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Abstract. In a process calculus, an agent guarantees responsive usage of a channel namer if a communi-
cation alongr is guaranteed to eventually take place. Responsiveness is important, for instance, to ensure
that any request to a service be eventually replied. We propose two distinct type systems, each of which
statically guarantees responsive usage of names in well-typed pi-calculus processes. In the first system, we
achieve responsiveness by combining techniques for deadlock and livelock avoidance withlinearity andre-
ceptiveness. The latter is a guarantee that a name is ready to receive as soon as it is created. These conditions
imply relevant limitations on the nesting of actions and on multiple use of names in processes. In the second
system, we relax these requirements so as to permit certain forms of nested inputs and multiple outputs.
We demonstrate the expressive power of the two systems by showing that primitive recursive functions – in
the case of the first system – and Cook and Misra’s service orchestration languageORC – in the case of the
second system – can be encoded into well-typed processes.

1 Introduction

In a process calculus, an agent guarantees responsive usage of a channel namer if a communication alongr is
guaranteed to eventually take place. That is, under a suitable assumption of fairness, all computations contain at
least one reduction withr as subject. We christen this propertyresponsivenessas we are particularly interested
in the case wherer is a return channel passed to a service or function. As an example, a network of processesS
may contain a service !a(x, r).P invocable inRPCstyle: the caller sends ata an argumentx and a return channel
r. S’s responsive usage ofr implies that every request ata will be eventually replied. This may be a critical
property in domains of applications such as service-oriented computing.

Our goal is to individuate substantial classes of pi-calculus processes that guarantee responsiveness and that
can be statically checkable. In the past decade, several type systems for the pi-calculus have been proposed
to analyze properties that share some similarities with responsiveness, such as linearity [9], uniform receptive-
ness [12], lock freedom [5,6] and termination [4]; they will be examined throughout the paper. However none
of the above mentioned properties alone is sufficient, or even necessary, to ensure the property we are after, as
we discuss below (further discussion is found in the concluding section).

The first system we propose builds around Sangiorgi’s system for uniform receptiveness [12]. However,
we discard uniformity and introduce other constraints, as explained below. As expected, most difficulties in
achieving responsiveness originate from responsive names being passed around. If an intended receiver of a
responsive namer, saya(x).P, is not available “on time”,r might never be delivered, hence used. In this respect,
receptiveness is useful, because it can be used to ensure that inputs ona and onr are available as soon as they
are created.

Even when delivery ofr is ensured, however, one should take care thatr will be processed properly. Indeed,
the recipient might just “forget” aboutr, like in (νa, r)(a(x).0|a〈r〉) ; or r might be passed from one recipient
to another, its use as a subject being delayed forever, like in

(νa, b, r)
(

!a(x).b〈x〉 | !b(y).a〈y〉 | a〈r〉
)
. (1)

The first situation can be avoided by imposing that in the receivera(x).P, namex occurs at least once in the
body P. In fact, as we shall discuss in the paper, it is necessary that any responsive name be usedlinearly,
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that is, it appears exactly once in input and once in output. Infinite delays like (1) can be avoided by using a
stratification of names intolevels, like in the type system for termination of Deng and Sangiorgi [4]. We will
rule out divergent computations that involve responsive names infinitely often, but we’ll do allow divergence in
general.

Finally, even when a responsive name is eventually in place as subject of an output action, one has to make
sure that such action becomes eventually available. In other words, one must avoid cyclic waiting like in

r(x).s〈x〉 | s(y).r〈y〉 . (2)

This will be achieved by building a graph of the dependencies among responsive names and then checking for
its acyclicity.

Receptiveness and linearity impose relevant limitations on the syntax of well-typed processes: nested free
inputs are forbidden, as well as multiple outputs on the same name. On the other hand, the type system is
expressive enough to enable aRPC programming style; in particular, we show that the usualCPSencoding of
primitive recursive functions gives rise to well-typed processes.

In the second system we propose, the constraints on receptiveness and linearity are relaxed so as to allow
certain forms of nested inputs and multiple outputs. For instance, the new system allows nondeterministic in-
ternal choice, which was forbidden in the first one. Relaxation of linearity and receptiveness raises new issues,
though. As an example, responsiveness might fail due to “shortage” of inputs, like in (a, b andd responsive):

a〈b〉|a〈d〉|a(x).x|b|d τ−→ τ−→ a〈d〉|d .

These issues must be dealt with by carefully “balancing” inputs and outputs in typing contexts and in pro-
cesses. This system is flexible enough to encode into well-typed processes all orchestration patterns of Cook
and Misra’sORC language [3]. Due to a rather crude use of levels, however, only certain forms of (tail-)recursion
are encodable. In fact, neither the first system is subsumed by the second one, nor vice versa.

The rest of the paper is organized as follows. Syntax and operational semantics of the calculus are presented
in Section 2, and the property we are after is formally defined. Section 3 introduces the first type system,
after an informal discussion on the requirements for responsiveness. The main results, subject reduction and
responsiveness, are presented in Section 4; there we give also a bound, depending on the size of a process, on
the number of reductions necessary before a given responsive name is used. A simple extension of the first
system (recursion on well-founded data) is presented in Section 5, where the encoding of primitive recursive
functions is also discussed. The second system is presented in Section 6; several examples illustrating the extent
and limits of the system are also discussed. We have no room for discussing the full encoding ofORC; hence
only an example is shown. The concluding section contains some indications for further work, and a detailed
discussion of related work.

2 Syntax and operational semantics

In this section we describe the syntax (processes and types) and the operational semantics of the calculus. On
top of the operational semantics, we define the responsiveness property we are after.

2.1 Syntax

We focus on an asynchronous variant of the pi-calculus without nondeterministic choice. Indeed, asynchrony is
a natural assumption in a distributed environment. Moreover, in the presence of a choice, it would be difficult
to guarantee responsiveness of names that occur in branches that are discarded. A countable set of namesN ,
ranged over bya,b, . . . ,x,y, . . . , is presupposed. The setP of processes P,Q, . . . is defined as the set of terms
generated by the following grammar that obey the well-formedness conditions described below.
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P ::= 0 Inaction∣∣ a〈b〉 Output∣∣ a(x).P x /∈ in(P) Input prefix∣∣ !a(x).P x /∈ in(P) Replication∣∣ P|Q Parallel∣∣ (νb)P Restriction

In a non blocking output actiona〈b〉, namea is said to occur inoutput subject positionandb in output
object position. In an input prefixa(x).P, and in a replicated input prefix !a(x).P, namea is said to occur in
input subject positionandx in input object position. We denote by in(P) the set of names occurring free in input
subject position inP. The conditionx /∈ in(P), for input and replicated input, means that names can be passed
around with the output capability only. This assumption simplifies reasoning on types and does not significantly
affect the expressiveness of the language (see e.g. [2,10]). As usual, parallel composition,P|Q, represents the
concurrent execution ofP andQ and restriction,(νb)P, creates a fresh nameb with initial scope P. Notions
of free and bound names (fn(·) and bn(·)), andα-equivalence (=α) arise as expected. In the paper, we shall
only considerwell-formedprocesses, where all bound names are distinct from each other and from free names.
Please note that we donot identify processes up toα-equivalence (this means that an explicit operational rule
that equates transition ofα-equivalent processes will be needed).

Notationally, we shall often abbreviatea(x).0 asa(x), and(νa1) . . .(νan)P as(νa1, . . . ,an)P or (νã)P, where
ã = a1, . . . ,an. In a few examples, the object part of an action may be omitted if not relevant for the discussion;
e.g.,a(x).P may be shortened intoa.P.

2.2 Sorts and types

The set of namesN is partitioned into a family of countablesortsS ,S ′, . . .. A fixed sorting à la Milner [11]
is presupposed: that is, any sortS has an associated object sortS ′, and a name of sortS can only carry names
of sortS ′. We only consider processes that are well-sorted in this system. Alpha-equivalence is assumed to be
sort-respecting, in the obvious sense. Each sort is associated with atypeT taken from the setT defined below.
We writea : T if a belongs to a sortS with associated typeT. The association between types and sorts is such
that for each type there is at least one sort of that type.

A channel typeT[u,k] conveys three pieces of information: a type of carried objectsT, ausageu, that can be
responsive(ρ) or ω-receptive(ω), and an integerlevel k≥ 0. If a : T[u,k] andu = ρ (resp.u = ω) we say thata
is responsive(resp.ω-receptive). Informally, responsive names are guaranteed to be eventually used as subject
in a communication, whileω-receptive names are guaranteed to be constantly ready to receive. Levels are used
to bound the number of times a responsive name can be passed around, so to avoid infinite delay in their use as
subject. We also consider a typeI of inert names that cannot be used as subject of a communication – they just
serve as tokens to be passed around. Finally, a type⊥ is introduced to collect those names that cannot be used
at all: as we discuss below,⊥ is useful to formulate the subject reduction property while keeping the standard
operational semantics.

Definition 1 (types).The setT of typescontains the constant⊥ and the set of terms generated by the grammar
below. We useT,S, ... to range overT .

T ::= I
∣∣ TU U ::= [ρ,k]

∣∣ [ω,k] (k≥ 0)

2.3 Operational semantics

The semantics of processes is given by a labelled transition system in the early style, whose rules are presented
in Table 1. Anaction µcan be of the following forms: free output,a〈b〉, bound output,a(b), input a(b), or
internal moveτ. We definen(a(b)) = n(a〈b〉) = n(a(b)) = {a,b} andn(τ) = /0. A substitutionσ is a finite
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partial map from names to names; for any termP, we writePσ for the result of applyingσ to P, with the usual
renaming convention to avoid captures.

The rules are standard, with a difference that we discuss in the following. The notation
τ〈a,b〉−−−→ is used to

denote aτ-transition where the – free or bound – namesa andb are used as subject and object, respectively, of
a communication (we omit the formal definition of this notation, that can be given by keeping track of subject
and object names in derivation of transitions.) In Rule (RES-ρ), a bound responsive subjecta is alpha-renamed
to a⊥-namec (a sort of “casting” ofa to type⊥.) Informally, this alpha-renaming is necessary because in a
well-typed process, due to the linearity constraint on responsive names, namea must vanish after being used as
subject. The rule (RES) deals with the remaining cases of restriction. Note that if type and sorting information
is ignored, one gets back the standard operational semantics of pi-calculus.

(IN) a(x).P
a(b)−−→ P[b/x] (REP) !a(x).P

a(b)−−→!a(x).P|P[b/x]

(OUT) a〈b〉 a〈b〉−−→ 0 (ALPHA) P =α Q Q
µ−→Q′ Q′ =α P′

P
µ−→ P′

(COM1) P
a〈b〉−−→ P′ Q

a(b)−−→Q′

P|Q τ−→ P′|Q′ (PAR1)
P

µ−→ P′ bn(µ)∩ fn(Q) = /0
P|Q µ−→ P′|Q

(OPEN) P
a〈b〉−−→ P′ a 6= b

(νb)P
a(b)−−→ P′

(CLOSE1)
P

a(b)−−→ P′ Q
a(b)−−→Q′ b /∈ fn(Q)

P|Q τ−→ (νb)(P′|Q′)

(RES)

P
µ−→ P′ a /∈ n(µ)

µ= τ〈a,b〉 impliesa not responsive

(νa)P
µ−→ (νa)P′

(RES-ρ) P
τ〈a,b〉−−−→ P′ a responsivec :⊥ c fresh

(νa)P
τ〈a,b〉−−−→ (νc)P′[c/a]

Symmetric rules not shown.

Table 1.Rules for the labeled transition system

Notation We shall often refer to a silent moveP
τ−→ P′ as areduction. P

[a]−→ P′ meansP
τ〈a,b〉−−−→ P′ for some

free or bound nameb. For a strings= a1 · · ·an ∈ N ∗, P
[s]−→ P′ meansP

[a1]−→ ·· · [an]−→ P′, while P
[c]
=⇒ P′ means

P
τ−→
∗ [c]−→ τ−→

∗
P′. We use such abbreviations asP

[c]
=⇒ to mean that there existsP′ such thatP

[c]
=⇒ P′.

We can now introduce the responsiveness property we are after. Informally, we think of a fair computation

as a sequence of communications where for no namea a transition
[a]−→ is enabled infinitely often without ever

taking place. Then a process uses a name in a responsive way if that name is eventually, that is, in all fair
computations, used as subject of a communication. We then have the following definition. Below, we assume
that any bound name occurring inP ands is distinct from any free name inP.

Definition 2 (responsiveness).Let P be a process and c∈ fn(P). We say that Pguarantees responsiveness ofc

if whenever P
[s]−→ P′ (s∈N ∗) and c does not occur in s then P′

[c]
=⇒.

3 The type system̀ 1

The type system consists of judgments of the formΓ ; ∆ `1 P, whereΓ and∆ are sets of names.
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3.1 Overview of the system

Informally, names inΓ are those used byP in input, while in∆ are those used byP in output actions. There
are several constraints on the usage of these names byP. A name inΓ must occurimmediately(at top level)
in input subject position, exactly once if it is responsive and replicated if it isω-receptive. A responsive name
in ∆ must occur inP exactly once either in subject or in object output position, although not necessarily at top
level, that is, occurrences in output actions underneath prefixes are allowed. There are no constraints on the
use in output actions ofω-receptive names: they may be used an unbounded number of times, including zero.
Linearity (“exactly once” usage) on responsive names is useful to avoid dealing with “dangling” responsive
names, that might arise after a communication, like in (r responsive, object parts ignored):

(νr)(r.0|r|r) τ−→ (νr)(0|0|r) .

If the process on theLHS above were declared well-typed, this transition would violate the subject reduction
property, as the process on theRHS above cannot be well-typed.

Linearity and receptiveness alone are not sufficient to guarantee a responsive usage of names. As discussed in
the Introduction, we have also to avoid deadlock situations involving responsive names, like (2). This is simply
achieved by building agraph of dependenciesamong responsive names ofP (defined in the sequel) and checking
for its acyclicity. We have also to avoid those situations described in the Introduction by which a responsive name
is indefinitely “ping-pong”-ed among a group of replicated processes, like in (1). To this purpose, levels in types
are introduced and the typing rules stipulate that sending a responsive name to a replicated input of levelk may
only trigger output of level less thank. This is similar to the use of levels in [4] to ensure termination. In our
case, we just avoid divergent computations that involve responsive names infinitely often.

There is one more condition necessary for responsiveness, that is, the sets of input and output names must
be “balanced”, so as to ban situations like an output with no input counterpart. This constraint, however, is most
easily formulated “on top” of well-typed-ness, and will be discussed later on.

3.2 Preliminary definitions

Formulation of the actual typing rules requires a few preliminary definitions.Structural equivalenceis neces-
sary in order to correctly formulate the absence of cyclic waiting on responsive names. We define structural
equivalence≡ as the least equivalence relation satisfying the axioms below and closed under restriction and
parallel composition. Let us point out a couple of differences from the standard notion [11]. First, there is no
rule for replication(!P≡ P|!P), as its right-hand side would not be well-typed. For a similar reason, in the rule
(νa)0≡ 0 we requirea :⊥ or a : I.

(νa)(P|Q) ≡ (νa)P|Q if a /∈ fn(Q) (νa)(νb)P ≡ (νb)(νa)P

P|Q ≡ Q|P P|0 ≡ P

(P|Q)|R ≡ P|(Q|R) P≡Q if P =α Q (νa)0 ≡ 0 if a :⊥ or a : I

Let us call a processP prime if either P = a〈b〉, or P = a(x).P′ or P =!a(x).P′. A processP is in normal
form if P = (νd̃)(P1| · · · |Pn) (n≥ 0), everyPi is prime andd̃⊆ fn(P1, ...,Pn). Every process is easily seen to be
structurally equivalent to a process in normal form.

In the dependency graph, defined below, nodes are responsive names of typing contexts and there is an
arc froma to b exactly when an output action that involvesa depends on an input action onb. Although the
following definition does not mention processes, one should think of the pairs(Γi ,∆i) below as typing contexts
– limited to responsive names – for thePi ’s in P1| · · · |Pn.

Definition 3 (dependency graph).Let{(Γi ,∆i) : i = 1, ...,n} be a set of context pairs. Thedependency graph
DG(Γi ,∆i)i=1,...,n is a graph(V,T) where: V=

S
i=1,...,n(Γi ∪∆i) is the set of nodes and T=

S
i=1,...,n(Γi ×∆i)

is the set of arcs.

We will have more to say on both structural equivalence and dependency graphs in Remark 1 at the end of
the section. Like in [4], we will use a function os(P), defined below, that collects all – either free or bound –
names inP that occur as subject of anactiveoutput action, that is, an output not underneath a replication (!).
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os(0) = /0 os(!a(b).P) = /0

os(a(b).P) = os(P) os(a〈b〉) = {a}

os((νa)P) = os(P) os(P|Q) = os(P)∪os(Q)

Finally, some notation for contexts and types. For any namea, we set lev(a) = k if a : T[u,k] for some

T and u, otherwise lev(a) is undefined. Given a set of namesV, defineVρ 4
= {x ∈ V | x is responsive} and

Vω 4
= {x ∈ V | x is ω-receptive}. For V andW sets of names, we defineV �W

4
= V \Wρ. If ∆∩∆′ = /0, we

abbreviate∆∪∆′ as∆,∆′ and ifa /∈ ∆, we abbreviate∆∪{a} as∆,a; similarly for Γ.

3.3 The typing rules

The type system is displayed in Table 2. Recall that each sort has an associated type. Linear usage of responsive
names is ensured by rules (T-NIL ) and (T-OUT), by the disjointness conditions in (T-PAR) and by forbidding
responsive names to occur free underneath replication (T-REP). Absence of cyclic waiting involving responsive
names is checked in (T-PAR). Finally, note the use of levels in rule (T-REP): communication involving a repli-
cated input subjecta and a responsive object can only trigger outputs of level less than lev(a). We say that a
processP is well-typedif there areΓ and∆ such thatΓ;∆ `1 P holds.

(T-NIL ) Γ = ∆ρ = /0
Γ;∆ `1 0 (T-OUT)

Γ = /0 a,b∈ ∆ a : TU b : T ∆ρ−{a,b}= /0
Γ;∆ `1 a〈b〉

(T-STR) P≡Q Γ;∆ `1 Q
Γ;∆ `1 P (T-INP) a : T[ρ,k] b : T a /∈ ∆ /0;∆,b`1 P

a;∆ `1 a(b).P

(T-RES-T) a :⊥ Γ;∆ `1 P
Γ;∆ `1 (νa)P (T-RES-I) a : I Γ;∆,a`1 P

Γ;∆ `1 (νa)P (T-RES) a : TU Γ,a;∆,a`1 P
Γ;∆ `1 (νa)P

(T-REP)
a : T[ω,k] b : T ∆ρ = /0 /0 ;∆,b `1 P ( b responsive implies∀c∈ os(P) : lev(c) < k )

a;∆ `1!a(b).P

(T-PAR)

P = P1| · · · |Pn (n > 1) ∀i : Pi is prime andΓi ; ∆i `1 Pi

∀i 6= j : Γρ
i ∩Γρ

j = /0 and∆ρ
i ∩∆ρ

j = /0 DG(Γi
ρ,∆i

ρ)i=1,...,n is acyclic[
i=1,...,n

Γi ;
[

i=1,...,n

∆i `1 P

Bound names in processes are assumed to be different from free names and from names in contexts.

Table 2.Typing rules of̀ 1

Remark 1.(1) Avoiding deadlock on responsive names might be achieved by using levels in rule (T-INP), in
the same fashion as in rule (T-REP), rather than using graphs. In fact, this would rule out cyclic waiting such as
the one in (2) in the Introduction. We shall pursue this approach in the system of Section 6, where there is no
way of defining a meaningful notion of dependency graph. However, in the present system this way of dealing
with cyclic waiting would be unnecessarily restrictive, in particular it would ban as ill-typed the usual encoding
of recursive functions into processes (see also Section 6.5).

(2) We note that, despite the presence of a rule for structural equivalence, the type system may be viewed
as essentially syntax driven, in the following sense. GivenP in normal form,P = (νd̃)(P1| · · · |Pn), and ignoring
structural equalities that just rearrange thed̃ or thePi ’s, there is at most one rule one can apply withP in the
conclusion.
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4 Subject reduction and responsiveness for system̀1

Subject reduction states that well-typedness is preserved through reductions, and it is our first step towards
proving responsiveness.

Theorem 1 (subject reduction).SupposeΓ;∆ `1 P and P
[a]−→ P′. ThenΓ�{a};∆�{a} `1 P′.

Our task is proving that any “balanced” well-typed process guarantees responsiveness (Definition 2) for all
responsive names it contains.

Definition 4 (balanced processes).A process P is(Γ;∆)-balancedif Γ;∆ `1 P, Γρ = ∆ρ and ∆ω ⊆ Γω. It is
balancedif it is (Γ;∆)-balanced for someΓ and∆.

We need two main ingredients for the proof. The first one is given by the following proposition, stating that
if the dependency graph of a processP is acyclic, thenP always offers at least one output action involving a
responsive name.

Proposition 1. Suppose thatΓ;∆ `1 P, withΓ, ∆ and P satisfying the conditions in the premise of rule(T-PAR)
andΓρ = ∆ρ. Then for some j∈ {1, . . . ,n} we have Pj = a〈b〉 with either a or b responsive.

Next, we need a measure of processes that is decreased by reductions involving responsive names. We
borrow from [4] the definition ofweight of P, written wt(P): this is defined as a vector〈wk,wk−1, . . . ,w0〉,
wherek ≥ 0 is the highest level of names in os(P), andwi is the number of occurrences in output subject
position of names of leveli in P. A formal definition is given below. Here, “0k” is an abbreviation for the vector
〈1,0, . . . ,0〉with k components “0” following “1” The vector with just one component that equals “0” is denoted
by 0. Sum+ between two vectors is performed component-wise if they are of the same length; if not, the shorter
one is first “padded” by inserting on the left as many 0’s as needed.

wt(0) = 0 wt(!a(b).P) = 0

wt(a(b).P) = wt(P) wt(a〈b〉) = 0k if lev(a) = k

wt((νa)P) = wt(P) wt(P|Q) = wt(P)+wt(Q)
The set of all vectors can be ordered lexicographically. Assuming two vectors are of equal length (if not,

the shorter vector is padded with 0’s on the left), we define〈wk, . . . ,w0〉 ≺ 〈w′k, . . . ,w′0〉 if there is i in 0, . . . ,k
such thatw j = w′j for all k≥ j > i andwi < w′i . This order is total and well-founded, that is, there are no infinite
descending chains of vectors. The next proposition states that the weight of a process is decreased by reductions
involving a responsive name, and leads us to Theorem 2, which is the main result of the section.

Proposition 2. SupposeΓ;∆ `1 P and P
τ〈a,b〉−−−→ P′, with either a or b responsive. Thenwt(P′)≺ wt(P).

Theorem 2 (responsiveness).Let P be(Γ;∆)-balanced and r∈ ∆ρ. Then P guarantees responsiveness of r.

Proof. AssumeP
[s′]−→ Q, for anyQ, andr /∈ s′. We have to show thatQ

[r]
=⇒. By contradiction, assume not. Let

P′ be a process with aminimalwt(·) satisfyingQ
[s′′]−→ P′ for somes′′: this P′ must exist by well-foundness of

≺. Moreover,r /∈ s′′. Let s= s′ · s′′. By subject reduction we have thatP′ is (Γ′;∆′)-balanced, withΓ′ = Γ � s
and∆′ = ∆�s.

Consider the normal form of the processP′: P′ ≡ (νd̃)(P1| · · · |Pn), where everyPi is prime and it must be
n > 1, asr occurs in both input and output. ByΓ′;∆′ `1 P′ we deduceΓ′, d̃;∆′, d̃ `1 P1| · · · |Pn (by the typing
rules for restriction and (T-STR)). By the typing rules, rule (T-PAR) must have been applied to infer the latter
judgement, hence it must be:(Γ′, d̃) =

S
i=1,...,n Γi , and(∆′, d̃) =

S
i=1,...,n ∆i , andΓi ;∆i `1 Pi , where∆ρ

i (resp.

Γρ
i ) are pairwise disjoint and DG(Γi

ρ,∆i
ρ)i=1,...,n is acyclic. Moreover,(∆′, d̃)ρ = (Γ′, d̃)ρ

(by balancing), thus
(Proposition 1) there is aj such thatPj = a〈b〉 with a or b responsive name. By(∆′, d̃)ω ⊆ (Γ′, d̃)ω

(again
by balancing) and receptiveness of responsive andω-receptive names ((T-INP), (T-REP), (T-OUT)), there is

a k such thatPk = (!)a(x).P′k. This impliesP′
τ〈a,b〉−−−→ P′′, with wt(P′′) ≺ wt(P′), as eithera or b is responsive

(Proposition 2). But this is a contradiction, becauseP′ was assumed to be a process with minimal weight

satisfyingQ
[s′′]−→ P′.
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Next, we establish an upper bound on the number of steps that are always sufficient for a given responsive
name to be used as subject. This upper bound can be given as a function of the syntactic size ofP, written |P|,
and of name levels inP. A similar result was given in [4] for terminating processes. Here, since we deal with
processes that in general may not terminate, the upper bound must be given relatively to a notion ofscheduling
of transitions, that is introduced below.

Definition 5 (responsive scheduling).A responsive schedulingis a finite or infinite sequence of reductions

P0
τ〈a1,b1〉−−−−→ P1

τ〈a2,b2〉−−−−→ ·· · where the bound names in{(ai ,bi)|i ≥ 1} are all distinct from the free names in P and
for each i≥ 0, either ai or bi is responsive.

Theorem 3. Let P be(Γ;∆)-balanced and r∈ ∆ρ and let k be the maximal level of names appearing in active
output actions of P. Then there is at least one responsive scheduling that contains a reduction with r as subject.
Moreover, in all such schedulings, the number of reductions preceding the reduction on r is upper-bounded by
|P|k+1.

5 Recursion on well-founded data values

The system presented in Section 3 bans as ill-typed processes implementing recursive functions. As an exam-
ple, consider the classical implementation of the factorial function, the processP below. For the purpose of
illustration, we consider a polyadic version of the calculus enriched withif . . .then . . .else, natural numbers,
variables (x,y, ...) and predicates/functions as expected. These extensions are straightforward to accommodate
in the type system.

P
4
=! f (n, r).if n = 0 then r〈1〉 else (νr ′)

(
f 〈n−1, r ′〉 | r ′(m).r〈m∗n〉

)
. (3)

It would be natural to seef asω-receptive andr andr ′ as responsive, but under these assumptionsP would not
be well-typed: the recursive callf 〈n−1, r ′〉 violates the constraint on levels of output actions under replication
(rule (T-REP).) Nevertheless, it is natural to see an outputf 〈n− 1, r ′〉 triggered by a recursive call atf as
“smaller” than the outputf 〈n, r〉 that has triggered it: at least, this is true if one takes into account the ordering
relation on natural numbers. This means that the “weight” of the process decreases after each recursive call, and
since natural numbers are well-founded, after some reductions no further recursive call will be possible, and a
communication onr must take place. This idea from [4] is adapted here to our type system. For simplicity, we
only consider the domain of natural valuesNat. However, the results may be extended to any data type on which
a well-founded ordering relation can be defined. We define an ordering relation “<” between (possibly open)
integer expressions and variables as follows:e< x if for each evaluationρ under whiche is defined,eρ < ρ(x).
E.g.,x−1 < x. In the case of the monadic calculus, this relation is lifted to a “smaller than” relation/ between
output and input actions as follows. Below,d,d′ denote either names or (open) expressions.

Definition 6 (ordering on actions). We writec〈d〉 / a(d′) if either lev(c) < lev(a) or lev(c) = lev(a) and
d = e< x = d′.

The / relation is used in the typing rule below, that replaces rule (T-REP). We denote by O(P) the set of all
output actions ofP that are active, that is, not underneath a replication.

(T-REP’)

a : T[ω,k] b : T ∆ρ = /0 /0;∆,b`1 P

(b : Nat or b responsive) implies∀c〈d〉 ∈O(P) : c〈d〉/a(b)

a;∆ `1!a(b).P

In the polyadic case,/ compares first the subject and then the object parts of two actions lexicographically
(a different ordering is considered in [4].) As an example, it is easy to see that the processP in (3) is well-typed
if f : (Nat,Nat[ρ,0])[ω,1] andr, r ′ : Nat[ρ,0]. The proof of responsiveness remains the same, modulo a change in
function wt(·) that takes into account contribution to weight given by the object part of active outputs. We omit
the details of this definition.

Primitive Recursive Functions can be encoded into well-typed processes. The scheme of the encoding is an
easy generalization of that seen above in (3) for the factorial function. More precisely, we have:

8



Proposition 3. For every n-ary primitive recursive function f there is a well-typed process〈 f 〉b such that: for

each(v1, . . . ,vn) in Natn the process G
4
= (νb)(〈 f 〉b|b〈v1, . . . ,vn, r〉 | r(x).0), with bω-receptive and r: (Nat)[ρ,k]

(k≥ 0), is balanced. Moreover, f(v1, . . . ,vn) = m if and only if G
τ−→
∗ r〈m〉−−→.

6 Nested inputs, multiple outputs: the type system̀ 2

The type system presented in Section 3 puts rather severe limitations on nesting of input actions and multiple
use of names. These limitations stem from the “immediate receptiveness” and linearity conditions imposed on
responsive names. For instance, the following encoding of internal choicer〈a〉⊕ r〈b〉, wherer is responsive and
a,b inert, is not well-typed

(νc)(c〈a〉|c〈b〉 |c(x).r〈x〉) . (4)
Limitations are also built-in in process syntax, as for example replicated outputs, that clearly violate linearity,
are absent. These might be useful to encode situations like a process receiving fromr a valuey and storing it
into a variablea, where reading froma means doing an input ona:

(νa)
(
r(x).!a〈x〉|a(y).P

)
. (5)

For another example, a process that receives two values in a fixed order from two return channels,r1 andr2, and
then outputs the max alongs, may not be well-typed

r1(x1).r2(x2).if x1 ≥ x2 then s〈x1〉 else s〈x2〉 . (6)

We present below a new type system`2 that overcomes the limitations discussed above. In fact, we will trade
off flexibility for expressiveness in terms of encodable functions, as only certain patterns of (tail-)recursion will
be well-typed in the new system.

6.1 Syntax and operational semantics

We extend the syntax of processes by introducing replicated output and the syntax of types by introducing a
new responsive usage of names,ρ+, as follows:

P ::= · · · | !a〈b〉

U ::= · · · | [ρ+,k].

A namea : T[ρ+,k] is called+-responsive, as it is meant to be usedat least onceas subject of a communication.
Therefore now we consider three different usages:ρ (for names used once),ρ+ (for names used at least once)
andω (for names used an undefined number of times.) We point out that responsive names are not subsumed
by +-responsive: in particular, as we shall see, the conditions on the type of carried objects are more liberal for
responsive names. Operational semantics is enriched by adding the obvious rule for replicated output.

6.2 Overview of the system

We give here an informal overview of the system. In the type system, judgements are of the formΓ;∆ `2 P
where inΓ and∆ each +-responsive namea is annotated with acapability t, written at . A capabilityt can be
one of four kinds:n (null), s (simple), m (multiple), p (persistent). Informally, capabilities have the following
meaning (in the examples below, we ignore object parts of some actions and assumeb is a (+-)responsive name):

– an indicates thata cannot be used at all. This capability has been introduced to uniformly account for
+-responsive names that disappear after being used as subjects.

– as indicates thata appears at least once, but never under a replication. Examples:a.P, b.a.P, a andb.a.
– am indicates thata appears at least once, even under replication, but never as a subject of a replicated action.

Examples:a.P|a.Q, !b.a.P and !b.a.
– ap indicates thata only appears as a subject of a replicated action. Examples: !a.P, !a, b.!a and !b.!a.
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Note that a namea may be given distinct capabilities in input (Γ) and output (∆). E.g. one may have, again
ignoring the object parts,Γ;∆ `2!a.P|a, whereap ∈ Γ andas ∈ ∆. Next we illustrate and motivate the constraints
on names usage realized by the typing rules and by the balancing conditions discussed later on. There are
essentially three of them:

1. If am ∈ Γ thenap ∈ ∆. This is to avoid deadlocks arising from not having enough output actions of subject
a, like in (a andb +-responsive names):

a|a.b|a|b τ−→ a.b|b 6 τ−→ .

This situation is in fact avoided ifa appears in replicated output subject, like ina|a.b| !a|b.
2. If at ∈ Γ anda carries (+-)responsive names, thent = p. This is to avoid deadlocks arising from having too

many outputs of subjecta that carry (+-)responsive names, like in (a +-responsive,b andd (+-)responsive
names):

a〈b〉|a〈d〉|a(x).x|b|d τ−→ τ−→ a〈d〉|d .

3. Names occurring under an (either simple or replicated) input must be of smaller level than the input subject.
The role of this condition is twofold, now. Under replicated inputs, it avoids infinite delays, like in the first
system. Under simple inputs, it serves to avoid cyclic waiting, like in (a,b (+-)responsive):a.b|b.a. This was
achieved by the use of dependency graphs in the first system. As announced in Remark 1, however, there
appear to be no meaningful extension of this notion of graph in the present system. In particular, acyclicity
of the graph might not be preserved by reductions. E.g. consider the reduction onc of the process below:

b(x).a〈x〉|c(x).a(y).x〈y〉|c〈b〉 .

There are other constraints that have been introduced for technical convenience (essentially, to avoid divergences
and deadlocks difficult to control in the proof of responsiveness) and that shall not be discussed further:

(a) names with input capabilitys (simple) occur exactly once in input subject position;
(b) names with capabilityp (persistent) occur exactly once in subject position, either in input or in output, but

not in both; this also implies that persistent names cannot be passed around. Moreover, free replicated inputs
cannot be guarded.

The above conditions are often met in applications (e.g., they are in the encoding ofORC presented in the next
section.)

6.3 The typing rules

We first introduce some additional notations. ContextsΓ and∆ are sets of annotated names of the format , where
t is a capability. Each name occurs at most once in a context. +-responsive names are annotated with one of the
four capabilitiesn, s, m or p, while non-+-responsive names are always annotated with a default “−” capability;
when convenienta− is abbreviated simply asa. Union and intersection of two contexts, writtenΓ1∪Γ2 and
Γ1∩Γ2, are defined only if the contexts agree on capabilities of common names, that is wheneverati ∈ Γi for
i = 1,2 thent1 = t2. We writeΓ1,Γ2 in place ofΓ1∪Γ2 if Γ1∩Γ2 = /0; while Γ1,at abbreviatesΓ1,{at}. For any

contextΓ and capabilityt, we defineΓt 4= {a|at ∈ Γ}. The set of namesΓρ+ 4
= {a| a is +-responsive andat ∈ Γ

for somet 6= n } andΓρ, Γω (defined similarly) will also be useful. The typing rules are presented in Table 3.

6.4 Subject reduction and responsiveness

Subject reduction carries over to the new system, modulo a small notational change. ForΓ a typing context and
V a set of names let us denote byΓ �+ V the typing context obtained by removing fromΓ eachat such that
a∈V. Let us denote by on(P) the set of names occurring free in output position inP.

Theorem 4 (subject reduction for system̀ 2). Γ;∆ `2 P and P
[a]−→P′ implyΓ′;∆′ `2 P′, withΓ′ = Γ�+ ({a}\

in(P′)) and∆′ = ∆�+ ({a}\on(P′)).
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(T+-INP)

a : T[u,k] with u 6= ω b : T ∀c∈ os(P)∪ in(P) : lev(c) < k

Γp = Γω = /0 a +-responsive impliesb not (+-)responsive
Γ;∆,bt ′ `2 P t 6= n,p t ′ 6= n,p

Γ,at ;∆ `2 a(b).P

(T+-REP)

a : T[ω,k] b : T ∆ρ = ∆ρ+
= /0 /0;∆,bt ′ `2 P t′ 6= n,p

b (+-)responsive implies∀c∈ os(P) : lev(c) < k

a−;∆ `2!a(b).P

(T+-REPP)

a : T[ρ+,k] b : T Γ` = /0 for ` ∈ {ρ,ω,s,p} ∆`′ = /0 for `′ ∈ {s,p,ρ}
Γ;∆,bt `2 P t 6= n,p ∀c∈ os(P)∪ in(P) : lev(c) < k

Γ,ap;∆ `2!a(b).P

(T+-OUT) a : TU b : T ∆ρ = ∆ρ+
= /0 t ′ 6= n,p t 6= n,p

/0;∆,at ,bt ′ `2 a〈b〉

(T+-NIL ) ∆ρ = ∆ρ+
= /0

/0;∆ `2 0 (T+-OUTP)

a : T[ρ+,k] b : T ∆ρ = ∆ρ+
= /0

b not (+-)responsive

/0;∆,ap,b− `2!a〈b〉

(T+-RES-⊥) a :⊥ Γ;∆ `2 P
Γ;∆ `2 (νa)P (T+-RES) a : TU Γ,at ;∆,at ′ `2 P

Γ;∆ `2 (νa)P

(T+-RES-I) a : I Γ;∆,a− `2 P
Γ;∆ `2 (νa)P (T+-WEAK-Γ) Γ;∆ `2 P

Γ,an;∆ `2 P
(T+-WEAK-∆) Γ;∆ `2 P

Γ;∆,an `2 P

(T+-PAR)

Γ = Γ1∪Γ2 ∆ = ∆1∪∆2 Γi ;∆i `2 Pi (i = 1,2)
Γ`

1∩Γ`
2 = /0 for ` ∈ {ρ,s,p} ∆`′

1 ∩∆`′
2 = /0 for `′ ∈ {ρ,p}

Γp∩∆p = /0 Γm∩ (∆s∪∆m) = /0
Γ ;∆ `2 P1|P2

Bound names in processes are assumed to be different from free names and from names in contexts.

Table 3.Typing rules of̀ 2

The balancing requirements are now more stringent. They include those for responsive andω-receptive
names necessary in the first system (condition 1 below). Concerning +-responsive names, “perfect balancing”
between input and output is required only for those names that carry (+-)responsive names (condition 2). More-
over, the same requirements apply also to restricted +-responsive names (condition 3).

Given a set of namesV let us defineV† = {a∈V |a : T andT is of the form(S[u,k])[u
′,h] with u ∈ {ρ,ρ+} }.

Define r+i (P) (resp. r+o (P)) as the set of restricted +-responsive names inP occurring in an input (resp. output)
action inP, even underneath a replication. We have the following definition and result.

Definition 7 (strongly balanced processes).A process P is(Γ;∆)-strongly balancedif Γ;∆ `2 P and the

following conditions hold: (1)Γρ = ∆ρ and∆ω ⊆ Γω; (2) Γρ+ ⊆ ∆ρ+
and(∆ρ+

)
†
⊆ (Γρ+

)
†
; (3) r+i (P)⊆ r+o (P)

and(r+o (P))† ⊆ (r+i (P))†
.

The proof of the following theorem is non-trivial, as strong balancing is preserved through reductions only up
to certain transformations on processes.
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Theorem 5 (responsiveness for system̀2). Suppose P is(Γ;∆)-strongly balanced and r∈ ∆ρ∪Γρ+
. Then P

guarantees responsiveness of r.

6.5 Examples

Let us now examine a few examples. In what follows, unless otherwise stated we assume thatx,y are of type
inert, thata,b,c are +-responsive and thatr,s are responsive. Conditions on levels are ignored when obvious.
Process (4) at the beginning of the section is well-typed withc of capability multiple in output and simple in
input; it is strongly balanced if put in parallel with an appropriate context of the formr(x).P. Process (5) is well-
typed witha of capability persistent in output and simple in input (also,P must be assumed strongly balanced,
and not containing free persistent inputs or names of level greater thana’s); it is strongly balanced if put in
parallel withr〈x〉. Process (6) is well-typed assumingr1 andr2 of capability simple in input andx1,x2 natural
number variables (the obvious extension of the system withif-then-else and naturals is here assumed); again,
it is strongly balanced if put in parallel with an appropriate context.

The next two examples involve non-linear usages of +-responsive names arising from replication and refer-
ence passing. We mention these examples also because they will help us to compare our system to existing type
systems that enforce lock freedom, a property related to responsiveness (see the concluding section). The first
example involves only replication, object parts play no role:

!a.b|a|b. (7)

The above process is strongly balanced under the assumption thata has capability persistent in input and sim-
ple/multiple in output, andb has capability simple in input and multiple in output; also, the level ofb must be
less thana’s. In the next example, an agent sort of “looks up” a directorya to get the address of a serviceb, and
then calls this service: !a(z).z〈b〉 |(νr)(a〈r〉 | r(w).w) |b. (8)
This process is strongly balanced under the assumption that:a is persistent in input and simple or multiple in
output;b is simple in input and multiple in output; also, the level ofb must be smaller thanr ′s and the level
of r must be smaller thana’s (the variant whereb is replaced by !b is also strongly balanced; in this caseb is
persistent in input.)

The type system̀ 2 can be extended to the polyadic version of the calculus with naturals and variables
exactly as seen in Section 5, i.e. by using the “/” relation over actions in rules (T+-INP), (T+-REP) and
(T+-REPP). Now, consider the factorial function in (3) and assumer, r ′ are (+-)responsive. It is easily seen
that (3) is not well-typed in the present system: in fact, because of the recursive call atf , it cannot be lev(r) <
lev(r ′). In general, the type system bans as ill-typed recursive calls of the formg(h(g(i), i)), thus ruling out
the usual encoding of primitive recursion. Certain forms of recursion, like the tail-recursive version of factorial
below, are however still well-typed

! f (x,a, r).if x = 0 then r〈a〉 else f 〈x−1,a∗x, r〉 .

7 Encoding the Structured Orchestration Language

In this section we show that the orchestration patterns definable in theORC language [3] can be encoded into
π-calculus processes that are well-typed in system`2. For the sake of simplicity, we suppose that inert names,
ranged over byc, are the only data values that can be exchanged amongORC services.ORC terms, ranged over
by f ,g, . . . , are defined by the following grammar, wherex ranges over variables, andp over variables and
names (p ::= x|c):

f ,g ::= 0
∣∣M(p)

∣∣E(p) inaction, site and expression calls∣∣ let(p) publication∣∣ f > x > g sequential composition∣∣ f |g symmetric parallel composition∣∣ g wherex :∈ f asymmetric parallel composition
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[[let(x)]]s = x(y).s〈y〉 [[let(c)]]s = s〈c〉

[[E(x)]]s = x(y).E〈y,s〉 [[E(c)]]s = E〈c,s〉

[[M(x)]]s = x(y).[[M(y)]]s [[M(c)]]s = (νr)(M〈c, r〉 | r(y).s〈y〉)

[[ f |g]]s = [[ f ]]s| [[g]]s [[gwherex :∈ f ]]s = (νr)
(
[[ f ]]r |(νx)(r(y).!x〈y〉 | [[g]]s)

)
[[ f > x > g]]s = (νt)

(
[[ f ]]t | !t(y).(νx)(!x〈y〉 | [[g]]s)

)
Name c,y x s r t E M

Type I I[ρ
+,kx] I[ρ

+,h] I[ρ
+,h′] I[ρ

+,h′] (I, I[ρ
+,h])[ρ

+,kE ] (I, I[ρ
+,h′])[ρ

+,kM ]

Input Cap. m s s p p p

Output Cap. − p s/m s/m s/m s/m s/m

with: kx > h,kE,kM , andkE > h, andkM > h,h′ andh′ > h,kx

Table 4.Encoding of theORC language and typing assumptions.

HereM is a site name,p is a parameter (variable or name) and for every expression nameE there exists a
declarationE(x) , f , wherex is the formal parameter. The language’s primitives can be informally explained
as follows (for a formal definition ofORC’s operational semantics, the reader is referred to [3].) Each closed
expressionpublishes(returns) a sequence of zero or more values. A site callM(p) publishes a predefined value
associated with siteM. An expression callE(p) publishes the values retuned byf [p/x]. The expression let(c)
publishes the valuec. In f > x> g, the execution off is started, and every valuec published byf triggers a new
instance ofg, g[c/x]; the sequence of values produced by all these instances running in parallel is published. In
f |g, the sequence obtained by interleaving values produced byf andg is published. Ingwherex :∈ f the values
produced byg are published; however, the execution off andg is started in parallel, and each subterm ofg that
depends onx is blocked untilf produces the first valuev, which causesx to be replaced byv; subsequent values
published byf are discarded.

ORC terms are translated intoπ-calculus by the function[[·]]s defined in Table 4;s is used here as a result
channel. Encoding of a declarationE(x) , f is given by !E(x,s).[[ f ]]s. For simplicity, we assume that a site
M receives something and then publishes a predefined valuec and returns, thus the encoding of the siteM is
simply !M(x,s).s〈c〉. The encoded terms are well-typed under typing assumption in Table 4. Levels are left
unspecified, but suitable values for them can be easily inferred by inspection. Capabilitys/m indicates the
possibility of having eithers or m, depending on whether the name occurs under a replication (m) or not (s/m).
E.g. capabilities associated to free names appearing ing in the encoding off > x> g must be given capabilitym.
The following result can be used for reasoning about responsiveness ofORCexpressions. In what follows, given
anORC term f , D f stands for the parallel composition of the encodings of all declarations and sites involved in

the definition off andd̃ = fn(D f ). We write f
!c=⇒ if a term f publishes the valuec possibly after some internal

reductions.

Proposition 4. Let f be a closedORC term and suppose Df is well-typed. Under the typing assumptions of

Table 4,[[ f ]]s is well-typed and F
4
= (νd̃)([[ f ]]s|D f |s(x).0), with s andd̃ +-responsive, is strongly balanced.

Moreover, f
!c=⇒ if and only if F

s〈c〉
==⇒.

In the following we show an example of encoding of an orchestration pattern defined in theORC language [3]
into aπ-calculus process that is well-typed in system`2. Consider theORC function below, which emailsn times
the first newspage fromCNN or BBC to addressa and publish the current value ofn after every sending and at
the end of the cicle (we leave aside the specifications of sitesBBC, CNN, . . . ):

MailNews(n,a) , if n = 0 then let(n)

elseMailNews(n−1,a) |Mail(t,a) >> let(n) wheret :∈ (CNN|BBC) .
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Suppose the encodings of sitesCNN, BBCandMail are respectively !CNN(x).x〈N〉, !BBC(x).x〈N′〉 and !Mail(x,a, r).[send x to a].r,
whereN andN′ represent news. The functionMailNewscan be encoded as follows:

MN
4
= !Mn(n,a,s).if n = 0 then s〈n〉

else

(
Mn〈n−1,a,s〉 | (νr)

(
CNN〈r〉|BBC〈r〉

| (νt)
(
r(y).!t〈y〉 |(νr ′)(t(x).Mail〈x,a, r ′〉|!r ′(x).s〈n〉)

)))
.

where the received channels is used for publishing values. As in the previous example, consider the extension of
type system̀ 2 with values and polyadic communication;MN is well-typed supposings, r, r ′ andt +-responsive,
lev(Mn) > lev(CNN), lev(Mn) > lev(BBC) and lev(CNN), lev(BBC) > lev(r) > lev(t) > lev(Mail) > lev(r ′) >
lev(s).

8 Conclusions and related works

We have presented two type systems for statically enforcing responsive usage of names in pi-calculus pro-
cesses. The first system combines linearity, receptiveness and techniques for deadlock and livelock avoidance.
In the second system, receptiveness and linearity are relaxed at the price of stronger requirements on levels
and balancing: we lose some expressive power in terms of encodable recursive functions, but are able to type
interesting processes, such as translation ofORC terms. Both systems are syntax driven, so that type checking
should be straightforward and efficient to implement. Extensions with type inference and subtyping deserve
further investigation, mainly due to the presence of levels.

Beside the works, already discussed, on receptiveness [12] and termination [4], there are a few more works
related to ours and that are discussed below.

Closely related to our system one are a series of papers by Berger, Honda and Yoshida on linearity-based
type systems. In [16], they introduce a type system that guarantees termination and determinacy of pi-calculus
processes, i.e.Strong Normalization(SN). Our techniques of system one are actually close to theirs, as far as the
linearity conditions and cycle-detection graphs are concerned (see also the type system in [14]). However SN
is stronger than responsiveness, in particular SN implies responsiveness on all linear names under a balancing
condition. In fact, the system in [16] is stricter than our system one, e.g. it does not allow linear subjects to carry
linear objects, and bansω-names, hence any form of nondeterminism and divergence, as these features would
obviously violate SN. Yoshida’s type system in [15], in turn a refinement of the systems in [16] and [1], is meant
to ensure aLinear Livenessproperty, meaning that the considered process eventually prompts for a free output
at a given channel. This property is related to responsiveness, the difference being that Linear Liveness does
not imply synchronization, hence the corresponding input might not become available. Two kinds of names are
considered in [15]: linear (used exactly once) andaffine (used at most once). Linear subjects carrying linear
objects are forbidden and internal mobility is assumed – only restricted names can be passed around.

Closely related to our system two are a series of papers by Kobayashi and collaborators. A type system for
linearity in the pi-calculus was first introduced in [9]. This system can be used to ensure that any linear name in
a process occurs exactly once in input and once in output; however, it cannot ensure that a linear name will be
eventually used as a subject of a synchronization. Kobayashi’s type systems in [5,6] can be used to guarantee
that, under suitable fairness assumptions, certain actions are lock free, i.e. are deemed to succeed in synchro-
nization, if they become available ([7] is a further refinement, but the resulting system cannot be used to enforce
responsiveness.) Channel types are defined in terms ofusages: roughly, CCS-like expressions on the alphabet
{I ,O}, that define the order in which each channel must be used in input (I ) and in output (O). EachI/O ac-
tion is annotated with anobligation level, related to when the action must become available, and acapability
level, related to when the action must succeed in synchronization if it becomes available. A level can be a natural
number or infinity, the latter used to annotate actions that are not guaranteed to become available/succeed in syn-
chronization. This scheme is fairly general, allowing e.g. for typing of shared-memory structures such as locks
and semaphores, which are outside the scope of our systems. Concerning responsiveness, on the other hand, it
appears that our+-responsive types cannot in general be encoded into lock-freedom types. More precisely, one
can exhibit processes well-typed in our system two and containing+-responsive names that cannot be assigned
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a finite capability in Kobayashi’s systems. For example, both the process (7) and the “service-lookup” (8) are
well-typed (in fact, strongly balanced) in our system two, under a typing context whereb is +-responsive. They
are not in the systems of [5,6], under any type context that assigns tob a finite capability: the reason is that a
finite-capability input onb is required to be balanced by an instance of a finite-obligation outputb, that cannot
be statically determined in the given processes (although, after the submission of the present paper, theTyPiCal
tool [8] has been modified to handle also processes of this form.) Another difference from [5,6] is that these
systems partly rely on a form of dynamic analysis which is performed on types: thereliability condition on
usages, which roughly plays the same role played in our systems by balancing, is checked via a reduction to the
reachability problem for Petri Nets. As previously remarked, our systems are entirely static.

AcknowledgmentsWe wish to thank Davide Sangiorgi and Naoki Kobayashi for stimulating discussions on the
topics of the paper.
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A Proof of Theorem 5

We need two preliminary propositions, whose proofs are omitted. The first proposition ensures that processes
strongly balanced under nontrivial contexts always have a reduction involving a (+-)responsive name.

Proposition A1 Suppose P is(Γ;∆)-strongly balanced with∆ρ ∪Γρ+ 6= /0. Then P
τ〈a,b〉−−−→ with either a or b

(+-)responsive name.

Consider the extension of wt(·) to system̀ 2, written wt+(·), obtained by adding the clause wt+(!a〈b〉) = 0
to the definition of wt. The following proposition is the analog of Proposition 2 for system`2:

Proposition A2 Γ;∆ `2 P and P
τ〈a,b〉−−−→ P′ with either a or b (+-)responsive, implieswt+(P′)≺ wt+(P).

Theorem A1 (Proof of Theorem 5) Let P be(Γ;∆)-strongly balanced and r∈ ∆ρ ∪Γρ+
. Then P guarantees

responsiveness of r.

Proof. Suppose thatP
[s]−→ P′, with P′ having the minimal weight among processes reachable fromP with r /∈ s

(this P′ must exist by well-foundness of≺.) Let s= a1 · · ·an, and consider the sequence of reductions leading
to P′:

P = P0
[a1]−→ P1

[a2]−→ ·· · [an]−→ Pn = P′ (9)

By Γ;∆ `2 P and subject reduction we have thatΓi ;∆i `2 Pi for i = 0, ...,n, whereΓ0 = Γ and ∆0 = ∆ and

Γi = Γi−1 �+ ({ai} \ in(Pi)) and∆i = ∆i−1 �+ ({ai} \on(Pi)) for i > 0. We prove thatP′
[r]−→ by induction on

the numberk of non-strongly-balanced processes in the sequence of reductions (9), that isk = |{i |0 ≤ i ≤
n andPi is not(Γi ,∆i)-strongly balanced}|.

k = 0: ThenP′ is strongly balanced. Sincer ∈ ∆n
ρ∪Γn

ρ+
(asr /∈ s), by Proposition A1P′

τ〈a,b〉−−−→P′′, with either
a or b (+-)responsive, and by Proposition A2 wt+(P′′)≺wt+(P′). Hencea = r, becauseP′ was assumed to
have minimal weight among the processes reachable fromP without usingr as subject.

k > 0: Let Pj ( j > 0) be the leftmost non-strongly-balanced process in the sequence (9). Consider the re-

ductionPj−1
[a j ]−→ Pj . SincePj−1 is strongly balanced whilePj is not, a simple case analysis on the ca-

pabilities thata j may take on shows thata j ∈ (Γ j
ρ+ \ ∆ j

ρ+
) ∪ (r+i (P) \ r+o (P)), and moreover thata j

must be used as subject of a replicated input inPj−1. Sincea j occurs exactly once in input inPj−1, we
must havePj−1 ≡ (νd̃)(!a j(x).R|S) andPj ≡ (νd̃)(!a j(x).R|R[c/x] |S′) with a j /∈ fn(R[c/x]|S′). Moreover
P′ ≡ (νd̃′)(!a(x).R|P′′′) with a j /∈ fn(P′′′). Now, the processP′j = (νd̃)(R[c/x] |S′), obtained by erasing the

term !a j(x).R from Pj , is strongly balanced, and it holdsP′j
[a j+1]
−−−→ ·· · [an]−→ P′n = P′′, with P′′ ≡ (νd̃′)P′′′.

This sequence has≤ k− 1 unbalanced processes, and moreoverP′′ has minimal weight among the pro-

cesses reachable fromP′j without usingr as subject. Then by induction hypothesisP′′
[r]−→, which implies

P′
[r]−→.
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