L/∼L , is IdV/∼L , the identity
relation over V/ ∼L. Let us now prove minimality of L/ ∼L. Let (h,L′) be any reduction of L/ ∼L:
we show that dim(h(V/ ∼L)) = dim(V/ ∼L), which implies that L/ ∼L is minimal. To this purpose,
consider the equivalence relation on V/ ∼L induced by ker(h). That is, more explicitly, the relation
on V/∼L defined thus u Rker(h) v if and only if u−v∈ ker(h). Now, u Rker(h) v implies, as a consequence
of (h,L′) being a reduction, that σL/∼L (u)=σL/∼L (v). This is in turn equivalent to u∼L/∼L v (Theorem
1), that is, as noted above, u = v. In other words, it holds that Rker(h) ⊆ IdV/∼L . This is equivalent
to ker(h) ⊆ ker(IdV/∼L) = {0}, hence ker(h) = {0}. Now, applying the fundamental identity (4), we find
dim(h(V/ ∼L)) = dim(V/ ∼L)−dim(ker(h)) = dim(V/ ∼L). 2

10

q1

q2+q3

1

2

a,1

Figure 2: A minimal weighted automaton.

It is well-known that, when B is an orthogonal basis, for each v ∈ V, the projection of v onto
the space spanned by B, πv, can be written as

πv =
∑

e∈B

〈v,e〉
〈e,e〉

e . (2)

One can give a (concrete) representation of the minimal lwa in terms of a wa, by first computing
an orthogonal basis of the quotient space V/ ∼L and then representing the transition T q

a and and
final weight φq functions in this basis using the above formula. This is illustrated in the example
below.

Example 3 Let us consider again the lwa in Example 2. We give a representation of L/ ∼L as a
wa. From Example 2, we know that a basis of V/ ∼L is B = {q1+ q2+ q3,q2+ q3}. It is convenient
to turn B into an orthogonal basis, applying an the Gram-Schmidt’s [19] orthogonalizing method.
We find that B′ = {q1,q2+ q3} is an orthogonal basis of V/ ∼L. We now represent the transition
function in B′. That is, for any e ∈ B′, we express each T q

a e as a linear combination of elements of
B′. Applying the identity (2), we find that

T q
a q1 = π(q2−q3) = 0

T q
a (q2+q3) = π(q2+q3) = q2+q3 .

Concerning the weight function, we have: φq(q1) = 1 and φq(q2+q3) = 2. The resulting wa, which
represents the lwa L/ ∼L w.r.t. the basis B′, is graphically represented in in Fig. 2. According
to Theorem 3, the projection function π turns pairs of bisimilar elements of L into identical ones
of L/ ∼L. As an example, the relation q1 ∼L q1+ q2− q3 becomes an identity once projected onto
V/ ∼L: indeed, πq1 = q1 and π(q1+q2−q3) = π(q1)+π(q2−q3) = q1+0= q1.

6 Probabilistic bisimulation

The notion of probabilistic bisimulation was introduced by Larsen and Skou [20], as a generalization
to probabilistic transition systems of the older notion of lumpability for Markov chains, due to
Kemeny and Snell [18]. The notion of probabilistic transition system itself can be found in a
number of variations in the literature; see e.g. [12, 1] and references therein. Below, we deal with
the the one called reactive probabilistic transition system. We comment on another version, the
generative one, at the end of this section.

In this section, for any finite set Q, f ∈ RQ and X ⊆ Q, we let | f |X
△
=
∑

q∈X f (q). We abbreviate
| f |Q just as | f |. We record for future use that for any X ⊆ Q, the function | · |X is a linear morphism
R

Q → R. We let R+ be the set of non-negative reals.A probabilistic transition system is just
a weighted automaton with all final weights implicitly set to 1, and where the weights of arcs
outgoing a node satisfy certain restrictions.

11

Definition 8 (probabilistic bisimulation) A (finite, reactive) probabilistic transition system
(pts, for short) is a pair P = (Q, {ta}a∈A), where Q is finite set of states and {ta}a∈A is a family of
functions Q→ (R+)Q, such that for each a ∈ A and q ∈ Q, |ta(q)| equals 1 or 0.

An equivalence relation S over Q is a probabilistic bisimulation on P if whenever q S q′ then,
for each equivalence class C ∈ Q/S and each a ∈ A, |ta(q)|C = |ta(q′)|C.

It is not difficult to see that a largest probabilistic bisimulation on P, denoted ∼P, exists. Let
P = (Q, {ta}a∈A) be a pts. Any transition function ta, being defined over Q, which is a basis of
R

Q seen as a free vector space(see Appendix A), is extended linearly to an endomorphism on the
whole RQ: we denote this extension by the same name, ta. With this notational convention, every
pts P determines a lwa P̂ = (RQ, {ta}a∈A,φ), where φ takes on the value 1 on each element of Q
and is extended linearly to the whole space. Note that the semantics of a pts is independent of
final weights on states; we achieve the same effect here by setting φ(q) = 1, the neutral element of
product.

As discussed in the Introduction, linear weighted bisimulation for probabilistic pts has a very
natural interpretation. Indeed, the weight σL(q)(x) associated to each state q and string x is
obtained as the sum of the probabilities of each path labelled x starting from q. In other words,
σL(q)(x) can be interpreted as the probability of observing the string x in an execution starting
from q.

We establish below that, over Q, the largest linear weighted bisimulation, ∼P̂, is coarser than
the largest probabilistic bisimulation, ∼P. A similar result was already proven by Stark in [31],
building on an alternative characterization of probabilistic bisimulation due to Jonsson and Larsen
[17]. Our proof is more direct and relies on the following lemma.

Lemma 7 Let S be a probabilistic bisimulation on the pts (Q, {ta}a∈A). Let f ,g ∈ RQ s.t. for each
C ∈ Q/S, | f |C = |g|C. Then for each C ∈ Q/S and a ∈ A, |ta f |C = |tag|C.

Proof For any h ∈ RQ, say h =
∑

q∈Q rqq, and any X ⊆ Q, let us write hX for
∑

q∈X rqq. Let C1, ...,Cn

be the equivalence classes of Q/S. Now, take f and g as in the statement of the lemma. Clearly,
f = fC1 + · · ·+ fCn and g = gC1 + · · ·+gCn . Hence, by linearity of ta

ta f = ta(fC1)+ · · ·+ ta(fCn)

tag = ta(gC1)+ · · ·+ ta(gCn) .

From these equalities and linearity of | · |C , it follows that, for each C, |ta f |C =
∑

i |ta(fCi)|C, and
similarly |tag|C =

∑

i |ta(gCi)|C . Therefore, to prove that |ta f |C = |tag|C, it suffices to show that for
each pair of classes Ci and C, |ta(fCi)|C = |ta(gCi)|C. To this purpose, write fCi as

∑

q∈Ci
λqq and gCi

as
∑

q∈Ci
λ′qq. By linearity of ta and | · |X, we have that |ta fCi |C =

∑

q∈Ci
λq|taq|C = (

∑

q∈Ci
λq)k = | f |Cik,

where k is a constant s.t. |taq|C = k for each q ∈ Ci: that all these quantities |taq|C are the same
stems from the fact that Ci is an equivalence class of the probabilistic bisimulation S. Similarly,
|gCi |C = |g|Cik. Since | f |Ci = |g|Ci by assumption, the thesis follows. 2

Theorem 4 Let P = (Q, {ta}a∈A,φ) be a pts. If q ∼P q′ in P then q ∼P̂ q′ in P̂.

Proof (Sketch, see Appendix C for a detailed proof) It is shown that that the linear relation ∼ℓP
over RQ defined by: f ∼ℓP g if and only if (i) | f | = |g|, and (ii) for all a ∈ A and all equivalence classes

12

q1 q′1

q2 q′21 q′22

q31 q32 q′31 q′32

q41 q42 q′41 q′42

a,1 a, 1
2 a, 1

2

b, 1
2 b, 1

2 b,1 b,1

c,1 d,1 c,1 d,1

Figure 3: A probabilistic transition system.

C ∈ Q/ ∼P, |ta f |C = |tag|C , is a linear weighted bisimulation. Lemma 7 is used to check requirement
(b) of the definition. 2

To show that ∼P makes less identifications than ∼P̂, we consider the following example.

Example 4 The wa P in Fig. 3, with final weights all implicitly set to 1, is a pts. Let L = LP be
the corresponding lwa. It is easy to check that q1 ∼L q′1. Indeed, consider the “small” relation R,
defined thus

R =
{

(q1,q
′
1), (q2,

1
2

(q′21+q′22)), (
1
2

(q31+q32),
1
2

(q′31+q′32)), (
1
2

(q41+q42),
1
2

(q′41+q′42)), (0,0)
}

.

One checks that this relation satisfies the clauses of bisimulation. Applying Lemma 2, one thus
finds that Rℓ is a linear weighted bisimulation, hence q1 ∼L q′1. In an even more direct fashion, one
just checks that σL(q1) = σL(q′1) and applies Theorem 1. On the other hand, q1 and q′1 are not
related by any probabilistic bisimulation. In fact, any such relation should group e.g. q31 and q32

in the same equivalence class: but this is impossible, because q31 has a c-transition, whereas q32

has not.

The above example highlights the fundamental difference between probabilistic and linear
weighted bisimulations. After each step, linear weighted bisimulation may relate “point” states to
linear combinations of states: e.g., starting from q1 and q′1 and taking an a-step, q2 and 1

2(q′21+q′22)
are related. This is not possible, by definition, in probabilistic bisimulation. A practical con-
sequence of these results is that quotienting by the largest linear weighted bisimulation yields a
minimal automaton that may be smaller than the one obtained when quotienting by probabilis-
tic bisimilarity. The states of this minimal automaton will in general not be equivalence classes
of states of the original automaton, but linear combinations of them. Stark, in [31], shows that
probabilistic bisimilarity coincides with the the largest linear weighted bisimulation that can be
obtained as a linear extension of some equivalence relation on Q.

As hinted at the beginning of this section, a different version of probabilistic transition systems
exists, the generative one. In this version, the requirement “for each a ∈ A and q ∈ Q, |ta(q)| equals 1
or 0” is replaced by “for each q ∈ Q,

∑

a∈A |ta(q)| equals 1 or 0”3. The results discussed in this section
carry over to this class of transition systems.

3Modulo the addition of self-loops to sink states, generative and reactive transition systems correspond to Markov

Chains and to Markov Decision Processes, respectively.

13

7 Weighted automata with an initial state

wa’s are sometimes presented as featuring an initial distribution on states, see e.g. Buchholz’s [6].
wa’s with an initial distribution are also known as linear representations in Automata Theory [4].
In terms of lwa’s, assuming an initial distribution on states is equivalent to choosing a distinguished
initial vector, the root.

Definition 9 (rooted lwa) A rooted lwa is a pair (v,L), where v ∈ V. The power series repre-
sented by (v,L) is σL(v). The dimension of (v,L) is given by dim(L).

Minimization has now to take care of preserving only the semantics of the root. This fact
implies that states that are not reachable from the root can be discarded right away, thus allowing
for a potentially smaller reduced automaton.

Definition 10 (reduction, minimality) Let (v,L), (u,L′) be rooted lwa’s representing the same
power series. We say (u,L′) is a reduct of (v,L) if dim(L′) ≤ dim(L). We say (v,L) is minimal if it
does not admit reducts of lesser dimension.

The minimization algorithm now consists of two steps: first, the sub-space reachable from the
root is computed; second, the sub-automaton obtained by restricting the original one to this sub-
space is minimized, according to the method described in Section 5. The second step is clearly a
quotient operation involving bisimulation. But in fact, also the first step can be seen as a quotient
operation. Indeed, if one looks at the minimization algorithm described in Theorem 2, one sees
that computing the sub-space reachable from the root v, spanned by the vectors {Txv|x ∈ A∗}, is
equivalent to computing the largest bisimulation of a lwa with transitions reversed, and having v as
a basis of ker(ψ)⊥, where ψ is its final weight function. This construction can be seen essentially as
the original two-phase minimization algorithm given by Schützenberger [29], modulo the fact that
here the two phases (computing the reachable sub-space and then reducing it) are both described
in terms of bisimulation quotients.

Below, we describe briefly this construction. We first make the symmetry between the first and
second step of the algorithm precise. First, given any (v,L) we show how to describe a “reverse”
rooted automaton (v,L)op with final and initial distributions on states swapped, and transitions
reversed. Recall from Linear Algebra that, for any morphism φ : V → R, there is a unique u ∈ V
that represents4 φ w.r.t. to inner product 〈·, ·〉, in the sense that φ = w 7→ 〈u,w〉.

Definition 11 (duality) Let (v,L) be a rooted lwa. The dual of (v,L), written (v,L)op, is the

rooted lwa (u, (V, {tTa}a∈A,ψ)), where u ∈ V represents φ and ψ(w)
△
= 〈v,w〉, for any w ∈ V.

Note that, if ψ is the final weight function of (v,L)op, then ker(ψ)⊥ = span{v}. Also note that (·)op

is an involution, that is ((v,L)op)op
= (v,L). In what follows, for (v,L)op

= (u,L′), we shall denote by
∼

op
L the largest L′-bisimulation.

Lemma 8 (v,L) is minimal if and only if (v,L)op is minimal.

Lemma 9 A rooted lwa (v,L) is minimal if and only if the bisimulations ∼L and ∼
op
L both coincide

with the identity equivalence relation on V.

4It is easy to check that, taken any ortho-normal basis B of V, this u can be written as
∑

e∈Bφ(e)e.

14

Theorem 5 (minimal rooted lwa) Let (v,L) be a rooted lwa with L = (V, {Ta}a,φ). Let π

be the projection function V → V/ ∼L. Consider the rooted lwa (v∗,L∗), where v∗ = πv and
L∗ = (V∗, {T∗a}a,φ∗) is given by

V∗ = π(V/ ∼op
L) T∗a = (πTa)|V∗ φ∗ = φ|V∗ .

Then (v∗,L∗) is a minimal reduct of (v,L).

Proof We first check that L∗ is well-defined and is actually a reduct. First, we check that for each
a and u ∈ π(V/∼op

L), one has T∗au ∈ π(V/∼op
L). Let u= πw for some w ∈ V/∼op

L , we have: T∗au= πTaπw=
πTaw where the last equality stems from Lemma 6. Now Taw ∈ V/ ∼op

L , as Ta(V/ ∼op
L) ⊆ V/ ∼op

L , by
tTa(V) ⊆ V (Lemma 3(b)) and Lemma 4. Hence πTaw ∈ π(V/ ∼op

L). Again by applying Lemma 6, it
is easily checked that, for each x ∈ A∗, T∗xπv = πTxv, hence σL∗ (v∗) = φ∗(T∗xπv) = φ(πTxv) = φ(Txv) =
σL(v), where the last but one equality in this chain stems from πw ∼L w for any w. As clearly
dim(V∗) ≤ dim(V), we have thus shown that (v∗,L∗) is a reduct of (v,L).

Concerning minimality, according to Lemma 9, it will suffice to check that both the largest
bisimulation over L∗, say ∼∗, and the largest bisimulation over the dual lwa, say ∼

op
∗ , are the

identity relation over V∗. That ∼∗ is the identity over V∗ follows from the fact that, by construction,
L∗ is a sub-automaton (in the obvious sense) of the quotient automaton L/ ∼L: hence ker(∼∗) =
ker(∼L/∼L)∩ V∗, and the result follows because ∼L/∼L is the identity over V/ ∼L (Corollary 10).
Concerning ∼

op
∗ , we show that V∗/ ∼

op
∗ = V∗, that is, (the kernel of) ∼

op
∗ has dimension 0, hence, in

terms of relations, is IdV∗ . To see this, we rely on the characterization of bisimulations orthogonal
complements given by Theorem 2. Indeed, for a finite, large enough X ⊆ A∗ (e.g. take X =∪0≤i≤nAi),
we can write

V/ ∼op
L =

∑

x∈X Tx(span{v})

V∗/ ∼
op
∗ =

∑

x∈X T∗x(span{v∗} .

Now, relying on the fact that span(·) commutes with linear maps and applying Lemma 6, each
summand of the second sum above can be re-written as follows: T∗x(span{v∗}) = span(T∗xπv) =
span(πTxv) = πTxspan{v}. Hence we can re-write the second equation above as follows, where the
third equality stems from the above equation for V/ ∼op

L

V∗/ ∼
op
∗ =

∑

x∈X πTxspan{v}

= π(
∑

x∈X Txspan{v})

= π(V/ ∼op
L)

= V∗ .

2

Example 5 Consider again the lwa L of Example 1 and the rooted lwa given by (q1,L). We
construct the corresponding minimal rooted lwa, (v∗,L∗), and then represent it as a wa. Applying
the algorithm described in Section 3, we find a basis of the sub-space V/ ∼op

L , which is {q1,q2−

q3}. Note that this amounts to starting from state q1 in L and collecting all reachable linear
combinations of states. In Example 2 we have already identified an (orthogonal) basis of V/∼L and
the corresponding projection function, π. A basis of V∗ is computed by projecting the basis of V/∼op

L
onto the basis of V/∼L, thus obtaining: πq1= q1 and π(q2−q3)= 0. Thus V∗ is the sub-space spanned

15

by {q1}. Let us now represent T∗a in this basis. Since Taq1 = q2−q3, we get T∗aq1 = π(q2−q3) = 0;
in other words, T∗a is the identically 0 function on V∗. Finally, φ∗(q1) = φ(q1) = 1. Thus, the wa

representing L∗ w.r.t. the basis {q1} is hence given by just:

q1
1

We finally show that any two minimal lwa’s representing the same fps are isomorphic, in
particular they have the same dimension. This shows that (minimal) dimension is a feature of
fps’s rather than of rooted lwa’s. Formally, we say that two rooted lwa’s (v,L) and (v′,L′) are
isomorphic if there is a vector-space isomorphism τ : V→V′ that preserves the roots and commutes
with the transition and weight functions of the two automata, that is: τv = v′, τTau = T ′aτu and
φ(u)= φ′(τu), for each a ∈ A and u ∈ V. Isomorphism is clearly an equivalence relation over the class
of rooted lwa’s.

In the following theorem, we will use the fact that R〈〈A〉〉 is an (infinite-dimensional) vector
space (see Appendix C) that can be naturally endowed with a lwa structure, as follows. Σ is the
infinite-dimensional lwa (R〈〈A〉〉, {δa}a∈A, θ), where

• δa(σ)
△
= λx.σ(ax) (a-derivative)

• θ(σ)
△
= σ(ǫ).

Given any L = (V, {Ta}a∈A,φ), recall that the function σL : V → R〈〈A〉〉 is a vector-space morphism.

Moreover, it is immediate to check that Σ(L)
△
= (σL(V), {(δa)|σL(V)}a∈A,φ|σL(V)) is a finite-dimensional

lwa (a sub-lwa of Σ).

Theorem 6 (canonicity) Let (v,L) and (v′,L′) be two minimal rooted lwa’s representing the same
fps σ. Then (v,L) and (v′,L′) are isomorphic.

Proof It is straightforward to check that σL makes (v,L) isomorphic to the rooted lwa (σ,Σ(L));
in particular, the fact that ker(σL)= {0} stems from ker(σL)= ker(∼L) and from ∼L being the identity
over V (Lemma 9). Similarly, σL′ makes (v′,L′) isomorphic to the rooted lwa (σ,Σ(L′)). Now, we
show that Σ(L) = Σ(L′), which will imply the thesis, by transitivity of isomorphism. To see this, it
is sufficient to check that σL(V) = σL′(V′). Now, since (v,L) is minimal, we know that ∼

op
L is the

identity over V (again Lemma 9). Or, equivalently, V/ ∼op
L = V; hence, by the characterization in

Theorem 2, V = span{Txv|x ∈ X}, for some finite X ⊆ A∗ (e.g. take X = ∪0≤i≤nAi). Therefore, σL(V) is
spanned by H = {σL(Txv)|x ∈ X}. Analogously, σL′(V′) is spanned by H′ = {σL′ (T ′xv′)|x ∈ X}. Now, it
is easy to check by induction on x that for each x, σL(Txv) = σL′ (T ′xv′). This implies H = H′, hence
σL(V) = σL′ (V′). 2

Practically, the above theorem entails that, no matter what rooted lwa one chooses to represent
a given σ, after minimizing one ends up into one and the same minimal representation. Also note
that the this result can be used to check whether two rooted lwa’s represent the same fps: just
check whether the corresponding minimal lwa’s are isomorphic. When a matrix representation
of the lwa’s is adopted, checking isomorphism reduces to checking similarity, for which standard
algorithms from Linear Algebra can be used. Another, more direct method, to check equivalence of
two rooted lwa’s, (v,L) and (v′,L′), does not require minimization, but relies on checking whether
v and v′ are bisimilar in the direct-sum lwa L⊕ L′.

Intuitively, this automaton is formed by laying L and L′ side by side. Formally, recall that the
cartesian product of two vector spaces V and V′ is still a vector space, called direct sum of V and

16

V′ and denoted by V ⊕V′. Note that V × {0V ′} is a sub-space of V ⊕V′ that can be identified, via
isomorphism, with V. Similarly for {0V }×V′ and V′. The direct sum of L and L′, written L⊕L′, is

the lwa (V ⊕V′, {T⊕a }a∈A,φ
⊕) where T⊕a (u,u′)

△
= (Tau,T ′au′) and φ⊕(u,u′)

△
= φ(u)+φ(u′).

Proposition 1 Let (v,L) and (v′,L′) be two rooted lwa’s. (v,L) and (v′,L′) represent the same fps

if and only if v ∼L⊕L′ v′.

Proof It is straightforward to check that, for any (u,u′) ∈ V ⊕V′, σL⊕L′ (u,u′) = σL(u)+σL′ (u′).
Applying this fact to (v,0V ′) and (0V ,v′) and using Theorem 1 we have the thesis. 2

8 The case of a generic field

We have restricted our presentation to lwa over the field of real numbers equipped with a inner
product, so that we can easily represent both negations and quotients as orthogonal complements.
In fact, while having orthogonal complements is handy, it is not at all necessary. In the case of a
vector space over a generic field K, we can replace orthogonal complements by annihilators when
representing negation and by (ordinary) complement spaces when representing quotients. Doing
so requires the introduction of dual spaces, which we quickly review below. An in-depth treatment
cab be found in e.g. [14].

Given any vector space V over K, its dual space V⋆ is the set of all morphisms V → K, with K
seen as a 1-dimensional vector space. The elements of V⋆ are often called functionals. The sum of
two functionals ψ1+ψ2 and the scalar multiplication k ·ψ (k ∈K) are defined point-wise as expected,
and turn V⋆ into a vector space over K. It is customary to denote functional application ψ(v) as
[v,ψ], the bracket notation intending to emphasize certain analogies with inner products. Fix an

ordered basis B = (e1, ...,en) of V and consider B⋆
△
= (e⋆1 , ...,e

⋆
n), where the functionals e⋆i are specified

by [e j,e⋆i]
△
= δi j for each i and j – here δi j denotes the Kronecker symbol, which equals 1 if i = j

and 0 otherwise. It is easy to check that B⋆ forms a basis of V⋆, referred to as the dual basis of B.
Hence dim(V⋆) = dim(V). In particular, the morphism (·)⋆ : V → V⋆ that sends each ei into e⋆i is an
isomorphism between V and V⋆. Note that if a and b are the column-vectors representing v and
ψ in the respective bases B and B⋆, then ψ(v) can be computed as the ordinary scalar product of
these vectors, that is

[v,ψ] = 〈a,b〉
△
=

∑

i

ai ·bi . (3)

The definition of transpose morphism must be extended as follows.

Definition 12 (transpose morphism, general case) Let T : V → V be an endomorphism on

V. We let the transpose of T , written tT , be the endomorphism V⋆→ V⋆ defined by tT (ψ)
△
= ψ◦T

for each ψ ∈ V⋆.

It is easy to check that that if M is the matrix representing T in V w.r.t. to B, then the
transpose matrix tM represents tT in V⋆ w.r.t. B⋆, whence the terminology and the notation. It
is quite expected that, by taking the transpose twice one gets back the original morphism. In fact
this is the case, although one has to take care of identifying things up to isomorphism. Denote by
V⋆⋆ the space (V⋆)⋆, called double dual of V. There is a natural isomorphism F between V and
V⋆⋆, given by F : v 7→ [v, ·] (note that this isomorphism does not depend on the choice of a basis).

17

In the sequel, we shall freely identify V and V⋆⋆ up to this isomorphism, i.e. identify v and [v, ·]
for each v ∈ V. With this identification, one has that t(tT) = T .

We need another concept from duality theory. Given U ⊆ V, we denote by Uo the annihilator
of U, the subset of functionals that vanish on U.

Definition 13 (annihilator) For any U ⊆ V, we let Uo △
= {ψ ∈ V⋆ | [u,ψ] = 0 for each u ∈ U}.

Once again, the notation makes the analogy with inner products explicit. We use the following
properties of annihilators, where U,W are a sub-spaces of V: (i) Uo is a sub-space of V⋆; (ii) (·)o

reverses inclusions, i.e. if U ⊆W then Wo ⊆ Uo; (iii) (·)o is an involution, that is (Uo)o
= U up to

the natural isomorphism between V and its double dual. These three properties suggest that Uo

can be regarded as a complement, or negation, of U seen as a relation. Another useful property is:
(iv) dim(Uo)+dim(U) = dim(V).

Now, consider lwa’s over a generic field K. The definitions and results of sections 2, 3 and 4
carry over essentially unchanged when replacing U⊥ by Uo and the definition of transpose morphism
with the general one given above. The only difference is that the Ri’s given in Theorem 2 are now
sub-spaces of the dual space V⋆, rather than V. Concerning the quotient construction in Section
5, the definitions and results carry over if identifying V/R with any complement of R w.r.t. V, i.e.
with any W s.t. V = R⊕W, and identifying π with the projection onto W. Concerning Section 7,
the duality operation is extended as follows: fix any basis B of V and denote by (·)⋆ : V → V⋆ the
induced dualization morphism. Then (v,L)op is the rooted lwa (φ, (V⋆, {tTa}a∈A,v⋆)). Finally, in the
construction of the minimal rooted automaton (Theorem 5) one must define V∗ as the sub-space
(∼op

L)o, which is a sub-space of V up to the isomorphism between V and its double dual. With these
changes, the results carry over.

9 Related and further work

Related work Our formulation of linear weighted bisimulation is primarily related to the defi-
nition of Σ-congruence put forward by Stark [31]. Σ-congruence is introduced in order to provide
a simple formulation of behavioural equivalence in a model of stochastic systems, Probabilistic
Input/Output Automata, and relate this notion to standard probabilistic bisimulation. In the form
studied by Stark, weighted automata do not feature final (nor initial) weights. This form is sub-
sumed by ours once we assign the final weight 1 to all elements of the basis. In this special case,
Σ-congruence and linear weighted bisimulation coincide. The representation of linear relations in
terms of their kernels is already present in [31]. Partition refinement and quotient/minimization
are not tackled, though. A related equivalence for stochastic systems, under the name behaviour
equivalence, is studied in [34, 32] (while weighted equivalence indicates there yet another equiva-
lence).

Buchholz and Kemper have put forward a definition of bisimulation for weighted automata over
a generic semiring [6, 7]. A largest such bisimulation can be computed by a partition refinement
algorithm that works on a matrix representation of the automata [6]; both a forward and a backward
version of the equivalence and of the algorithm are investigated. A definition of “aggregated”
automaton, corresponding to a quotient, is presented, but a notion of canonical representation is
not put forward. Akin to the probabilistic one of Larsen and Skou, and differently from ours and
Stark’s, Buchholz and Kemper’s bisimulations never relate a “point” state to a linear combinations
of states. As a consequence, when instantiating the semiring in their framework to R, their notion

18

of equivalence is stricter than ours – and than weighted language equivalence – for the same reasons
discussed in Example 4.

Weighted automata and formal power series play a central role in a few recent and less recent
papers of Rutten [26, 25, 27] on coinduction and (multivariate) streams – another name for fps’s.
The coinduction principle we state in Theorem 3 has been inspired to us by a similar principle
formulated, for Moore automata, in [26]. We also note that Rutten endows fps’s with a Moore
automaton structure, while here we endow them with a weighted automaton structure – see Theo-
rem 6. In [26], weighted automata are used to provide a more compact representation for streams
than deterministic (Moore) automata do. Closely related to ours is also [27], where linear repre-
sentations very similar to our lwa’s are considered. Bisimulation is defined over streams – seen as
deterministic Moore automata – and two states of a weighted automaton are related iff they gen-
erate the same stream. This approach is also taken in [25], where it is shown that infinite weighted
automata can be used to enumerate a wide class of combinatorial objects. The stream-based defi-
nition can be used to prove an infinite automaton equivalent to a “small” one. The latter can be
directly mapped to a closed expressions for the generating function of the enumerated objects.

Weighted automata were first introduced in Schützenberger’s classical paper [29], where a min-
imization algorithm was also discussed. This algorithm has been reformulated in a more algebraic
fashion in Berstel and Reutenauer’s book [4]. Other descriptions of the algorithm can be found in
[8, 11, 28, 33]. Here we explicitly connect this algorithm to the notion of bisimulation. Hopefully,
this connection will make the algorithm itself accessible to a larger audience.

Conclusion and further work We have introduced a notion of bisimulation for weighted au-
tomata over the field of real numbers, provided partition refinement and minimization algorithms,
and studied its relationship to existing notions of equivalence on probabilistic systems and to clas-
sical constructions in Automata Theory. Both the presentation and the technical development
draw some benefit from a geometrical representation called lwa. Due to lack of space, we have not
presented results concerning composition of automata. Indeed, it is quite easy to prove that both
direct sum (juxtaposition) and tensor product (synchronization) of lwa’s preserve bisimulation
equivalence (see also Stark’s [31, Section 3]).

There are several possible directions for future work. One would like to extend the present
approach to the case of infinite wa’s. This would provide proof techniques, if not effective algo-
rithms, that could be used to reason in a more systematic manner on the counting automata of
[25]. Indeed, going from an infinite to a “small”automaton as described in the preceding paragraph
is a quotient operation, that would be interesting to cast in our framework. Second, it would be
interesting to generalize the present approach to (semi)rings, so as to capture a greater variety
of equivalences, e.g. ordinary language equivalence. This would imply moving from vector spaces
to (semi)modules [19]. Some work in this vein has already been done, see [2, 3], which consider
Euclidean domains.Also, it would be interesting to cast the present results in a more explicit co-
algebraic setting: this would put them in a deeper perspective and possibly help to explain certain
aspects not clear at moment, such as, why the blow up of the ordinary case goes away. It would
also be practically relevant to identify classes of properties preserved by linear weighted bisimilarity
on probabilistic systems: a preliminary investigation shows that reachability is one such class. The
relationship of linear weighted bisimilarity with other notions of equivalences/preorders [30, 9] that
also relate distributions, rather than individual states, deserves further attention.

19

References

[1] C. Baier, B. Engelen, M. E. Majster-Cederbaum. Deciding Bisimilarity and Similarity for Probabilistic
Processes. Journal of Computer and System Sciences, 60(1): 187-231, 2000.

[2] M.P. Beal, S. Lombardy and J. Sakarovitch. On the equivalence of Z-automata. ICALP 2005, LNCS
3580, 397–409, 2005.

[3] M.P. Beal, S. Lombardy and J. Sakarovitch. Conjugacy and equivalence of weighted automata and
functional transducers. CSR 2006, LNCS 3967, 58–69, 2006.

[4] J. Berstel, C. Reutenauer. Rational Series and Their Languages. EATCS Monograph Series, Springer-
Verlag, 1988. New edition, Noncommutative Rational Series With Applications, 2008, available from
http://www-igm.univ-mlv.fr/~berstel/LivreSeries/LivreSeries.html.

[5] P. Buchholz. Exact Performance Equivalence: An Equivalence Relation for Stochastic Automata.
Theoretical Computer Science, 215(1-2): 263-287, 1999.

[6] P. Buchholz. Bisimulation relations for weighted automata. Theoretical Computer Science 393(1-3):
109-123, 2008.

[7] P. Buchholz, P. Kemper. Quantifying the Dynamic Behavior of Process Algebras. PAPM-PROBMIV

2001: 184-199, 2001.

[8] A. Cardon and M. Crochemore. Determination de la representation standard d’une serie reconnaiss-
able. RAIRO Theor. Informatics and Appl. 14: 371–379, 1980.

[9] Y. Deng, R.J. van Glabbeek, M. Hennessy and C.C. Morgan. Characterising testing preorders for
finite probabilistic processes. Logical Methods in Computer Science 4(4:4), 2008.

[10] R. De Nicola, Matthew Hennessy. Testing Equivalences for Processes. Theoretical Compututer Science

34: 83-133, 1984.

[11] M. Flouret and E. Laugerotte. Noncommutative minimization algorithms. Inform. Process. Lett. 64:
123–126, 1997.

[12] R. J. van Glabbeek, S. A. Smolka, B. Steffen, C. M. N. Tofts. Reactive, Generative, and Stratified
Models of Probabilistic Processes, LICS 1990, 130-141, 1990.

[13] G. H. Golub, C.F. Van Loan. Matrix Computations, 2/e. The John Hopkins University Press, 1989.

[14] P. R. Halmos. Finite-Dimensional Vector Spaces. Springer, 1987.

[15] J. Hillston. Compositional Markovian modelling using a process algebra. In: W.J. Stewart (Ed.),
Computations with Markov Chains, Kluwer Academic Publisher, 177-196, 1995.

[16] A. Isidori. Nonlinear Control Systems. Lecture Notes in Control and Information Sciences, Springer-
Verlag, 1989.

[17] B. Jonsson, K. G. Larsen. Specification and Refinement of Probabilistic Processes, LICS 1991 : 266-
277, 1991.

[18] J.G. Kemeny, J.L. Snell. Finite Markov Chains. Springer-Verlag, 1976.

[19] S.A. Lang. Introduction to Linear Algebra, 2/e. Springer-Verlag, 1997.

[20] K.G. Larsen, A. Skou. Bisimulation through Probabilistic Testing. Information and Compututation,
94(1): 1-28, 1991.

[21] A. R. Meyer, L. J. Stockmeyer. Word problems requiring exponential time. In STOC 1973 : 1-9, 1973.

[22] R. Milner. A Calculus of Communicating Systems. Prentice-Hall, 1989.

[23] M. Mohri. Finite-State Transducers in Language and Speech Processing. Computational Linguistics

23(2): 269-311, 1997.

20

[24] D. Park. Concurrency and Automata on Infinite Sequences. Theoretical Computer Science 1981: 167-
183.

[25] J.J.M.M. Rutten. Coinductive counting with weighted automata. Journal of Automata, Languages

and Combinatorics 8(2): 319-352, 2003.

[26] J.J.M.M. Rutten. Behavioural differential equations: a coinductive calculus of streams, automata, and
power series. Theoretical Computer Science, 308(1–3): 1–53, 2003.

[27] J.J.M.M. Rutten. Rational streams coalgebraically. Logical Methods in Computer Science, 4(3), 2008.

[28] J. Sakarovitch. Elements de theorie des automates, Vuibert, 2003.

[29] M. P. Schützenberger. On the Definition of a Family of Automata. Information and Control, 4(2-3):
245-270, 1961.

[30] R. Segala. Modeling and Verification of Randomized Distributed Real-Time Systems. PhD thesis, MIT.
1995.

[31] E.W. Stark. On Behavior Equivalence for Probabilistic I/O Automata and its Relationship to Prob-
abilistic Bisimulation. Journal of Automata, Languages and Combinatorics 8(2): 361-395, 2003.

[32] E. W. Stark, R. Cleaveland, S.A. Smolka: Probabilistic I/O Automata: Theories of Two Equivalences.
CONCUR 2006, LNCS 4137:343-357, 2006.

[33] E. W. Stark, W. Song. Linear Decision Diagrams, manuscript, 2004. Available from http://bsd7.

starkhome.cs.sunysb.edu/~stark/REPORTS/ldd.pdf.

[34] S.-H. Wu, S. A. Smolka, and E. W. Stark. Composition and behaviors of probabilistic I/O automata.
Theoretical Computer Science, 176(1-2):1-38, 1997.

21

A Linear algebraic background

Let V,W be two vector spaces and let T : V →W be a morphism between them (we shall also call T

an endomorphism if V =W). T (V) is a sub-space of W and ker(T)
△
= {v ∈ V |T (v) = 0} is a sub-space

of V. The following fundamental identity relates the dimensions of these spaces in case dim(V) is
finite:

dim(V) = dim(T (V))+dim(ker(T)) . (4)

For any subset U ⊆V, the sub-space spanned by U, denoted span(U), is the set of linear combinations
of elements from U; this is the smallest sub-space containing U. The sum of n sub-spaces V1, ...,Vn is

defined as
∑n

i=1 Vi
△
= span(∪n

i=1Vi). Note that span(·) commutes with T in the sense that T (span(U)) =
span(T (U)); in particular, T (

∑n
i=1 Vi) =

∑n
i=1 T (Vi). Suppose V has finite dimension n. An ordered

basis B for V is just a n-tuple B = (e1, · · · ,en) of distinct vectors that form a basis of V. If T : V→W
and B and B′ are ordered bases of V and W, of cardinality m and n, respectively, then T is represented
by the matrix M ∈ Rn×m that has as its ith column the column-vector of the coordinates of T (ei) in
the basis B′; the coordinates of T (v) in the basis B′ are obtained by the matrix multiplication sM,
where s is the row-vector of the coordinates of v in B.

A inner product over V is a symmetric, bi-linear application 〈·, ·〉 : V ×V → R that is definite-
positive, that is 〈v,v〉 > 0 for each v , 0. A vector space over R equipped with an inner product is
called inner product space. Let V be a inner product space. Two vectors u and v are orthogonal
if 〈u,v〉 = 0. An orthogonal basis of V is a basis of V whose elements are pairwise orthogonal. An
ortho-normal basis of V is an orthogonal basis B whose elements have norm 1, that is 〈e,e〉 = 1 for
each e ∈ B. Any finite-dimensional inner product space – hence any sub-space of it – is proven to

have an ortho-normal basis. Given any sub-space U ⊆V, the set U⊥
△
= {v ∈V | 〈v,u〉= 0 for each u ∈U}

is itself a sub-space of V, called the orthogonal complement of U w.r.t. V. If V is finite-dimensional,
then each v ∈ V can be written in a unique way as a sum v = u+w with u ∈U and w ∈U⊥; this is also
written as V =U⊕U⊥ and, in this case, dim(V)= dim(U)+dim(U⊥). Moreover, in finite-dimensional
inner products, the orthogonal complement operation is an involution, that is (U⊥)⊥ = U, and
reverses inclusions, that is, if U ⊆W then U⊥ ⊇W⊥.

Let Q be a finite set. Denote by RQ the set of all functions f : Q→ R, called measures over Q.
We observe that RQ is a vector space over R of dimension |Q|, the free vector space generated by
Q, once we define the sum of two measures, f + g, and the scalar product r · f (r ∈ R) point-wise
as expected. Q itself can be seen as a subset of this space, once every q ∈ Q is identified with the
“point-measure” fq defined by: fq(q′) = 1 if q′ = q and fq(q′) = 0 otherwise; in the sequel, we will
make no notational distinction between q and fq. In fact, Q is a ortho-normal basis of RQ w.r.t.

to the inner product defined as 〈
∑

q∈Q rq ·q,
∑

q∈Q r′q ·q〉
△
=
∑

q∈Q rq · r′q.

B Similarity

We have argued in Section 2 that the matrix-based representation of wa is basically equivalent
to that in terms of lwa. It should be noted, however, that, when passing from a lwa to a wa,
choosing two different bases of V, say Q and Q′, will in general determine two different wa’s, WL,Q

and WL,Q′ . These two automata have the same number of states, but need not have isomorphic
transition graphs. Rather, these two automata are similar, in the following sense.

22

Definition 14 (similarity) Given two wa’s, W = (Q, {Ma}a∈A, f) and W′ = (Q′, {M′a}a∈A, f ′), we say
W is N-similar to W′ if N is an invertible square matrix such that Ma = NM′aN−1, for each a ∈ A,
and f = N f ′. W and W′ are similar if they are N-similar for some N.

Similarity is, evidently, an equivalence relation on the class of wa’s. In case W and W′ are
derived from the same L via different bases Q and Q′, N is just the change of basis matrix from
Q to Q′. The states of two similar automata have the same weighted language semantics, mod-
ulo a transformation of coordinates. These considerations are made precise and recorded in the
proposition below.

Proposition 2 (1) Let W be a n-dimensional wa N-similar to W′. For each row-vector s ∈ R1×n,
it holds that σW (s) = σW′ (sN). (2) Let L be a lwa and Q, Q′ be two ordered bases of V. Then WL,Q

and WL,Q′ are similar. (3) Conversely, two wa’s W and W′ over the same ordered set of states are
similar if and only if LW = LW′ .

Part (1) of Proposition 2 says that similar automata have the same weighted language semantics,
modulo a change coordinates. Parts (2) and (3) say that working with lwa’s means essentially
working with wa’s up to similarity. Working up to similarity provides a basic level of abstraction
– somewhat analogous to the use of structural congruence in process calculi – which is technically
convenient. On the other hand, when it comes to represent concretely a lwa, one has a certain
freedom as to the choice of the basis, hence of the corresponding wa.

C Proofs

Lemma 10 Suppose L is minimal. Then ∼L is the identity over V.

Proof By minimality of L and L/ ∼L and part (a) of Theorem 3: dim(L) = dim(L/ ∼L) = dim(L)−
dim(∼L), hence dim(∼L) = 0. 2

Lemma 11 (Lemma 7) Let S be a probabilistic bisimulation on the pts (Q, {ta}a∈A). Let f ,g ∈RQ

s.t. for each C ∈ Q/S, | f |C = |g|C. Then for each C ∈ Q/S and a ∈ A, |ta f |C = |tag|C.

Proof For any h ∈ RQ, say h =
∑

q∈Q rqq, and any X ⊆ Q, let us write hX for
∑

q∈X rqq. Let C1, ...,Cn

be the equivalence classes of Q/S. Now, take f and g as in the statement of the lemma. Clearly,
f = fC1 + · · ·+ fCn and g = gC1 + · · ·+gCn . Hence, by linearity of ta

ta f = ta(fC1)+ · · ·+ ta(fCn)

tag = ta(gC1)+ · · ·+ ta(gCn) .

From these equalities and linearity of | · |C , it follows that, for each C, |ta f |C =
∑

i |ta(fCi)|C, and
similarly |tag|C =

∑

i |ta(gCi)|C . Therefore, to prove that |ta f |C = |tag|C, it suffices to show that for
each pair of classes Ci and C, |ta(fCi)|C = |ta(gCi)|C. To this purpose, write fCi as

∑

q∈Ci
λqq and gCi

as
∑

q∈Ci
λ′qq. By linearity of ta and | · |X, we have that |ta fCi |C =

∑

q∈Ci
λq|taq|C = (

∑

q∈Ci
λq)k = | f |Cik,

where k is a constant s.t. |taq|C = k for each q ∈ Ci: that all these quantities |taq|C are the same
stems from the fact that Ci is an equivalence class of the probabilistic bisimulation S. Similarly,
|gCi |C = |g|Cik. Since | f |Ci = |g|Ci by assumption, the thesis follows. 2

23

Theorem 7 (Theorem 4) Let P = (Q, {ta}a∈A,φ) be a pts. If q ∼P q′ in P then q ∼P̂ q′ in P̂.

Proof Let ∼ℓP to be the linear relation over RQ defined by: f ∼ℓP g if and only if (i) | f | = |g|, and
(ii) for all a ∈ A and all equivalence classes C ∈ Q/ ∼P, |ta f |C = |tag|C. By definition, q ∼P q′ implies
q ∼ℓP q′. We will show that ∼ℓP is included in ∼P̂, the largest linear weighted bisimulation on P̂,

this will prove the theorem. To this aim, it suffices to show that ∼ℓP is a P̂-bisimulation. Assume

f ,g ∈ RQ and f ∼ℓP g. We check the obligations (a) and (b) of the definition of linear weighted
bisimulation.

(a) φ(f) = φ(g). Note that, by definition of φ, φ(h) = |h| for each h ∈ RQ. The thesis then follows
from the definition of ∼ℓP.

(b) Let a ∈ A, we have to show that ta f ∼ℓP tag. Since f ∼ℓP g, we know that for each C ∈ Q/ ∼P,
|ta f |C = |tag|C . Hence: (i) |ta f | =

∑

C |ta f |C =
∑

C |tag|C = |tag|; and, (ii) by virtue of Lemma 7
|tbta f |C = |tbtag|C, for every C and b ∈ A. This proves that ta f ∼ℓP tag.

2

Lemma 12 (Lemma 8) (v,L) is minimal if and only if (v,L)op is minimal.

Proof Let (u,L′) = (v,L)op. For any string x = a1 · · ·an ∈ A∗, denote by tx the reverse string an · · ·a1.
It is immediate to check, representing the involved morphisms in any ortho-normal basis of V, that
for each x ∈ A∗, σL(v)(x) = σL′ (u)(tx). This implies that if (w,L′′) is a reduct of (v,L) then (w,L′′)op

is a reduct of (v,L)op. The thesis follows by idempotency of (·)op. 2

In the lemma below, we use the fact that the set of fps’s, R〈〈A〉〉, is a vector space overR, once the

operations of sum and scalar product are defined point-wise as expected: (σ+σ′)(x)
△
= σ(x)+σ′(x)

and (r ·σ)(x) = r ·σ(x) (r ∈ R). Moreover, for any L with V as a space-state, the map v 7→ σL(v) is a
morphism V → R〈〈A〉〉.

Lemma 13 (Lemma9) A rooted lwa (v,L) is minimal if and only if the bisimulations ∼L and
∼

op
L both coincide with the identity equivalence relation on V.

Proof Assume first (v,L) is minimal. Let (h,L′) be any reduction of L. By definition, (hv,L′) is
a reduct of (v,L). Hence it must be dim(L) = dim(L′). In other words, L is a minimal lwa. Hence,
by Lemma 10, ∼L is the identity over V. On the other hand, also (v,L)op is minimal (Lemma 8),
hence, by the same argument, also ∼

op
L is the identity over V.

Conversely, assume that both ∼L and ∼
op
L are the identity relation over V. Hence ker(∼op

L) = 0,

and V = V/ ∼op
L . By the characterization given in Theorem 2, and recalling that for the final weight

function of the dual automaton we have ker(ψ)⊥ = span{v}, it must be for some finite X ⊆ A∗ (e.g.
take X = ∪0≤i≤nAi)

V = V/ ∼op
L = span{Txv|x ∈ X} .

Consider the map σL as a morphism V → R〈〈A〉〉. By the equation above for V, we get that the
sub-space σL(V) ⊆ R〈〈A〉〉 is spanned by H = {σL(Txv)|x ∈ X}. Now, let (v′,L′) be any reduct of
(v,L), with L′ = (V′, {T ′a}a∈A,φ

′). We want to show that dim(V′) = dim(V). To this purpose, first
observe that, for any string x, we have that σL(Txv) = σL′ (T ′xv′): this is easily shown by induction
on x. Hence, H = {σL(Txv)|x ∈ X} = {σL′ (T ′xv′)|x ∈ X} ⊆ σL′ (V′). Since H spans σL(V), we get that
dim(σL(V)) ≤ dim(σL′(V′)). Moreover, it is immediate to check (via Theorem 1) that ker(σL) =∼L.

24

But ∼L is by assumption the identity, that is dim(∼L) = 0. We now can use the facts collected thus
far and the fundamental identity (4) to compare dim(V) and dim(V′), as follows

dim(V) = dim(σL(V))+dim(ker(σL)) = dim(σL(V))

≤ dim(σL′ (V′)) ≤ dim(σL′ (V′))+dim(ker(σL′))

= dim(V′) ≤ dim(V)

that is, dim(V) = dim(V′). 2

25

