
Spatial and behavioral types in the pi-calculus?

Lucia Acciai Michele Boreale

Dipartimento di Sistemi e Informatica
Università di Firenze

{lacciai,boreale}@dsi.unifi.it

Abstract. We present a framework that combines ideas from spatial logics and
Igarashi and Kobayashi’s behavioural type systems, drawing benefits from both.
In our approach, type systems for the pi-calculus are introduced where newly
declared (restricted) names are annotated with spatial process properties, predi-
cating on those names, that are expected to hold in the scope of the declaration.
Types are akin to terms and account for the processes abstract behaviour and
“shallow” spatial structure. The type systems relies on spatial model checking,
but properties are checked against types rather than against processes. The con-
sidered class of properties is rather general and, differently from previous propos-
als, includes both safety and liveness ones, and is not limited to invariants.
Keywords: pi-calculus, behavioural type systems, spatial logic.

1 Introduction

In the past few years,spatial logics[9,7] have emerged as promising tools for analyz-
ing properties of systems described in process calculi. These logics aim at describing
the spatial structure of processes. This makes them apt to express properties related to
distribution and concurrency. An easy to grasp example is the race freedom property,
stating that at any time, nowhere in the system there are two output actions ready on
the same channel. The spectrum of properties that can be expressed by combination of
simple spatial and behavioral connectives is very rich (see e.g. [7]). This richness is
rather surprising, given the intensional nature of such logics: the process equivalences
they induce coincide with, or come very close to, structural congruence (see e.g. [6]), a
very fine equivalence that only permits elementary rearrangements of term structure.

A by known well-established trend in the field of process calculi is the use of
behavioural type systemsto simplify the analysis of concurrent message-passing pro-
grams [11,10,8]. Roughly, behavioural types are abstract representations of processes,
yet sufficiently expressive to capture some properties of interest. In Igarashi and Kobaya-
shi’s work on generic type systems [10], the paper that pioneered this approach, pro-
cesses are pi-calculus terms, while types are akin to simpler terms. The crucial
property enjoyed by the system is type soundness: in essence, for a certain class of
properties (expressed in a simple modal logic), it holds that if a property is satisfied by
a type then it is also satisfied by processes that inhabit that type. Results of this sort can
in principle be used to effectively combine type checking and model checking. That is,

? Research partly supported by the EU within the FET-GC2 initiative, project S.

in some cases it is possible to replace (expensive) model checking on message-passing
processes by (cheaper) model checking on types. The paper [8] further elaborates on
these themes. A limitation of behavioural type systems proposed so far concerns the
kind of properties that can be tackled this way. Essentially, in [10,8], properties for
which a general type soundness theorem works are safety invariants.

In the present paper, we try to combine the expressiveness of spatial logics with the
effectiveness of behavioural type systems. More specifically, building on Igarashi and
Kobayashi’s work on generic type systems, we present type systems for the pi-calculus
where newly declared (restricted) names are annotated with properties that predicate on
those names. A process in the scope of a restriction is expected to satisfy, at run-time,
the property expressed by the formula. We shall focus on properties expressible in a
spatial logic – theShallow Logic– which is a fragment of Caires and Cardelli’s logic.
Types are akin to terms and account for (abstract) behaviour and “shallow” spatial
structure of processes. The type system relies on (spatial) model checking: however,
properties are checked against types rather than against processes. The considered class
of properties is rather general and, unlike previous proposals [10,8], includes both safety
and liveness ones, and it is not limited to invariants. Several examples of such properties
– including race freedom, deadlock freedom and many others – are given throughout the
paper. As another contribution of the paper, we elaborate a distinction betweenlocally
andglobally checkableproperties. Informally, a locally checkable property is one that
can be model-checked against any type by looking at the (local) names it predicates
about, while hiding the others; a globally checkable one requires looking also at names
causally related to the local ones, hence in principle at names declared elsewhere in the
process. These two classes of properties correspond in fact to two distinct type systems,
exhibiting different degrees of compositionality and effectiveness (with the global one
less compositional/effective). To sum up, we make the following contributions:

– we establish an explicit connection between spatial logics and behavioural type sys-
tems. In this respect, a key observation is that processes and the behavioural types
they inhabit share the same “shallow” spatial structure, which allows us to prove
quite precise correspondences between them and general type soundness theorems;

– we syntactically identify classes of formulae for which type soundness is guaran-
teed;

– unlike previous proposals, our type soundness results are not limited to safety prop-
erties nor to invariant properties;

– we investigate a distinction between locally and globally checkable properties.

Structure of the paperIn Section 2 we introduce the language of processes, a standard
polyadic pi-calculus. In Section 3 we introduce both spatial properties and the Shallow
Logic, a simple language to denote them. In Section 4 the first type system, tailored
to “local” properties, is presented and thoroughly discussed. Type soundness for this
system is then discussed in Section 5 along with a few examples. A “global” variant of
the type system, a soundness result and a few examples are presented and discussed in
Section 6. Some limitations of our approach, and possible workarounds for them, are
discussed in Section 7. A few remarks on further and related work conclude the paper
in Section 8. Proofs are omitted due to space limitations.

2

P|0 ≡ P (P|Q)|R ≡ P|(Q|R) P|Q ≡ Q|P (νx̃ : t̃)P|Q ≡ (νx̃ : t̃)(P|Q) if x̃#Q

Table 1.Laws for structural congruence≡ on processes

2 A process calculus

Processes.The language we consider is a synchronous polyadic pi-calculus [14] with
guarded summations and replications. As usual, we presuppose a countable setN of
names. We let lowercase lettersa,b, ..., x,y, ... range over names, and ˜a, b̃, ... range over
tuples of names. ProcessesP,Q,R, . . . are defined by the grammar below

α ::= a(b̃)
∣∣∣ a〈b̃〉 ∣∣∣ τ P ::=

∑
i∈I αi .Pi

∣∣∣ P|P ∣∣∣ (νb̃ : t̃)P
∣∣∣ !a(b̃).P.

In the restriction clause,̃t is a tuple of channel types, to be defined later in Subsec-
tion 2, such that|̃t| = |b̃|. Note that restriction acts on tuplesb̃= b1, ...,bn, rather than on
individual names. Indeed, the formνb̃ is equivalent toνb1 · · ·νbn from an operational
point of view. From the point of view of the type systems, however, the formνb̃ will
allow us to specify properties that should hold of a group of names, as we shall see
in later section. Notions of free names fn(·), of bound names and of alpha-equivalence
arise as expected and terms are identified up to alpha-equivalence. In particular, we let
fn((νb̃ : t̃)P)= (fn(P)∪ fn(t̃))\ b̃. To avoid arity mismatches in communications, we shall
only consider terms that are well-sorted in some fixed sorting system (see e.g. [14]), and
callP the resulting set ofprocesses.

Notation. We shall write0 for the empty summation. Trailing0’s will be often omitted.
Given n ≥ 0 tuples of names̃b1, ..., b̃n, we abbreviate (νb̃1 : t̃1) · · · (νb̃n : t̃n)P as (ν̃ b̃i :
t̃i)i∈1..nP, or simply (ν̃ b̃)P when no ambiguity about thẽti arises. In general, channel
types annotations may be omitted when not relevant for the discussion. For any tuple/set
of names ˜x and itemt, x̃#t means that ˜x∩ fn(t) = ∅. This is extended to tuples of items
t̃, written x̃#t̃, as expected.

OverP, we define areduction semantics, based as usual on a notion of structural
congruence and on a (labelled) reduction relation. These relations are defined, respec-

tively, as the least congruence≡ and as the least relation
λ
−→ generated by the axioms in

Table 1 and Table 2. As usual, the structural law for replication is replaced by a suitable
reduction rule. Concerning Table 1, note that, similarly to [10], we drop two laws for re-
strictions ((νỹ)0 = 0 and (νx̃)(νỹ)P = (νỹ)(νx̃)P): these laws become problematic once
restrictions will be decorated with formulae containing free names. Concerning Table 2,
note that we annotate each reduction with a labelλ that carries information on the (free)
subject name involved in the corresponding synchronization if any:λ ::= 〈a〉 | 〈ε〉. We
define a hiding operator on labels, writtenλ ↑b̃, as follows:λ ↑b̃= 〈a〉 if λ = 〈a〉 and
a < b̃, λ ↑b̃= 〈ε〉 otherwise.

Notation. In the sequel, forσ = λ1 · · · · · λn, P
σ
−→ Q meansP

λ1
−→ ·· ·

λn
−→ Q, and

P→ Q (resp.P →∗ Q) meansP
λ
−→ Q (resp.P

σ
−→ Q) for someλ (resp.σ). Moreover,

3

() αl = a(x̃) βn = a〈b̃〉 l ∈ I n ∈ J∑
i∈I

αi .Pi |
∑
j∈J

β j .Q j
〈a〉
−−→ Pl [b̃/x̃]|Qn

()
j ∈ I α j = τ∑

i∈I

αi .Pi
〈ε〉
−−→ P j

(-) βn = a〈b̃〉 n ∈ J

!a(x̃).P|
∑
j∈J

β j .Q j
〈a〉
−−→ !a(x̃).P|P[b̃/x̃]|Qn

() P
λ
−→ P′

P|Q
λ
−→ P′|Q

() P≡ Q Q
λ
−→ Q′ Q′ ≡ P′

P
λ
−→ P′

() P
λ
−→ P′

(νx̃ : t̃)P
λ↑x̃
−−→ (νx̃ : t̃)P′

Table 2.Rules for the reduction relation
λ
−→ on processes.

we say that a processP has abarb a (resp.a), written P↘a (resp.P↘a), if P ≡
(ν̃b̃)(
∑

i αi .Pi +a(x̃).Q|R) (resp.P≡ (ν̃b̃)(
∑

i αi .Pi +a〈c̃〉.Q|R)), with a < b̃.

Types.The setT of typesT,S,U, . . . is generated by the following grammar:

µ ::=a(t)
∣∣∣ a ∣∣∣ τ t ::= (x̃ : t̃)T T ::=

∑
i µi .Ti

∣∣∣ T|T ∣∣∣ !a(t).T
∣∣∣ (νã : t̃)T

with x̃#̃t andx̃⊆ fn(T). In channel types (˜x : t̃)T, we stipulate that (˜x : t̃) is a binder with
scopeT. Informally, a(t).T is a process type wherea can transport names of channel-
type t. In a channel type (˜x : t̃)T, x̃ and t̃ represent, respectively, the formal parameters
and types of objects that can be passed along the channel, while typeT is a process
type prescribing a usage of those parameters. Note that, in (˜x : t̃)T, it might in general
be fn(T) \ x̃, ∅. In the sequel, we shall often omit writing the channel type ()0, writing
e.g. (x)x instead of (x : ()0)x. Process types are akin to terms bearing annotations
on input prefixes and restrictions. Notions of free names, alpha-equivalence, structural
congruence and reduction for types parallel those of processes. Note, that annotations
contribute to the set of free names1 of a type, but do not play a direct role in its reduction

semantics (e.g.c.T|c(t).S
〈c〉
−−→ T|S).

3 Properties

We first take a general view of properties asP-sets, that is sets of processes and types
(subject to certain conditions). Then introduceShallow Logic, a simple language to
denote a class of such properties. Although processes and types live in different worlds,
for the purposes of this section it is possible and convenient to deal with them in a

uniform manner. In what follows, we letA,B, ... range over the setU
4
=P∪T . Elements

ofU will be generically referred to asterms.

1 Indeed, the reason for introducing these annotations is precisely to ensure that, in the type
systems we shall introduce, wheneverΓ ` P : T then fn(P) ⊆ fn(T).

4

P-sets. Following [7,6], a property set, P-set in brief, is a set of terms closed under
structural congruence and having a finite support: this intuitively means that the set of
names that are “relevant” for the property is finite (somewhat analogous to the notion of
free names for syntactic terms). In the following, we let{a↔ b} denote thetransposition
of a andb, that is, the substitution that assignsa to b andb to a, and leave the other
names unchanged. ForΦ ⊆U, we letΦ{a↔ b} denote{A{a↔ b} |A ∈Φ}.

Definition 1 (support, P-set, least support).Let beΦ ⊆ U and N⊆ N . (a) N is a
supportofΦ if for each a,b< N, it holds thatΦ{a↔ b} =Φ. (b) Aproperty set(P-set) is
a set of termsΦ ⊆U that is closed under≡ and has finite support. (c) Theleast support

ofΦ, writtensupp(Φ), is defined assupp(Φ)
4
=
⋂

N support ofΦ N.

In other words,N is a support ofΦ if renaming namesoutside Nwith fresh names
does not affectΦ. P-sets have finite supports, and since countable intersection of sup-
ports is still a support, they also have a least support. In the rest of the paper we will deal
with properties that need not be invariant through reductions. This calls for a notion of
λ-derivativeof a P-setΦ, describing the set of terms reachable viaλ-reductions from

terms inΦ: Φλ
4
= {B|∃A ∈Φ : A

λ
−→ B}. Theλ-derivative of a P-set is a P-set.

Proposition 1. Let Φ be a P-set such thatΦλ = Φ for λ = 〈ε〉 or λ = 〈b〉 with b <
supp(Φ). For any reduction labelλ,Φλ is a P-set andsupp(Φλ) ⊆ supp(Φ).

The Ok predicate defined below individuates P-sets that enjoy certain desirable con-
ditions. (1) requires a P-set to be closed under parallel composition with terms not
containing free names (2) demands a P-set to be invariant under reductions that do not
involve names in its support. Finally, (3) requires preservation of (1) and (2) under
derivatives.

Definition 2 (Ok(·) predicate).We defineOk(·) as the largest predicate on P-sets such
that wheneverOk(Φ) then: (1) for any A,B ∈ P s.t. fn(B) = ∅: A ∈ Φ if and only if
A|B∈Φ; similarly for A,B∈ T ; (2) Φλ =Φ for λ = 〈ε〉 or λ = 〈b〉 with b< supp(Φ); (3)
for eachλ, Ok(Φλ) holds.

In the rest of the paper, we shall focus on properties represented by Ok P-sets.

Shallow Logic.The logic for the pi-calculus we introduce below can be regarded as a
fragment of Caires and Cardelli’s Spatial Logic [7]. We christen this fragmentShallow
Logic, as it allows us to speak about the dynamic as well as the “shallow” spatial struc-
ture of processes and types. In particular, the logic does not provide for modalities that
allows one to “look underneath” prefixes. Another important feature of this fragment is
that the basic modalities focus on channelsubjects, ignoring the object part at all. This
selection of operators is sufficient to express a variety of interesting process properties
(race freedom, unique receptiveness [16], deadlock freedom, to mention a few), while
being tractable from the point of view of verification (see also Caires’ [6]).

Definition 3 (Shallow Logic). The setF of Shallow Logicformulaeφ,ψ, . . . is given
by the following syntax, where a∈ N andã⊆ N :

φ ::= T
∣∣∣ φ∨φ ∣∣∣ 〈a〉φ ∣∣∣ 〈ã〉∗φ ∣∣∣ 〈−ã〉∗φ

∣∣∣ ¬φ ∣∣∣ a ∣∣∣ a ∣∣∣ φ|φ ∣∣∣ H∗φ.
5

[[T]] =U [[H ∗φ]] =
{
A
∣∣∣∃ã,B : A≡ (ν̃ã)B, ã#φ, B∈ [[φ]]

}
[[φ1∨φ2]] = [[φ1]] ∪ [[φ2]] [[φ1|φ2]] =

{
A
∣∣∣∃A1,A2 : A≡ A1|A2, A1 ∈ [[φ1]] , A2 ∈ [[φ2]]

}
[[¬φ]] =U\ [[φ]] [[〈a〉φ]] =

{
A
∣∣∣∃B : A

〈a〉
−−→ B, B∈ [[φ]]

}
[[a]] =

{
A
∣∣∣A↘a

}
[[〈ã〉∗φ]] =

{
A
∣∣∣∃σ,B : A

σ
−→ B, σ ∈ {〈b〉|b ∈ ã}∗, B∈ [[φ]]

}
[[a]] =

{
A
∣∣∣A↘a

}
[[〈−ã〉∗φ]] =

{
A
∣∣∣∃σ,B : A

σ
−→ B, ã#σ, B∈ [[φ]]

}
Table 3. Interpretation of formulae over terms.

The free names of a formulaφ, written fn(φ), are defined as expected. We letFx̃ =

{φ ∈ F : fn(φ) ⊆ x̃}. The set of logical operators includes spatial (a,a, |,H∗) as well as
dynamic (〈a〉, 〈ã〉∗, 〈−ã〉∗) connectives, beside the usual boolean connectives, including
a constantT for “true”. The interpretation ofF over the set of processes is given in
Table 3. Connectives are interpreted in the standard manner. We writeA |= φ if A∈ [[φ]].

Interpretations of formulae are P-sets, as stated below.

Lemma 1. Letφ ∈ F. Then[[φ]] is a P-set and f n(φ) ⊇ supp([[φ]]) .

Notation. In what follows, when no confusion arises, we shall often denoteΦ = [[φ]]
just asφ. Moreover, we shall writeA |= Φ to meanA ∈ Φ. We abbreviate¬〈−x̃〉∗¬φ
as�∗

−x̃φ. Moreover,〈−∅〉∗φ and�∗
−∅
φ are abbreviated as♦∗φ and�∗φ, respectively.

Note that♦∗ and�∗ correspond to the standard “eventually” and “always” modalities as
definable, e.g., in the mu-calculus.

A further motivation for our particular selection of modalities is that satisfaction
of any formula ofF is, so to speak, invariant under parallel composition. In particular,
whetherA satisfies or not a propertyφ of a bunch of names ˜x, should not depend on the
presence of a parallel closed contextB. Formulae of Cardelli and Caires’ Spatial Logic
outsideF do not, in general, meet this requirement. As an example, the requirement
obviously fails for¬(¬0|¬0), saying that there is at most one non-null thread in the
process. As another example, take the formula♦T, where♦ is the one-step modality,
saying that one reduction is possible: the reduction might be provided by the contextB
and not byA. This explains the omission of the one-step modality from Shallow Logic.

Lemma 2. Let A be a term andφ ∈ Fx̃. For any term B such that A|B is a term and
fn(B) = ∅ we have that A|= φ if and only A|B |= φ.

Example 1 (sample formulae).The following formulae define properties depending on
a generic channel namea. They will be reconsidered several time throughout the paper.

Race freedom: NoRace(a)
4
= �∗ ¬H∗(a|a)

Unique receptiveness: UniRec(a)
4
= �∗

(
a∧¬H∗(a|a)

)
Responsiveness: Resp(a)

4
= �∗−a♦

∗〈a〉

Deadlock freedom:DeadFree(a)
4
= �∗

[(
a→ H∗(a|♦∗a)

)
∧
(
a→ H∗(a|♦∗ a)

)]
.

6

NoRace(a) says that it will never be the case that there are two concurrent outputs
competing for synchronization ona. UniRec(a) says that there will always be exactly
one receiver ready on channela. Resp(a) says that, until a reduction ona does not
take place, it is possible to reach a reduction ona. If a is a return channel of some
invoked service or function, this means the service or function will, under a suitable
fairness assumption, eventually respond (see also [3]). Finally,DeadFree(a) says that
each output ona will eventually meet a synchronizing input, and vice-versa.

We shall sometimes need to be careful about the placement of the modality〈−ã〉∗

with respect to negation¬. To this purpose, it is convenient to introduce two subsets of
formulae, positive and negative ones.

Definition 4 (positive and negative formulae).We say a formulaφ is positive(resp.
negative) if each occurrence of modality〈−ã〉∗ in φ is in the scope of an even (resp. odd)
number of negations “¬”.

We letF + (resp.F −) denote the subset of positive (resp. negative) formulae inF.
The setsF +x̃ andF −x̃ are defined as expected.

Example 2.Concerning the formulae introduced in Example 1, note thatNoRace(a)
andUniRec(a) are negative, while bothResp(a) andDeadFree(a) are neither positive
nor negative, as in both the modality♦∗ occurs both in negative and in positive position.

Note that our definitions of “positive” and “negative” are more liberal than the ones
considered by Igarashi and Kobayashi [10], where the position of all spatial modali-
ties – including the analogs of|, a anda – w.r.t. negation must be taken into account
(e.g., unique receptiveness would not be considered as negative in the classification
of [10]). This difference will have influential consequences on the generality of the type
soundness theorems of the type systems. In the rest of the paper, we shall mainly focus
on formulae whose denotations are Ok P-sets. We write Ok(φ) if Ok([[φ]]) holds. The
following lemma provides a sufficient syntactic condition for a formula to be Ok.

Lemma 3. Letφ be a Shallow Logic formula of the form either�∗ψ or �∗
−ã♦
∗ψ′, where

ψ′ does not contain¬. ThenOk(φ).

Example 3.Formulas in Example 1 are in the format of Lemma 3, hence they are Ok.

4 A “Local” Type System

We present here our first type system. The adjective “local” refers to the controlled way
P-set membership (that is, model checking, in practical cases) is checked.

Annotated processes.As anticipated in Section 2, the type system works on annotated
processes. Each restriction introduces a property, under the form of an Ok P-set, that
depends on the restricted names and is expected to be satisfied by the process in the
restriction’s scope. This means that, for annotated processes, the clause of restriction is
modified thusP ::= · · ·

∣∣∣ (νã : t̃ ; Φ)P with ã⊇ supp(Φ) and Ok(Φ). For brevity, when

7

(T-I) Γ ` a : (x̃ : t̃)T Γ, x̃ : t̃ ` P : T|T′ x̃#T′

Γ ` a(x̃).P : a((x̃ : t̃)T).T′
(T-T) Γ ` P : T

Γ ` τ.P : τ.T

(T-O) Γ ` a : (x̃ : t̃)T Γ ` b̃ : t̃ Γ ` P : S

Γ ` a〈b̃〉.P : a.(T[b̃/x̃] |S)
(T-E) Γ ` P : T T ≡ S

Γ ` P : S

(T-S) |I | , 1 ∀i ∈ I : Γ ` αi .Pi : µi .Ti

Γ `
∑

i

αi .Pi :
∑

i

µi .Ti
(T-R) Γ ` a(x̃).P : a(t).T

Γ `!a(x̃).P :!a(t).T

(T-R) Γ, ã : t̃ ` P : T T ↓ã|=Φ
Γ ` (νã : t̃ ;Φ)P : (νã : t̃)T

(T-P) Γ ` P : T Γ ` Q : S
Γ ` P|Q : T|S

Table 4.Typing rules.

no confusion arises we shall omit writing explicitly channel types and properties in
restrictions, especially whent = ()0 andΦ = [[T]]. The reduction rule for restriction on
annotated processes takes into account theλ-derivative ofΦ in the continuation process:

()
P

λ
−→ P′

(νx̃ : t̃ ;Φ)P
λ↑x̃
−−→ (νx̃ : t̃ ;Φλ)P

′

.

For an annotated processP, we takeP |= φ to mean that the plain process obtained by
erasing all annotations fromP satisfiesφ. A “good” process is one that satisfies its own
annotations at an active position. Formally:

Definition 5 (well-annotated processes).A process P∈ P is well-annotatedif when-
ever P≡ (ν̃b̃)(νã :Φ)Q then Q|=Φ.

Typing rules.Judgements of type system are of the formΓ ` P : T, where:P∈ P, T ∈ T
andΓ is a context, that is, a finite partial map from namesa,b,c, . . . to channel types
t, t′, We writeΓ ` a : t if a ∈ dom(Γ) andΓ(a) = t. We say that a context iswell-
formedif wheneverΓ ` a : (x̃ : t̃)T then fn(T, t̃) ⊆ x̃∪dom(Γ). In what follows we shall
only consider well-formed contexts. Contexts are assumed to be well-formed in rules
of the type system. In the type system, we make use of a “hiding” operation on types,
T ↓x̃, which masks the use of names not in ˜x in T (as usual, in the definition we assume
that all bound names inT andt are distinct from each other and disjoint from the set of
free names and from ˜x).

Definition 6 (hiding on types). For any typeT and x̃, we letT ↓x̃ denote the type
obtained by replacing every occurrence of prefixes a(t). and a. with τ., for each a∈
fn(T) \ x̃. Hiding on channel types,t ↓x̃, is defined similarly.

E.g., (νa : t)(a(t).b(t′)|a(t).c|c|a) ↓b= (νa : t ↓a,b)(a(t ↓a,b).b(t′ ↓a,b)|a(t ↓a,b).τ|τ|a). The
rules of the type system are shown in Table 4. The structure of the system is along
the lines of [10]; the main differences are discussed in Section 7. The key rules are
(T-I), (T-O), (T-R) and (T-E). By and large, the system works as follows: given

8

a processP, it computes an abstraction ofP in the form of a typeT. At any restriction
(νã : t̃ ;Φ)P (rule (T-R)), the abstractionT obtained forP is used to check thatP’s
usage of names ˜a fulfills propertyΦ (T ↓ã|= Φ; in practical casesΦ is a shallow logic
formula and this is actually spatial model checking). Note that, thanks to↓ã, this is
checked without looking at the environment: only the part ofT that depends on ˜a, that
is T ↓ã, is considered, the rest is masked. In particular, inT ↓ã, any masked subterm that
appears in parallel to the non-masked subterm can be safely discarded (a consequence
of condition 1 of Ok). In this sense the type system is “local”.

Rules for input and output are asymmetric, in the sense that, when typing a receiver
a(x̃).P, the type information onP that depends on the input parameters ˜x is moved
to the sender process. The reason is that the transmitted namesb̃ are statically known
only by the sender (rule (T-O)). Accordingly, on the receiver’s side (rule (T-I)),
one only keeps track of the part of the continuation type that does not depend on the
input parameters, that isT′. More precisely, the type of the continuationP is required
to decompose – modulo type congruence – asT|T′, whereT is the type prescribed by
the context fora andT′, which should not mention the input parameters ˜x, is anything
else. In essence, in well typed processes, all receivers ona must share a common part
that deals with the received names ˜x as prescribed by the typeT.

Finally, (T-E) is related to sub-typing. As mentioned in the Introduction, a key
point of our system is that types should reflect the (shallow) spatial structure of pro-
cesses. When considering sub-typing, this fact somehow forces us to abandon preorders
in favor of an equivalence relation that respects P-sets membership, which leads to
structural congruence. Further discussion on this point is found in Section 7.

The judgements derivable in this type system are written asΓ `L P : T.

Example 4.Consider the formulaφ = �∗¬H∗(a|b) saying that it is not possible to reach
a configuration where both an output barb ona and one onb are available at the same
time. Ok(φ) holds by Lemma 3. Consider the processP= (νa,b : t, t ; φ)Q, where:t= ()0,
Q=
(
(d〈a〉 + d〈b〉) | !a.b| !b.a

)
|d(x).x and a contextΓ s.t.Γ ` d : (x : t)x= t′. By applying

the typing rules for input, output, summation and parallel composition:

Γ, a : t, b : t `L Q : (d.a + d.b) | !a(t).b| !b(t).a|d(t′)
4
= T .

T ↓a,b= (τ.a + τ.b) | !a(t).b| !b(t).a|τ |= φ; hence, by (T-R), Γ `L P : (νa,b : t, t)T.

Basic properties.We state here the basic properties of the type system presented in
the preceding subsection. Let us writeΓ`NLP : T if there exists anormal derivation
of Γ `L P : T, that is, a derivation where rule (T-E) is used only above rule (T-I).
Modulo≡, every judgment derivable in the type system admits a normal derivation.

Proposition 2 (normal derivation). If Γ `L P : T thenΓ`NLP : S for someS ≡ T.

Normal derivations are syntax-driven, that is, processes and their types share the same
shallow structure. This fact carries over to all derivations, modulo≡. E.g., if Γ `L P :
T,T ≡ (ν̃ã : t̃)(T1|T2) thenP≡ (ν̃ã : t̃;Φ̃)(P1|P2), with Γ, ã : t̃ `L Pi : Ti , i = 1,2.

Theorem 1 (subject reduction).Γ `L P : T and P
λ
−→ P′ implies that there exists aT′

such thatT
λ
−→ T′ andΓ `L P′ : T′.

9

5 Type Soundness for the Local System

In this section we prove a general type soundness result for our system and provide a
few interesting examples of application of the type systems.

Definitions and results.We identify the general class of properties for which, at least
in principle, model checking on processes can be reduced to a type checking problem
whose solution requires only a (local) use of model checking on types. We do so by the
following coinductive definition.

Definition 7 (locally checkable properties and formulae).We letLc be the largest
predicate on P-sets such that wheneverLc(Φ) thenOk(Φ) and: (1) wheneverΓ `L P : T
and x̃⊇ supp(Φ) andT ↓x̃|= Φ then P|= Φ; (2) Lc(Φλ) holds for eachλ. If Lc(Φ) then
we sayΦ is locally checkable.

A formulaφ ∈ F is said to be locally checkable if [[φ]] is locally checkable.

Theorem 2 (run-time soundness).Suppose thatΓ `L P : T and that P is decorated
with locally checkable P-sets only. Then P→∗ P′ implies that P′ is well-annotated.

Our task is now providing sufficient syntactic conditions on formulaφ that guarantee
Lc([[φ]]).

Lemma 4. SupposeΓ `L P : T. (a) If φ ∈ F −x̃ andT ↓x̃|= φ then P|= φ. (b) If φ ∈ F +x̃ and
P |= φ thenT ↓x̃|= φ.

Theorem 3. Any negative formula of the form�∗φ is locally checkable.

The above result automatically provides us a type soundness result for an interesting
class of formulae, that include both safety and liveness properties.

Examples.The formulaeNoRace(a) andUniRec(a) fits in the format given by Theo-
rem 3, hence they are locally checkable. As an example, consider

P= (νa,b,c : ()0, t′, t ; UniRec(a))
(
(c〈a〉 | a+b(x).x) |c(y).b〈y〉

)
wheret = (x)b.x andt′ = (y)y. By the typing rules, we easily derive

Γ,a : ()0,b : t′,c : t `L
(
(c〈a〉 | a+b(x).x) |c(y).b〈y〉

)
: T

with T
4
= c.b.a | a+b(t′) | c(t). SinceT ↓a,b,c= T |= UniRec(a), we can apply (T-R) and

get
Γ `L P : (νa,b,c : ()0, t′, t)T .

For another example, consider the following access policy for a shared resourcec.
Before using the resource, a lockl must be acquired; the resource must then be used
immediately, and the lock must be released immediately after that. If we identify an
available resourcec with an input barb onc, a use ofc with a synchronization onc and

10

the availability ofl with an output barb onl, the above policy can be described by the fol-

lowing formula, where [c] stands for¬〈c〉¬: S a f eLock(l,c)
4
= �∗
(
(l→ c) ∧ [c]l

)
. This

is a negative formula fitting the format of Theorem 3, hence it is locally checkable. As an
example of use of this formula, the processQ= (νc, l ;S a f eLock(l,c))(l|c|a〈l,c〉) |a(x,y).
!x.
(
y.(y|x)

)
is well typed under aΓ s.t.Γ ` a : (x,y)!x.

(
y.(y|x)

)
. Note that neither (the

analog of)UniRec(a), nor S a f eLock(l,c) is included in the type soundness theorem
of [10].

Finally, note thatResp(a) and DeadFree(a) do not fit the format of Theorem 3.
Indeed, these formulae are not locally checkable. E.g., considerR= (νa;Resp(a))(c.a|a).
This process is easily seen to be well-typed underc : ()0, simply because thec blocking
a is masked (turned intoτ) in (T-R). However,c.a|a clearly fails to satisfyResp(a).

6 A “Global” Type System

The Resp(a) example at the end of the preceding section makes it clear that it is not
possible to achieve type soundness result for properties like responsiveness unless we
drop the “locality” condition in the restriction rule. Indeed, those properties can only
be checked if one can look at the part of the type involving names from which the
restricted ones causally depend. In the previous example, whereT = c.a|a, this means
checkingResp(a) againstT ↓a,c= T, rather than againstT ↓a, thus detecting the failure
of the property.

Below, we introduce a new type system that pursues this idea. Note that dropping
locality implies some loss of compositionality and effectiveness. The type system relies
on the use of dependency graphs, a technical device, introduced in the next subsection,
which helps to individuate causal relations among names.

Dependency graphs.Let χ range over a seta = {ε,◦,•} of annotations. For I ⊆ N , we
let a set of annotated namesÎ be a total function fromI to a; by slight abuse of notation,
we writeaχ ∈ Î rather thanÎ (a) = χ. The informal meaning of annotations is:ε = free
name,◦ = input-bound name,• = restricted name. Adependency graph Gis a pair
〈V,E〉, where:V = Î ∪W, with W ⊆ {(νx̃)

∣∣∣ x̃ ⊆ N}, is a set of annotated names and
restrictions representingvertices, andE ⊆ V×V is a set ofedges.

A dependency graphG = 〈V,E〉, with V = Î ∪W ranged over byu,v, . . ., encodes
causal relations among (free or bound) names inI . Vertices of the form (νx̃) are in-
troduced for delimiting the scope of restrictions. Edges (u,v) ∈ E are also written as
u→G v;→∗G is the reflexive and transitive closure of→G. A root of G is a vertexu ∈ V
such that for nov, v→G u; the set ofG’s roots is denoted by roots(G). Given a depen-
dency graphG = 〈V,E〉, with V = Î ∪W, a namea is critical in G with respect tõb, if it
belongs to the set of namesG(b̃) defined below.

G(b̃)
4
=
{
x
∣∣∣ xε ∈ Î∧∃x→G v1→G · · ·→G vn=b∈ b̃ s.t.∀1≤ i <n : vi = (νỹ) impliesb< ỹ

}
.

The set ofcritical namesin G, written cr(G), is defined as cr(G)
4
=
⋃

b•∈Î G(b). Finally,

we defineG[b̃]
4
= G(b̃)∪ b̃.

11

In order to define dependency graphs associated to types, we introduce three aux-
iliary operations on graphs: (i) unionG1∪G2 is defined componentwise as expected,
provided the sets of verticesV1 andV2 agree on annotations (otherwise union is not
defined); (ii)χ-updateG ↑χx̃ changes intoχ the annotation of all names in ˜x occurring

in V; (iii) a-rooting is defined asa→G
4
=
〈

V∪{aε} , E∪{(a,b) |b ∈ roots(G)}
〉
, where

G= 〈V,E〉, provideda does not occur inV with annotations different fromε (otherwise

a-rooting is not defined); (iv) (νx̃)-rooting is defined as (νx̃)→G
4
=
〈

V , E∪{((νx̃),b) |b∈
roots(G)}

〉
. Dependency graphs are inductively defined over types innormal form. Let

us say a type isprime if it is of the form either
∑

i∈I µi .Ti with I , ∅ or !a(t).T. Let us
say a type is inhead normal formif it is of the form (ν̃ã)(T1| · · · |Tn) with theTi ’s prime
and the prefix continuations are recursively innormal formif the Ti ’s are recursively
in normal form. Similar definition for processes. For anyT and t in normal form, the
dependency graphsGT andGt are defined by mutual induction on the structure ofT and
t as follows (it is assumed that inT andt bound names are distinct from each other and
from free names).

Ga.T = a→GT Ga(t).T = a→ (Gt∪GT) G!a(t).T = Ga(t).T

G∑i∈I µi .Ti =
⋃

i∈I Gµi .Ti |I | , 1 G∏i Ti =
⋃

i GTi

G(νx̃:t̃)T = (νx̃)→
(
(GT∪

⋃
t∈t̃ Gt) ↑•x̃

)
G(x̃:t̃)T =

(
GT∪

⋃
t∈t̃ Gt
)
↑◦x̃ .

In essence,GT encodes potential causal dependencies among (free or bound) names of
T as determined by prefixes inT. In the sequel, we shall abbreviate cr(GT) andGT[b̃],
for someb̃⊆ fn(T), as cr(T) andT[b̃], respectively.

Typing rules.We need some additional notations. A channel type (˜x)T is said to bewell-
formedif x̃#cr(T); in what follows, we only consider contextsΓ containing well-formed
channel types. For any typeT we letT ⇓x̃ denoteT ↓T[x̃] (note that fn(T ⇓x̃) = T[x̃] by
definition). Intuitively, inT ⇓x̃, we keep the names in ˜x and those that are causes of ˜x
in T; the others are masked. We also need a more permissive notion of well-annotated
process, that allows re-arranging of top-level restrictions before checking annotations
(property). To see why this is necessary, considerφ = �∗(♦∗a|♦∗a), a typical property
one would like to check in the new system. Consider the processesP = (νb)(νa;φ)R
andQ = (νa;φ)(νb)R, with R= b.c|b.d |b|b|c.a|d.a. We observe that (νb)R 6|= φ, so that
Q is not well-annotated according to Definition 5; on the other hand,Q≡ P andR |= φ,
which suggests thatP, henceQ, could be considered as well-annotated up to a swapping
of (νa) and (νb).

Definition 8 (globally well-annotated processes).A process P∈ P is globally well-
annotatedif whenever P≡ (ν̃b̃)(νã; Φ)(ν̃c̃)Q, with Q a parallel composition of prime
processes, then there is a permutationb̃′ c̃′ of b̃c̃ such that P≡ (ν̃b̃′)(νã; Φ)(ν̃c̃′)Q and
(ν̃c̃′)Q |=Φ.

The global type system is obtained by replacing some rules of the local one (Table 4)
with those reported in Table 5. The type system makes use of an auxiliary relation∝x̃

among P-sets and types, defined coinductively as follows (the use of this relation is
explained in the sequel).

12

(T-R) Γ, ã : t̃ ` P : T Φ ∝ã T
Γ ` (νã : t̃ ;Φ)P : (νã : t̃)T

(T-E-P) Γ ` P : T P≡ Q
Γ ` Q : T

(T-R) Γ ` P : T cr(T) = ∅
Γ `!P :!T (T-P) Γ ` P : T Γ ` Q : S cr(T)#S cr(S)#T

Γ ` P|Q : T|S

(T-O) Γ ` a : (x̃ : t̃)T Γ ` b̃ : t̃ Γ ` P : S b̃#cr(T) cr(T[b̃/x̃])#S T[b̃/x̃]#cr(S)

Γ ` a〈b̃〉.P : a.(T[b̃/x̃] |S)

Table 5.Typing rules.

Definition 9 (∝x̃). We let∝x̃ be the largest relation on P-sets and types such that when-

everΦ ∝x̃ T then: (1)T ↓T[x̃] |= Φ; (2) for eachλ,T′ such thatT ↓T[x̃]
λ
−→ T′ ↓T[x̃] then

Φλ ∝x̃ T′.

Note the presence of a new structural rule for processes, (T-E-P) forcing subject
congruence, which is not derivable from the other rules of the system. As an example,
while P= (νa : t; Resp(a))(b.a|b|a) can be typed without using rule (T-E-P), the struc-
turally congruent process (νa : t; Resp(a))(b.a|a)|b could notbe typed without using that
rule. The condition on critical names in rule (T-P) ensures that anyQ put in parallel
to P will not break well-annotated-ness ofP (and vice-versa). A similar remark applies
to the rules for output and replication. In rule (T-R), use of the relation∝ã ensures that
each derivative ofT satisfies the corresponding derivative ofΦ. It is worth noticing that
checkingΦ ∝ã T could be undecidable, given that in general we are in the presence of
infinite state systems: at the end of the next section, we will identify a class of formulas
for which checking [[φ]] ∝ã T reduces to checkingT ⇓ã|= φ. The judgements derivable
in the new type system are written asΓ `G P : T. It is worth noticing that the system
introduced in Table 5 is not syntax-driven, but a syntax-directed version can be easily
defined by adding some constraints on the structure of processes in the premises of the
typing rule for parallel composition (we omit the details for lack of space).

Type Soundness.Similarly to the local case, we identify a general class of proper-
ties for which, at least in principle, model checking on processes can be reduced to
a type checking problem whose solution requires only model checking on types, then
give sufficient syntactic conditions for global-checkable-ness. The definition ofglobally
checkable property(omitted) is the same as the local one, except that the local hiding
operator “↓x̃” is replaced by “⇓x̃”.

Theorem 4 (run-time soundness).Suppose thatΓ `G P : T and that P is decorated
with globally checkable P-sets only. Then P→∗ P′ implies that P′ is globally well-
annotated.

Like in the local case, we can give syntactic conditions for a formula to be globally
checkable.

Theorem 5. Supposeφ is of the form: (a)�∗ψ with negation not occurring underneath
any 〈−ỹ〉∗ in ψ; or (b) �∗

−ỹ♦
∗ψ′, with negation not occurring inψ′. Thenφ is globally

checkable.

13

The following proposition guarantees that for formulas that satisfy the premises of
Theorem 5 checking [[φ]] ∝ã T reduces to checkingT ⇓ã|= φ.

Proposition 3. Supposeφ ∈ Fx̃ is of the form of the form (a) and (b) as specified in
Theorem 5. IfT ⇓x̃|= φ then[[φ]] ∝x̃ T.

Examples.All properties defined in Example 1 fit the format of Theorem 5, hence they
are globally checkable. As an example, considerP= (νa : Resp(a))(c〈a〉)|Q, whereQ=

!c(x).(x|x)|c〈b〉. Under a suitableΓ, we deriveΓ `G c〈a〉|Q : c.(a|a)|!c|c.(b|b)
4
= T. Since

T ↓T[a]= c.(a|a)|!c|c.(τ|τ) |= Resp(a), by (T-R), we getΓ `G (νa : Resp(a))(c〈a〉|Q) :
(νa)T, hence we can conclude thatΓ `G P : (νa)T using (T-E-P).

It is worth to notice that (the analogs of) responsiveness and deadlock freedom
escape the type soundness theorem of [10], although, for deadlock freedom, a soundness
result can still be proven by ad-hoc reasoning on certain basic properties of the system.

7 Discussion

We discuss here some limits, and possible workarounds, of our approach, and contrast
them with the generic type system approach of [10]. In [10], the subtyping relation
makes an essential use of a “sub-divide” law,T ≡ T ↑x̃ |T ↓x̃. This rule allows one to
split any type into a part depending only on ˜x, T ↓x̃, and a part not depending on ˜x,
T ↑x̃. As an example, with this law one hasa.b.x ≡ a.b.τ|τ.τ.x. This law enhances the
flexibility of the input rule, hence of the type system. On the other hand, it disregards
the spatial properties of terms, leading to a lack of structural correspondence between
types and processes. In our system, we stick to spatial-preserving laws, thus trading
off some flexibility for precision. As seen, this gain in precision has influential conse-
quences on the class of properties for which type soundness can be proven (e.g., the
class includes interesting liveness properties). An example of process that cannot be
treated in our type systems because of the absence of the “sub-divide” law is the pro-
cessQ = !a(x).(νc)

(
b(y).
(
(νz)(c〈x,z〉 |z.y) |c(x,z).(x|z)

))
. Here,a can be viewed as an

invocation channel,x as a formal invocation parameter andy as an acknowledgement
channel, introduced by another input (onb). It appears thaty and x are related (via
c), which makes the type ofb dependent on the bound namex, which cannot be ex-
pressed in our system. This dependency could be discarder using the sub-divide law.
In the example, the very dependency ofy from x suggests a way to re-write the pro-
cess into a conceptually equivalent one that can be dealt with in our systems. E.g.,
!a(x,y).(νc)

(
(νz)(c〈x,z〉 |z.y) |c(x,z).(x|z)

)
.

8 Conclusion, further and related work

We have provided a framework that incorporates ideas from both spatial logics and
behavioural type systems, drawing benefits from both. Implementation issues are not
in the focus of this paper. In this respect, the normal derivation property already pro-
vides us with syntax driven systems. Of course, implementing the model checksT |= φ

14

is an issue. One possibility would be re-using existing work on spatial model check-
ing: Caires’ work [6] seems to be a promising starting point. Also, approximations of
possibly infinite-state types with Petri Nets, or even finite-state automata, in the
vein of [12], seem unavoidable to obtain effective tools. Finally, it would be interest-
ing to cast our approach in more applicative scenarios, like calculi for service-oriented
computing [1].

Apart from the already cited works, also related to our approach are some recent
proposals by Caires. In [5,4], a logical semantics approach to types for concurrency is
pursued. Closest to our work is [4], where a generic type system for the pi-calculus -
parameterized on the subtyping relation - is proposed. The author identifies a family of
types, the so called shared types, which allow to modularly and safely compose spatial
and shared (classical invariants) properties and to safely factorize spatial properties. A
preliminary investigation of the ideas presented in this paper, in a much simpler setting,
is in [2].

References

1. Acciai, L., Boreale, M.: A type system for client progress in a service-oriented calculus.
Degano, P. et al. (eds.) Montanari Festschrift, LNCS, vol. 5065, pp. 642–658 (2008)

2. Acciai, L., Boreale, M.: Type abstractions of name-passing processes. Arbab, F. and Sirjani,
M. (eds.) FSEN’07. LNCS, vol. 4767, pp. 302–317 (2007)

3. Acciai, L., Boreale, M.: Responsiveness in process calculi. Okada, M. and Satoh, I. (eds.)
ASIAN’06. LNCS, vol. 4435, pp. 136–150 (2008)

4. Caires, L.: Logical Semantics of Types for Concurrency. In: Mossakowski, T., Montanari,
U., Haveraaen, M. (eds.) CALCO’07. LNCS, vol. 4624, pp. 16–35 (2007)

5. Caires, L.: Spatial-Behavioral Types, Distributed Services, and Resources. In: Montanari, U.,
Sannella, D., Bruni, R. (eds.) TGC’06. LNCS, vol. 4661, pp. 98–115 (2007)

6. Caires, L.: Behavioral and Spatial Observations in a Logic for the pi-Calculus. In:
Walukiewicz, I. (eds) FoSSaCS’04. LNCS, vol. 2987, pp. 72–89 (2004)

7. Caires, L., Cardelli, L.: A spatial logic for concurrency (part I). Inf. Comput. 186(2), 194–
235 (2003)

8. Chaki, S., Rajamani, S.K., Rehof, J.: Types as models: model checking message-passing
programs. POPL’02, pp. 45–57 (2002)

9. Cardelli, L., Gordon, A.D.: Anytime, Anywhere: Modal Logics for Mobile Ambients. POPL
2000, pp. 365–377 (2000)

10. Igarashi, A., Kobayashi, N.: A generic type system for the Pi-calculus. Theor. Comput. Sci.
311(1-3), 121–163 (2004)

11. Kobayashi, N.: Type-based information flow analysis for the pi-calculus. Acta Inf. 42(4-5),
291–347 (2005)

12. Kobayashi, N., Suenaga, K., Wischik, L.: Resource Usage Analysis for the pi-Calculus. Log-
ical Methods in Computer Science 2(3) (2006)

13. Kobayashi, N., Suto, T.: Undecidability of 2-Label BPP Equivalences and Behavioral Type
Systems for the pi -Calculus. In: Arge, L., Cachin, C., Jurdzinski, T., Tarlecki, A. (eds)
ICALP’07. LNCS, vol. 4596, pp. 740-751 (2007)

14. Milner, R.: The polyadicπ-calculus: a tutorial. In Logic and Algebra of Specification,
Springer, pp. 203–246 (1993)

15. Milner, R.: A Calculus of Communicating Systems. Springer (1980)
16. Sangiorgi, D.: The Name Discipline of Uniform Receptiveness. Theoretical Computer Sci-

ence 221(1-2), 457–493 (1999)

15

