Spatial and behavioral types in the pi-calculus

Lucia Acciali Michele Boreale

Dipartimento di Sistemi e Informatica
Universita di Firenze
{lacciai,boreale}@dsi.unifi.it

Abstract. We present a framework that combines ideas from spatial logics and
Igarashi and Kobayashi’s behavioural type systems, drawing benefits from both.
In our approach, type systems for the pi-calculus are introduced where newly
declared (restricted) names are annotated with spatial process properties, predi-
cating on those names, that are expected to hold in the scope of the declaration.
Types are akin tacs terms and account for the processes abstract behaviour and
“shallow” spatial structure. The type systems relies on spatial model checking,
but properties are checked against types rather than against processes. The con-
sidered class of properties is rather general arftgreintly from previous propos-

als, includes both safety and liveness ones, and is not limited to invariants.
Keywords: pi-calculus, behavioural type systems, spatial logic.

1 Introduction

In the past few yearspatial logics[9,7] have emerged as promising tools for analyz-

ing properties of systems described in process calculi. These logics aim at describing
the spatial structure of processes. This makes them apt to express properties related to
distribution and concurrency. An easy to grasp example is the race freedom property,
stating that at any time, nowhere in the system there are two output actions ready on
the same channel. The spectrum of properties that can be expressed by combination of
simple spatial and behavioral connectives is very rich (see e.g. [7]). This richness is
rather surprising, given the intensional nature of such logics: the process equivalences
they induce coincide with, or come very close to, structural congruence (see e.g. [6]), a
very fine equivalence that only permits elementary rearrangements of term structure.

A by known well-established trend in the field of process calculi is the use of
behavioural type systents simplify the analysis of concurrent message-passing pro-
grams [11,10,8]. Roughly, behavioural types are abstract representations of processes,
yet suficiently expressive to capture some properties of interest. In Igarashi and Kobaya-
shi’'s work on generic type systems [10], the paper that pioneered this approach, pro-
cesses are pi-calculus terms, while types are akin to simpteterms. The crucial
property enjoyed by the system is type soundness: in essence, for a certain class of
properties (expressed in a simple modal logic), it holds that if a property is satisfied by
a type then it is also satisfied by processes that inhabit that type. Results of this sort can
in principle be used toféectively combine type checking and model checking. That is,

* Research partly supported by the EU within the FET-GC2 initiative, projecoSia.

in some cases it is possible to replace (expensive) model checking on message-passing
processes by (cheaper) model checking on types. The paper [8] further elaborates on
these themes. A limitation of behavioural type systems proposed so far concerns the
kind of properties that can be tackled this way. Essentially, in [10,8], properties for
which a general type soundness theorem works are safety invariants.

In the present paper, we try to combine the expressiveness of spatial logics with the
effectiveness of behavioural type systems. More specifically, building on Igarashi and
Kobayashi’'s work on generic type systems, we present type systems for the pi-calculus
where newly declared (restricted) names are annotated with properties that predicate on
those names. A process in the scope of a restriction is expected to satisfy, at run-time,
the property expressed by the formula. We shall focus on properties expressible in a
spatial logic — theshallow Logic— which is a fragment of Caires and Cardelli’'s logic.
Types are akin tacs terms and account for (abstract) behaviour and “shallow” spatial
structure of processes. The type system relies on (spatial) model checking: however,
properties are checked against types rather than against processes. The considered class
of properties is rather general and, unlike previous proposals [10,8], includes both safety
and liveness ones, and it is not limited to invariants. Several examples of such properties
—including race freedom, deadlock freedom and many others — are given throughout the
paper. As another contribution of the paper, we elaborate a distinction bekveoediy
andglobally checkablgroperties. Informally, a locally checkable property is one that
can be model-checked against any type by looking at the (local) names it predicates
about, while hiding the others; a globally checkable one requires looking also at names
causally related to the local ones, hence in principle at names declared elsewhere in the
process. These two classes of properties correspond in fact to two distinct type systems,
exhibiting diferent degrees of compositionality anleetiveness (with the global one
less compositiongffective). To sum up, we make the following contributions:

— we establish an explicit connection between spatial logics and behavioural type sys-
tems. In this respect, a key observation is that processes and the behavioural types
they inhabit share the same “shallow” spatial structure, which allows us to prove
quite precise correspondences between them and general type soundness theorems;

— we syntactically identify classes of formulae for which type soundness is guaran-
teed;

— unlike previous proposals, our type soundness results are not limited to safety prop-
erties nor to invariant properties;

— we investigate a distinction between locally and globally checkable properties.

Structure of the papefn Section 2 we introduce the language of processes, a standard
polyadic pi-calculus. In Section 3 we introduce both spatial properties and the Shallow
Logic, a simple language to denote them. In Section 4 the first type system, tailored

to “local” properties, is presented and thoroughly discussed. Type soundness for this
system is then discussed in Section 5 along with a few examples. A “global” variant of
the type system, a soundness result and a few examples are presented and discussed in
Section 6. Some limitations of our approach, and possible workarounds for them, are
discussed in Section 7. A few remarks on further and related work conclude the paper

in Section 8. Proofs are omitted due to space limitations.

PO=P (PIQIR = P|(QR) PQ=QP (v%:DPIQ = (vX:D(PIQ) if X#Q

Table 1. Laws for structural congruenceon processes

2 A process calculus

Processes.The language we consider is a synchronous polyadic pi-calculus [14] with
guarded summations and replications. As usual, we presuppose a countatfl®fset
namesWe let lowercase letteig b, ..., X, v, ... range over names, ard; ... range over
tuples of names. Procesde€),R,... are defined by the grammar below

az=ab)|ab)|r Pi=Xiqa.Pi|PIP|(vb:T)P|la(b).P.

In the restriction clausd, is a tuple of channel types, to be defined later in Subsec-
tion 2, such thalt| = |b|. Note that restriction acts on tupIB& b1, ...,bn, rather than on
individual names. Indeed, the fora is equivalent tovb; - - - vb, from an operational

point of view. From the point of view of the type systems, however, the fdprwill

allow us to specify properties that should hold of a group of names, as we shall see
in later section. Notions of free names-Jnpf bound names and of alpha-equivalence
arise as expected and terms are identified up to alpha-equivalence. In particular, we let
fn((vb: HP) = (fn(P) utn(D)) \ b. To avoid arity mismatches in communications, we shall
only consider terms that are well-sorted in some fixed sorting system (see e.g. [14]), and
call # the resulting set gbrocesses

Notation. We shall write0 for the empty summation. Trailin@s will be often omitted.
Givenn > 0 tuples of name$y,...,b,, we abbreviateyps : t1)--- (vbn : T,)P as ¢b; :
t)icL.nP, or simply ¢b)P when no ambiguity about th arises. In general, channel
types annotations may be omitted when not relevant for the discussion. For arigdtiple
of namesx'and itemt, $#t means thak ™ fn(t) = 0. This is extended to tuples of items
f, written x#t, as expected.

Over P, we define aeduction semanticdased as usual on a notion of structural
congruence and on a (labelled) reduction relation. These relations are defined, respec-

tively, as the least congrueneeand as the least reIatiOFA» generated by the axioms in
Table 1 and Table 2. As usual, the structural law for replication is replaced by a suitable
reduction rule. Concerning Table 1, note that, similarly to [10], we drop two laws for re-
strictions (¢¥)0 = 0 and ¢X)(v§)P = (v§)(vX)P): these laws become problematic once
restrictions will be decorated with formulae containing free names. Concerning Table 2,
note that we annotate each reduction with a laltehat carries information on the (free)
subject name involved in the corresponding synchronization if any= (a) | (e). We
define a hiding operator on labels, writtarf;, as follows:A 1= (a) if 1 =(a) and

a¢ b, 1 1= (¢) otherwise.

C A
Notation. In the sequel, foor = A3----- Ap, P i Q meansP 4. ﬂ Q, and
P— Q (resp.P —* Q) meansP 4 Q (resp.P RN Q) for someA (resp.o). Moreover,

(com) 2L=3R)_fn _a<6> lel ned (ma0) jel aie;T
Za. P> 81.Q 2 PIBRIQ, DlaiPi = P
iel jed iel

— 1,
(REP-COM) Bn = a neJ (PAR) PP 7 P
1a(®).P1 > 1.Q) - 1a().PP[BIRIQ PIQ 5 P'IQ
jed
— 4 / VY A ,
(sTrucT) P=Q Q- Q Q=P (RES) P> P

A ~ AT o™
PA P 0% 9P 5 (v HP’
Table 2. Rules for the reduction relatioﬁe on processes.

we say that a proces8 has abarb a (resp.a), written P N5 (resp.P), if P =
(vb)(Zl a;.Pi+a(X).QR) (resp.P = (Vb)(2| a;.Pi +&(€).QR)), witha ¢ b.

Types.The set7 of typesT, S, U, ... is generated by the following grammar:
pr=alt)|alr tu=(%: 0T To=Ym. Ti | TIT|'a®).T| (va:)T

with %#t andxX'C fn(T). In channel typesx“1)T, we stipulate that“1) is a binder with
scopeT. Informally, a(t).T is a process type whegcan transport names of channel-
typet. In a channel typex“)T, % andt represent, respectively, the formal parameters
and types of objects that can be passed along the channel, whilg tigp@ process

type prescribing a usage of those parameters. Note that,:)T, "it might in general

be fn(T) \ X # 0. In the sequel, we shall often omit writing the channel tyfe \{riting

e.g. WX instead of k: ()0)X. Process types are akin ¢os terms bearing annotations

on input prefixes and restrictions. Notions of free names, alpha-equivalence, structural
congruence and reduction for types parallel those of processes. Note, that annotations
contribute to the set of free namesf a type, but do not play a direct role in its reduction

semantics (e.GE.T|c(t).S A T|S).

3 Properties

We first take a general view of propertiesRsets that is sets of processes and types
(subject to certain conditions). Then introduSkallow Logi¢ a simple language to
denote a class of such properties. Although processes and types liffieremti worlds,

for the purposes of this section it is possible and convenient to deal with them in a

uniform manner. In what follows, we I&t, B, ... range over the s/ 2PUT . Elements
of U will be generically referred to aerms

1Indeed, the reason for introducing these annotations is precisely to ensure that, in the type
systems we shall introduce, wheneyer P : T then fn) < fn(T).

P-sets. Following [7,6], a property set, P-set in brief, is a set of terms closed under
structural congruence and having a finite support: this intuitively means that the set of
names that are “relevant” for the property is finite (somewhat analogous to the notion of
free names for syntactic terms). In the following, we{let> b} denote théransposition

of a andb, that is, the substitution that assigaso b andb to a, and leave the other
names unchanged. F@rC U, we letd{a « b} denote{A{a « b}|A e &}.

Definition 1 (support, P-set, least support)Let be® C U and NC N. (a) N is a
supportof @ if for each gb ¢ N, it holds that®{a « b} = &. (b) Aproperty se{P-se} is
a set of term C U that is closed undet and has finite support. (c) THeast support
of @, written supp), is defined asupp@®) = Ny support of N+

In other wordsN is a support of® if renaming namesutside Nwith fresh names
does not fect @. P-sets have finite supports, and since countable intersection of sup-
ports is still a support, they also have a least support. In the rest of the paper we will deal
with properties that need not be invariant through reductions. This calls for a notion of
A-derivativeof a P-set®, describing the set of terms reachable ¥ieeductions from

terms in®: &, £ {(BIFAc &: A 24 B}. TheA-derivative of a P-set is a P-set.

Proposition 1. Let @ be a P-set such thab, = & for 2 = (¢) or 2 = (b) with b¢
supp@). For any reduction label, @, is a P-set ancupp®,) C supp®).

The Ok predicate defined below individuates P-sets that enjoy certain desirable con-
ditions. (1) requires a P-set to be closed under parallel composition with terms not
containing free names (2) demands a P-set to be invariant under reductions that do not
involve names in its support. Finally, (3) requires preservation of (1) and (2) under
derivatives.

Definition 2 (Ok(-) predicate). We defineKk(-) as the largest predicate on P-sets such
that whenevelOk(®) then: (1) for any AB € £ s.t.fn(B) = 0: A € @ if and only if
AB € @; similarly for A, Be T; (2) @, = @ for 1 = (e) or 1 = (b) with b¢ supp@); (3)

for eacha, Ok(®,) holds.

In the rest of the paper, we shall focus on properties represented by Ok P-sets.

Shallow Logic. The logic for the pi-calculus we introduce below can be regarded as a
fragment of Caires and Cardelli’s Spatial Logic [7]. We christen this fragr8aatiow

Logic, as it allows us to speak about the dynamic as well as the “shallow” spatial struc-
ture of processes and types. In particular, the logic does not provide for modalities that
allows one to “look underneath” prefixes. Another important feature of this fragment is
that the basic modalities focus on chansejectsignoring the object part at all. This
selection of operators is ficient to express a variety of interesting process properties
(race freedom, unique receptiveness [16], deadlock freedom, to mention a few), while
being tractable from the point of view of verification (see also Caires’ [6]).

Definition 3 (Shallow Logic). The setF of Shallow Logicformulaeg,y,... is given
by the following syntax, whereeaN anda c N:

¢ u=T|ove|(@e|(@¢|(-B)¢|-¢|ala|sls|H.

[TI=u H*¢]
[41V ¢2ll =[¢1] U421 [o1l620 ={A[FAL Az - A= AqlAg, Are[[41]l. Ao e [42]}

[-¢1 =\ [4] [(@] = 2

{A|38,B: A= (78)B, g, Be 4]}
{
(AlB: A 2 B Belgl)
{
{

[al ={A|ANa) [(&)*¢] ={A[Fo.B: A % B, ce{(b)beay, Be[¢]}
[al={AlJANal [(-&°¢]=(A[30.B: A 5 B, &, Be 4]}

Table 3. Interpretation of formulae over terms.

The free names of a formulg written fn(p), are defined as expected. We fgt=
{¢ € F: fn(p) C X}. The set of logical operators includes spataB(|,H*) as well as
dynamic (a)y,(&)*,(—&)") connectives, beside the usual boolean connectives, including
a constanfl for “true”. The interpretation off over the set of processes is given in
Table 3. Connectives are interpreted in the standard manner. WeAwiteif A< [[4]).
Interpretations of formulae are P-sets, as stated below.

Lemma 1. Let¢ € . Then[¢] is a P-set and () 2 supp([#]) .

Notation. In what follows, when no confusion arises, we shall often dedbte[¢]

just as¢. Moreover, we shall writéA = @ to meanA € @. We abbreviate-(—%)*—¢
aso’y¢. Moreover,(-0)"¢ ando* ;¢ are abbreviated as*¢ ando*¢, respectively.
Note that* ando* correspond to the standard “eventually” and “always” modalities as
definable, e.g., in the mu-calculus.

A further motivation for our particular selection of modalities is that satisfaction
of any formula of# is, so to speak, invariant under parallel composition. In particular,
whetherA satisfies or not a propergyof a bunch of names, Should not depend on the
presence of a parallel closed contBtormulae of Cardelli and Caires’ Spatial Logic
outside# do not, in general, meet this requirement. As an example, the requirement
obviously fails for—(=0|-0), saying that there is at most one non-null thread in the
process. As another example, take the formla where¢ is the one-step modality,
saying that one reduction is possible: the reduction might be provided by the cBntext
and not byA. This explains the omission of the one-step modality from Shallow Logic.

Lemma 2. Let A be a term an@ € ¥x. For any term B such that|B is a term and
fn(B) = 0 we have that A= ¢ if and only AB k ¢.

Example 1 (sample formulaeThe following formulae define properties depending on
a generic channel nange They will be reconsidered several time throughout the paper.

Race freedom: NoRacéa) = o* —H*(a@a)
Unique receptiveness: UniReda) s o (an-H*(ala))
Responsiveness: Resfa) = 0¥, 0% (@)
Deadlock freedomDeadFrega) = o*[(a— H*(d¢*a)) A (a— H*(ajo* @))].

NoRacéa) says that it will never be the case that there are two concurrent outputs
competing for synchronization cam UniReda) says that there will always be exactly
one receiver ready on chanrel Resya) says that, until a reduction ce does not
take place, it is possible to reach a reductionaoiif a is a return channel of some
invoked service or function, this means the service or function will, under a suitable
fairness assumption, eventually respond (see also [3]). Firiadigd Fre€a) says that
each output o will eventually meet a synchronizing input, and vice-versa.

We shall sometimes need to be careful about the placement of the mgddiljty
with respect to negation. To this purpose, it is convenient to introduce two subsets of
formulae, positive and negative ones.

Definition 4 (positive and negative formulae) We say a formula@ is positive (resp.
negative if each occurrence of modality-a)* in ¢ is in the scope of an even (resp. odd)

number of negations=".

We let7* (resp.F ~) denote the subset of positive (resp. negative) formulag. in
The sets/; and¥; are defined as expected.

Example 2.Concerning the formulae introduced in Example 1, note MhaRac¢a)
andUniReda) are negative, while botRes|fa) and DeadFreda) are neither positive
nor negative, as in both the modalityy occurs both in negative and in positive position.

Note that our definitions of “positive” and “negative” are more liberal than the ones
considered by Igarashi and Kobayashi [10], where the position of all spatial modali-
ties — including the analogs ¢fa anda — w.r.t. negation must be taken into account
(e.g., unique receptiveness would not be considered as negative in the classification
of [10]). This diference will have influential consequences on the generality of the type
soundness theorems of the type systems. In the rest of the paper, we shall mainly focus
on formulae whose denotations are Ok P-sets. We writed)OkQOk([[¢])) holds. The
following lemma provides a sficient syntactic condition for a formula to be Ok.

Lemma 3. Let¢ be a Shallow Logic formula of the form eithety or o*,¢*y’, where
Y’ does not contair. ThenOKk(g).

Example 3.Formulas in Example 1 are in the format of Lemma 3, hence they are OKk.

4 A“Local’ Type System

We present here our first type system. The adjective “local” refers to the controlled way
P-set membership (that is, model checking, in practical cases) is checked.

Annotated processe#\s anticipated in Section 2, the type system works on annotated
processes. Each restriction introduces a property, under the form of an Ok P-set, that
depends on the restricted names and is expected to be satisfied by the process in the
restriction’s scope. This means that, for annotated processes, the clause of restriction is
modified thusP ::= - | (vA:t; &)P with a2 supp@®) and Ok). For brevity, when

TFra:(:HDT LXTEP:TT S#T

(T-ne) I'ra®).pP:a(X:O1).T7 () reepieT
Fra:(X:O)T r'eb:t reP:s [FP:T T=S
(T-Our) (T-EQ) — P75

r+aby.P:a(mbs|s)

£l Viel: I'taiPi:ipyTi T'ra®.P:al).T

T-Sum T-Rep %H%—

() FkZai.Pi:Z#i,Ti ()FHaX.P.!at.T
i i

LA:TFP:T Tl
I'r(va:t; Q)P (va:ynT

Table 4. Typing rules.

I'+-P:T I'rQ:S
I'tPQ:TIS

(T-Res) (T-Par)

no confusion arises we shall omit writing explicitly channel types and properties in
restrictions, especially wher= ()0 and® = [T]. The reduction rule for restriction on
annotated processes takes into accounttierivative of® in the continuation process:

pLp

(RES) T .
(&t PP 5 (vX:t; dy)P

For an annotated proceBs we takeP E ¢ to mean that the plain process obtained by
erasing all annotations frof satisfiesp. A “good” process is one that satisfies its own
annotations at an active position. Formally:

Definition 5 (well-annotated processes) process Rt £ is well-annotatedf when-
ever P= (vb)(va: @)Q then Q= .

Typing rules.Judgements of type system are of the fdimP : T, where:Pe P, Te T

andI is acontexf that is, a finite partial map from namagb,c,... to channel types
t,t,.... We writeI' + a: t if ae dom({") andI'(a) = t. We say that a context isell-
formedif wheneverl" + a: (%:)T then fn(T,t) € XU dom(). In what follows we shall

only consider well-formed contexts. Contexts are assumed to be well-formed in rules
of the type system. In the type system, we make use of a “hiding” operation on types,
T |%, which masks the use of names nokim T (as usual, in the definition we assume
that all bound names ifi andt are distinct from each other and disjoint from the set of
free names and from).”

Definition 6 (hiding on types). For any typeT and X, we letT |x denote the type
obtained by replacing every occurrence of prefix€3. and a. with 7., for each ae
fn(T) \ X. Hiding on channel types |, is defined similarly.

E.g., ta: t)(at).b(t")[at).clcid) lb= (va: t lap)(@(t lap)-b(t’" lap)lalt lap).7l7ld). The

rules of the type system are shown in Table 4. The structure of the system is along
the lines of [10]; the main diierences are discussed in Section 7. The key rules are
(T-Inp), (T-Our), (T-Res) and (T-E). By and large, the system works as follows: given

a procesd, it computes an abstraction Bfin the form of a typeT. At any restriction
(va: t; ®)P (rule (T-Res)), the abstractiorm obtained forP is used to check tha®'s
usage of namea fulfills property @ (T |5 @; in practical case® is a shallow logic
formula and this is actually spatial model checking). Note that, thanks,tthis is
checked without looking at the environment: only the part ¢fiat depends oa, that
isT la, is considered, the rest is masked. In particulaT, ji3, any masked subterm that
appears in parallel to the non-masked subterm can be safely discarded (a consequence
of condition 1 of Ok). In this sense the type system is “local”.

Rules for input and output are asymmetric, in the sense that, when typing a receiver
a(X).P, the type information orP that depends on the input paramet&ris oved
to the sender process. The reason is that the transmitted rheanesstatically known
only by the sender (rule (T-@)). Accordingly, on the receiver’s side (rule (¥¥)),
one only keeps track of the part of the continuation type that does not depend on the
input parameters, that i€. More precisely, the type of the continuatiris required
to decompose — modulo type congruence F[@s, whereT is the type prescribed by
the context fora andT’, which should not mention the input parameterss anything
else. In essence, in well typed processes, all receivessmuast share a common part
that deals with the received nanteas prescribed by the typge

Finally, (T-E) is related to sub-typing. As mentioned in the Introduction, a key
point of our system is that types should reflect the (shallow) spatial structure of pro-
cesses. When considering sub-typing, this fact somehow forces us to abandon preorders
in favor of an equivalence relation that respects P-sets membership, which leads to
structural congruence. Further discussion on this point is found in Section 7.

The judgements derivable in this type system are writtefiigsP : T.

Example 4.Consider the formula = o*—H*(a| b) saying that it is not possible to reach
a configuration where both an output barbaband one orb are available at the same
time. Okg) holds by Lemma 3. Consider the proc&ss (va,b:t,t; ¢)Q, whereit = ()0,
Q= ((d(a) + d(by)|!a.b|!b.a)|d(x).x and a context s.t.I"+ d : (x:)X =t’. By applying
the typing rules for input, output, summation and parallel composition:

La:tb:tr Q : (da+db)|la®t).b|!bt).ald{t) = T.
T lap= (r.@a+ r.b)|!a(t).b|!b(t).a| T ¢; hence, by (T-Rs), '+ P: (va,b: t,t)T.
Basic properties.We state here the basic properties of the type system presented in
the preceding subsection. Let us writey, P : T if there exists anormal derivation

of '+ P: T, thatis, a derivation where rule (TeEis used only above rule ().
Modulo =, every judgment derivable in the type system admits a normal derivation.

Proposition 2 (normal derivation). If I' +_ P: T thenI'~\ P : S for someS =T.

Normal derivations are syntax-driven, that is, processes and their types share the same
shallow structure. This fact carries over to all derivations, modul&.g., if /" +_P:
T,T=(va:t)(T1|T2) thenP = (va: t; @)(P1|P2), with ILa:t+ P T;,i=1,2.

. . Pl I .
Theorem 1 (subject reduction).l"+_ P: T and P — P’ implies that there exists &
such thafT A T andl '+ P :T.

5 Type Soundness for the Local System

In this section we prove a general type soundness result for our system and provide a
few interesting examples of application of the type systems.

Definitions and resultsWe identify the general class of properties for which, at least

in principle, model checking on processes can be reduced to a type checking problem
whose solution requires only a (local) use of model checking on types. We do so by the
following coinductive definition.

Definition 7 (locally checkable properties and formulae).We letLc be the largest
predicate on P-sets such that whenelvef®) thenOk(®) and: (1) wheneveF . P: T
and X 2 supp®) andT | @ then PE @; (2) Lc(®,) holds for eachi. If Lc(®) then
we say® is locally checkable

A formula¢ € is said to be locally checkable iff]] is locally checkable.

Theorem 2 (run-time soundness)Suppose thaf" +_ P : T and that P is decorated
with locally checkable P-sets only. Then#* P’ implies that P is well-annotated.

Our task is now providing dficient syntactic conditions on formutgthat guarantee

Le([¢D)-

Lemma 4. Supposd '+ P:T. (a) If ¢ € Fy andT |xk ¢ then Pk ¢. (b) If ¢ € 7 and
PE ¢ thenT [gE ¢.

Theorem 3. Any negative formula of the formi‘¢ is locally checkable.

The above result automatically provides us a type soundness result for an interesting
class of formulae, that include both safety and liveness properties.

Examples.The formulaeNoRacéa) andUniReda) fits in the format given by Theo-
rem 3, hence they are locally checkable. As an example, consider

P=(vab,c:()0,t,t; UniReda))((c(a) | a+ b(x).x)|c(y).b(y))

wheret = (X)b.x andt’ = (y)y. By the typing rules, we easily derive
La:()0,b:t,c:tr ((T@)|a+b(x).x)cy).biy)) : T

with T2Cb.ala+ b(t") | c(t). SinceT lapc= T E UniReda), we can apply (T-k&s) and
get
'+ P:(va,b,c:()0,t,0)T.

For another example, consider the following access policy for a shared resource
Before using the resource, a lotknust be acquired; the resource must then be used
immediately, and the lock must be released immediately after that. If we identify an
available resource with an input barb or, a use oft with a synchronization oo and

10

the availability ofl with an output barb oh the above policy can be described by the fol-
lowing formula, whered] stands for~(c)—: SafeLocld,c) 2 o*((l > ¢) A [c]l). This

is a negative formula fitting the format of Theorem 3, hence itis locally checkable. As an
example of use of this formula, the proc€3s (vc,|;SafeLocld,c))(|clal, c))|a(x,y).
IX.(Y.(yIX)) is well typed under d s.t.T" + a: (X, Y)!'x.(Y.(y|X)). Note that neither (the
analog of)UniReda), nor SafelLocl,c) is included in the type soundness theorem
of [10].

Finally, note thatResa) and DeadFreéa) do not fit the format of Theorem 3.
Indeed, these formulae are not locally checkable. E.g., corRidéra; Resfa))(c.aa).
This process is easily seen to be well-typed urtd€)0, simply because theblocking
ais masked (turned into) in (T-Res). However,c.ala clearly fails to satisfyResfa).

6 A*“Global” Type System

The Resfa) example at the end of the preceding section makes it clear that it is not
possible to achieve type soundness result for properties like responsiveness unless we
drop the “locality” condition in the restriction rule. Indeed, those properties can only
be checked if one can look at the part of the type involving names from which the
restricted ones causally depend. In the previous example, Wiher@ala, this means
checkingRes|fa) againstT |, c= T, rather than againgt | 5, thus detecting the failure
of the property.

Below, we introduce a new type system that pursues this idea. Note that dropping
locality implies some loss of compositionality anflieetiveness. The type system relies
on the use of dependency graphs, a technical device, introduced in the next subsection,
which helps to individuate causal relations among names.

Dependency graphs.et y range over a set= {¢, 0, ¢} of annotationsFor| C N, we
let a set of annotated namiebe a total function front to a; by slight abuse of notation,
we writea¥ e [rather thari(a) = y. The informal meaning of annotations is= free
name,o = input-bound namee = restricted name. Alependency graph @& a pair
(V,E), where:V = [UW, with W C {(vX) | X C N1}, is a set of annotated names and
restrictions representingertices andE C V x V is a set ofedges

A dependency grapB = (V,E), with V = [UW ranged over by, v,..., encodes
causal relations among (free or bound) names. i¥ertices of the form ¥X) are in-
troduced for delimiting the scope of restrictions. Edgey)(e E are also written as
U—gV; —g is the reflexive and transitive closure efs. A root of G is a vertexue V
such that for nov, v —¢ U; the set ofG’s roots is denoted by roots(. Given a depen-
dency graplG = (V,E), with V = [UW, a namea is critical in G with respect td, if it
belongs to the set of namégb) defined below.

G(b) = {x| x e [AIx—g V1 —g -+ e Va=bebs.t.¥l<i<n: v = (+§) impliesb ¢ §).
The set ofcritical namesn G, written cr@G), is defined as c) 2 Upe<i G(b). Finally,

we defineG[b] 2 G(b) Ub.

11

In order to define dependency graphs associated to types, we introduce three aux-
iliary operations on graphs: (i) unidB; U G; is defined componentwise as expected,
provided the sets of verticeg andV, agree on annotations (otherwise union is not
defined); (i) y-updateG T); changes intgy the annotation of all names koccurring

in V; (iii) a-rooting is defined aa —» G = (Vui{a}, Eu{(ab)|beroots@G)}), where
G =(V,E), provideda does not occur iV with annotations dferent frome (otherwise
a-rooting is not defined); (iv)yX)-rooting is defined as’§) — G = (V,EU{((vX),b)|be
roots@G)}). Dependency graphs are inductively defined over typesrmal form Let
us say a type igrimeif it is of the form either};¢, ;. Ti with | # 0 or !a(t).T. Let us
say a type is ihead normal fornif it is of the form (&)(T1|---|Tn) with theT;’s prime
and the prefix continuations are recursivelyniormal formif the T;’s are recursively
in normal form. Similar definition for processes. For anwandt in normal form, the
dependency grapl@Gr andG; are defined by mutual induction on the structur& aind
t as follows (it is assumed that ihandt bound names are distinct from each other and
from free names).

Gir =a—-Gr Gap1r = a— (GUGT) Giap.t = Gap.1
Gyiquim =Uia Gur I1#1 G = Ui Gr
Gzt = (V%) = (GTU Ui Go) 1%) Gyt = (GTU Ui Gy) 15 -

In essenceGr encodes potential causal dependencies among (free or bound) names of
T as determined by prefixes i In the sequel, we shall abbreviate@f) andGr[b],
for someb C fn(T), as cr{l) andT[b], respectively.

Typing rules.We need some additional notations. A channel ty)€ {s'said to bevell-
formedif %#cr(T); in what follows, we only consider contextscontaining well-formed
channel types. For any typewe letT |3 denoteT |1z (note that fnT %) = T[X] by
definition). Intuitively, inT g, we keep the names xadnd those that are causesxof ~

in T; the others are masked. We also need a more permissive notion of well-annotated
process, that allows re-arranging of top-level restrictions before checking annotations
(property). To see why this is necessary, consitlero*(¢*al¢*a), a typical property

one would like to check in the new system. Consider the procd3segvb)(va;)R

andQ = (va; ¢)(vb)R, with R=b.c|b.d|b|b|c.a|d.a. We observe thavb)R} ¢, so that

Q is not well-annotated according to Definition 5; on the other hghd,P andR = ¢,

which suggests thd, henceQ, could be considered as well-annotated up to a swapping
of (va) and ¢b).

Definition 8 (globally well-annotated processes)A process R # is globally well-
annotatedf whenever P= (7b)(v&; @)(7€)Q, with Q a parallel composition of prime
processes, then there is a permutati@’ of b& such that P= (70')(v&; @)(7¢)Q and
(T)QE @.

The global type system is obtained by replacing some rules of the local one (Table 4)
with those reported in Table 5. The type system makes use of an auxiliary retgtion
among P-sets and types, defined coinductively as follows (the use of this relation is
explained in the sequel).

12

LA TFP:T dosT F'rP:T P=Q

(T-Res) 7= (a:t; d)P: (va: nT (MEeP) —F g
3 F'eP:T cr(@=0 . FrP:T I'rQ:S cr(M#HS cr(S)#T
(T-Rep) ——15rr (T-Par) T+PQ:TIS

Fra:(%:)T reb:T rep:s bcrd) cr@bm)#s T[0sHcr(s)
I'vab).P:a(T/x|s)
Table 5. Typing rules.

(T-Our)

Definition 9 (e«cg). We letxg be the largest relation on P-sets and types such that when-

ever® ocg T then: (1)T lyxkE @; (2) for eachA, T’ such thatT |1y i T |11 then
@/1 (894 TI.

Note the presence of a new structural rule for processesg{{}Eorcing subject
congruence, which is not derivable from the other rules of the system. As an example,
while P = (va: t; Resa))(b.albja) can be typed without using rule (TeEP), the struc-
turally congruent processd : t; Res§a))(b.aja)lb could notbe typed without using that
rule. The condition on critical names in rule (A& ensures that an@ put in parallel
to P will not break well-annotated-ness Bf(and vice-versa). A similar remark applies
to the rules for output and replication. In rule (EdR use of the relatiors ensures that
each derivative of satisfies the corresponding derivativedaflt is worth noticing that
checking® «3 T could be undecidable, given that in general we are in the presence of
infinite state systems: at the end of the next section, we will identify a class of formulas
for which checking [p]] «<a T reduces to checking |sF ¢. The judgements derivable
in the new type system are written As-g P : T. It is worth noticing that the system
introduced in Table 5 is not syntax-driven, but a syntax-directed version can be easily
defined by adding some constraints on the structure of processes in the premises of the
typing rule for parallel composition (we omit the details for lack of space).

Type SoundnessSimilarly to the local case, we identify a general class of proper-
ties for which, at least in principle, model checking on processes can be reduced to
a type checking problem whose solution requires only model checking on types, then
give suficient syntactic conditions for global-checkable-ness. The definitigiobklly
checkable propertyomitted) is the same as the local one, except that the local hiding
operator 5" is replaced by {x".

Theorem 4 (run-time soundness)Suppose thaf" +g P : T and that P is decorated
with globally checkable P-sets only. Then-B* P’ implies that P is globally well-
annotated.

Like in the local case, we can give syntactic conditions for a formula to be globally
checkable.

Theorem 5. Suppos® is of the form: (a)o*y with negation not occurring underneath
any (- in y; or (b) D*_yo*w’, with negation not occurring ig’. Theng is globally
checkable.

13

The following proposition guarantees that for formulas that satisfy the premises of
Theorem 5 checkingdl]] «<5 T reduces to checking |z ¢.

Proposition 3. Supposep € Fx is of the form of the form (a) and (b) as specified in
Theorem 5. I |z ¢ then[@]] ocx T.

Examples.All properties defined in Example 1 fit the format of Theorem 5, hence they
are globally checkable. As an example, consier(va: Res(fa))(c(a))|Q, whereQ =
Ie(X).(XIX)[c(b)y. Under a suitablé", we derivel" g T(a)|Q: 6.(§|a)|!c|6.(5|b) £ 7. Since
T l1q= C.(@8a)l!cC.(7|7) = Resita), by (T-Res), we getl” g (va: Resfa))(Xa)|Q) :
(va)T, hence we can conclude thatg P : (va)T using (T-k&-P).

It is worth to notice that (the analogs of) responsiveness and deadlock freedom
escape the type soundness theorem of [10], although, for deadlock freedom, a soundness
result can still be proven by ad-hoc reasoning on certain basic properties of the system.

7 Discussion

We discuss here some limits, and possible workarounds, of our approach, and contrast
them with the generic type system approach of [10]. In [10], the subtyping relation
makes an essential use of a “sub-divide” lawe T 1% |T |%. This rule allows one to

split any type into a part depending only og T |%, and a part not depending o ~

T T%. As an example, with this law one ha$.X = a.b.7|r.7.X. This law enhances the
flexibility of the input rule, hence of the type system. On the other hand, it disregards
the spatial properties of terms, leading to a lack of structural correspondence between
types and processes. In our system, we stick to spatial-preserving laws, thus trading
off some flexibility for precision. As seen, this gain in precision has influential conse-
quences on the class of properties for which type soundness can be proven (e.g., the
class includes interesting liveness properties). An example of process that cannot be
treated in our type systems because of the absence of the “sub-divide” law is the pro-
cessQ = !a(x).(vc)(b(y).((vz)(6<x,z)|z;7)|c(x, z).(>‘<|2))). Here,a can be viewed as an
invocation channelx as a formal invocation parameter apds an acknowledgement
channel, introduced by another input (bh It appears thay andx are related (via

¢), which makes the type df dependent on the bound namewhich cannot be ex-
pressed in our system. This dependency could be discarder using the sub-divide law.
In the example, the very dependencyydiom x suggests a way to re-write the pro-
cess into a conceptually equivalent one that can be dealt with in our systems. E.g.,

la(x.y).(v)((2)(E(x.2)129) 1 c(%.2.(XD)).

8 Conclusion, further and related work

We have provided a framework that incorporates ideas from both spatial logics and

behavioural type systems, drawing benefits from both. Implementation issues are not
in the focus of this paper. In this respect, the normal derivation property already pro-

vides us with syntax driven systems. Of course, implementing the model chécls

14

is an issue. One possibility would be re-using existing work on spatial model check-
ing: Caires’ work [6] seems to be a promising starting point. Also, approximations of
possibly infinite-statecs types with Petri Nets, or even finite-state automata, in the
vein of [12], seem unavoidable to obtaiffective tools. Finally, it would be interest-

ing to cast our approach in more applicative scenarios, like calculi for service-oriented
computing [1].

Apart from the already cited works, also related to our approach are some recent

proposals by Caires. In [5,4], a logical semantics approach to types for concurrency is
pursued. Closest to our work is [4], where a generic type system for the pi-calculus -

parameterized on the subtyping relation - is proposed. The author identifies a family of

types, the so called shared types, which allow to modularly and safely compose spatial
and shared (classical invariants) properties and to safely factorize spatial properties. A
preliminary investigation of the ideas presented in this paper, in a much simpler setting,

isin[2].

References

1.

2.

10.

11.

12.

13.

14.

15.
16.

Acciai, L., Boreale, M.: A type system for client progress in a service-oriented calculus.
Degano, P. et al. (eds.) Montanari Festschrift, LNCS, vol. 5065, pp. 642-658 (2008)

Acciai, L., Boreale, M.: Type abstractions of name-passing processes. Arbab, F. and Sirjani,
M. (eds.) FSEN'07. LNCS, vol. 4767, pp. 302—317 (2007)

. Acciai, L., Boreale, M.: Responsiveness in process calculi. Okada, M. and Satoh, I. (eds.)

ASIAN’06. LNCS, vol. 4435, pp. 136-150 (2008)

. Caires, L.: Logical Semantics of Types for Concurrency. In: Mossakowski, T., Montanari,

U., Haveraaen, M. (eds.) CALCO'07. LNCS, vol. 4624, pp. 16-35 (2007)

. Caires, L.: Spatial-Behavioral Types, Distributed Services, and Resources. In: Montanari, U.,

Sannella, D., Bruni, R. (eds.) TGC'06. LNCS, vol. 4661, pp. 98-115 (2007)

. Caires, L.: Behavioral and Spatial Observations in a Logic for the pi-Calculus. In:

Walukiewicz, I. (eds) FoSSaCS’'04. LNCS, vol. 2987, pp. 72—-89 (2004)

. Caires, L., Cardelli, L.: A spatial logic for concurrency (part I). Inf. Comput. 186(2), 194—

235 (2003)

. Chaki, S., Rajamani, S.K., Rehof, J.: Types as models: model checking message-passing

programs. POPL'02, pp. 45-57 (2002)

. Cardelli, L., Gordon, A.D.: Anytime, Anywhere: Modal Logics for Mobile Ambients. POPL

2000, pp. 365-377 (2000)

Igarashi, A., Kobayashi, N.: A generic type system for the Pi-calculus. Theor. Comput. Sci.
311(1-3), 121-163 (2004)

Kobayashi, N.: Type-based information flow analysis for the pi-calculus. Acta Inf. 42(4-5),
291-347 (2005)

Kobayashi, N., Suenaga, K., Wischik, L.: Resource Usage Analysis for the pi-Calculus. Log-
ical Methods in Computer Science 2(3) (2006)

Kobayashi, N., Suto, T.: Undecidability of 2-Label BPP Equivalences and Behavioral Type
Systems for the pi -Calculus. In: Arge, L., Cachin, C., Jurdzinski, T., Tarlecki, A. (eds)
ICALP’07. LNCS, vol. 4596, pp. 740-751 (2007)

Milner, R.: The polyadicr-calculus: a tutorial. In Logic and Algebra of Specification,
Springer, pp. 203—-246 (1993)

Milner, R.: A Calculus of Communicating Systems. Springer (1980)

Sangiorgi, D.: The Name Discipline of Uniform Receptiveness. Theoretical Computer Sci-
ence 221(1-2), 457-493 (1999)

15

