Responsiveness in process calctili

Lucia Acciatt and Michele Boreafe

1 Laboratoire d’'Informatique Fondamentale de Marseille, Université de Provence.
2 Dipartimento di Sistemi e Informatica, Universita di Firenze.
lucia.acciai@lif.univ-mrs.fr, boreale@dsi.unifi.it

Abstract. In a process calculus, an agent guarantees responsive usage of a channeifzacoenmuni-

cation along is guaranteed to eventually take place. Responsiveness is important, for instance, to ensure
that any request to a service be eventually replied. We propose two distinct type systems, each of which
statically guarantees responsive usage of names in well-typed pi-calculus processes. In the first system, we
achieve responsiveness by combining techniques for deadlock and livelock avoidanibeeaiity andre-
ceptivenessThe latter is a guarantee that a name is ready to receive as soon as it is created. These conditions
imply relevant limitations on the nesting of actions and on multiple use of names in processes. In the second
system, we relax these requirements so as to permit certain forms of nested inputs and multiple outputs.
We demonstrate the expressive power of the two systems by showing that primitive recursive functions —in
the case of the first system — and Cook and Misra’s service orchestration lar@riagen the case of the

second system — can be encoded into well-typed processes.

1 Introduction

In a process calculus, an agent guarantees responsive usage of a chanreif @acoenmunication along is
guaranteed to eventually take place. That is, under a suitable assumption of fairness, all computations contain at
least one reduction withas subject. We christen this propergsponsivenesas we are particularly interested

in the case whereis a return channel passed to a service or function. As an example, a network of pr&esses
may contain a servicelx, r).P invocable inRPcCstyle: the caller sends atan argumenk and a return channel

r. Ss responsive usage ofimplies that every request atwill be eventually replied. This may be a critical
property in domains of applications such as service-oriented computing.

Our goal is to individuate substantial classes of pi-calculus processes that guarantee responsiveness and that
can be statically checkable. In the past decade, several type systems for the pi-calculus have been proposed
to analyze properties that share some similarities with responsiveness, such as linearity [9], uniform receptive-
ness [12], lock freedom [5,6] and termination [4]; they will be examined throughout the paper. However none
of the above mentioned properties alone is sufficient, or even necessary, to ensure the property we are after, as
we discuss below (further discussion is found in the concluding section).

The first system we propose builds around Sangiorgi's system for uniform receptiveness [12]. However,
we discard uniformity and introduce other constraints, as explained below. As expected, most difficulties in
achieving responsiveness originate from responsive hames being passed around. If an intended receiver of a
responsive name saya(x).P, is not available “on time"r might never be delivered, hence used. In this respect,
receptiveness is useful, because it can be used to ensure that ingasdonr are available as soon as they
are created.

Even when delivery of is ensured, however, one should take carerthall be processed properly. Indeed,
the recipient might just “forget” about like in (va, r)(a(x).0|a(r)); or r might be passed from one recipient
to another, its use as a subject being delayed forever, like in

(va, b, r)(1a(x).b(x) | tb(y).aly) | ar)). (1)

The first situation can be avoided by imposing that in the receigerP, namex occurs at least once in the
body P. In fact, as we shall discuss in the paper, it is necessary that any responsive name lieeasgd

* The first autor is supported by the French government research grant ACl TRALALA. The second author is supported
by the EU within the FET-GC2 initiative, project SENSORIA.

that is, it appears exactly once in input and once in output. Infinite delays like (1) can be avoided by using a
stratification of names inttevels like in the type system for termination of Deng and Sangiorgi [4]. We will
rule out divergent computations that involve responsive names infinitely often, but we’ll do allow divergence in
general.

Finally, even when a responsive name is eventually in place as subject of an output action, one has to make
sure that such action becomes eventually available. In other words, one must avoid cyclic waiting like in

r(x).5(x) | s(y).T{y)- 2

This will be achieved by building a graph of the dependencies among responsive names and then checking for
its acyclicity.

Receptiveness and linearity impose relevant limitations on the syntax of well-typed processes: nested free
inputs are forbidden, as well as multiple outputs on the same name. On the other hand, the type system is
expressive enough to enable&kac programming style; in particular, we show that the ustr$encoding of
primitive recursive functions gives rise to well-typed processes.

In the second system we propose, the constraints on receptiveness and linearity are relaxed so as to allow
certain forms of nested inputs and multiple outputs. For instance, the new system allows nondeterministic in-
ternal choice, which was forbidden in the first one. Relaxation of linearity and receptiveness raises new issues,
though. As an example, responsiveness might fail due to “shortage” of inputs, likebiaijdd responsive):

a(b)[a(d)|a(x).x|b/d 55 a(d)|d.

These issues must be dealt with by carefully “balancing” inputs and outputs in typing contexts and in pro-
cesses. This system is flexible enough to encode into well-typed processes all orchestration patterns of Cook
and Misra’sorclanguage [3]. Due to a rather crude use of levels, however, only certain forms of (tail-)recursion
are encodable. In fact, neither the first system is subsumed by the second one, nor vice versa.

The rest of the paper is organized as follows. Syntax and operational semantics of the calculus are presented
in Section 2, and the property we are after is formally defined. Section 3 introduces the first type system,
after an informal discussion on the requirements for responsiveness. The main results, subject reduction and
responsiveness, are presented in Section 4; there we give also a bound, depending on the size of a process, on
the number of reductions necessary before a given responsive name is used. A simple extension of the first
system (recursion on well-founded data) is presented in Section 5, where the encoding of primitive recursive
functions is also discussed. The second system is presented in Section 6; several examples illustrating the extent
and limits of the system are also discussed. We have no room for discussing the full encoding bénce
only an example is shown. The concluding section contains some indications for further work, and a detailed
discussion of related work.

2 Syntax and operational semantics

In this section we describe the syntax (processes and types) and the operational semantics of the calculus. On
top of the operational semantics, we define the responsiveness property we are after.

2.1 Syntax

We focus on an asynchronous variant of the pi-calculus without nondeterministic choice. Indeed, asynchrony is
a natural assumption in a distributed environment. Moreover, in the presence of a choice, it would be difficult
to guarantee responsiveness of names that occur in branches that are discarded. A countable set\¢f names
ranged over by, b,... X y,..., is presupposed. The s@tof processes B),... is defined as the set of terms
generated by the following grammar that obey the well-formedness conditions described below.

P:=0 Inaction

| a(b) Output
|a(x).P x¢in(P) Input prefix
|ta(x).P x¢in(P) Replication
|PIQ Parallel
| (vb)P Restriction

In a non blocking output actiog(b), namea is said to occur irputput subject positiomandb in output
object position In an input prefixa(x).P, and in a replicated input prefia(x).P, namea is said to occur in
input subject positiomndx in input object positionWe denote by ifP) the set of names occurring free in input
subject position ifP. The conditiorx ¢ in(P), for input and replicated input, means that names can be passed
around with the output capability only. This assumption simplifies reasoning on types and does not significantly
affect the expressiveness of the language (see e.g. [2,10]). As usual, parallel comp@gjegapresents the
concurrent execution d® andQ and restriction(vb)P, creates a fresh nantewith initial scope P. Notions
of free and bound names (fn and br{-)), anda-equivalence £) arise as expected. In the paper, we shall
only considemvell-formedprocesses, where all bound names are distinct from each other and from free names.
Please note that we dwt identify processes up t@-equivalence (this means that an explicit operational rule
that equates transition ofequivalent processes will be needed).

Notationally, we shall often abbrevia#éx).0 asa(x), and(vay) ... (van)P as(vay,...,an)P or (vd)P, where
d=a,...,an. In a few examples, the object part of an action may be omitted if not relevant for the discussion;
e.g.,a(x).P may be shortened in@P.

2.2 Sorts and types

The set of nameg\ is partitioned into a family of countablkeorts s, S’,.... A fixed sorting a la Milner [11]
is presupposed: that is, any sgrhas an associated object sgft and a name of sof can only carry names
of sort.s’. We only consider processes that are well-sorted in this system. Alpha-equivalence is assumed to be
sort-respecting, in the obvious sense. Each sort is associated tyfie Bitaken from the sef” defined below.
We writea: T if a belongs to a sor§ with associated typ&. The association between types and sorts is such
that for each type there is at least one sort of that type.

A channel typer[“X conveys three pieces of information: a type of carried objecésusageu, that can be
responsivep) or w-receptive(w), and an integetevel k> 0. If a: T andu = p (resp.u = w) we say thaa
is responsiveresp.w-receptivg. Informally, responsive names are guaranteed to be eventually used as subject
in a communication, whilex-receptive names are guaranteed to be constantly ready to receive. Levels are used
to bound the number of times a responsive hame can be passed around, so to avoid infinite delay in their use as
subject. We also consider a typef inert names that cannot be used as subject of a communication — they just
serve as tokens to be passed around. Finally, a tyjseintroduced to collect those hames that cannot be used
at all: as we discuss below, is useful to formulate the subject reduction property while keeping the standard
operational semantics.

Definition 1 (types).The setl of typescontains the constant and the set of terms generated by the grammar
below. We usg, S, ... to range over? .

To= 1 | TV U:i=[pK | [k (k>0)

2.3 Operational semantics

The semantics of processes is given by a labelled transition system in the early style, whose rules are presented
in Table 1. Anaction pcan be of the following forms: free outpw(b), bound outputa(b), inputa(b), or
internal movet. We definen(a(b)) = n(a(b)) = n(a(b)) = {a,b} andn(t) = 0. A substitutionc is a finite

partial map from names to names; for any téPnwe write Po for the result of applying to P, with the usual
renaming convention to avoid captures.

The rules are standard, with a difference that we discuss in the following. The nofé%i%nis used to
denote a-transition where the — free or bound — naraeandb are used as subject and object, respectively, of
a communication (we omit the formal definition of this notation, that can be given by keeping track of subject
and object names in derivation of transitions.) In RBHe%p), a bound responsive subjexts alpha-renamed
to a L-namec (a sort of “casting” ofa to type L.) Informally, this alpha-renaming is necessary because in a
well-typed process, due to the linearity constraint on responsive namesarmans vanish after being used as
subject. The ruleKe9) deals with the remaining cases of restriction. Note that if type and sorting information
is ignored, one gets back the standard operational semantics of pi-calculus.

(IN) a(x).P), P[o/x] (ReP) la(x).P ﬂ!a(x).P\P[b/x]
n
(our) a(b) 2 g (ALPHA) P=4Q Q_ﬁ Q Q=P
PSP
ab) -, a(b) Ky _
(comy) P—P ; Q/—/>Q (PARY) PP bn(#)m/fn(Q) =0
PIR—=PIQ PIQEP|Q
b ab b
(Vb)P ab) PIQ = (vb)(P'|Q)
oy
P=P aé¢n(p)
u=t{a,b) impliesa not responsive ab) o A
(RES . : (RESD) P——P ar?<sapbc>)n3|vec. L cfresh
(va)P — (va)P (va)P S\ (vc)P’[C/a]
Symmetric rules not shown.

Table 1. Rules for the labeled transition system

. . . b
Notation We shall often refer to a silent mo®— P’ as areduction P ﬂ P’ meansP M P’ for some

free or bound namb. For a strings=a;---a, € A%, P ﬂ P’ meansP @ M P’, while P Q P" means
T*[d 1
—

PL " T P We use such abbreviationslaé-g to mean that there exis® such thaP ﬂ P,

We can now introduce the responsiveness property we are after. Informally, we think of a fair computation

as a sequence of communications where for no r\amuansitionﬂ is enabled infinitely often without ever

taking place. Then a process uses a name in a responsive way if that name is eventually, that is, in all fair
computations, used as subject of a communication. We then have the following definition. Below, we assume
that any bound name occurringfhandsis distinct from any free name in.

Definition 2 (responsiveness).et P be a process andefn(P). We say that Ruarantees responsiveness of

if whenever P P/ (s€ A*) and ¢ does not occur in s ther @

3 The type systent-1

The type system consists of judgments of the forpd 1 P, wherel” andA are sets of names.

3.1 Overview of the system

Informally, names il are those used by in input, while inA are those used bl in output actions. There
are several constraints on the usage of these nam®s Ayname inlC must occuimmediately(at top level)
in input subject position, exactly once if it is responsive and replicated ifutisceptive. A responsive name
in A must occur inP exactly once either in subject or in object output position, although not necessarily at top
level, that is, occurrences in output actions underneath prefixes are allowed. There are no constraints on the
use in output actions ab-receptive names: they may be used an unbounded number of times, including zero.
Linearity (“exactly once” usage) on responsive names is useful to avoid dealing with “dangling” responsive
names, that might arise after a communication, like ireéponsive, object parts ignored):

(vr)(r.OF|r) < (vr)(0Jo[T).
If the process on theHs above were declared well-typed, this transition would violate the subject reduction
property, as the process on tkas above cannot be well-typed.

Linearity and receptiveness alone are not sufficient to guarantee a responsive usage of names. As discussed in
the Introduction, we have also to avoid deadlock situations involving responsive names, like (2). This is simply
achieved by building graph of dependencigsnong responsive nameskfdefined in the sequel) and checking
for its acyclicity. We have also to avoid those situations described in the Introduction by which a responsive name
is indefinitely “ping-pong”-ed among a group of replicated processes, like in (1). To this purpose, levels in types
are introduced and the typing rules stipulate that sending a responsive name to a replicated input ofdgvel
only trigger output of level less than This is similar to the use of levels in [4] to ensure termination. In our
case, we just avoid divergent computations that involve responsive names infinitely often.

There is one more condition necessary for responsiveness, that is, the sets of input and output names must
be “balanced”, so as to ban situations like an output with no input counterpart. This constraint, however, is most
easily formulated “on top” of well-typed-ness, and will be discussed later on.

3.2 Preliminary definitions

Formulation of the actual typing rules requires a few preliminary definitiBtrsictural equivalences neces-

sary in order to correctly formulate the absence of cyclic waiting on responsive names. We define structural
equivalence= as the least equivalence relation satisfying the axioms below and closed under restriction and
parallel composition. Let us point out a couple of differences from the standard notion [11]. First, there is no
rule for replication(!P = P|!P), as its right-hand side would not be well-typed. For a similar reason, in the rule
(va)0=0we requirea: L ora:|l.

(va)(P|Q) = (va)P|Q ifa¢fn(Q) (va)(vb)P = (vb)(va)P
PIQ = QP PO=P
(PIQIR=P|(QR) P=Q ifP=4Q (va)0=0 ifa:Lora:l

Let us call a procesB primeif either P = a(b), or P = a(x).P’ or P =!a(x).P’. A processP is in normal
formif P = (vd)(Py|---|Py) (n > 0), everyR is prime andd C fn(P4, ..., Py). Every process is easily seen to be
structurally equivalent to a process in normal form.

In the dependency graph, defined below, nodes are responsive names of typing contexts and there is an
arc froma to b exactly when an output action that involvaslepends on an input action d&n Although the
following definition does not mention processes, one should think of the (hais) below as typing contexts

— limited to responsive names — for tRés in Py|- - - |Py.

Definition 3 (dependency graph)Let{(I;,4) : i = 1,...,n} be a set of context pairs. Thkependency graph

..........

is the set of arcs.

We will have more to say on both structural equivalence and dependency graphs in Remark 1 at the end of
the section. Like in [4], we will use a function @3), defined below, that collects all — either free or bound —
names irP that occur as subject of activeoutput action, that is, an output not underneath a replication (!).

5

050) =0 og!a(h).P) =0
os(a(h).P) = os(P) osab)) = {a}
os((va)P) = os(P) os(P|Q) = os(P)U0s(Q)
Finally, some notation for contexts and types. For any namee set leya) =Kk if a: TluK for some
T andu, otherwise leya) is undefined. Given a set of nam#¥s defineVP 2 {x e V]| xisresponsivg and

ve 2 {x e V| xis wreceptive}. ForV andW sets of names, we definto W 2y \WP_If ANA =0, we
abbreviat?AUA’ asA, A" and ifa ¢ A, we abbreviatd U {a} asA, a; similarly for I".

3.3 The typing rules

The type system is displayed in Table 2. Recall that each sort has an associated type. Linear usage of responsive
names is ensured by rules (i) and (T-ouUT), by the disjointness conditions in (AAR) and by forbidding
responsive names to occur free underneath replicatioref- Absence of cyclic waiting involving responsive

names is checked in (PAR). Finally, note the use of levels in rule (REP): communication involving a repli-

cated input subjeck and a responsive object can only trigger outputs of level less théa)lele say that a
proces® is well-typedif there arel” andA such thal ;A1 P holds.

r=0 abeA a:1V b:T AP—{ab}=0
T

r=AP=0
(T-NIL) AR O (T-ouT)

_ . . 1lp.K . .
(T-str) P=Q MAR1Q (T_INP)a.T[| b:T a¢A OG:ADbHP

AR P a;Atq a(b).P
3 a:l GARP a:l_r;pak P a:TV Tahdak P
(T-REST) “rrxr vap (TRES) “Far vap - (TREY ~rFar; vap

a:T®" b:T AP=0 0;AbH;P (bresponsive impliesce os(P): lev(c) < k)

(T-REP)

a;A Fqla(b).P
P=Py|---|Pn (n>1) Vi: Risprimeandl;;4 F1 R
Vi#j:rPn F? =0andaf ﬂA‘J—) =0 DG(I",AP)i—1_nis acyclic
(T-PAR) :
U ri; U a kP
i=1,...,n i=1,...,n

Bound names in processes are assumed to be different from free names and from names in contexts.

Table 2. Typing rules of—1

Remark 1.(1) Avoiding deadlock on responsive names might be achieved by using levels in rul@),Tin

the same fashion as in rule @EP), rather than using graphs. In fact, this would rule out cyclic waiting such as
the one in (2) in the Introduction. We shall pursue this approach in the system of Section 6, where there is no
way of defining a meaningful notion of dependency graph. However, in the present system this way of dealing
with cyclic waiting would be unnecessarily restrictive, in particular it would ban as ill-typed the usual encoding
of recursive functions into processes (see also Section 6.5).

(2) We note that, despite the presence of a rule for structural equivalence, the type system may be viewed
as essentially syntax driven, in the following sense. GRémnormal form,P = (vd)(Py|---|P,), and ignoring
structural equalities that just rearrange ther thePR,’s, there is at most one rule one can apply w#ln the
conclusion.

4 Subject reduction and responsiveness for systery

Subject reduction states that well-typedness is preserved through reductions, and it is our first step towards
proving responsiveness.
Theorem 1 (subject reduction).Supposé¢ ;A -, P and P p. Thenl o {a};Ao{a} 1 P.

Our task is proving that any “balanced” well-typed process guarantees responsiveness (Definition 2) for all
responsive names it contains.

Definition 4 (balanced processes)A process P igl";A)-balancedf ;AR P, TP = AP andA® C T%. Itis
balancedfitis (I'; A)-balanced for som& andA.

We need two main ingredients for the proof. The first one is given by the following proposition, stating that
if the dependency graph of a procd3ss acyclic, thenP always offers at least one output action involving a
responsive name.

Proposition 1. Suppose thdt; A+ P, withl", A and P satisfying the conditions in the premise of r{ilePAR)
andl? = AP. Then for some ¢ {1,...,n} we have P=a(b) with either a or b responsive.

Next, we need a measure of processes that is decreased by reductions involving responsive names. We
borrow from [4] the definition ofweightof P, written wt(P): this is defined as a vectdwy, Wk_1, . ..,Wo),
wherek > 0 is the highest level of names in (8, andw; is the number of occurrences in output subject
position of names of levélin P. A formal definition is given below. Here, {0is an abbreviation for the vector
(1,0,...,0) with k components “0” following “1” The vector with just one component that equals “0” is denoted
by 0. Sum+ between two vectors is performed component-wise if they are of the same length; if not, the shorter
one is first “padded” by inserting on the left as many 0’s as needed.

wt(0) =0 wt(la(b).P) =0
wt(a(b).P) = wt(P) wt(a(b)) = Oy if lev(a) =k
wt((va)P) = wt(P) Wt(P|Q) = wt(P) +wt(Q)
The set of all vectors can be ordered lexicographically. Assuming two vectors are of equal length (if not,
the shorter vector is padded with O's on the left), we defing ..., wo) < (W, ..., W) if thereisiin 0,...,k

such thatw; 7V\/ forallk > j > i andw; <w{. This order is total and well-founded, that is, there are no infinite
descending chains of vectors. The next proposition states that the weight of a process is decreased by reductions
involving a responsive name, and leads us to Theorem 2, which is the main result of the section.

Proposition 2. Supposé ;A1 P and pab, P, with either a or b responsive. Thevt(P’) < wt(P).

Theorem 2 (responsiveness).et P be(I"; A)-balanced and e AP. Then P guarantees responsiveness of r.

Proof. AssumeP ﬂ Q, for anyQ, andr ¢ s. We have to show tha® LL By contradiction, assume not. Let

P’ be a process with minimalwt(-) satisfyingQ &, P’ for somes’: this P must exist by well-foundness of
<. Moreover,r ¢ s’. Lets= s -s". By subject reduction we have thatis (I'’;A’)-balanced, witH’ =T ©'s
andd =Aos. N

Consider the normal form of the proce®s P’ = (vd)(Py|-- - |P,), where evenp is prime and it must be
n> 1, asr occurs in both input and output. BY; A’ -1 P’ we deduce™,d;A',d 1 Py|---|P, (by the typing
rules for restriction and (BTR)). By the typing rules, rule~('PAR) must have been applied to infer the latter
judgement, hence it must bg:’,d) = Uic1. nli, and(&',d) = Ui—1,_n4i, andl;4i 1 B, whereAP (resp.
Fip) are pairwise disjoint and DG, AiP)i—1._.n is acyclic. Moreover(A’,oT) = (I’ N) (by balancing), thus
(Proposition 1) there is & such thatP; = a(b) with a or b responsive name. Bm’)"J c(r, ~) (again
by balancing) and receptiveness of responsive @mdceptive names ((ThNpP), (T-REP), (T-0UT)), there is
ak such thatR = (!)a(x).P,. This impliesP’ —— Hab) P”, with wt(P”) < wt(P’), as eithera or b is responsive
(Proposition 2). But this is a contradiction, becalliéewas assumed to be a process with minimal weight

satisfyingQ =, P.

Next, we establish an upper bound on the number of steps that are always sufficient for a given responsive
name to be used as subject. This upper bound can be given as a function of the syntactiP smetteih |P|,
and of name levels i. A similar result was given in [4] for terminating processes. Here, since we deal with
processes that in general may not terminate, the upper bound must be given relatively to a reufieaofing
of transitions, that is introduced below.

Definition 5 (responsive scheduling)A responsive schedulinig a finite or infinite sequence of reductions

po 18P, p M@ \ihere the bound names {itai, by)|i > 1} are all distinct from the free names in P and
for each i> 0, either g or by is responsive.

Theorem 3. Let P be(I"; A)-balanced and e AP and let k be the maximal level of names appearing in active
output actions of P. Then there is at least one responsive scheduling that contains a reduction with r as subject.

Moreover, in all such schedulings, the number of reductions preceding the reduction on r is upper-bounded by
|p|k+1_

5 Recursion on well-founded data values

The system presented in Section 3 bans as ill-typed processes implementing recursive functions. As an exam-
ple, consider the classical implementation of the factorial function, the prétestow. For the purpose of
illustration, we consider a polyadic version of the calculus enriched #fith. then...else, natural numbers,
variables X,y, ...) and predicates/functions as expected. These extensions are straightforward to accommodate
in the type system.

PL1f(nr).if n=0thenT(1) else (v')(T(n—1,r') |F'(m).T(msn)). 3)

It would be natural to seé asw-receptive and andr’ as responsive, but under these assumpffowsuld not

be well-typed: the recursive cai{n— 1,r') violates the constraint on levels of output actions under replication
(rule (T-REP).) Nevertheless, it is natural to see an outpin — 1,r’) triggered by a recursive call &t as
“smaller” than the outpuf (n,r) that has triggered it: at least, this is true if one takes into account the ordering
relation on natural numbers. This means that the “weight” of the process decreases after each recursive call, and
since natural numbers are well-founded, after some reductions no further recursive call will be possible, and a
communication om must take place. This idea from [4] is adapted here to our type system. For simplicity, we
only consider the domain of natural valuést. However, the results may be extended to any data type on which

a well-founded ordering relation can be defined. We define an ordering relatibhetween (possibly open)
integer expressions and variables as follogs: x if for each evaluatiop under whicheis definedgp < p(x).
E.g.,x—1 < x. In the case of the monadic calculus, this relation is lifted to a “smaller than” relati@tween

output and input actions as follows. Beladvd’ denote either names or (open) expressions.

Definition 6 (ordering on actions). We writet(d) <a(d’) if either lev(c) < lev(a) or lev(c) = lev(a) and
d=e<x=d.
The« relation is used in the typing rule below, that replaces rulRER. We denote by (P) the set of all
output actions oP that are active, that is, not underneath a replication.
a:TOK p:T AP=0 O:A b+ P
(b: Nat or bresponsive) impliesvc(d) € O(P) : t(d) <a(b)
a;Atqla(b).P

(T-REP)

In the polyadic casey compares first the subject and then the object parts of two actions lexicographically
(a different ordering is considered in [4].) As an example, it is easy to see that the praodS3 is well-typed
if f:(Nat,Natl??)@l andr r’: NatlP%. The proof of responsiveness remains the same, modulo a change in
function wi-) that takes into account contribution to weight given by the object part of active outputs. We omit
the details of this definition.

Primitive Recursive Functions can be encoded into well-typed processes. The scheme of the encoding is an
easy generalization of that seen above in (3) for the factorial function. More precisely, we have:

Proposition 3. For every n-ary primitive recursive function f there is a well-typed procéss such that: for
each(vy, ..., vn) in Nat” the process G= (vb)((f)p[B(va, ..., Vi, F) [F(x).0), with bex-receptive and r (Nat)!PX

(k> 0), is balanced. Moreover, (1, ...,vy) = mif and only if Gi*m.

6 Nested inputs, multiple outputs: the type systenf-»

The type system presented in Section 3 puts rather severe limitations on nesting of input actions and multiple
use of names. These limitations stem from the “immediate receptiveness” and linearity conditions imposed on
responsive names. For instance, the following encoding of internal ch@ice 1(b), wherer is responsive and
a,binert, is not well-typed (ve) (S(@)[e(by | ¢(x).T(X)). @)
Limitations are also built-in in process syntax, as for example replicated outputs, that clearly violate linearity,
are absent. These might be useful to encode situations like a process receivirrgafnatuey and storing it

into a variablea, where reading frona means doing an input cen

(va)(r(x).1a(x|a(y).P). (5)
For another example, a process that receives two values in a fixed order from two return chaanels, and
then outputs the max alorggmay not be well-typed

rl(Xl).rz(Xz).if X1 > X2 then §<X1> else §<X2> . (6)

We present below a new type systegthat overcomes the limitations discussed above. In fact, we will trade
off flexibility for expressiveness in terms of encodable functions, as only certain patterns of (tail-)recursion will
be well-typed in the new system.

6.1 Syntax and operational semantics

We extend the syntax of processes by introducing replicated output and the syntax of types by introducing a
new responsive usage of namgs, as follows:

P
u:

.- |1a(b)

Anamea: TP K js called+-responsiveas it is meant to be used least onces subject of a communication.
Therefore now we consider three different usagedor names used once),” (for names used at least once)

andw (for names used an undefined number of times.) We point out that responsive names are not subsumed
by +-responsive: in particular, as we shall see, the conditions on the type of carried objects are more liberal for
responsive names. Operational semantics is enriched by adding the obvious rule for replicated output.

6.2 Overview of the system

We give here an informal overview of the system. In the type system, judgements are of thie; ok P
where inl" andA each +-responsive nanagis annotated with @apability t, writtena'. A capabilityt can be
one of four kindsn (null), s (simplg, m (multiple), p (persistent. Informally, capabilities have the following
meaning (in the examples below, we ignore object parts of some actions and &dsunfe-)responsive name):

a" indicates thata cannot be used at all. This capability has been introduced to uniformly account for
+-responsive names that disappear after being used as subjects.

a° indicates that appears at least once, but never under a replication. Exanaghesia.P, a andb.a.

a™ indicates thah appears at least once, even under replication, but never as a subject of a replicated action.
Examplesa.P|a.Q, !b.a.Pand ba

aP indicates thaga only appears as a subject of a replicated action. Examd:!g, b.!aand b.'a.

Note that a nama may be given distinct capabilities in input)(and output 4). E.g. one may have, again
ignoring the object parts$,; AF,la.P|a, wherea? € I anda® € A. Next we illustrate and motivate the constraints

on names usage realized by the typing rules and by the balancing conditions discussed later on. There are
essentially three of them:

1. If @™ €T thenaP € A. This is to avoid deadlocks arising from not having enough output actions of subject
a, like in (a andb +-responsive names):

alablalb- ablb A .

This situation is in fact avoided & appears in replicated output subject, likeaira.b|!a|b.

2. If @' e I anda carries (+-)responsive names, then p. This is to avoid deadlocks arising from having too
many outputs of subject that carry (+-)responsive names, like a«-responsiveb andd (+-)responsive
names):

a(b)|a(d)|a(x).X|bjd - a(d)|d.

3. Names occurring under an (either simple or replicated) input must be of smaller level than the input subject.
The role of this condition is twofold, now. Under replicated inputs, it avoids infinite delays, like in the first
system. Under simple inputs, it serves to avoid cyclic waiting, likajb (+-)responsive)a.b|b.a. This was
achieved by the use of dependency graphs in the first system. As announced in Remark 1, however, there
appear to be no meaningful extension of this notion of graph in the present system. In particular, acyclicity
of the graph might not be preserved by reductions. E.g. consider the reductiaf tre process below:

b(x).a(x)[c(x)-a(y).x{y)[c(b) -

There are other constraints that have been introduced for technical convenience (essentially, to avoid divergences
and deadlocks difficult to control in the proof of responsiveness) and that shall not be discussed further:

(&) names with input capability (simple) occur exactly once in input subject position;

(b) names with capabilitp (persistent) occur exactly once in subject position, either in input or in output, but
not in both; this also implies that persistent names cannot be passed around. Moreover, free replicated inputs
cannot be guarded.

The above conditions are often met in applications (e.g., they are in the encodirg pfesented in the next
section.)

6.3 The typing rules

We first introduce some additional notations. Cont€xamdA are sets of annotated names of the fatnwhere
t is a capability. Each name occurs at most once in a context. +-responsive hames are annotated with one of the
four capabilities, s, m or p, while non-+-responsive hames are always annotated with a defdutepability;
when convenien&™ is abbreviated simply aa. Union and intersection of two contexts, writt€a U ', and
r1NT,, are defined only if the contexts agree on capabilities of common names, that is whainevgrfor
i = 1,2 thent; =t,. We writel"1,[2 in place ofr ;U2 if F1NT, = 0; while 1, a abbreviate§, {a'}. For any

context” and capabilityt, we define™ £ {ala' €T'}. The set of name&P" 2 {al| ais +-responsive and €T
for somet # n } andl?, I'* (defined similarly) will also be useful. The typing rules are presented in Table 3.

6.4 Subject reduction and responsiveness

Subject reduction carries over to the new system, modulo a small notational chanfe §ming context and
V a set of names let us denote Byy ™V the typing context obtained by removing frdmeacha! such that
aeV. Let us denote by dfP) the set of names occurring free in output positioRin

Theorem 4 (subject reduction for systemt-,). I'; A+, P and Pl p imply ;A Fo P, with 7 =T ot ({a}\
in(P")) andA’ =Aot ({a} \on(P)).

10

a:TUKwithu#w b:T VeceosP)uin(P): lev(c) < k
P=r®=0@ a+-responsive implieb not (+-)responsive
CAL P t#£np t #np

(T-INP) ra;Ar,a(b).P
a:TOK pb:T AP=AP" =0 O;AL' P t#n,p
b (+-)responsive impliesc € ogP) : lev(c) < k
(T+-REP)

a ;Akolab).P

a:TP K b:T rf=0forlc{p,wsp} A'=0for? c{s,p,p}
MAb P t#np VceosP)uin(P): lev(c) <k

(T+-REF) & A lab) P
(T, -ouT) a:Ty b:T AP=A" =0 t'#np t#np
* 0:0,a 0", a(b)
a:TlP™ K p:T AP=AP" =0
) AP —APY —) . b not (+-)responsive
(T4-NIL) =gar,0 (T4-out") 00,2, Folalb)
i a:Ll AR, P i a:tV r.a;na P
(T4+-RESL) "R, (va)p (T4+-RES =1, va)p
) a:l Aa P)) AP) } AR P
(TL-RESI) AR, (vaP (T-WEAK-T) F.aA,P (T-WEAK-A) FAa 5P
Fr=rulfy A=AM1UDy Ti0i2PR (i=1,2)
rinri=0fortc{p,s,p} A NAS =0for¢ € {p,p}
FPAAP =0 T™NASUA™) =0
(T+-PAR) ;A F2 PP,

Bound names in processes are assumed to be different from free names and from names in contexts.

Table 3. Typing rules of—»

The balancing requirements are now more stringent. They include those for responsivereseptive
names necessary in the first system (condition 1 below). Concerning +-responsive names, “perfect balancing
between input and output is required only for those names that carry (+-)responsive names (condition 2). More-
over, the same requirements apply also to restricted +-responsive names (condition 3).

Given a set of name let us defin&/T = {acV |a: T andT is of the form(Sl“K) "N with u € {p,p"} }.
Define [(P) (resp. g (P)) as the set of restricted +-responsive nameR atcurring in an input (resp. output)
action inP, even underneath a replication. We have the following definition and result.

Definition 7 (strongly balanced processes)A process P ig[;A)-strongly balancedif I';A -, P and the

following conditions hold: (1J® = A? andA® C I'®; (2) I?" C AP” and (A'ﬁ)T C (FW)T; Q) ri(P) Cr(P)
t t

and(rg (P))" < (1 (P)) .

The proof of the following theorem is non-trivial, as strong balancing is preserved through reductions only up
to certain transformations on processes.

11

Theorem 5 (responsiveness for systefp). Suppose P i§l"; A)-strongly balanced and € AP U rP". Then P
guarantees responsiveness of r.

6.5 Examples

Let us now examine a few examples. In what follows, unless otherwise stated we assuryg dnatof type
inert, thata, b, c are +-responsive and thas are responsive. Conditions on levels are ignored when obvious.
Process (4) at the beginning of the section is well-typed witth capability multiple in output and simple in
input; it is strongly balanced if put in parallel with an appropriate context of the fgxnP. Process (5) is well-
typed witha of capability persistent in output and simple in input (aBanust be assumed strongly balanced,
and not containing free persistent inputs or names of level greatemtbart is strongly balanced if put in
parallel witht(x). Process (6) is well-typed assumingandr, of capability simple in input ang;,x, natural
number variables (the obvious extension of the systemWithhen-else and naturals is here assumed); again,
it is strongly balanced if put in parallel with an appropriate context.

The next two examples involve non-linear usages of +-responsive names arising from replication and refer-
ence passing. We mention these examples also because they will help us to compare our system to existing type
systems that enforce lock freedom, a property related to responsiveness (see the concluding section). The first
example involves only replication, object parts play no role:

lablalb. @)
The above process is strongly balanced under the assumpticahihatcapability persistent in input and sim-
ple/multiple in output, and has capability simple in input and multiple in output; also, the leved nfust be
less thara’s. In the next example, an agent sort of “looks up” a directoty get the address of a serviegand
then calls this service: 1a(2).2(b) | (vr) (&(r) |r (w).W) | b. ®)
This process is strongly balanced under the assumptionatigipersistent in input and simple or multiple in
output; b is simple in input and multiple in output; also, the levelofust be smaller tharfs and the level
of r must be smaller thaa's (the variant wherd is replaced byl is also strongly balanced; in this cdsés
persistent in input.)

The type systent, can be extended to the polyadic version of the calculus with naturals and variables
exactly as seen in Section 5, i.e. by using tk# felation over actions in rules (I-INP), (T -REP) and
(T.-REP). Now, consider the factorial function in (3) and assuné are (+-)responsive. It is easily seen
that (3) is not well-typed in the present system: in fact, because of the recursive tall @annot be leyr) <
lev(r’). In general, the type system bans as ill-typed recursive calls of thedfnfg(i),i)), thus ruling out
the usual encoding of primitive recursion. Certain forms of recursion, like the tail-recursive version of factorial
below, are however still well-typed

If(x,ar).if Xx=0thenT(a) else f(x—1,axXxr).
7 Encoding the Structured Orchestration Language

In this section we show that the orchestration patterns definable inrlobdanguage [3] can be encoded into
T-calculus processes that are well-typed in systerrfor the sake of simplicity, we suppose that inert names,
ranged over by, are the only data values that can be exchanged amagervicesORC terms, ranged over
by f,g,..., are defined by the following grammar, whet@anges over variables, amqover variables and
names p ::= x|c):

f,g = 0|M(p)|E(p) inaction, site and expression calls
| let(p) publication
|f>x>g sequential composition
| flg symmetric parallel composition

| gwherex:e f asymmetric parallel composition

12

[let)]s = x(y)-sy) [let(c)]s = s(c)
[Ex)]s = x(y)-E(y.s) [E(c)]s = Elc,s
[MO)]s = x(y)-[M(Y)]s IM(©)lls = (vr)(M(c,r) [r(y)s(y))
[flgls = [fls|lgls [gwherex:e s = (vr)([f]r | (vx)(r(y).1%(y) | [g]s))
[f>x>g]s = () ([|'t(y)-(vx)(1X(y) | [glls)
Name |c,y| X S r t E M
Type | 1P d |y AT WP T yle [kel (4P T)(P™ k]
Input Cap. m s s p p p
OutputCap.|—| p |s/m|s/m|s/m s/m s/m
with: kg > h, ke, kv, andke > h, andky > h, i andh > h, kg

Table 4. Encoding of thedRc language and typing assumptions.

HereM is asite name,p is a parameter (variable or name) and for every expression mathere exists a
declaratiorE(x) = f, wherex is the formal parameter. The language’s primitives can be informally explained
as follows (for a formal definition 0bRCs operational semantics, the reader is referred to [3].) Each closed
expressiompublisheqreturns) a sequence of zero or more values. A siteMgll) publishes a predefined value
associated with sit®1. An expression calE(p) publishes the values retuned bjP/x]. The expression lét)
publishes the value In f > x > g, the execution of is started, and every valupublished byf triggers a new
instance of, g[¢x]; the sequence of values produced by all these instances running in parallel is published. In
f|g, the sequence obtained by interleaving values producdddoglg is published. Irgwherex:e f the values
produced byg are published; however, the executionfadndg is started in parallel, and each subterngdfat
depends on is blocked untilf produces the first value which causeg to be replaced by; subsequent values
published byf are discarded.

ORCterms are translated intw-calculus by the functiorf-]|; defined in Table 4sis used here as a result
channel. Encoding of a declarati@{x) = f is given by E(x,s).[f]s. For simplicity, we assume that a site
M receives something and then publishes a predefined eane returns, thus the encoding of the ditds
simply IM(x,s).5(c). The encoded terms are well-typed under typing assumption in Table 4. Levels are left
unspecified, but suitable values for them can be easily inferred by inspection. Capghilitydicates the
possibility of having eithes or m, depending on whether the name occurs under a replicatipar(not ,/m).
E.g. capabilities associated to free names appearig@ithe encoding of > x> g must be given capability.
The following result can be used for reasoning about responsivenescaxpressions. In what follows, given
anoRrcterm f, D; stands for the parallel composition of the encodings of all declarations and sites involved in

the definition off andd = fn(Dr). We write f = ifatermf publishes the value possibly after some internal
reductions.

Proposition 4. Let f be a closedRc term and suppose Dis well-typed. Under the typing assumptions of
Table 4,[f]s is well-typed and = (vd)([]s| Dt |s(x).0), with s andd +-responsive, is strongly balanced.

Moreover, = if and only if F i®>

In the following we show an example of encoding of an orchestration pattern definedir¢ianguage [3]
into ar-calculus process that is well-typed in systepnConsider theorcfunction below, which emails times
the first newspage fro@NN or BBCto address and publish the current value ofafter every sending and at
the end of the cicle (we leave aside the specifications of BB&3 CNN, ...):

MailNewgn,a) £ if n=0 then letn)
elseMailNewgn—1,a) | Mail(t,a) >> let(n) wheret :c (CNN|BBC) .

13

Suppose the encodings of siesN, BBCandMail are respectivelyCNN(x).X(N), IBBC(x).x(N’) and Mail (x,a,r).[send x to &F,
whereN andN’ represent news. The functidhailNewscan be encoded as follows:

MN 2 IMn(n,a,s).if n=0 thens(n)

else<|\/ln(n -1,a59)]| (vr)(NN(r)|BBC(r)

V0) Oy 80 | 0)9 .) 1 9.50))

where the received chanrsk used for publishing values. As in the previous example, consider the extension of
type systent-, with values and polyadic communicatidviN is well-typed supposing r, r’ andt +-responsive,
lev(Mn) > lev(CNN), lev(Mn) > lev(BBC) and leCNN), lev(BBC) > lev(r) > lev(t) > lev(Mail) > lev(r’) >

lev(s).

8 Conclusions and related works

We have presented two type systems for statically enforcing responsive usage of names in pi-calculus pro-
cesses. The first system combines linearity, receptiveness and techniques for deadlock and livelock avoidance.
In the second system, receptiveness and linearity are relaxed at the price of stronger requirements on levels
and balancing: we lose some expressive power in terms of encodable recursive functions, but are able to type
interesting processes, such as translatioort terms. Both systems are syntax driven, so that type checking
should be straightforward and efficient to implement. Extensions with type inference and subtyping deserve
further investigation, mainly due to the presence of levels.

Beside the works, already discussed, on receptiveness [12] and termination [4], there are a few more works
related to ours and that are discussed below.

Closely related to our system one are a series of papers by Berger, Honda and Yoshida on linearity-based
type systems. In [16], they introduce a type system that guarantees termination and determinacy of pi-calculus
processes, i.&trong NormalizatiolfSN). Our techniques of system one are actually close to theirs, as far as the
linearity conditions and cycle-detection graphs are concerned (see also the type system in [14]). However SN
is stronger than responsiveness, in particular SN implies responsiveness on all linear names under a balancing
condition. In fact, the system in [16] is stricter than our system one, e.g. it does not allow linear subjects to carry
linear objects, and bans-names, hence any form of nondeterminism and divergence, as these features would
obviously violate SN. Yoshida's type system in [15], in turn a refinement of the systems in [16] and [1], is meant
to ensure d.inear Livenesproperty, meaning that the considered process eventually prompts for a free output
at a given channel. This property is related to responsiveness, the difference being that Linear Liveness does
not imply synchronization, hence the corresponding input might not become available. Two kinds of names are
considered in [15]: linear (used exactly once) affine (used at most once). Linear subjects carrying linear
objects are forbidden and internal mobility is assumed — only restricted names can be passed around.

Closely related to our system two are a series of papers by Kobayashi and collaborators. A type system for
linearity in the pi-calculus was first introduced in [9]. This system can be used to ensure that any linear name in
a process occurs exactly once in input and once in output; however, it cannot ensure that a linear name will be
eventually used as a subject of a synchronization. Kobayashi’s type systems in [5,6] can be used to guarantee
that, under suitable fairness assumptions, certain actions are lock free, i.e. are deemed to succeed in synchro-
nization, if they become available ([7] is a further refinement, but the resulting system cannot be used to enforce
responsiveness.) Channel types are defined in termsagfesroughly, ccslike expressions on the alphabet
{l,0}, that define the order in which each channel must be used in ihpabd in output Q). Eachl /O ac-
tion is annotated with anbligation level, related to when the action must become available, arapability
level, related to when the action must succeed in synchronization if it becomes available. A level can be a natural
number or infinity, the latter used to annotate actions that are not guaranteed to become available/succeed in syn-
chronization. This scheme is fairly general, allowing e.g. for typing of shared-memory structures such as locks
and semaphores, which are outside the scope of our systems. Concerning responsiveness, on the other hand, it
appears that our--responsive types cannot in general be encoded into lock-freedom types. More precisely, one
can exhibit processes well-typed in our system two and contairingsponsive names that cannot be assigned

14

a finite capability in Kobayashi's systems. For example, both the process (7) and the “service-lookup” (8) are
well-typed (in fact, strongly balanced) in our system two, under a typing context \eh&re-responsive. They

are not in the systems of [5,6], under any type context that assigna finite capability: the reason is that a
finite-capability input orb is required to be balanced by an instance of a finite-obligation obtghat cannot

be statically determined in the given processes (although, after the submission of the present pajrer ihe

tool [8] has been modified to handle also processes of this form.) Another difference from [5,6] is that these
systems partly rely on a form of dynamic analysis which is performed on typeselibbility condition on

usages, which roughly plays the same role played in our systems by balancing, is checked via a reduction to the
reachability problem for Petri Nets. As previously remarked, our systems are entirely static.

Acknowledgment¥§Ve wish to thank Davide Sangiorgi and Naoki Kobayashi for stimulating discussions on the
topics of the paper.

References

A

. M. Berger, K. Honda and N. Yoshida. Sequentiality andrttealculus. InProc. of TCLA2001.LNCS 2044, pp.29-45.
M. Boreale. On the Expressiveness of Internal Mobility in Name-Passing Caldwdbretical Computer Science
195(2):205-226, 1998.
3. W. R. Cook and J. Misra. Computation Orchestration: A Basis for Wide-Area Computogial of Software and
Systems Modelin@006.http: //www.cs.utexas.edu/~wcook/projects/orc/.
4. Y. Deng and D. Sangiorgi. Ensuring Termination by TypabilityPhoc. of IFIP TCS pp.619-632, 2004. Full version
in Information and Computatiqr204(7):1045-1082, 2006.
. N. Kobayashi. A type system for lock-free processef@rmation and Computatiqri77(2):122-159, 2002.
N. Kobayashi. Type-Based Information Flow Analysis for the Pi-Calc#ata Informartica 42(4-5): 291-347, 2005.
N. Kobayashi. A New Type System for deadlock-Free Processes. To apfracinf CONCUR2006.
N. Kobayashi. Theypical tool, available ahttp://www.kb.ecei.tohoku.ac. jp/~koba/typical/.
. N. Kobayashi, B.C. Pierce and D.N. Turner. Linearity and the Pi-CalculuBrda. of POPL, 1996. Full version in
ACM Transactions on Programming Languages and Syst2h(s):914-947, 1999.
10. M. Merro and D. Sangiorgi. On asynchrony in name-passing calctida of ICALR 1998.LNCS 1443, pp.856-867.
Full version inMathematical Structures in Computer Scienté(5):715-767, 2004.
11. R. Milner. The polyadiatcalculus: a tutorial. Tec.Rep. LFCS report ECS-LFCS-91-180, 1991. Aldmgic and
Algebra of SpecificatigrSpringer-Verlag, pp.203-246, 1993
12. D. Sangiorgi. The name discipline of uniform receptivenesBrae. of ICALR 1997.TCS 221(1-2):457-493, 1999.
13. D. Sangiorgi and D. WalkeFhetrcalculus: a Theory of Mobile ProcesseSambridge University Press, 2001.
14. N. Yoshida. Graph Types for Monadic Mobile ProcessePBrtit. of 16th FST/TCENCS 1180, pp.371-386, 1996.
15. N. Yoshida. Type-Based Liveness in the Presence of Nontermination and Nondeterminism. MCS Technical Report,
2002-20, University of Leicester, 2002.
16. N. Yoshida, M. Berger and K. Honda. Strong Normalisation inttealculus. InProc. of LICS 2001.IEEE, pp.311-
322.

n

©®~No

15

A Proof of Theorem 5

We need two preliminary propositions, whose proofs are omitted. The first proposition ensures that processes
strongly balanced under nontrivial contexts always have a reduction involving a (+-)responsive name.
Proposition A1 Suppose P igl'; A)-strongly balanced witl\° U P £ 0. Then PM with either a or b
(+-)responsive name.

Consider the extension of v} to systent-,, written wt" (-), obtained by adding the clauseta(b)) =0
to the definition of wt. The following proposition is the analog of Proposition 2 for system

Proposition A2 I';A+, P and PP b with either a or b (+-)responsive, impliest™ (P') < wt™ (P).

Theorem Al (Proof of Theorem 5) Let P be(T"; A)-strongly balanced and € AP U FP". Then P guarantees
responsiveness of r.

Proof. Suppose tha® SN P’, with P" having the minimal weight among processes reachable Ravith r ¢ s

(this P must exist by well-foundness ef.) Lets= a; - - - an, and consider the sequence of reductions leading
to P

pop, B p B B)
By I'; A+, P and subject reduction we have tHatAj 2 B for i = 0,...,n, wherellp =T andAg = A and

N =Ti-10" ({a}\in(R)) andAi = Ai_1 0T ({a} \ on(R)) for i > 0. We prove thaf’ Ly by induction on

the numberk of non-strongly-balanced processes in the sequence of reductions (9), khat|ig |0 < i <
nandP is not(l;,4;)-strongly balanced|.
k=0: ThenP’is strongly balanced. Sinces A" UT P (asr ¢ s), by Proposition AP’ Hab), P”, with either
aorb (+-)responsive, and by Proposition A2WP") < wt*(P'). Hencea = r, becaus®’ was assumed to
have minimal weight among the processes reachable Brarithout usingr as subject.
k>0: Let P; (j > 0) be the leftmost non-strongly-balanced process in the sequence (9). Consider the re-

ductionP;j_1 il P;. SinceP;_; is strongly balanced whil®; is not, a simple case analysis on the ca-
pabilities thata; may take on shows that; € (Fjp+ \Aj’ﬁ) U (r"(P)\ r§ (P)), and moreover thaa;
must be used as subject of a replicated inpu®jim. Sincea; occurs exactly once in input iRj_1, we
must haveP; ;1 = (vd)('aj(x).R|S) andP; = (vd)('aj(x).R|R[%/X] |S) with a; ¢ fn(R[%/X]|S). Moreover

P’ = (vd')(*a(x).R|P") with a; ¢ fn(P"). Now, the procesB;j = (vd)(R[%x | S), obtained by erasing the

term la;(x).R from Pj, is strongly balanced, and it hol Byl e, P, = P”, with P” = (vd')P".

This sequence has k— 1 unbalanced processes, and mored¥ehas minimal weight among the pro-
cesses reachable froﬁjﬁ without usingr as subject. Then by induction hypotheE’f’sﬂ, which implies
[r]

P —.

16

