
Behavioural contracts with
request-response operations?

Lucia Acciai Michele Boreale

Dipartimento di Sistemi e Informatica, Università di Firenze, Italy

Gianluigi Zavattaro

Dipartimento di Scienze dell’Informazione, Università di Bologna, Italy

Abstract

In the context of service-oriented computing, behavioural contracts are abstract descrip-
tions of the message-passing behaviour of services. They can be used to check proper-
ties of service compositions such as, for instance, client-service compliance. To the best
of our knowledge, previous formal models for contracts consider unidirectional send and
receive operations. In this paper, we present two models for contracts with bidirectional
request-response operations, in the presence of unboundedly many instances of both clients
and servers. The first model takes inspiration from the abstract service interface language
WSCL, the second one is inspired by Abstract WS-BPEL. We prove that two different no-
tions of client-service compliance (one based on client satisfaction and another one requir-
ing mutual completion) are decidable in the former while they are undecidable in the latter,
thus showing an interesting expressiveness gap between the modeling of request-response
operations in WSCL and in Abstract WS-BPEL.

1 Introduction

One interesting aspect of Service Oriented Computing (SOC) and Web Services
technology is the need to describe in rigorous terms not only the format of the
messages exchanged among interacting parties (as done, e.g., with the standard
language WSDL [30]), but also the order in which such messages should be re-
ceived and transmitted (as done, e.g., with the languages WSCL [29], WSCI [28],

? Extended version of [3]. The third author is partly supported by the EU integrated
projects HATS and is member of the joint INRIA/University of Bologna Research Team
FOCUS.

Preprint submitted to Elsevier Preprint October 11, 2010

and Abstract WS-BPEL [24]). This specific aspect is clearly described in the In-
troduction of the Web Service Conversation Language (WSCL) specification [29],
one of the proposals of the World Wide Web Consortium (W3C) for the description
of the so-called Web Services abstract interfaces:

Defining which XML documents are expected by a Web service or are sent back
as a response is not enough. It is also necessary to define the order in which these
documents need to be exchanged; in other words, a business level conversation
needs to be specified. By specifying the conversations supported by a Web ser-
vice —by defining the documents to be exchanged and the order in which they
may be exchanged— the external visible behavior of a Web service, its abstract
interface, is defined.

The abstract interface of services, sometimes called behavioural contracts (simply
contracts in the following) can be used in several ways. For instance, one could
check the compliance between a client and a service, that is, a guarantee for the
client that the interaction with the service will in any case be completed success-
fully. One could also check, during the service discovery phase, the conformance
of a concrete service to a given abstract interface by verifying whether the service
implements at least the expected functionalities and does not require more.

Formal models are called for to devise rigorous forms of reasoning and verification
techniques for services and abstract interfaces. To this aim, theories of behavioural
contracts based on CCS-like process calculi [21] have been thoroughly investi-
gated [4,7,8,9,11,12,13]. However, these models lack of expressiveness in at least
one respect: they cannot be employed to describe bidirectional request-response in-
teractions, in contexts where several instances of the client and of the service may
be running at the same time. This situation, on the other hand, is commonly found
in practice-oriented contract languages, like the abstract service interface language
WSCL [29], WSCI [28], and Abstract WS-BPEL [24].

The WSCL language is a graphical notation sim-
ilar to tradition flowcharts. There are four classes
of basic actions: the one-way actions Send and Re-
ceive, and the two-way actions SendReceive and
ReceiveSend. An example of ReceiveSend action
is on the right.

«ReceiveSend»
Purchase

in: PurchaseRQ
out: PurchaseAcceptedRS
out: InvalidPayementRS

out: OutOfStockRS

WSCI is a richer XML-based language used to describe the behaviour of the actors
involved in a multiparty service composition. Differently from WSCL, in WSCI it
is possible to indicate an activity to be executed between the receive and the send
actions of a two-way input operation, as the process tns:BookSeats executed
within the request-response operation tns:TAtoTraveler/bookTickets in the
example below:

2

<action name = "ReceiveConfirmation"
role = "tns:TravelAgent"
operation = "tns:TAtoTraveler/bookTickets">

<call process = "tns:BookSeats" />
</action>

Abstract WS-BPEL is an XML-based
language, but differently from WSCI,
the request-response operations are
modeled with two distinct receive
and reply actions, that are correlated
because they are executed with the
same partner (see the example on the
right). Between the receive and the
reply actions any other action could
be specified.

<receive partnerLink="purchase"
portType="lns:OrderPT"
operation="sendOrder"
variable="PO">

...
<reply partnerLink="purchase"

portType="lns:OrderPT"
operation="sendOrder"
variable="Invoice">

In this paper, we present a formal investigation of contract languages of the type
described above, that is allowing bidirectional request-response interactions, taking
place between instances of services and clients. We present two formal contract
languages that, for simplicity, include only the request-response pattern 1 : the first
language is inspired by WSCL while the second one by Abstract WS-BPEL. We
consider these two approaches as they represent the two ends of the spectrum of
the different forms of request-response operations described above: in WSCL there
is only one ReceiveSend event, while in Abstract WS-BPEL an arbitrary amount
of other actions can be performed between two correlated receive and reply
activities.

In both the two models that we present, the request-response interaction pattern
is decomposed into sequences of more fundamental send-receive-reply steps: the
client first sends its invocation, then the service receives such an invocation, and
finally the service sends its reply message back to the client. The binding be-
tween the requesting and the responding sides (instances) of the original operation
is maintained by employing naming mechanisms similar to those found in the π-
calculus [22]. In both models, we do not put any restriction on the number of client
or service instances that can be generated at runtime, so that the resulting systems
are in general infinite-state. The difference between the two models is that in the
former it is not possible to describe intermediate activities of the service taking
place between the receive and the reply steps, while this is possible in the latter.

We define client-service compliance on the basis of the must testing relation of [14]:
a client and a service are compliant if any sequence of interactions between them

1 As discussed in Section 4, the languages that we propose are sufficiently expressive to
model also the one-way communication pattern.

3

leads the client to a successful state. Our main results show that client-service com-
pliance is decidable in the WSCL-inspired model, while it is undecidable in the Ab-
stract WS-BPEL model: this points to an interesting expressiveness gap between
the two approches for the modeling of the request-response interaction pattern.
In the former case, the decidability proof is based on a translation of contracts
into Petri nets. This translation is not precise, in the sense that intermediate steps
of the request-response interaction are not represented in the Petri net. However,
the translation is complete, in the sense that it preserves and reflects the existence
of unsuccessful computations, which is enough to reduce the original compliance
problem to a decidable problem in Petri nets. This yields a practical compliance-
checking procedure, obtained by adaptation of the classical Karp-Miller coverabil-
ity tree construction [19].

We check the robustness of our approach for verifying client-service compliance
taking under consideration also different notions of compliance. In multiparty ser-
vice compositions, for instance, there is no clear distinction between clients and
services as one partner could play both the roles. In those cases, a symmetric notion
of compliance in which all the involved partners should reach successful comple-
tion is more appropriate. We first define a more restrictive notion of compliance,
that we call mutual compliance, that guarantees completion of both the client and
the service in any possible computation. We show that our decision procedure can
be slightly modified to cope also with this notion of compliance.

The rest of the paper is organized as follows. In Section 2 we present the two
formal models and the definition of client-service compliance. Sections 3 contains
the Petri nets semantics and the proof of decidability of client-service compliance
for the WSCL model. Section 4 reports on undecidability for the Abstract WS-
BPEL model. In Section 5 we consider mutual compliance and we show how to
modify the decision procedure defined in Section 3 to cope with this symmetric
version of compliance. Finally, in Section 6 we draw some conclusions and discuss
related and further work.

2 Behavioural contracts with request-response

We presuppose a denumerable set of contract variables Var ranged over by X, Y ,
· · · , a denumerable set of names Names ranged over by a, b, r, s, · · · . We use I, J,
· · · to denote a sets of indexes.

Definition 2.1 (WSCL Contracts) The syntax of WSCL contracts is defined by the
following grammar

4

G ::= invoke(a,
∑

i∈I bi.Ci) | recreply(a,
∑

i∈I bi.Ci) |
√

C ::=
∑

i∈I Gi | C|C | X | recX.C

where recX._ is a binder for the contract variable X. We assume guarded recursion,
that is, given a contract recX.C all the free occurrences of X in C are inside a
guarded contract G.

A client contract is a contract C containing at least one occurrence of the guarded
success contract

√
, while a service contract is a contract not containing

√
.

G is used to denote guarded contracts, ready to perform either an invoke or a receive
on a request-response operation a: the selection of the continuation Ci depends on
the actual reply message bi. A set of guarded contracts Gi can be combined into a
choice

∑
i∈I Gi; if the index set I is empty, we denote this term by 0. Contracts can be

composed in parallel. Note that infinite-state contract systems can be defined using
recursion (see example later in the section). In the following, we use Names(C)
to denote the set of names occurring in C, and C and S to denote respectively
client and service contracts. Before presenting the semantics of WSCL contracts,
we introduce BPEL contracts as well.

Definition 2.2 (BPEL Contracts) BPEL contracts are defined like WSCL con-
tracts in Definition 2.1, with the only difference that guarded contracts are as fol-
lows

G ::= invoke(a,
∑
i∈I

bi.Ci) | receive(a).C | reply(a,b).C |
√
.

We now define the operational semantics of both models. We start by observing
that the WSCL contract recreply(a,

∑
i∈I bi.Ci) is the same as the BPEL contract

receive(a).
∑

i∈I
(
reply(a,bi).Ci

)
that receives an invocation on the operation a and

then replies with one of the messages bi. We shall rely on a run-time syntax of con-
tracts, which is obtained from the original one by extending the clause for guarded
contract, thus G ::= · · · | a〈r〉 | r〈b〉.C. Both terms a〈r〉 and r〈b〉.C are used to repre-
sent an emitted and pending invocation of a request-response operation a: the name
r represents a (fresh) channel r that will be used by the invoked operation to send
the reply message back to the invoker. From now onwards we will call (WSCL)
contract any term that can be obtained from this run-time syntax. In the following,
we let Labels 4= {τ,

√
}∪ {a〈b〉,a〈b〉, (a) | a,b ∈ Names}. Moreover, by C{r/a} we de-

note the term obtained from C by replacing with r every occurrence of a not inside
a receive(a).D, while C{recX.C/X} denotes the usual substitution of free contract
variables with the corresponding definition.

Definition 2.3 (Operational semantics) The operational semantics of a contract
is given by the minimal labeled transition system, with labels taken from the set
Labels, satisfying the axiom and rules in Table 1.

5

Table 1
Operational semantics of contracts.

Gl
α
−→G′l l ∈ I∑

i∈I

Gi
α
−→G′l

r < Names(
∑
i∈I

bi.Ci)

invoke(a,
∑
i∈I

bi.Ci)
(r)
−→

∑
i∈I

(r〈bi〉.Ci) | a〈r〉

r < Names(C)

receive(a).C
a〈r〉
−→C{r/a}

reply(r,b).C
τ
−→C | r〈b〉

C1
a〈b〉
−→C′1 C2

a〈b〉
−→C′2

C1|C2
τ
−→C′1|C

′
2

r〈b〉
r〈b〉
−→ 0 r〈b〉.C

r〈b〉
−→C

√
√

−→ 0

C1
α
−→C′1 α , (r)

C1|C2
α
−→C′1|C2

C1
(r)
−→C′1 r < Names(C2)

C1|C2
α
−→C′1|C2

C{recX.C/X}
α
−→C′

recX.C
α
−→C′

(a,b,r ∈ Names, symmetric version of the rules for parallel composition omitted)

In the following, we use C
α
−→ to say that there is some C′ such that C

α
−→ C′.

Moreover, we use C −→C′ to denote reductions, i.e. transitions that C can perform

also when it is in isolation. Namely, C −→C′ if C
τ
−→C′ or C

(r)
−→C′ for some r.

We now formalize the notion of client-service compliance resorting to must-
testing [14]. Intuitively, a client C is compliant with a service contract S if all
the computations of the system C|S lead to the client’s success. Other notions of
compliance have been put forward in the literature [7,8,9]; we have chosen this one
because of its technical and conceptual simplicity (see e.g. [11]).

Definition 2.4 (Client-Service compliance) Given a contract D, a computation is
a sequence of reduction steps D1 −→ D2 −→ ·· · −→ Dn −→ ·· · . It is a maximal
computation if it is infinite or it ends in a state Dn such that Dn has no outgoing
reductions.

A client contract C is compliant with a service contract S if for every maximal

computation C|S −→ D1 −→ ·· · −→ Dl −→ ·· · there exists k such that Dk

√

−→.

Example 2.5 (An impatient client and a latecomer service)
This example shows that even very simple WSCL scenarios could result in
infinite-state systems. Consider a client C that asks the box office service S for
some tickets and then waits for them by listening on offerTicket. Our client is
impatient: at any time, it can decide to stop waiting and issue a new request. This
behaviour can be described in WSCL as follows

C 4
= recX.

(
invoke(requireTicket, ok.X) + recreply(offerTicket, ok.

√
)
)

6

Consider the box office service S , defined below, that is always ready to receive
a requireTicket invocation and immediately responds by notifying (performing a
call-back) on offerTicket.

S 4= recX.recreply(requireTicket, ok.(invoke(offerTicket,ok)|X))

It is easy to see that, in case invoke(offerTicket, · · ·) on the service side and
recreply(offerTicket, · · ·) on the client side never synchronize, C|S generates an
infinite-state system where each state is characterized by an arbitrary number
of invoke(offerTicket, · · ·). This infinite computation, moreover, does not traverse
states in which the client can perform its

√
action, thus C is not compliant with S

according to Definition 2.4. 2

3 Decidability of client-service compliance for WSCL contracts

We translate WSCL contract systems into place/transitions Petri nets [25], an
infinite-state model in which several reachability problems are decidable (see,
e.g., [16] for a review of decidable problems for finite Petri nets). The translation
into Petri nets does not faithfully reproduce the operational semantics of contracts.
In particular, in finite Petri nets it is not possible to represent the unbounded num-
ber of names dynamically created in contract systems to bind the reply messages to
the corresponding invocations. The Petri net semantics that we present models bi-
directional request-response interactions as a unique event, thus merging together
the four distinct events in the operational semantics of contracts: the emission and
the reception of the invocation, and the emission and the reception of the reply.
We will prove that this alternative modeling preserves client-service compliance
because in WSCL the invoker and the invoked contracts do not interact with other
contracts during the request-response.

Another difference is that the Petri net semantics can be easily modified so that
when the client contract enters in a successful state, i.e. a state with an outgoing
transition

√
, the corresponding Petri net enters a particular successful state and

blocks its execution. This way, a client contract is compliant with a service contract
if and only if in the corresponding Petri net all computations are finite and finish
in a successful state. As we will show, this last property is verifiable for finite Petri
nets using the so-called coverability tree [19].

2 Other definitions of compliance, see e.g. [7], resort to should-testing [26] instead of
must-testing: according to these alternative definitions C and S turn out to be compliant
due to the fairness assumption characterizing the should-testing approach.

7

3.1 A Petri net semantics for WSCL contracts

We first recall the definition of Petri nets. For any set S , we letM f in(S) be the set
of the finite multisets (markings) over S .

Definition 3.1 (Petri net) A Petri net is a pair N = (S ,T), where S is the set of
places and T ⊆ M f in(S)×M f in(S) is the set of transitions. A transition (c, p) is
written c⇒ p. A transition c⇒ p is enabled at a marking m if c ⊆ m. The execu-
tion of the transition produces the marking m′ = (m \ c)⊕ p (where \ and ⊕ are the
multiset difference and union operators). This is written as m[〉m′. A dead mark-
ing is a marking in which no transition is enabled. A marked Petri net is a triple
N(m0) = (S ,T,m0), where (S ,T) is a Petri net and m0 is the initial marking. A com-
putation in N(m0) leading to the marking m is a sequence m0[〉m1[〉m2 · · ·mn[〉m.

Note that in c⇒ p, the marking c represents the tokens to be “consumed”, while
the marking p represents the tokens to be “produced”. The Petri net semantics that
we present for WSCL contracts decomposes contract terms into multisets of terms,
that represents sequential contracts at different stages of invocation. We introduce
the decomposition function in Definition 3.3. Instrumental to this definition is the
set Pl(C), for C a WSCL contract, defined below.

Definition 3.2 (Pl(C)) For any contract C, let C(k) denote the term obtained by
performing k unfolding of recursive definitions in C. Let k be the minimal in-
teger s.t. in C(k) every recX.D is guarded by one of the following prefixes:
invoke(· , ·), receive(·), reply(· , ·),a〈b〉. Then Pl(C) is defined as follows:

Pl(C) 4=
{∑

i∈I Gi, a↑
∑

i∈I bi.Ci, c↓
∑

i∈I bi.Ci :
∑

i∈I Gi,
∑

i∈I bi.Ci occur in C(k),

a,c ∈ Names(C(k))
}
.

The function dec(·) transforms every WSCL contract C, as given in Definition 2.1,
into a multiset m ∈ Pl(C).

Definition 3.3 (Decomposition) The decomposition dec(C) of a WSCL contract
C, as given in Definition 2.1, is decC(C). The auxiliary function decC(D) is defined
in Table 2 by lexicographic induction on the pair (n1,n2), where n1 is the number
of unguarded (i.e. not under an invoke(· , ·), receive(·), reply(· , ·),a〈b〉) sub-terms
of the form recX.D′ in D and n2 is the syntactic size of D.

There are three kinds of transitions in the Petri net we are going to define:

• transitions representing the emission of an invocation;
• transitions representing (atomically) the reception of the invocation and the emis-

sion and reception of the reply;
• and transitions representing (atomically) the reception of the invocation and the

emission of a reply that will never be received by the invoker because it is outside

8

Table 2
The auxiliary function decC(D).

decC(
∑
i∈I

r〈bi〉.Di) = a↑
∑
i∈I

bi.Di if a〈r〉 occurs in C

decC(
∑
i∈I

r〈bi〉.Di) = c↓
∑
i∈I

bi.Di if r〈c〉 occurs in C and c , bi for every i ∈ I

decC(recX.D) = decC(D{recX.D/X}) decC(a〈b〉) = ∅

decC(D1|D2) = decC(D1)⊕decC(D2) decC(D) = D, otherwise

Table 3
Transitions schemata for the Petri net semantics of WSCL contracts.

{
∑
i∈I

Gi}⇒{a↑
∑
j∈J

b j.C j} if Gk = invoke(a,
∑
j∈J

b j.C j) for some k ∈ I

{a↑
∑
j∈J

b j.C j,
∑
i∈I

Gi}⇒ dec(Cy)⊕dec(Dz)

if


Gk = recreply(a,

∑
l∈L

cl.Dl) for some k ∈ I and

by = cz for some y ∈ J, z ∈ L

{a↑
∑
j∈J

b j.C j,
∑
i∈I

Gi}⇒ {cz↓
∑
j∈J

b j.C j}⊕dec(Dz)

if


Gk = recreply(a,

∑
l∈L

cl.Dl) for some k ∈ I and

there exists z ∈ L s.t. cz , b j for every j ∈ J

the set of admitted replies.

These three cases are taken into account in the definition below.

Definition 3.4 (Petri net semantics) Let C be a WSCL contract system as in Def-
inition 2.1. We define Net(C) as the Petri net (S ,T) where:

• S = Pl(C);
• T ⊆M f in(S)×M f in(S) includes all the transitions that are instances of the tran-

sitions schemata in Table 3.

We define the marked net Netm(C) as the marked net (S ,T,m0), where the initial
marking is m0 = dec(C).

9

Example 3.5 Consider the client C and
the service S introduced in Example 2.5
and let

C′ 4= invoke(requireTicket, ok.C)

+recreply(offerTicket, ok.
√

)

S ′ 4= recreply
(
requireTicket,

ok.(invoke(offerTicket,ok)|S)
)
.

The marked net Netm(S |C) is depicted on
the right. A bunch of unreachable places
(like ok ↓ok.

√
, ok ↑ok.

√
, . . .) have been

omitted for the sake of clarity.

C′ S ′

requireTicket↑ok.C

invoke(offerTicket,ok)

offerTicket↑ok
√

We divide the proof of the correspondence between the operational and the Petri
net semantics of WSCL contracts in two parts: we first prove a soundness result
showing that all Petri net computations reflect computations of contracts, and then
a completeness result showing that contract computations leading to a state in which
there are no uncompleted request-response interactions are reproduced in the Petri
net.

In the proof of the soundness result we use the following structural congruence
rule to remove empty contracts and in order to rearrange the order of contracts in
parallel compositions. Let ≡ be the minimal congruence for contract systems such
as

C|0 ≡C C|D ≡ D|C C|(D|E) ≡ (C|D)|E recX.C ≡C{recX.C/X}

As usual, we have that the structural congruence respects the operational semantics.

Proposition 3.6 Let C and D be two contract systems such that C ≡ D. If C
α
−→C′,

then there exists D′ such that D
α
−→ D′ and C′ ≡ D′.

The following result establishes a precise relationship between the form of m and
the form of C when dec(C) = m.

Lemma 3.7 Let C be a WSCL contract system and suppose dec(C) = m. The fol-
lowing holds:

(1) if m = {
∑

i∈I Gi}⊕m′ then C ≡
∑

i∈I Gi | D, for some D such that dec(D) = m′;
(2) if m = {a↑

∑
j∈J b j.C j}⊕m′ then C ≡

∑
j∈J r〈b j〉.C j | a〈r〉 | D, for some D and r

such that r < Names(D) and dec(D) = m′;
(3) if m = {c ↓

∑
j∈J b j.C j} ⊕ m′ then c , b j for each j ∈ J and C ≡∑

j∈J r〈b j〉.C j | r〈c〉 | D, for some D and r such that r < Names(D) and
dec(D) = m′.

10

Proposition 3.8 Let C be a WSCL contract. Consider the Petri net Net(C) = (S ,T)
and a marking m of Net(C). We have that m is dead if and only if D has no outgoing
reductions, for every D such that dec(D) = m.

Proof: (⇒). Suppose m is dead, we have to prove that any D, with dec(D) = m, has
no outgoing reductions. The proof is by induction on the structure of m. The case
m = ∅ is trivial.

Suppose m = {
∑

i∈I Gi} ⊕m′, hence D ≡
∑

i∈I Gi|C, with dec(C) = m′ (Lemma 3.7).
By definition, m′ is dead, therefore, by induction, C has no outgoing reductions.
Moreover:

• Gk , invoke(a,
∑

j∈J b j.C j), for each k ∈ I (otherwise the first kind of transition
would apply to m), hence

∑
i∈I Gi has no outgoing reductions.

• Gk = recreply(ak,
∑

l∈Lk cl.Dl) but m′ does not contain ak↑
∑

j∈J b j.C j, for each
k ∈ I (otherwise either the second or the third kind of transition would apply to
m). Therefore there is no ak〈r〉 |

∑
j∈J r〈b j〉.C j in C (by dec(C) = m′) and D has

not outgoing reductions.

Suppose m = {a↑
∑

j∈J b j.C j} ⊕m′, hence D ≡
∑

j∈J r〈b j〉.C j | a〈r〉 | C, with r <
Names(C) and dec(C) = m′ (Lemma 3.7). By definition, m′ is dead, therefore,
by induction, C has no outgoing reductions. Moreover m′ , {

∑
i∈I Gi} ⊕m′′ with

Gk = recreply(a,
∑

l∈L cl.Dl), for some k ∈ I. Otherwise either the second or the
third kind of transition would apply to m. Hence, by definition of dec(·), C can-
not contain an unguarded subterm of the form recreply(a,

∑
l∈L cl.Dl) and D has no

outgoing reductions.

Suppose m = {c ↓
∑

j∈J b j.C j} ⊕ m′. Then c , b j, for each j and D ≡∑
j∈J r〈b j〉.C j | r〈c〉 | C, with dec(C) = m′ (Lemma 3.7). By definition, m′ is dead,

therefore, by induction, C has no outgoing reductions and by inspection of the se-
mantics of contracts it is easy to see that D has no outgoing reductions too.

(⇐). By induction on the structure of m and by Lemma 3.7 it can be easily seen
that if D has an outgoing reduction then we have a contradiction and m is not dead.
2

In order to prove that the Petri net semantics preserves client-service compliance,
we need to introduce the notion of success marking. A success marking m contain
at least one token in a place corresponding to a successful client state, formally,
m(

∑
i∈I Gi) > 0 for some contract

∑
i∈I Gi such that Gk =

√
, for some k ∈ I.

We are now ready to prove the soundness result.

Theorem 3.9 (Soundness) Let C be a WSCL contract. Consider the Petri net
Net(C) = (S ,T) and let m be a marking of Net(C). If m[〉m′ then for each D
such that dec(D) = m there exists a computation D 4

= D0 −→ D1 −→ ·· · −→ Dl,

11

with dec(Dl) = m′. Moreover, if m is not a success marking then there exists no

j ∈ {0, · · · , l−1} such that D j

√

−→.

Proof: The proof proceeds by case analysis on the three possible kinds of transition.

(1) If m[〉m′ by applying the first kind of transition then m = {
∑

j∈J G j}⊕m′′, with
Gk = invoke(a,

∑
i∈I bi.Ci) for a k ∈ J. Moreover, m′ = {a↑

∑
i∈I bi.Ci}⊕m′′.

By Lemma 3.7, D ≡
∑

j∈J G j | C′ −→ a〈r〉 |
∑

i∈I r〈bi〉.Ci | C′ 4= D′ and
dec(D′) = m′.

(2) If m[〉m′ by applying the second kind of transition then m = {a ↑∑
j∈J b j.C j,

∑
i∈I Gi} ⊕m′′, with Gk = recreply(a,

∑
l∈L cl.Dl), for some k ∈ J,

and by = cz for some y ∈ J and z ∈ L. By Lemma 3.7, if dec(D) = m then
D ≡ a〈r〉 |

∑
j∈J r〈b j〉.C j |

∑
i∈I Gi | C′, for any C′ such that dec(C′) = m′′.

Therefore, by Gk = recreply(a,
∑

l∈L cl.Dl):

D −→
∑

j∈J r〈b j〉.C j |
∑

l∈L reply(r,cl).Dl | C′

−→
∑

j∈J r〈b j〉.C j | r〈cz〉 | Dz | C′

−→ Cy | Dz | C′
4
= D′

with dec(D′) = dec(Cy)⊕ dec(Dz)⊕m′′ = m′. Notice that each intermediate
state in the reduction sequence from D to D′ cannot perform a successful
transition.

(3) If m[〉m′ by applying the third kind of transition then m = {a ↑∑
j∈J b j.C j,

∑
i∈I Gi} ⊕m′′, with Gk = recreply(a,

∑
l∈L cl.Dl), for some k ∈ J,

and there is z ∈ L such that by , cz for each y ∈ J. By Lemma 3.7, if dec(D) = m
then D ≡ a〈r〉 |

∑
j∈J r〈b j〉.C j |

∑
i∈I Gi | C′, for any C′ such that dec(C′) = m′′.

Therefore, by Gk = recreply(a,
∑

l∈L cl.Dl), we get

D −→
∑

j∈J r〈b j〉.C j |
∑

l∈L reply(r,cl).Dl | C′

−→
∑

j∈J r〈b j〉.C j | r〈cz〉 | Dz | C′
4
= D′

with dec(D′) = {cz↓
∑

j∈J b j.C j}⊕dec(Dz)⊕m′′ = m′. Notice that each interme-
diate state in the reduction sequence from D to D′ cannot perform a successful
transition.

2

Definition 3.10 (Stable contracts) A WSCL contract C (in the run-time syntax) is
said stable if it contains neither unguarded reply(r,b) actions nor pairs of matching
terms of the form r〈b〉 and r〈b〉.

Notice that any initial WSCL contract (according to the syntax of Definition 2.1) is
stable.

Lemma 3.11 Suppose C is stable and that C −→ C′. Then, there exists C′′ stable
such that C′ −→ C1 −→ ·· · −→ Cl −→ C′′ (l ≥ 0) and for each i = 1, · · · , l it holds

12

that Ci

√

−→/ .

Proof: If C′ is not stable then it may contain both unguarded reply actions and
pairs of the form r〈b〉 and r〈b〉. According to the operational semantics of con-
tracts, all unguarded reply actions and r〈b〉 and r〈b〉 can be consumed performing
a sequence of reductions. Therefore a stable contract C′′ can be reached from C′

without traversing any state capable of
√

−→. 2

We now move to the completeness part.

Theorem 3.12 (Completeness) Let C be a WSCL contract and let D be a contract
reachable from C through the computation C = C0 −→C1 −→ ·· · −→Cn = D. If D is
stable then there exists a computation m0[〉m1[〉m2 · · ·ml−1[〉ml of the marked Petri
net Netm(C) such that dec(D) = ml. Moreover, if there exists no k ∈ {0, · · · ,n} such

that Ck

√

−→ then for every j ∈ {0, · · · , l} we have that m j is not a success marking.

Proof: The proof is by induction on the length n of the derivation C = C0 −→

C1 −→ ·· · −→ Cn = D. The base case (n = 0) is trivial. In the inductive case there
are two possible cases: Cn−1 is stable or it is not stable. In the first case the proof is
straightforward. In the second case, there are two possible scenarios to be consid-
ered: either Cn contains an unguarded action reply(r,b) term, or it contains a pair of
matching terms r〈b〉 and r〈b〉. We consider the first of these two cases, the second
one can be treated similarly.

Let Cn−1 be a non stable contract containing an unguarded action reply(r,b). This
action cannot appear unguarded in the initial contract C: let C j, with j > 0, be the
first contract traversed during the computation of C in which the action reply(r,b)
appears unguarded. Hence, we have that C j−1 −→ C j consists of the execution of
a receive action. We now consider a different computation from C to D obtained
by rearranging the order of the steps in the considered computation C = C0 −→

C1 −→ ·· · −→Cn = D. Namely, let C = C0 −→C1 −→ ·· · −→Cl−1 −→C′l −→ ·· · −→
C′n−2 −→Cn−1 −→Cn = D be the computation obtained by delaying as much as pos-
sible the execution of the receive action generating the unguarded action reply(r,b).
In the new computation, this action appears for the first time in the contract Cn−1.
Moreover, C′n−2 must be a stable contract otherwise Cn is not stable. Hence, we
can straightforwardly prove the thesis by applying the inductive hypothesis to the
shorter computation C = C0 −→C1 −→ ·· · −→Cl−1 −→C′l −→ ·· · −→C′n−2 leading
to the stable contract C′n−2. 2

As a simple corollary of the last two theorems, we have that client-service compli-
ance is preserved by the Petri net semantics.

Corollary 3.13 (Compliance preservation) Let C and S be respectively a WSCL
client and service contract, as in Definition 2.1. We have that C is compliant with

13

S if and only if in the marked Petri net Netm(C|S) all the maximal computations
traverse at least one success marking.

Proof: (⇒). Trivial by Theorem 3.9.

(⇐). Suppose that in Netm(C|S) all the maximal computations traverse at least one
success marking and suppose by contradiction that C is not compliant with S . This
means that there is a maximal computation from C|S that does not traverse a state

D such that D
√

−→. This computation can either end in a state D′ with no outgoing
reductions or can be infinite.

In the first case we get a contradiction by Theorem 3.12. Indeed there would be a
maximal computation from Netm(C|S) traversing only non-success markings.

Consider the second case. From the infinite sequence of reductions, we can build
an infinite set of maximal computations of arbitrary length, starting from C and
ending in a stable state (Lemma 3.11) without traversing a succes state. By The-
orem 3.12, for each of these maximal computations there exists a corresponding
maximal computation in the net Netm(S |C) that does not traverse a success mark-
ing. We can arrange these computations so as to form a tree where m′ is a child of
m iff m[〉m′: this is an infinite, but finitely-branching, tree. By König’s lemma, in
Netm(S |C) there exists then an infinite computation that does not traverse a success
marking and we get a contradiction. 2

3.2 Verifying client-service compliance using the Petri net semantics

In the light of Corollary 3.13, checking whether C is compliant with S reduces to
verifying if all the maximal computations in Netm(C|S) traverse at least one success
marking. In order to verify this property, we proceed as follows:

• we first modify the net semantics in such a way that the net computations block
if they reach a success marking;

• we define a (terminating) algorithm for checking whether in the modified Petri
net all the maximal computations are finite and end in a success marking.

The modified Petri net semantics simply adds one place that initially contains one
token. All transitions consume such a token, and reproduce it only if they do not
introduce tokens in success places, i.e., places

∑
i∈I Gi such that Gk =

√
for some

k ∈ I

Definition 3.14 (Modified Petri net semantics) Let C be a WSCL contract and
Net(C) = (S ,T) the corresponding Petri net as defined in Definition 3.4. We define
ModNet(C) as the Petri net (S ′,T ′) where:

14

• S ′ = S ∪{run}, where run is an additional place;
• for each transition c⇒ p ∈ T, then T ′ contains a transition that consumes the

multiset c] {run} and produces either p, if p contains a place
∑

i∈I Gi such that
Gk =

√
for some k ∈ I, or p]{run}, otherwise.

The marked modified net ModNetm(C) is defined as the net ModNet(C) with initial
marking m0 where

m0 =

 dec(C)]{run} if dec(C) is not a success marking

dec(C) otherwise.

We now state an important relationship between Netm(C) and ModNetm(C). It can
be proved by relying on the definition of modified net.

Proposition 3.15 Let C be a WSCL contract, Netm(C) (resp. ModNetm(C)) the
corresponding Petri net (resp. modified Petri net). We have that all the maximal
computations of Netm(C) traverse at least one success marking if and only if in
ModNetm(C) all the maximal computations are finite and end in a success marking.

We now present the algorithm for checking whether in a Petri net all the maximal
computations are finite and end in a success marking. In the algorithm and in the
proof, we utilize the following preorder over multisets on Places(C): m � m′ iff for
each p, m(p) ≤ m′(p). It can be shown that this preorder is a well-quasi-order, that
is, in any infinite sequence of multisets there is a pair of multisets m and m′ such
that m � m′ (see e.g. [17]).

Theorem 3.16 Let C be a WSCL contract as in Definition 2.1 and let
ModNetm(C) = (S ,T,m0) be the corresponding modified Petri net. The algorithm
described in Table 4 always terminates. Moreover, it returns TRUE iff all the maxi-
mal computations in ModNetm(C) are finite and end in a success marking.

Proof: Suppose by contradiction that the algorithm does not terminate. This means
that there exists an infinite computation from m0 of the form m0[〉m1[〉 · · · [〉mn[〉 · · ·
such that, for each each mi: (i) mi is not a success marking and (ii) for no m j, with
0 ≤ j < i, it holds that m j � mi.

The last assertion implies that there exists an infinite sequence of elements in S that
are not related by the preorder �, and this would violate the fact � is a well-quasi-
order.

Assume now that the algorithm returns FALSE. This may happen at (b) or at (c)-
ii. In the first case, we have found a maximal computation ending at m and not
traversing a success state. In the second case, it is easy to see that we can build
computations of arbitrary length that do not traverse success, again implying the
existence of an infinite unsuccessful computation (via König’s lemma). The case

15

Table 4
An algorithm for checking the coverability of success markings.

(1) If the initial marking m0 is not a success marking then label it as the root and tag it
“new”.

(2) While “new” markings exist do the following:

(a) Select a “new” marking m.
(b) If no transitions are enabled at m, return FALSE.
(c) While there exist enabled transitions at m, do the following for each of them:

(i) Obtain a marking m′ that results from firing the transition.
(ii) If on the path from the root to m there exists a marking m′′ such that m′(p)≥

m′′(p) for each place p then return FALSE.
(iii) If m′ is not a success marking introduce m′ as a node, draw an arc from m

to m′, and tag m′ “new”.
(d) Remove the tag “new” from the marking m.

(3) Return TRUE.

when the algorithm returns TRUE is obvious. 2

4 Undecidability of client-service compliance for BPEL contracts

We now move to the proof that client-service compliance is undecidable for BPEL
contracts. The proof is by reduction from the termination problem in Random Ac-
cess Machines (RAMs) [23], a well known Turing powerful formalism based on
registers containing nonnegative natural numbers. The registers are used by a pro-
gram, that is a set of indexed instructions Ii which are of two possible kinds:

• i : Inc(r j) that increments the register r j and then moves to the execution of the
instruction with index i + 1 and

• i : DecJump(r j, s) that attempts to decrement the register r j; if the register does
not hold 0 then the register is actually decremented and the next instruction is
the one with index i + 1, otherwise the next instruction is the one with index s.

Without loss of generality we assume that given a program I1, · · · , In, it starts by
executing I1 with all the registers empty (i.e. all registers contain 0) and terminates
when trying to perform the first undefined instruction In+1.

In order to simplify the notation, in this section we introduce a notation correspond-
ing to standard input and output prefixes 3 of CCS [21]. Namely, we model simple
synchronization as a request-response interaction in which there is only one possi-

3 The input and output prefixes correspond also to the representation of the one-way inter-
action pattern in contract languages such as those in [11,7,12].

16

ble reply message. Assuming that this unique reply message is ok (with ok ∈Names
not necessarily fresh), we introduce the following notation:

a.P = invoke(a,ok.P) a.P = receive(a).reply(a,ok).P

In order to reduce RAM termination to client-service compliance, we define a client
contract that simulates the execution of a RAM program, and a service contract that
represent the registers, such that the client contract reaches the success

√
if and only

if the RAM program terminates.

Given a RAM program I1, · · · , In, we consider the client contract C as follows

C 4
=

∏
i∈{1,··· ,n}[[Ii]] | instn+1.

√

[[Ii]]
4
=


recX.

(
insti.inc j.ack.(insti+1 | X)

)
if Ii =

(
i : Inc(r j)

)
recX.

(
insti.dec j.(ack.(insti+1 | X) + zero.(insts | X))

)
if Ii =

(
i : DecJump(r j, s)

)
An increment instruction Inc(r j) is modeled by a recursive contract that invokes
the operation inc j, waits for an acknowledgement on ack, and then invokes the ser-
vice corresponding to the subsequent instruction. On the contrary, a decrement in-
struction DecJump(r j, s) invokes the operation dec j and then waits on two possible
operations: ack or zero. In the first case the service corresponding to the subse-
quent instruction with index i + 1 is invoked, while in the second case the service
corresponding to the target of the jump is invoked instead.

We now move to the modeling of the registers. Each register r j is represented by a
contract representing the initially empty register in parallel with a service modeling
every unit subsequently added to the register

[[r j]] = recX.
(
dec j.zero.X + inc j.unit j.invoke(u j,ok.ack.X)

)
|

recX.unit j.
(
X | receive(u j).ack.recY.(dec j.reply(u j,ok)+

inc j.unit j.invoke(u j,ok.ack.Y))
)
.

The idea of the encoding is to model numbers with chains of nested request-
response interactions. When a register is incremented, a new instance of a contract
is spawn invoking the operation unit j, and a request-response interaction is opened
between the previous instance and the new one. In this way, the previous instance
blocks waiting for the reply. When an active instance receives a request for decre-
ment, it terminates by closing the request-response interaction with its previous
instance, which is then re-activated. The contract that is initially active represents
the empty register because it replies to decrement requests by performing an invo-
cation on the zero operation.

17

We extend structural congruence ≡, introduced in Section 3, to ≡ren to admit the
injective renaming of the operation name

C ≡ren D if there exists an injective renaming σ such that Cσ ≡ D

Clearly, injective renaming is an equivalence and preserves the operational seman-
tics.

Proposition 4.1 Let C and D be two contract systems such that C ≡ren D. If C
α
−→

C′, then there exists D′ and a label α′ obtained by renaming the operation names

in α such that D
α′

−→ D′ and C′ ≡ren D′.

Now, we introduce {{r j,c}} that we use to denote the modeling of the register r j when
it holds the value c. Namely, {{r j,0}} = [[r j]], while if c > 0 then

{{r j,c}} =



b0〈ok〉.ack.recX.(dec j.zero.X + inc j.unit j.invoke(u j,ok.ack.X)) |

b1〈ok〉.ack.recY.(dec j.b0〈ok〉+ inc j.unit j.invoke(u j,ok.ack.Y)) |

· · · |

recY.(dec j.bc−1〈ok〉+ inc j.unit j.invoke(u j,ok.ack.Y)) |

recX.unit j.
(
X | receive(u j).ack.recY.(dec j.reply(u j,ok)+

inc j.unit j.invoke(u j,ok.ack.Y))
)

In the following theorem, stating the correctness of our encoding, we use the fol-
lowing notation: (i,c1, · · · ,cm) to denote the state of a RAM in which the next in-
struction to be executed is Ii and the registers r1, · · · ,rm respectively contain the
values c1, · · · ,cm, and (i,c1, · · · ,cm)→R (i′,c′1, · · · ,c

′
m) to denote the change of the

state of the RAM R due to the execution of the instruction Ii.

Theorem 4.2 Consider a RAM R with instructions I1, · · · , In and registers
r1, · · · ,rm. Consider also a state (i,c1, · · · ,cm) of the RAM R and a correspond-
ing contract C such that C ≡ren insti|[[I1]]| · · · |[[In]]|instn+1.

√
|{{r1,c1}}| · · · |{{rm,cm}}. We

have that

• either the RAM computation has terminated, thus i = n + 1
• or (i,c1, · · · ,cm)→R (i′,c′1, · · · ,c

′
m) and there exists l > 0 such that C −→ C1 −→

·· · −→Cl and
· Cl ≡ren insti′ |[[I1]]| · · · |[[In]]|instn+1.

√
|{{r1,c′1}}| · · · |{{rm,c′m}}

· for each k (1 ≤ k < l): Ck

√

−→/.

Proof: Suppose i, n+1. The proof proceeds by distinguishing two cases depending
on the instruction i:

18

i : Inc(r j): for the sake of simplicity, suppose r j = 0. Then
(i,c1, · · · ,c j−1,0,c j+1, · · · ,cm)→R (i + 1,c1, · · · ,c j−1,1,c j+1, · · · ,cm).

The contract C corresponding to (i,c1, · · · ,c j−1,0,c j+1, · · · ,cm) is:

C ≡ren D 4
= insti | · · · |recX.(insti.inc j.ack.(insti+1 | X)) | · · · |instn+1.

√
|{{r1,c1}} | · · ·

| recX.
(
dec j.zero.X + inc j.unit j.invoke(u j,ok.ack.X)

)
|

| recX.unit j.
(
X | receive(u j).ack.recY.(dec j.reply(u j,ok)+

inc j.unit j.invoke(u j,ok.ack.Y))
)

| · · · | {{rm,cm}}

and
D →∗ · · · |ack.

(
insti+1 |[[Ii]]

)
| · · · |instn+1.

√
|{{r1,c1}} | · · ·

| unit j.invoke(u j,ok.ack.recX.
(
dec j.zero.X + inc j.unit j.invoke(u j,ok.ack.X))

)
|

| recX.unit j.
(
X | receive(u j).ack.recY.(dec j.reply(u j,ok)+

inc j.unit j.invoke(u j,ok.ack.Y))
)

| · · · | {{rm,cm}}

→∗ · · · |ack.
(
insti+1 | [[Ii]]

)
| · · · |instn+1.

√
|{{r1,c1}} | · · ·

| r〈ok〉.ack.recX.
(
dec j.zero.X + inc j.unit j.invoke(u j,ok.ack.X)

)
|

| ack.recY.(dec j.r〈ok〉+ inc j.unit j.invoke(u j,ok.ack.Y))

| recX.unit j.
(
X | receive(u j).ack.recY.(dec j.reply(u j,ok)+

inc j.unit j.invoke(u j,ok.ack.Y))
)

| · · · | {{rm,cm}}

→ insti+1 | · · · | [[Ii]] | · · · |instn+1.
√
|{{r1,c1}} | · · ·

| r〈ok〉.ack.recX.
(
dec j.zero.X + inc j.unit j.invoke(u j,ok.ack.X)

)
|

| recY.(dec j.r〈ok〉+ inc j.unit j.invoke(u j,ok.ack.Y))

| recX.unit j.
(
X | receive(u j).ack.recY.(dec j.reply(u j,ok)+

inc j.unit j.invoke(u j,ok.ack.Y))
)

| · · · | {{rm,cm}}
4
= D′

where D′ corresponds to the state (i + 1,c1, · · · ,c j−1,1,c j+1, · · · ,cm) and clearly
each D′′ in the derivation from D to D′ cannot perform a successful transition.
Therefore, by Proposition 4.1, C→∗ C′ with C′ ≡ren D′.

i : DecJump(r j, s): suppose again that r j = 0. Then,
(i,c1, · · · ,c j−1,0,c j+1, · · · ,cm)→R (s,c1, · · · ,c j−1,0,c j+1, · · · ,cm).

The contract C corresponding to (i,c1, · · · ,c j−1,0,c j+1, · · · ,cm) is:

19

C ≡ren D 4
= insti | · · · |recX.(insti.dec j.(ack.(insti+1|X) + zero.(insts|X))) | · · · |instn+1.

√
|

{{r1,c1}} | · · · | recX.
(
dec j.zero.X + inc j.unit j.invoke(u j,ok.ack.X)

)
|

| recX.unit j.
(
X | receive(u j).ack.recY.(dec j.reply(u j,ok)+

inc j.unit j.invoke(u j,ok.ack.Y))
)

| · · · | {{rm,cm}}

and
D →∗ · · · |ack.(insti+1|[[Ii]]) + zero.(insts|[[Ii]])) | · · · |instn+1.

√
|{{r1,c1}} | · · ·

| zero. recX.
(
dec j.zero.X + inc j.unit j.invoke(u j,ok.ack.X)

)
|

| recX.unit j.
(
X | receive(u j).ack.recY.(dec j.reply(u j,ok)+

inc j.unit j.invoke(u j,ok.ack.Y))
)

| · · · | {{rm,cm}}

→∗ insts | · · · | [[Ii]] | · · · |instn+1.
√
|{{r1,c1}} | · · ·

| recX.
(
dec j.zero.X + inc j.unit j.invoke(u j,ok.ack.X)

)
|

| recX.unit j.
(
X | receive(u j).ack.recY.(dec j.reply(u j,ok)+

inc j.unit j.invoke(u j,ok.ack.Y))
)

| · · · | {{rm,cm}}
4
= D′

where D′ corresponds to the state (s,c1, · · · ,c j−1,0,c j+1, · · · ,cm) and clearly each
D′′ in the derivation from D to D′ cannot perform a successful transition. Again,
by Proposition 4.1, C→∗ C′ with C′ ≡ren D′.

The proof proceeds similarly in case r j , 0.

2

As a corollary we get that client-service compliance is undecidable.

Corollary 4.3 Consider a RAM R with instructions I1, · · · , In and registers
r1, · · · ,rm. Consider the client contract C = inst1|[[I1]]| · · · |[[In]]|instn+1.

√
and the ser-

vice contract S = {{r1,0}}| · · · |{{rm,0}}. We have that C is compliant with S if and only
if R terminates.

Proof: The proof proceeds by proving that both directions hold in the most general
case: C|S ≡ren inst1|[[I1]]| · · · |[[In]]|instn+1.

√
|{{r1,0}}| · · · |{{rm,0}}.

(⇐): Suppose R terminates. Theorem 4.2 can be applied to guarantee that C and S
are compliant. The proof proceeds by induction on the number n of steps needed
by R to terminate.

Suppose n = 0, hence R has terminated. In this case C ≡ren
instn+1|[[I1]]| · · · |[[In]]|instn+1.

√
, hence (Proposition 4.1) there exists exactly

one computation from C |S as below.

20

C |S →≡ren [[I1]]| · · · |[[In]]|
√
|S

√

−→ .
Clearly, this computation guarantees the compliance of C and S .

Suppose now n > 0 and (i,c1, · · · ,cm)→R (i′,c′1, · · · ,c
′
m) 4= R′. Theorem 4.2 and

Proposition 4.1 guarantee that there exists l > 0 such that C |S −→ D1 −→ ·· · −→

Dl and Dl ≡ren insti′ |[[I1]]| · · · |[[In]]|instn+1.
√
|{{r1,c′1}}| · · · |{{rm,c′m}} and that Dk

√

−→/ ,
for any 1 ≤ k ≤ l. By looking at the proof of the theorem, it is also clear that any
Dk cannot originate other transitions, a part from that already considered in the
computation above. Therefore, D can only evolve into Dl and then, by applying
the induction hypothesis to R′, it follows that C and S are compliant.

(⇒): Suppose now that C and S are compliant. To prove that R terminates it is
sufficient to suppose, by contradiction, that it is not the case. By Theorem 4.2,
this implies that there exists an infinite (hence maximal) computation C |S →

D1 → ·· · → Dl → ·· · where Dk

√

−→/ , for any k. This contradicts the hypothesis
that C and S are compliant.

2

5 Mutual compliance

In Section 2 we have introduced a notion of compliance based on client’s satisfac-
tion: whenever the client reaches a success state the whole system is successful.
Hence, the success of the system is established by ignoring what happens on the
service side. This could leave the service in an inconsistent state. Let’s consider for
example a service demanding for an additional confirmation from the client before
executing the required task. In case the client decides to abandon the session be-
fore sending this final approval the (current instance of the) service is blocked. This
situation could require the usage of timeouts mechanisms, especially in presence
of recursive services having at most only one active instance at a time (this could
be the case e.g. when the service accesses critical data). A concrete example could
be an e-banking service demanding for the executive password of the client before
performing any operation, e.g. bank transfer, shares purchase,. . . , as below.

C 4
= invoke(e−bank,ok.recreply(login,log_data.C′))

C′ 4= invoke(transfer,ok.recreply(send_data,tran_data.
√

))

B 4
= recreply(e−bank,ok.invoke(login,log_data.B′))

B′ 4= recreply(transfer, ok.invoke(send_data, tran_data.

invoke(con f irm,pw) + recreply(abort,ok)))

+recreply(other,ok.B′′)

B′′ 4= . . .

21

It is easy to see that when the client decides to “abandon” the request without noti-
fying the service (tran_data.

√
), a pending session rests on the service side waiting

for the confirmation (invoke(con f irm,pw)) or the abort (recreply(abort,ok)).

In order to avoid such problems, we introduce another notion of compliance, called
mutual compliance, where the synchronization of client and service’s success ac-
tions is mandatory in order to establish the success of the whole system.

In this section we modify the syntax and semantics of WSCL contracts to distin-
guish between clients and services’ successes and introduce the notion of mutual
compliance. We then prove that this new notion of compliance is still decidable, by
slightly modify the reasoning of Section 3.

5.1 WSCL contracts and mutual compliance

Guarded contracts are defined as follows:

G ::= invoke(a,
∑

i∈I bi.Ci) | recreply(a,
∑

i∈I bi.Ci) |
√

C |
√

S

where
√

C and
√

S denote the success of the client and the service, respectively.

The run-time syntax of contracts extends the syntax introduced in Definition 2.1 in
order to take into account the occurred synchronization of

√
C and

√
S:

C ::= · · · |
√
.

A client contract is a contract C containing at least one occurrence of the guarded
contract

√
C and no occurrences of

√
S and

√
; while a service contract is a contract

S containing at least one occurrence of the guarded contract
√

S and no occurrences
of
√

C and
√

.

The operational semantics of contracts is extended, as expected, by adding to the
rules in Definition 2.3 the following ones:

√
C

√
C
−→ 0

√
S

√
S
−→ 0

C
√

C
−→C′ S

√
S
−→ S ′

C|S
τ
−→C′|S ′|

√

Mutual compliance coincides with Client-Service compliance introduced in Def-
inition 2.4 and, as before, it makes sense only in case of dyadic communications
and cannot be applied in a multi-party setting.

Definition 5.1 (Mutual compliance) A client contract C and a service contract S
are mutually compliant if for every maximal computation C|S −→ D1 −→ ·· · −→

Dl −→ ·· · there exists k such that Dk

√

−→.

22

Notice that, with the new semantics, Dk

√

−→ in the definition above implies a pre-
vious synchronization in the computation of

√
C and

√
S.

Example 5.2 (An e-bank service) Consider the e-bank process B introduced at
the beginning of this section and anther version of the client, D, that confirms the
execution of the bank transfer before exiting the session. The two processes are
reported below.

D 4
= invoke(e−bank,ok.recreply(login,log_data.D′))

D′ 4= invoke(transfer,ok.recreply(send_data,tran_data.recreply(con f irm,pw.
√

C)))

B 4
= recreply(e−bank,ok.invoke(login,log_data.B′))

B′ 4= recreply(transfer, ok.invoke(send_data, tran_data.

invoke(con f irm,pw.
√

S) + recreply(abort,ok.
√

S)))

+recreply(other,ok.B′′)

There is a sole computation from D|B, reported below, which guarantees mutual
compliance of the two.

D|B −→∗ recreply(login,log_data.D′) | invoke(login,log_data.B′)

−→
∗ invoke(transfer,ok.recreply(send_data,tran_data.recreply(con f irm,pw.

√
C)))

| recreply(transfer, ok.invoke(send_data, tran_data.

invoke(con f irm,pw.
√

S) + recreply(abort,ok.
√

S)))

+ recreply(other,ok.B′′)

−→
∗ recreply(send_data,tran_data.recreply(con f irm,pw.

√
C))

| invoke(send_data,tran_data.invoke(con f irm,pw.
√

S) + recreply(abort,ok.
√

S))

−→
∗ recreply(con f irm,pw.

√
C) | invoke(con f irm,pw.

√
S) + recreply(abort,ok.

√
S)

−→
∗ √

C |
√

S

−→
√

√

−→ .

5.2 Decidability of mutual compliance

As before, decidability is obtained by translating WSCL contracts into Petri nets.
The definition of the Petri net associated to a contract is essentially the same as
in Section 3, except for the presence of new places for

√
C and

√
S and of a new

transition allowing the synchronization of the two and leading to the success state
labeled by

√
, as below.

23

B

invoke(login,log_data.B′)

login↑log_data.B′

recreply(transfer,ok. . . .)

+recreply(other,ok.B2)


invoke(send_data,tran_data. . . .)

send_data↑tran_data. . . .
invoke(confirm,pw.

√
S)

+recreply(abort,ok.
√

S)


confirm↑pw.

√
S
√

S

D

e-bank↑ok. . . .

recreply(login,log_data.D′)

invoke(transfer,ok. . . .)

trans f er↑ok. . . .

recreply(send_data,tran_data. . . .)

recreply(con f irm,pw.
√

C)

√
C

√

Figure 1. Netm(B|D).

{
∑
i∈I

Gi,
∑
j∈J

G j}⇒{
√
} if Gk =

√
C and Gl =

√
S for some k ∈ I and l ∈ J

Example 5.3 Consider the e-bank service B and the client D from Example 5.2.
The marked net Netm(B|D) is depicted in Figure 1.

In the remaining part of the section we prove that soundness and completeness of
the translation still hold and that mutual compliance is preserved by the translation.

The relationship between markings and contracts introduced in Lemma 3.7 needs
to be modified by adding a fourth item as below:

Lemma 5.4 (Extension of Lemma 3.7) Let C be a WSCL contract system and
suppose dec(C) = m. The following holds:

(1) if m = {
∑

i∈I Gi}⊕m′ then C ≡
∑

i∈I Gi | D, for some D such that dec(D) = m′;
(2) if m = {a↑

∑
j∈J b j.C j}⊕m′ then C ≡

∑
j∈J r〈b j〉.C j | a〈r〉 | D, for some D and r

such that r < Names(D) and dec(D) = m′;

24

(3) if m = {c ↓
∑

j∈J b j.C j} ⊕ m′ then c , b j for each j ∈ J and C ≡∑
j∈J r〈b j〉.C j | r〈c〉 | D, for some D and r such that r < Names(D) and

dec(D) = m′;
(4) if m = {

√
}⊕m′ then C ≡

√
| D, for some D such that dec(D) = m′.

The remaining propositions and theorems are still valid; little changes in the proofs
of Proposition 3.8 and Theorem 3.9 are needed. In case of Proposition 3.8, it is suf-
ficient to extend the proof of (⇒) by adding another item guaranteeing the absence
of synchronization of

√
C and

√
S. In case of Theorem 3.9, it is necessary to extend

the proof by considering the new kind of net transition. In both cases, the changes
are minimal and easy to adjust, and the whole proofs are omitted.

The following version of Corollary 3.13 carries over.

Corollary 5.5 (Mutual Compliance preservation) Let C and S be respectively a
WSCL client and service contract, as defined in Subsection 5.1. We have that C
and S are mutually compliant if and only if in the marked Petri net Netm(C|S) all
the maximal computations traverse at least one success marking.

This result is essentially the same of that reported in Corollary 3.13, therefore the
reasoning introduced in Subsection 3.2 applies to the new notion of compliance:
the algorithm introduced in Table 4 together with Theorem 3.16 guarantee the de-
cidability of mutual compliance.

Example 5.6 (A login service and its client) Consider a login service, L, that
waits for a login request or for an abort message. In case of login, it receives
the credentials of the requester and either enters a successful state or notifies the
failure and restart its execution from the beginning. In case of abort, it ends in a
successful state. Consider a client, C, that is the complementary of L.

L 4
= recX.

(
recreply(login,xpw.

√
S + xpw.invoke(f ailed_login,ok.X))

+ recreply(abort_login,ok.
√

S)
)

C 4
= recY.

(
invoke(login,pw.(

√
C + recreply(f ailed_login,ok.Y)))

+ invoke(abort_login,ok.
√

C)
)

Suppose L′ and C′ correspond to the one step unfolding of L and C, the marked net
Netm(L′|C′) is depicted in Figure 2.

It is easy to see that there exists an infinite computation, involving transitions t2,
t5, t8 and t9, which does not traverse the success state

√
, therefore the two con-

tracts are not mutually compliant. Notice that by considering the notion of com-
pliance introduced in Definition 2.4, the two contracts are compliant: the infinite
computation above would traverse infinitely often a successful state (each occur-
rence of

√
C should be replaced by

√
in Figure 2, therefore the state labeled by

25

L′

√
S

invoke(f ailed_login,ok.L)

f ailed_login↑ok.L

C′

abort_login↑ok.
√

C
login↑pw. . . .√

C
√

C + recreply(f ailed_login,ok.C)

√

t1 t2
t3

t6

t4
t5

t7
t8

t9

Figure 2. Netm(L′|C′).
√

C + recreply(f ailed_login,ok.C) should be considered successful).

6 Related Work and Conclusion

We have presented two models of contracts with bidirectional request-response in-
teraction, studied a notion of compliance based on must testing and established an
expressiveness gap between the two models showing that compliance is decidable
in the first one while it is undecidable in the second one.

This paper is in the line of recent research dedicated to the formal analysis of ser-
vice behavioural contracts exploiting process calculi. To the best of our knowledge,
though, only one-way operations have been considered so far. An initial theory of
contracts for client-service interaction has been proposed by Carpineti et al. [11]
and then independently extended along different directions by Bravetti and Zavat-
taro (see e.g. [7,9]) by Laneve and Padovani [20], and by Castagna et al. [12].
The main objective of those papers was to define a subcontract relation suitable to
check the replaceability of one service with another one without affecting the cor-
rectness of a modeled system. The approach in [11] considers a notion of system
correctness similar to the one used in this paper and inspired by must-testing. A
corresponding subcontract relation, enhancing the must-testing preorder, is defined
in [20]. By making use of explicit interfaces indicating the operations used by one
service to interact with the external environment, both in-width and in-depth refine-
ments are admitted: a subcontract can have additional behaviour, available either as
new choices in branches or as longer continuations, but only if this additional be-
haviour is activated by actions on operations that are not in the interface. A notion
of correctness in which all the involved partners should eventually reach success-
ful completion (similar to the mutual compliance considered in this paper) has been

26

presented in [7], where a corresponding subcontract relation is also introduced. The
global completion approach is particularly appropriate for systems where there is
no clear distinction between clients and services as in the so called service chore-
ographies. The relationship between contract theories and choreography languages
(such as WS-CDL [27]) has been investigated in [9]. In all the above theories, the
defined subcontract relation is influenced by the operations that a service can use
to interact with the external environment, as invocations on these operations could
activate the additional behaviour available in refinements. A different approach is
taken in [12], where dynamic filters are automatically synthesized in order to guar-
antee that such an additional behaviour cannot be wrongly activated.

As for future work, we plan to investigate the (un)decidability of other definitions
of compliance present in the literature. In fact, the must-testing approach —the
one that we consider in this paper— has been adopted in early works about service
compliance (see e.g. [11]). More recent papers consider more sophisticated notions.
For instance, the should-testing approach [26] adopted, e.g., in [10] admits also
infinite computations if in every reached state there is always at least one path
leading to a success state.

Moreover, it would be interesting to apply the techniques presented in this paper
to more sophisticated orchestration languages, like the recently proposed calculi
based on the notion of session [6,5]. For instance, in [2], a type system is presented
ensuring a client progress property – basically, absence of deadlock – in a calcu-
lus where interaction between (instances of) the client and the service is tightly
controlled via session channels. It would be interesting to check to what extent the
decidability techniques presented here apply to this notion of progress. Also con-
nections with behavioural types [18,1] deserve attention. In the setting of process
calculi, these types are meant to provide behavioural abstractions that are in general
more tractable than the original process. In the present paper, the translation func-
tion of WSCL contracts into Petri nets can be seen too as a form of behavioural
abstraction. In the case of tightly controlled interactions (sessions) [2], BPP pro-
cesses, a proper subset of Petri nets featuring no synchronization [15], have been
seen to be sufficient as abstractions. For general pi-processes, full CCS with restric-
tion is in general needed. One would like to undertake a systematic study of how
communication capabilities in the original language (unconstrained interaction vs.
sessions vs. request-response vs....) trades off with tractability of the behavioural
abstractions (CCS vs. BPP vs. Petri nets vs. ...).

References

[1] Acciai, L., Boreale, M.: Spatial and behavioural Types in the pi-calculus. In Proc.
of CONCUR’08, LNCS 5201:372–386 (2008). Full version in Information and
Computation 208:1118–1153 (2010)

27

[2] Acciai, L., Boreale, M.: A Type System for Client Progress in a Service-Oriented
Calculus. In Concurrency, Graphs and Models, Essays Dedicated to Ugo Montanari
on the Occasion of His 65th Birthday. LNCS 5065:642–658 (2008)

[3] Acciai, L., Boreale, M., Zavattaro, G.: Behavioural Contracts with Request-Response
Operations. In Proc. of COORD’10, LNCS 6116:16–30 (2010)

[4] Boreale, M., Bravetti, M.: Advanced mechanisms for service composition, query and
discovery. LNCS (2010). To appear.

[5] Boreale, M., Bruni, R., De Nicola, R., Loreti, M.: Sessions and Pipelines for Structured
Service Programming. In Proc. of FMOODS’08, LNCS 5051:19–38 (2008)

[6] Boreale, M., Bruni, R., Caires, L., De Nicola, R., Lanese, I., Loreti, M., Martins, F.,
Montanari, U., Ravara, A., Sangiorgi, D., Vasconcelos, V.T., Zavattaro, G.: SCC: A
Service Centered Calculus. In Proc. of WS-FM’06, LNCS 4184:38–57 (2006)

[7] Bravetti, M., Zavattaro, G.: Contract based Multi-party Service Composition, In Proc.
of FSEN’07, LNCS 4767207–222 (2007)

[8] Bravetti, M., Zavattaro, G.: A Theory for Strong Service Compliance, In Proc. of
Coordination’07, LNCS 4467:96–112 (2007)

[9] Bravetti, M., Zavattaro, G.: Towards a Unifying Theory for Choreography
Conformance and Contract Compliance, In Proc. of SC’07, LNCS 4829:34–50 (2007)

[10] Bravetti, M. and Zavattaro, G.: Contract-Based Discovery and Composition of Web
Services. In Proc. of SFM’09. LNCS 5569: 261–295 (2009)

[11] Carpineti, S., Castagna, G., Laneve, C., Padovani, L.: A Formal Account of Contracts
for Web Services, In Proc. of WS-FM’06, LNCS 4184:148–162 (2006)

[12] Castagna, G., Gesbert, N., Padovani, L.: A Theory of Contracts for Web Services, In
Proc. of POPL’08, ACM Press 261–272 (2008)

[13] Castagna, G. and Padovani, L.: Contracts for Mobile Processes, In Proc. of Concur’09,
LNCS 5710:211–228 (2009)

[14] De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theor. Comput. Sci,
34:83–133 (1984)

[15] Esparza, J.: Petri Nets, Commutative Context-Free Grammars, and Basic Parallel
Processes. Fundam. Inform. 31(1):13–25 (1997)

[16] Esparza, J., Nielsen, M.: Decidability Issues for Petri Nets - a survey. Bulletin of the
EATCS 52:244–262 (1994)

[17] Finkel, A., Schnoebelen, Ph.: Well-Structured Transition Systems Everywhere!
Theoretical Computer Science, 256(1-2): 63–92 (2001)

[18] Igarashi, A., Kobayashi, N.: A generic type system for the Pi-calculus. Theoretical
Computer Science 311(1-3), 121–163 (2004)

[19] Karp , R.M., Miller, R.E.: Parallel Program Schemata. Journal of Computer and
System Sciences 3:147–195 (1969)

28

[20] Laneve, C., Padovani, L.: The must preorder revisited - An algebraic theory for web
services contracts. In Proc. of Concur’07, LNCS 4703:212–225 (2007)

[21] Milner, R.: Communication and concurrency. Prentice-Hall (1989)

[22] Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes. Information and
Computation, volume 100, pages 1–40 (1992)

[23] Minsky, M.L.: Computation: finite and infinite machines. Prentice-Hall, Englewood
Cliffs (1967)

[24] OASIS: Web Services Business Process Execution Language (WSBPEL). Standard
proposal available at: www.oasis-open.org/committees/wsbpel (2007)

[25] Petri, C.A.: Kommunikation mit Automaten. Ph. D. Thesis. University of Bonn (1962)

[26] Rensink A., Vogler W.: Fair testing. Inf. Comput. 205(2), 125–198 (2007)

[27] W3C: Web Services Choreography Description Language (WSCDL). Standard
proposal available at: http://www.w3.org/TR/ws-cdl-10 (2005)

[28] W3C: Web Services Choreography Interface (WSCI). Standard proposal available at:
http://www.w3.org/TR/wsci (2002)

[29] W3C: Web Services Conversation Language (WSCL). Standard proposal available at:
http://www.w3.org/TR/wscl10 (2002)

[30] W3C: Web Services Description Language (WSDL). Standard proposal available at:
http://www.w3.org/TR/wsdl (2001)

29

